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Abstract—When a computing device, such as a server, work-
station, laptop, tablet, etc. is shipped from one site to another
(for example, from a vendor to a customer or from one
branch location of an organization to another) it can potentially
be subjected to unauthorized firmware modifications. The
industry has sought to partially address this issue by focusing
on securing the boot process. Secure boot provides attestation
methods by a hardware root-of-trust to confirm the integrity
of the device’s BIOS/UEFI firmware. However, once a device
boots up, it is relatively easy for a malicious adversary to
tamper with the firmware. In this paper, we address this prob-
lem by preventing a secure boot unless done by an authorized
user. We extend a hardware root of trust (HRoT) processor’s
ability to perform secure attestation by implementing a new
functionality to securely lock and unlock the BIOS/UEFI or
the BMC (Baseboard Management Controller) and implement-
ing an authentication mechanism in the HRoT for determining
authorized users. This ensures that the secure boot process
won’t commence unless authorized appropriately and provides
a robust mechanism for securing the device’s firmware during
transit. The proposed PIT-Cerberus framework (PIT = Pro-
tection In Transit) leverages strong cryptographic techniques
and has been implemented within a trusted microcontroller.
We have contributed the PIT-Cerberus framework’s libraries to
Project Cerberus, an open-source project that offers a security
platform for server hardware.

Keywords— Firmware Security; BIOS/BMC; Hardware Root of
Trust; Secure Boot

1. INTRODUCTION

Firmware is the main software that allows a device’s hard-
ware to communicate with the operating system [1]. When a
computer is turned on, its BIOS (Basic Input/Output System)
firmware takes on the task of initializing the hardware by load-
ing the System Management Interrupts, starting the Advanced
Configuration and Power Interface and initiating the loading of
the operating system. This mode of operation of the device is
a high-privilege CPU mode, which stands apart from standard
operating system execution modes like protected mode or long
mode. The Unified Extensible Firmware Interface (UEFI) boot
process, increasingly replacing BIOS, mirrors the conventional
BIOS boot procedure’s flow. Most platforms based on UEFI
start their boot process with a minimal core block of code.
This stage is known as the Security (SEC) phase [2]. It lays
the groundwork for a secure boot, acting as a gatekeeper to

verify and authenticate the integrity of all subsequent firmware
and software that will be loaded onto the system.

Modern computing systems are also often equipped with base-
board management controllers (BMC) which are specialized
processors that monitor the physical state of the machine
using sensors and communicate that to system administrators
via independent communication channels. BMC firmware is
highly privileged and allows for remote management and
control, even when the system is shut down. A boot to BIOS,
UEFL, a hypervisor or OS is not necessary as the BMC
functions even if the server is shutdown.

The BIOS/UEFI or the BMC controller are the most critical
component of a modern day computing device. Any compro-
mise of the BIOS/UEFI or the BMC firmware code can give
an attacker complete control over a system, allowing them to
circumvent nearly all higher-level security safeguards. More-
over, once a device has booted up, an attacker can compromise
other device functionalities that are present. Unfortunately,
firmware attacks can be very difficult to identify and repair
[3]. Thus, ensuring firmware security via prevention is critical
but exceedingly challenging.

In this work, we address the problem of preventing firmware
tampering before the secure booting, when a device is phys-
ically shipped from a manufacturer to a user (following a
sale) or from a legitimate user to another user (for example,
following a transfer, relocation or resale). In other words, we
are concerned with protecting a device during transit from
unauthorized modifications to firmware (whence the phrase
“Protection in Transit — PIT”). To modity the firmware there
needs to be either a way to write to the storage location of
the firmware code or to physically replace the firmware code
with a bad one. Here, our concern is specifically with the
former method. We observe that such modification requires
that the device is booted up (at least to a minimum state
where firmware memory I/O is enabled). Thus, we recast
this problem as one of ensuring that the first boot of the
BIOS/UEFI or BMC following shipping is exclusive to the
authorized downstream user. We assume that the manufacturer
or legitimate user would not intentionally tamper with the
device. We also assume that there is no physical tampering
of the device (for example, opening the device and installing
a malicious chip).

We realize this objective by having the device manufacturer
implement a BIOS or BMC lock post-production and introduce
a mechanism for user authentication by the device before self-
unlock to ensure its use is only by the rightful authorized
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user. Manufacturers of modern computing devices frequently
use a tamper-proof micro-controller [4] as a hardware root
of trust for a verified and reliable machine boot-up following
software attestation principles. We employ such a hardware
root of trust (HRoT) in the BIOS/UEFI or BMC boot process
to perform user authentication, locking, and unlocking of the
device. The locking of the device is executed at the BIOS or
BMC level and the HRoT triggers the unlock after successful
authentication.

Building upon the foundations laid by Project Cerberus [5],
an open-source initiative aimed at establishing a hardware root
of trust (HRoT) for server platforms, we enhance Cerberus
capabilities to carve out a more resilient security protocol.
While Cerberus effectively orchestrates secure attestations for
firmware on devices, it does not inherently possess lock/unlock
or user authentication functionalities. Our implementation of
the PIT-Cerberus framework incorporates this lock/unlock
mechanisms tied to an authentication protocol, allowing for
more stringent control over the BIOS or BMC even before
the boot-up phase. This is pivotal in preventing unauthorized
access during a device’s transit and ensures that the integrity
and security of the firmware remain uncompromised from the
point of departure to the point of receipt. AMI International,
an industry leader in BIOS/BMC firmware, is currently beta
testing the framework and plans to incorporate it in their
production lines. We are in the process of open-sourcing our
extended PIT-Cerberus library, confident in its ability to bolster
the security landscape.

2. RELATED WORKS

Several potential attacks against conventional BIOS and
EFI/UEFI firmware have been demonstrated by security re-
searchers under laboratory conditions. Sacco and Ortega dis-
cuss the topic of BIOS infections and describe a proof-of-
concept demonstration of a persistent BIOS malware infec-
tion [3]. According to the authors, detecting and eradicating
BIOS infections is challenging because they reside in a section
of the computer’s memory that is inaccessible to standard
antivirus or anti-malware software. Wojtczuk and Rutkowska
have presented research on the security of Intel BIOS and
described several vulnerabilities and attack vectors [6] that can
be utilized to attack the BIOS such as exploiting firmware
vulnerabilities, accessing the BIOS via hardware debugging
tools, and employing software-based assaults such as buffer
overflow attacks. A new type of malware known as System
Management Mode (SMM) rootkits [7] has been introduced by
Duflot and Pornin. In this paper, the authors explain the nature
of SMM, its role in computer hardware, and the vulnerabilities
that can be used to get access to SMM.

Firmware level malware has been somewhat more common
in embedded systems. Using the HP-RFU vulnerability in
LaserJet printers as a case study, A. Cui, M. Costello, and
S. Stolfo demonstrate the development of a proof-of-concept
printer malware capable of network reconnaissance, data ex-
filtration, and propagation to other devices [8]. They highlight
the widespread nature of vulnerable embedded devices and

the challenges in patching them, with only a small percent-
age of the vulnerable population being patched. The paper
also emphasizes the limitations of firmware update signing
and identifies vulnerabilities in third-party libraries found in
firmware images. Overall, the findings underscore the need for
effective host-based defense mechanisms to protect vulnerable
embedded systems.

PsycoBOt [9], a notable router botnet, infiltrated the firmware
of about 85,000 DD-WRT home routers, turning them into
instruments for conducting severe network-disrupting Dis-
tributed Denial of Service (DDoS) attacks. Barnaby Jack
demonstrated the unauthorized extraction of cash from ATMs
through the modification of their firmware, a technique infa-
mously known as “jackpotting” [10]. Charlie Miller uncovered
serious risks within the firmware of certain Apple laptop bat-
teries that could potentially lead to malfunctions or overheat-
ing [11]. Employing PostScript [12], a ubiquitous language in
electronic and desktop publishing, Costin showcases the sus-
ceptibility of certain Lexmark printers to memory inspection
and arbitrary modifications, which can lead to exposure of
sensitive data or disruption of device functionality. Kevin Fu’s
groundbreaking work in medical device security highlights the
perilous reality of exploiting embedded devices [13], with his
real-world attacks on an implantable cardioverter defibrillator
and an automated external defibrillator illuminating these life-
threatening vulnerabilities. These instances underscore the cru-
cial need for robust firmware security across diverse devices,
as firmware forms the base code controlling hardware, making
successful infiltration by an attacker profoundly dangerous.
The integrity of the System BIOS is critical for ensuring the se-
curity and functionality of computer systems, particularly dur-
ing their transit through the supply chain. Unauthorized mod-
ifications, such as malicious firmware updates and firmware
modifications, pose significant threats [14]. Malicious actors
exploit vulnerabilities or weak security measures to alter the
BIOS, introducing malware or Trojans that can lead to data
breaches, device malfunctions, or system takeovers [15]. These
threats are exacerbated by man-in-the-middle attacks [16]
and supply chain attacks [17], which intercept or tamper
with firmware updates or implant malware, respectively. Such
attacks exploit the low-level operation of firmware, making
detection and mitigation difficult, and represent a persistent
security challenge [18][19][20].

Hardware-based trusted computing utilizes Trusted Execution
Environments (TEE) and secure elements like the Trusted Plat-
form Module (TPM) [21] to enhance security. TPMs, which
have been included in computers for over a decade, establish
a root of trust in a secure cryptographic core, protecting keys
and credentials even if the OS is compromised. The latest
standard, TPM 2.0, is present in most modern computers and
supports various elliptic curve signature schemes, essential for
certain core security services [22]. However, vulnerabilities
like CVE-2020-10713 in the GRUB2 bootloader and others in
bootloaders from Eurosoft, New Horizon Datasys, and Crypt-
Ware have shown that attackers can bypass Secure Boot to
execute malicious code. These vulnerabilities can be somewhat
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mitigated by blacklisting the affected bootloaders in the UEFI
Secure Boot Forbidden Signature Database (DBX), which can
be updated via UEFI firmware updates or Windows Update.
Beyond bootloaders, attackers can target deeper UEFI compo-
nents, exploiting specific vulnerabilities for targeted attacks.
Recent research has uncovered numerous high-impact vul-
nerabilities (CVE-2022-28858, CVE-2022-36372, CVE-2022-
32579, CVE-2022-27493 and CVE-2022-33209, CVE-2022-
23930, CVE-2022-31644, CVE-2022-31645, CVE-2022-
31646, CVE-2022-31640 and CVE-2022-31641) in UEFI
firmware components, indicating an ongoing risk despite ad-
vancements in UEFI security technologies [23].

The latest TPM chips support Windows Secure Boot, ensuring
the OS only boots if its hashes match those in the chip,
preventing rootkit interference. However, TPM doesn’t ensure
complete security against keyloggers or phishing attacks [24].
Microsoft’s installation criteria for Windows 11 include a
mandatory TPM 2.0 module to enhance security features.
Despite this, new Registry modifications [25] have been iden-
tified, enabling users to circumvent not only the TPM 2.0
stipulation but also the minimum memory and secure boot
prerequisites for the operating system.

lan Haken shows how attacks bypasses BitLocker by ex-
ploiting systems without pre-boot authentication and using a
mock domain controller [26]. It requires the target machine
to be domain-joined and have had a domain user log in
previously. The attacker sets up a fake domain, tricks the
system into accepting a new password due to an "expired"
password scenario, and corrupts the local credentials cache.
This allows offline login with the new password, giving the
attacker access to all user data and the ability to install
malware. The method is simple, requires physical access,
and quickly circumvents BitLocker without complex tools,
representing a serious security risk.

3. THREAT MODEL

In this section we describe the threat model. We begin by iden-
tifying the key entities within the PIT-Cerberus framework.
The Hardware Root of Trust (HRoT) is a critical component
that leverages the Project Cerberus embedded framework.
Devices such as laptops, workstations, and commercial servers,
which integrate BIOS/BMC functionalities, constitute the DE-
VICE. The HRoT together with the DEVICE comprise the
PRODUCT that is shipped to the USER. The USER is defined
as an authorized individual with access rights to the DEVICE.
Additionally, the COMPANY Server (or simply the SERVER),
a part of the COMPANY’s PIT-Cerberus framework infrastruc-
ture, is responsible for overseeing the DEVICE’s locking and
unlocking mechanisms.

We assume that the HRoT processor is tamper-proof and
trusted. The COMPANY is trusted and there is no malicious
insider threat at the COMPANY. The COMPANY programs
the HRoT processor with the PIT-Cerberus and related libraries
and data in a secure manner. (Note that any modern computing
device that employs a root of trust for software attestation,
also makes a similar assumption about the root of trust.) We

also assume that the SERVER is honest and not curious.
Any confidential information that is stored on the SERVER
is protected against confidentiality and integrity breaches.
We also assume that the HRoT can operate independent of
the DEVICE and can setup and sustain communication with
SERVER.

The USER will need to use a second computing device (for
example, a smartphone or a laptop) to send and receive
information to/from SERVER and send information to the
PRODUCT during initial boot up. We assume that the USER
trusts this device.

We assume that an adversary is able to sniff on the commu-
nication channel between the HRoT and the SERVER; it can
replay messages on this communication channel, tamper with
the messages and can also insert messages on this commu-
nication channel. The threat model is particularly concerned
with the attacker’s capabilities, especially during the period
when the PRODUCT is in transit from the COMPANY to
the boot-up of the DEVICE by the USER. This transit phase
is the un-trusted zone. Within this scenario, attackers may
attempt to intercept and analyze packets exchanged during
the DEVICE unlocking process, potentially gaining access to
sensitive information. Replay attacks represent another threat,
where attackers could delay or resend packets to mislead the
HRoOT, USER, or SERVER. Additionally, there is a risk of
attackers injecting false information, aiming to disrupt ongoing
services. PIT-Cerberus is not designed to protect against such
denial-of-service attacks. A significant threat is posed by man-
in-the-middle attacks, where an attacker impersonating the
SERVER or a legitimate USER could try to compromise the
firmware integrity or gain unauthorized access by bypassing
security measures.

The PIT-Cerberus framework is not designed to protect the
PRODUCT from physical tampering during transit. Such an
attack can for example, replace the HRoT with a micro-
contoller of the attacker’s choosing or embed a hardware
Trojan. Such protection is difficult to implement. If needed, we
can assume that when a device is shipped from the COMPANY
to the USER, it is protected in a package using tamper-proof
seals [27][28]. This type of attacks would not only cause
damage to the PRODUCT but also alert the USER, which
is contrary to the attacker’s objectives.

The Federal Information Processing Standard (FIPS 140-
2) [29] outlines four security levels for cryptographic modules,
ranging from minimal physical protection at Level 1 to com-
prehensive environmental safeguards and tamper detection at
Level 4. An example of the highest security standards is IBM’s
4758 PCI cryptographic adapter [30], which adheres to FIPS
140-1 Level 4, equipped with internal tamper detection and
sensors for environmental attacks.

Additionally, we consider the COMPANY Server a trusted
zone because the COMPANY employs its own Intrusion De-
tection Systems (IDS) and Intrusion Prevention Systems (IPS),
alongside security policies and personnel, to guard against
any form of privilege escalation, information disclosure, or
DoS-type attacks [31]. Furthermore, the protocol design and
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Figure 1. High-Level Workflow of PIT-Cerberus Protocol

the implementation of various protocols, such as the key size
of Advanced Encryption Standard (AES), prime modulus of
Elliptic-curve cryptography (ECC), curve selection for ECC,
and the Digital Signature Algorithm (DSA), are meticulously
chosen and programmed within a Sensitive Compartmented
Information Facility (SCIF) at the COMPANY. So, we assume
that any form of physical tampering and the analysis of side-
channel information, including power, timing, and electromag-
netic radiation, are impractical for attackers.

4. PROPOSED APPROACH

Our approach to solving the problem of protection in transit
is to implement a BIOS-level lock/unlock facility before the
secure boot implemented by a hardware root of trust — HRoT
— microcontroller. The same protocol can be implemented at
the BMC level and we use the term BIOS lock to also include
locking of the BMC firmware. An overall workflow of PIT-
Cerberus Protocol is shown in Figure 1.

This protocol is implemented in the HRoT that is embedded
with the DEVICE. Prior to starting the boot-up of the BIOS,
the HRoT establishes a secure state, which verifies the user and
product information. This process occurs before the full BIOS
boot-up and OS loading. We assume that the HRoT processor
is able to establish a rudimentary communication with the
outside world without relying on the networking capabilities
offered by the host machine.

The PIT-Cerberus protocol terminates with success if HRoT
has the confidence that the correct USER has initiated an
unlock request. The HRoT relies on the SERVER to vali-
date if a correct USER has initiated the unlocking process.
The PIT-Cerberus protocol implements a novel challenge-
response authentication scheme involving the HRoT, USER
and SERVER for this validation. One important feature of
our protocol is that this authentication does not require the
HROT to be programmed with the legitimate user’s identity
or shared secret. Thus, if the device is resold, the HRoT can
perform the same interaction with the next user (shown as
the lower “Optional” flow in Figure 1. If the next user is
established as the legitimate owner of the device, the user

is granted access to boot-up the BIOS. Once verification is
complete, the device turns on, and the BIOS continues with
the hardware initialization process. We assume that secure
attestation of firmware is performed as usual after the unlock.
In the following, we discuss the PIT-Cerberus protocol in more
details.

4.1 The PIT-Cerberus Protocol

The protocol in shown in Figure 2. There are 4 major entities
in the protocol: (i) HRoOT: It is the tamper-proof micro-
controller that acts as the hardware root of trust. It is the
main component that will lock or unlock the BIOS of the
DEVICE. PIT-Cerberus protocol is implemented in the HRoT
processor, (ii) DEVICE: It is the entity (with BIOS/BMC)
being protected in transit via PIT-Cerberus, (iii) USER: USER
is the individual authorized to operate the DEVICE. USER
has established a trust relationship with the COMPANY in
Figure 1, and (iv) SERVER (COMPANY Server): It works
on behalf of the COMPANY to mediate the HRoT - USER au-
thentication. PRODUCT is the asset that COMPANY shipping
to an USER which is a DEVICE with HRoT. The HROT and
USER communicate via the internet with the SERVER to lock
or unlock the DEVICE. We assume that this channel ensures
the authenticity of endpoints and integrity of messages.

The PIT-Cerberus protocol is divided into two main parts: the
Locked State and the Unlocked State. Under the Locked State,
the HRoT is operational but BIOS has not been loaded and
the remaining part of the DEVICE is non-functional in the
PRODUCT. The Locked State is further divided into various
sub-states.

1) Locked State: The “Locked State” is the initial state
of the PRODUCT when it leaves the manufacturer. To
put the DEVICE of the PRODUCT to the Locked State,
the SERVER creates a unique PRODUCT registration ID,
REG.ID, programs it into the HRoT, and also stores it lo-
cally. The SERVER also allocates this unique REG.ID to
a particular authorised USER. The DEVICE is locked by
BIOS or BMC and the DEVICE becomes unresponsive
to typical USER inputs. This Locked State has several
sub-states that outline the conditions and steps needed
to transition the DEVICE into the Unlocked State.
Each sub-state serves as a checkpoint in verifying the
authenticity of the USER trying to access the DEVICE.
When a DEVICE is powered on, by default it is in
the Locked State but the HRoT inside the PRODUCT
transitions from one sub-state to another.

a) In the Locked State, the HRoT first enters the Key
Generation sub-state in which it first generates an
ECC (Elliptic Curve Cryptography) private key (d ) -
public key (g4 ) pair, where, g4 = da xG. G is the base
point of the chosen elliptic curve. The Key Generation
sub-state together with the Key Exchange sub-state
(described next) forms a Elliptic-curve Diffie-Hellman
(ECDH) key agreement protocol [32].

b) Once the key pair is successfully generated, the HRoT
enters the Key Exchange sub-state. In this state, the
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HRoT sends the public key (Q) 4) to the SERVER. The Information Facility (SCIF) at the COMPANY.
SERVER generates a private key d 3, computes a public 2) Unlocked State: The “Unlocked State” represents the

key qp = dp x G and an AES secret key S = dp X qa. phase where the DEVICE, initially in a locked position,
The SERVER transmits its public key to the HRoT, is unlocked and allowed to boot fully, enabling the USER
which then computes the same AES secret key S as to use it as intended. The PRODUCT is shipped to a
S=daxqp=dax{dpxG}=dpx{daxG}= legit USER and, a secure connection has been established
dp X qa. between USER-SERVER and SERVER-HROT. To raise
C) At the end of the ECDH pI'OtOCOl, the HRoT enters the an unlock request, USER has to log into SERVER with
Idle sub-state waiting for a USER to initiate an unlock an multi-factored authentication schema.
request. a) Once a USER makes an unlock request to SERVER
As illustrated in Figure 2, all steps of the locking proce- and the DEVICE is powered on, the SERVER first

dure are performed within a Sensitive Compartmented

PRODUCT

( Steps executed in SCIF at COMPANY )

1. PRODUCT i ion Information

2. Create Registration ID
3. Associate [Reg.ID] with USER

4. Send the [Reg.ID] to HRoT

5. Create ECDH Key Pair:
Private Key: dA
Public Key: gA =dAx G

6. Sends the Public Key (qA) to Server

7. Generate ECHD Key Pair:
Private Key: dB
Public Key: qB =dB X G
8. Generate Secret Key: S =dB x gA

9. Send the Public Key (qB) to HRoT

10. Generate Secret Key:i
S=dAxqB

{ DEVICE is LOCKED by BIOS/BMC

T
‘ DEVICE is LOCKED and Shipped to USER by the COMPANY

Established secure out-of-band channel \\

f

11. USER rasied UnLockRequest

12. Server Generates:
[Reg.ID]s = AESEncrypt([Reg.ID], S)

 DEVICE powered On by USER ;

13. DEVICED rasied UnLockRequest

[§ Established secure out-of-band channel )

‘ 14. Server Sends [Reg.ID]s to HRoT H
i

15. [Reg.ID] Validation

16. USER and [Reg.ID] Validation Results

17. [Reg.ID] is Valid

17. [Reg.ID] is Invalid

18.[0TP]Generation
19.[OTP]Encryption: [OTP]s
= AESEncrypt([OTP], S)

20. Send the encrypted [OTP]s to Server

21. Server sends the encrypted [OTP]s to USER

22, USER inputs encrypted [OTP]s to DEVICE

24. [OTP] Validation

23. DEVICE transfer encrypted [OTP]s to HRoT

25. [OTP] Valid

25, [OTP] Invalid

26. Boot Sequence Started

Figure 2. PIT-Cerberus Protocol for Locking and Unlocking DEVICE
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sends REG.IDg to HRoT. The HRoT then initi-
ated Reg.IDg Validation state where it decrypts the
REG.IDg and validated against the stored REG.ID.
This state validates that the USER is correctly iden-
tified by the HRoT. Then the HRoT enters the OTP
Generation sub-state. The HRoT creates a one-time
password (OTP) for the USER, and encrypts OTP
using AES-GCM [33] with the secret key .S to generate
OTPg. The HRoT sends these encrypted value to the
SERVER and enters the OTP Exchange sub-state.
The HRoT continues to wait in the OTP Exchange
sub-state until it receives another response from the
USER.

The SERVER, upon receipt of OTPg, looks up the
correct USER to send the the encrypted OTPg via an
out of band channel (secure email or mobile phone).
We assume only the authorized USER has access to
this communication facility between the SERVER and
the USER.

On receiving OTPg, the USER enters it into the HRoT,
which then enters the OTP Validation sub-state. Upon
successful validation of the OTP by the HRoT, it
triggers the DEVICE Unlocked State which is nothing
but initializing the booting process in the DEVICE.

b)

c)

d)

To manage the boot process of a BIOS/BMC device using a
microcontroller such as Microchip CEC1702 as a Hardware
Root of Trust (HRoT), the process involves initializing the
HROT upon device power-up to conduct self-tests and initiate
secure boot procedures. The HRoT verifies the integrity and
authenticity of the USER’s legitimacy. If the firmware passes
these checks, the HRoT allows the boot process to proceed,
handing over control to the BIOS/BMC for hardware initializa-
tion and operating system launch. These actions leverage the
HRoT’s secure boot capabilities to either permit or prevent
the device from reaching an operational state, ensuring that
only authenticated and integrity-checked firmware can execute,
thus providing a robust security measure against unauthorized
access.

5. PIT-CERBERUS IMPLEMENTATION

The PIT-Cerberus protocol has been implemented through
an open-source embedded framework, known as Project Cer-
berus [5]. Originally conceived by Microsoft, Project Cerberus
is a framework for hardware root-of-trust that is compliant
with the NIST 800-193 standards, with an unclonable identity.
This platform enforces a secure boot process for DEVICE
firmware and provides a secure mechanism to attest to the
state of the DEVICE firmware.
PIT-Cerberus is distributed as set of APIs. These APIs en-
capsulate the various functionalities extended by the HRoT
processor to lock and unlock the BIOS/BMC of the DEVICE.
The design of these APIs is guided by the principle of enabling
Cerberus to lock and unlock the BIOS in a secure and efficient
manner. The API consists of the following functions:
(i) lock(): This function uses the internal
pit_keygenstate (), keyexchangestate (),

(viii)
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pit_secretkey () to perform all the operations
needed to lock the BIOS and loads the secret key in a
32-byte empty array (secret).

pit_keygenstate (): This function is responsible
for generating the ECC key pair for HRoT. It loads the
length of the key in key_length, initializes private key in
privkey, public key in pubkey, and the state of the HRoT
in state parameter.

(i)

(iii)) keyexchangestate (): Exchange the public
key of HRoT and SERVER. On success,
keyexchangestate will initialize pubkey_cli

with the HRoT’s public key and load the pubkey_serv
variable with a public key received from the SERVER.
pit_secretkey (): It takes ECC private key from
HRoOT and SERVER, computes the secret key and loads
in secret parameter.

(v) unlock (): Do all the unlocking operations. These
operations generate OTP, encrypt it, send to SERVER
and validate the OTP.

receive_product_info (): This function receives
the product information from the SERVER and assigns
it to some parameters, such as encrypted registration
ID (EncryptedProductlD), tag (EncryptedProductIDTag),
registration ID size (ProductIDSize), an initialization
vector (IV) used for encryption (aes_iv), and size (in
bytes) of the vector in (aes_iv_size).

pit_connect (): It initiates a connection to desig-
nated SERVER. It takes the port address of the SERVER
as a input and returns an integer pointing to the file
descriptor (socket) which can be used to send/receive
from the SERVER.

pit_OTPgen (): This function generates a random
string representing OTP. Additionally, encrypts that OTP
using the secret key (secret) as key for the AES-GCM
and loads in encOTP parameter.
pit_encryption (): It encrypts a message using a
secret key. This function takes secret key, message and
use AES-GCM method to encrypt the message and loads
into ciphertext parameter.

send_unlock_info (): This function sends the en-
crypted OTP (encOTP) to the SERVER which will be
later sent to USER.

pit_OTPValidation (): This function validates the
encrypted OTP (encOTP). It does this by taking en-
crypted OTP (OTPg) as input, decrypting it, and com-
paring it against the original OTP (OTP). If valid, the
function returns 1 and the parameter result will hold true
otherwise false.

pit_decryption (): This function takes encrypted
message (ciphertext), secret key (secret) as input, de-
crypts it and loads the message to the provided plaintext
buffer.

@iv)

(vi)

(vii)

(ix)

)

(xi)

(xii)

Figures 3 and 4 describe the sequence of the function calls to
implement the PIT-Cerberus protocol.

In the SERVER implementation, we leverage the cryptography
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1
lock ()
2
pit_keygenstate ()

3
keyexechagenstate

9]

4 Send DEVICE
public key

R PP ———|
Receive SERVER

public key SERVER

6
pit_secretkey ()

Figure 3. Function call sequence in Locked State of “pit”

1
unlock () 4 Set up
communication with
3 SERVER
pit_connect()
[e]
2
receive_product_i o
nfo () 0 v
5 SERVER sends encrypted DEVICE id
¢ SERVER
7 Pass OTP to be
6 encrypted 8
pit_OTPgen () pit_encryption()
Returns encrypted
L 9 orp
11 Send encrypted OTP o
send_unlock_info ( )
) [o)

13 Enters encrypted OTP (=) 12 Send encrypted OTP
USER

SERVER

-

pit_OTPValidation
)

15 Pass OTP to be
validated

16

pit_decryption ()

Return decrypted
17 orp

Figure 4. Function call sequence in Unlocked State “pir”

library for Python, employing three key modules — Elliptic
Curve Cryptography (ECC), serialization, and Advanced En-
cryption Standard - Galois/Counter Mode (AES-GCM). The
ECC module facilitates the generation of a public-private key
pair for the SERVER and furnishes a method to perform the
Elliptic-curve Diffie-Hellman (ECDH) protocol, enabling the
generation of a shared secret using the public key of another
party. This module is indispensable to our implementation,
although any library that supports the generation of an elliptic
curve key pair and the ECDH protocol — compliant with
NIST standards [35] — would suffice.

The serialization module is tasked with key distribution and
reception. Prior to the SERVER’s public key transmission to
HROT, it is encoded into DER format via the serialization
module. Similarly, HRoT’s public key undergoes DER se-
rialization before being sent to the SERVER. Upon receipt,
the SERVER employs the serialization module to convert the
DER-encoded public key from HRoT into a format compatible
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with the cryptography library, specifically an EC key. Libraries
providing key serialization that adhere to NIST standards are
suitable for this process.

The AES-GCM module is responsible for data encryption and
decryption. AES-GCM is the chosen form of AES owing
to its native support in Cerberus. Coupled with the shared
secret derived from ECDH, the AES-GCM module serves as
the key for encryption and decryption, ensuring secure and
coherent communication between the SERVER and HRoT.
For DEVICES requiring Cerberus functionality, the core set of
source code delivers a suite of foundational features that can
be integrated and ported. The provided code, largely device-
agnostic, defines the required abstraction layers. Therefore, we
tailored Cerberus by introducing a new library and APIs en-
compassing the lock and unlock mechanisms for BIOS/BMC.
These modifications were instituted within the core module,
designated as PIT-Cerberus.

A detailed documentation about the APIs and “pir” library is
already publicly available in GitHub [36].

6. EVALUATION & DISCUSSION

Our primary focus with this evaluation was to evaluate the
PIT-Cerberus framework’s performance with the library. We
developed various experimental test scenarios to evaluate our
framework with the library’s performance. We ran our exper-
iments on 2 virtual Linux servers. The client side (assumed
as HRoT) has a 5000 MHz 12th Gen Intel(R) Core(TM) i7-
12700K processor, x86_64 architecture, 20 cpus and Server
in Inter(R) Xeon(R) CPU E5-1650 v4 @ 3.60GHz, x86_64
architecture, 12 CPU(s).

In order to evaluate that the PIT-Cerberus framework is
working as it is supposed to, we used server level Project
Cerberus with “pit" library with a C socket as a client and a
SERVER implemented in Python. As designed and expected,
our protocol delivered the anticipated results, with successful
operations observed across both HRoT that uses PIT-Cerberus
framework, and the SERVER. Figures 5 and 6 provide visual
confirmation of these outputs.

As depicted in Figure 5, the DEVICE (BIOS) initiates in a
locked state as the SERVER, equipped with its own distinct set
of ECC key pair as shown in Figure 6, establishes a connection
with HRoT. Following the successful exchange of ECC key
pairs between HRoT and the SERVER, computation of the
secret key is initiated.

We designed a simple two-step verification protocol for login.
Once the USER logs in with their credentials, they can raise
an unlock request on the SERVER. Upon receiving an unlock
request from the USER on SERVER, SERVER commences
communication with the HRoT. The unlocking process initi-
ates when the SERVER transmits the encrypted PRODUCT
registration ID (REG.IDg) to HRoT. Subsequently, HRoT
decrypts and validates this PRODUCT registration ID, the
output of which is displayed in the HRoT terminal. Upon
successful Product ID validation, HRoT generates an one-time
password OTP. This OTP is encrypted using AES-GCM with
the secret key (5), and dispatched to the SERVER, which
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then forwards this encrypted OTP (OTPg) to the USER’s
email address (as illustrated in Figure 7). The USER, upon
receiving the OTPg, inputs it into the HRoT terminal. HRoT
then decrypts this OTPg utilizing the secret key (5), and
performs a validation check. If the validation is successful,
HROT proceeds to unlock the DEVICE, as demonstrated in
Figure 5.

In addition to the evaluation of the PIT-Cerberus library with
the core of Project Cerberus, we also carry out extensive
testing (“Compatibility Testing") to validate their compatibility
with different SERVER libraries that use for the generation
of ECC key pairs and shared secret key. Different SERVER
environments employ varied libraries for the ECC key pair
generation and shared secret key computation, each having its
own intricacies and idiosyncrasies. It was crucial to confirm
that the PIT-Cerberus library interacts seamlessly with these
different SERVER libraries without any interoperability issues.
To achieve this, we conduct a series of interoperability tests
in multiple SERVER environments, each employing differ-
ent libraries for key pair generation and shared secret key
computation. We have tested with commonly used libraries,
such as OpenSSL [37], libsodium [38], and Cryptlib [39],
which are widely accepted for their robustness and compliance

pit_crypto: test_OTPgen

pit_crypto: test OTPvalidation

pit_crypto: test_decryption

pit: test_pit_lock

Device is Locked.

pit: test pit unlock

User initiated Unlock Reguest......

PRODUCT ID Validation Successful. pid_status is: 1
OTP Generation and Encryption Successful.

Please Enter your OTP:

with industry standards. In each case, we confirm that the
PIT-Cerberus library that has been used in HRoT, is able to
correctly and efficiently compute and exchange ECC key pairs
and shared secret keys without any compatibility issues. We
also ensure that the computed keys adhered to the relevant
NIST standards, and the elliptic curve cryptography function-
ality is up to the mark.

Furthermore, we have validated that the PIT library could
correctly interpret the serialized keys received from the
SERVER and could successfully execute the Elliptic-curve
Diffie-Hellman (ECDH) operation to generate a shared secret
key. We have also checked the successful encryption and
decryption of data using the derived shared secret key. Through
this extensive testing, we have validated that the PIT-Cerberus
library is compatible with a wide range of libraries for gen-
erating ECC key pairs and shared secret key, thus enhancing
the universal applicability and adaptability of our protocol.
We show a few results of our validation process in a proof
of concept incorporating an OpenSSL-based SERVER. The
objective is to demonstrate the universal capabilities of our
designed library in handling operations regardless of the
library types. In the execution of our model, HRoT transmits
the public key to the SERVER, encoded in Distinguished

b \x@3hs\x7T P\x86\xfc\xad\xfa\xb3\x12\xec\x1cGal\xa7 " \xf3\ x84\ xca! \xa9] \x11\xeabwpb? 1\x13\x16 7\ xF8\xc1\xac\x11\xe6\ xda\Xx8cT\x07\xce\xedU
\x1dyxc9\t0aH\xa3\xd f\x981\xb5AD\ x1c?=\I{\xef_\xBbx\x80\xcex\xb3\xed\x0e] 9\ x9\xda\xelW\xBe\xa2\ r\xdb\ xd54\ xce\ xdd\ xe3\xeB8q\x15%x00/b [0\ xf
A\xc8\xc7\xee, \xce\x9F\x1b\xeb\xbd, \xcdY&\x1aj “c3\xbd\xef\x88\xc 1\ xd7~g\xcO\xcf\x1le"

Encrypted OTP sent to Server
OTP Validation Successful. pid_status is: 1

Figure 5. Output from HRoT Terminal

tallahassee:~/Rakesh$ python3 pid-server.py
Generated: Server ECC Key Pair.

Server X value :
Server y value :
listening
accepted
Connected by ('127.0.0.1', 48564)
Recived: Cerberus ECC Key Pair.

Client X value :
Client y value :

Generating shared secret..... Successful.
listening

listening

accepted

Connected by ('127.0.0.1', 34996)

[DEMO]: Encrypted OTP :

76846570534081910025362931523107460051507378380744925514694568834270894082824
109252678345389310469317484089853095411478063296788366629630286751158294466709

86477484064544066407722699023626178699842399178821244955496479399562642251239
457020251591109096967516840028696816219323813795020381268110127481374764657807

b*\x83hs\x7T 7\x86\xfc\xa9\xfa\xb3\x12\xec\x1cGal\x@7 \xT3\x04\xca!\xa9]\x11\xeabwpb? 1\ x13\x1

67 \xT8\xcl\xac\x11\xeb\xda\xBc7\x07\xce\xedU\x1d\xc9\ t0aH\xa3\xd T\ x981i\ xb5AD\x Lc 7=V{\xef_\xBbx\x8&\xcex\xb3\xed\xBe]9
W9\ xdah xe 1w\ xBe\ xa2\, r\xdb\ xd54% xce\xdd\ xe3\ xe8q\x15\x08/b [ @\ xTe\xc8\xcT\xee, \xce\x9F\x1b\xe6\xbd , \xcdY&\x1aj"c3\xbd

\xef\x80\xc1\xd7~g\xcO\xcfixle"

Enter your email: rakeshpodder3@gmail.com

Figure 6. Output from SERVER Terminal
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Encoding Rules (DER) format. As is depicted in Figure 8
(top-right), the OpenSSL SERVER effectively interprets the
public key delivered by HRoT. The DER format public key is
subsequently outputted in the SERVER terminal, further vali-
dating the successful exchange of cryptographic keys between
HRoT and the SERVER.

As further demonstrated in Figure 8 (top-left), it can be
observed that OpenSSL is proficient in interpreting both public
and private keys generated by the SERVER. This empirical ev-
idence substantiates that cryptographic library, as implemented
in our framework, is compatible with OpenSSL and by exten-
sion, compliant with the National Institute of Standards and
Technology (NIST) standards for cryptographic algorithms.
Therefore, our methodology exhibits a broad spectrum of
interoperability, ensuring compatibility with any cryptographic
systems that adhere to NIST standards. The evidence provided
in Figure 8 (bottom) offers definitive proof that, by employing
OpenSSL in conjunction with our Python SERVER, identical
secret keys can be produced. This not only demonstrates the
robustness and reliability of our key generation process, but
also unequivocally confirms the compatibility of our imple-
mentation with systems conforming to NIST standards. As
such, we can assure the broader applicability of our system,

rakrock121212@gmail.com

o~

facilitating secure and effective communication between di-
verse cryptographic frameworks that adhere to these industry-
accepted norms.

Apart from validations and compatibility tests, we tested the
protocol’s exceptions and failures handling capability thor-
oughly. For this we designed various test scenarios. Table
1 shows some scenarios of our testing. Its all during the
unlocking phases. We also tested out when the DEVICE is
locked by USER and shipped to another USER, the process
will be started from starting phase of key_gen_state to the
unlocking_state.

We have successfully modified the Project Cerberus embedded
framework, giving birth to PIT-Cerberus for HRoT, a system
equipped to secure PRODUCT during transit by locking the
DEVICE (with BIOS/BMC). PIT-Cerberus boasts the neces-
sary cryptographic capabilities that a microcontroller or micro-
processor requires for BIOS locking. Our work, including the
“pit” library, is made publicly available in our GitHub reposi-
tory [36]. Additionally, a comprehensive set of instructions for
operating PIT-Cerberus has been provided, further promoting
the accessibility and usability of our solution.

6:43 PM (3 minutes aga)

W e

x03hsix Tt Pwdbwfcikadudalxb3ixl2wecxleGal w7 xi3x04xcalwad]w 11 xealwpb? 1wl 3 167 wfBixc Iixack 11 xeb\xdaxdc Tx0 Tk celed U Ldxc O OaH a3 wdhx98ixb5AD
wlc?=V{wef wObx\x80\xcex\xhb3wedx0e]9xdfxdaixe1WixBexaZ\rixdbixd54xcexddixe 3xe8qx 15\ 00/b[DxflixcBixcT\xee \xcelx Ofx 1bxeb\xbd, xed Y &\xlaj c3\wbdixefx80\xcl

wd 7~gcOxcfinle’

Figure 7. Encrypted OTP Sent to Email

Openssl attempting to read the server's public key

Public-Key: (256 bit)

pub:
B4:77:46:1F:52:9¢c:73:ca:9e:f1:2F:c7:cd:55:32:
fd:94:76:ff:f1:18:ab:18:57:78:df :e3:d2:57:a4:
Og:40:b8:34:95:ba:ec:ef:43:5c:fe:5c:4c:2b:6c:
ee:df:cd:34:8F:da: c8:68:ff:41:c4:ed:10:71:a5:
24:ec:26:97:d5

ASN1 OID: prime256vi

NIST CURVE: P-256

Using openssl to derive shared secret :
@i IS LE (s

Using the server to derive shared secret :

@zid. QESEEI IO (g0

Openssl attempting to read the client's public key :

Public-Key: (256 bit)

pub:
84:19:4e:F7:a9:c5:92:d5:85:b9:68:89:9c: 7c:09:
f8:c6:cc:50:88:5c:23:f4:01:a30:71:8d:28:46:d2:
Sb:cl:34:bd:@8:e1:92:e6:34:71:4f:d7:24:c8:55:
46:4b:bB:8e:a2:52:20:30:80:83:20:4d: 15:50:24:;
68:ch:2c:be:al

ASN1 OID: prime256vl

NIST CURVE: P-256

Is this shared secret the same as the one generated by client AND the same as the one generated by server? True

Figure 8. SERVER (top-left) & HRoT’s (top-right) public key in DER format, (bottom) secret key of OpenSSL and Python SERVER

592

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on April 07,2025 at 02:01:24 UTC from IEEE Xplore. Restrictions apply.



Table 1. Protocol’s exceptions and failures handling capability in various test scenarios

empty.

Test Scenarios Description Handling State
Server unavailability The Server loses connections dur- | The program will wait until the | Lock state
ing locking or unlocking timer specified time. If the con-
nection is not back, it will revert
back to the previous state and
throws a timeout exception.
REG.ID validation fails The encrypted REG.IDg fails to | If the encrypted REG.IDg cannot | Lock state

validate due to wrong REG.ID or

be validated, the program throws
a REG.ID validation failure error
and reverts back to the lock state

OTP validation fails

generated by HRoT.

The encrypted OTPg fails to val-
idate due to wrong OTP or empty

If the encrypted OTPg cannot be
validated, the program throws a
OTP validation failure error and
reverts back to OTP_gen state.

OTP_gen state

Unable to send OTPg to USER
email
connectivity issues.

The encrypted OTPg fails to de-
liver to the USER due to wrong

If the encrypted OTPg is not
available to the USER, the HRoT
will wait until the specified timer
expires, then throw a timeout ex-
ception and revert back to the
OTP_gen state.

OTP_gen state

7. SECURITY ANALYSIS

In the event of attacks that could lead to SERVER or service
unavailability, we have implemented several exceptions and
error handling mechanisms within the program to prevent
unwanted interruptions or crashes during the unlocking proce-
dure. We will not consider such attacks in the security analysis.
During the unlocking process, attackers can monitor and sniff
on the communication channel established between the HRoT—
SERVER and SERVER-USER. By doing so, they can capture
encrypted PRODUCT registration ID (REG.IDg) sent from
the SERVER to HRoT upon an unlock request initiated by
the USER. Additionally, attackers can intercept and steal
login credentials when the USER attempts to log into the
SERVER, potentially gaining unauthorized privileges. Further-
more, when HRoT sends an encrypted OTP to the SERVER,
and the SERVER forwards this encrypted OTP (OTPg) to the
USER, attackers monitoring the communication channel could
obtain the encrypted OTP (OTPg) and misuse it for improper
authorization access to the PRODUCT.

Another potential threat is replay attacks, where the attacker
does not need to decrypt the message but merely reuses it.
For instance, an attacker could capture a packet during USER
logging into a system and replay it to gain unauthorized
access without needing the USER’s password. This allows the
attacker to impersonate a valid USER, tricking the SERVER
into sending the OTPg to a malicious USER. This consti-
tutes a man-in-the-middle (MitM) attack, where the attacker
impersonates USER to perform privilege escalation through
sniffing and replaying data. An attacker could also capture the
REG.IDg and replay them back to the HRoT to impersonate
the SERVER and launch an MitM attack.

The protocol we’ve designed and implemented is robust
against such attacks. For instance, when the SERVER trans-

mits the REG.IDg, they are encrypted using the Advanced
Encryption Standard - Galois/Counter Mode with a 256-bit
key (AES-GCM 256 Key) encryption scheme. AES-GCM is
resistant to several types of attacks including Known Plaintext
Attack (KPA), Chosen Plaintext Attack (CPA), Chosen Cipher-
text Attack (CCA), and Ciphertext-Only Attack (COA). The
design of this algorithm ensures that knowing a plaintext-
ciphertext pair does not significantly aid in deducing the
encryption key, as the relationship between plaintext and
ciphertext yields minimal useful information. Additionally,
with a 256-bit key size, AES-GCM-256 is currently infeasible
to break through brute-force attacks, considering the 2259
possible key combinations.

However, to address advanced threats like the Adap-
tive Chosen-Plaintext Attack (ACPA) and Adaptive Chosen-
Ciphertext Attack (ACCA), where the attacker adapts their
choices based on feedback from previous encryptions or de-
cryptions, we employ Elliptic Curve Diffie-Hellman (ECDH)
with a 256-bit or higher prime modulus for the elliptic
curve. This is used to generate a secret key for AES-GCM
encryption. In every session or iteration, this secret key is
randomly generated, ensuring a new secret key for subsequent
encryptions. Utilizing ECDH-256 for key exchange allows for
the generation of a new AES-GCM-256 key for each session
or even each message, greatly bolstering security. This method
prevents key reuse and significantly complicates any attempt
by attackers to compromise the communication. The synergy
of AES-GCM-256 and ECDH-256 offers extensive security
measures, where AES-GCM-256 secures the confidentiality
and integrity of communications, and ECDH-256 ensures
secure key negotiation, safeguarding against eavesdropping
and MitM attacks.

To mitigate replay attacks, where an attacker could reuse
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captured REG.IDg to launch MitM attacks or disrupt work-
flow, we’ve incorporated Lamport timestamps to ensure the
freshness and integrity of messages transmitted over the
communication channel. Thus, when the SERVER sends the
REG.ID to the HROT, it’s encrypted using our protocol’s
encryption scheme, which maintains encryption randomness
and is coupled with a Lamport timestamp to preserve message
freshness. Furthermore, as the HRoT establishes a connection
with the SERVER, each connection utilizes a unique session
key. Every message sent to or from the SERVER or HRoT
undergoes validation checks for session integrity, timestamps,
and encryption, effectively preventing replay attacks on the
HRoOT or SERVER.

Additionally, to thwart adversaries attempting to impersonate
the SERVER and launch a MitM attack, we employ the
Digital Signature Algorithm (DSA), which leverages keys
derived from Elliptic Curve Cryptography (ECC). This ap-
proach effectively safeguards against MitM attacks, ensuring
the authenticity of communications and protecting against
impersonation and data integrity threats.

We implement multi-factor authentication (MFA) when the
USER tries to log into the SERVER using an otp (generated
and sent by the SERVER). This means that even if an attacker
manages to sniff the login credentials, they would not be
able to log into the SERVER, as the login otp is sent to
the USER’s registered email ID. Additionally, a session is
established between the USER and the SERVER at the start
of communications to ensure the freshness of messages and
prevent replay attacks, significantly reducing the possibility of
successfully impersonating a valid USER in a MitM attack.
While there is a possibility that an attacker might sniff the
OTPg as the SERVER sends them to the USER, obtaining
these OTPg would first require the attacker to log into
the SERVER and initiate the unlock request. This process
validates the legitimacy of the USER by checking the REG.ID
with the HRoT, after which the HRoT generates the OTP and
sends it to the SERVER. However, as previously mentioned,
attacks on this process are considered infeasible. This indicates
that the PRODUCT (via HRoT) is connected and in possession
of a legitimate user. Therefore, intercepting the OTPs would
not be beneficial for the attacker, as the OTP needs to be
manually inputted into the PRODUCT to initiate DEVICE
booting process. This layered security approach ensures that
the authentication mechanism is robust against unauthorized
access attempts.

8. CONCLUSION

The exponential growth in hardware integrated circuits (ICs)
inevitably raises parallel concerns regarding device security.
Through our research, we have addressed a critical aspect
of this concern - the protection of products during transit
through third-party mediums. The protocol we have devised
successfully safeguards devices from the potential introduction
of trojans - a principal reason for the increasing focus on
Hardware Root of Trust (HRoT) in contemporary industrial
discourse.

Our modified version of the Cerberus embedded framework,
PIT-Cerberus, extends security capabilities to any microcon-
troller or microprocessor, enhancing device security signifi-
cantly. The robustness of our solution lies in its ability to
protect the device at its most vulnerable state - during transit
- by ensuring that only a verified user can unlock and boot the
device’s BIOS, thereby thwarting any attempts at introducing
trojans.

Looking ahead, we intend to further enhance the utility and
security features of PIT-Cerberus. A notable direction of
our future work involves porting the hardware-agnostic PIT-
Cerberus to a microchip-specific I2C protocol, to establish se-
rial communication for performing the Key Exchange Scheme.
We remain committed to continuously refining our protocol
to address an ever-evolving landscape of hardware security
challenges, thus ensuring the safeguarding of devices in an
increasingly interconnected world.
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