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Abstract

In many applied problems one seeks to identify and count the critical points of a
particular eigenvalue of a smooth parametric family of self-adjoint matrices, with the
parameter space often being known and simple, such as a torus. Among particular set-
tings where such a question arises are the Floquet—-Bloch decomposition of periodic
Schrodinger operators, topology of potential energy surfaces in quantum chemistry,
spectral optimization problems such as minimal spectral partitions of manifolds, as
well as nodal statistics of graph eigenfunctions. In contrast to the classical Morse
theory dealing with smooth functions, the eigenvalues of families of self-adjoint ma-
trices are not smooth at the points corresponding to repeated eigenvalues (called,
depending on the application and on the dimension of the parameter space, the di-
abolical/Dirac/Weyl points or the conical intersections). This work develops a pro-
cedure for associating a Morse polynomial to a point of eigenvalue multiplicity; it
utilizes the assumptions of smoothness and self-adjointness of the family to provide
concrete answers. In particular, we define the notions of non-degenerate topologically
critical point and generalized Morse family, establish that generalized Morse families
are generic in an appropriate sense, establish a differential first-order conditions for
criticality, as well as compute the local contribution of a topologically critical point to
the Morse polynomial. Remarkably, the non-smooth contribution to the Morse poly-
nomial turns out to depend only on the size of the eigenvalue multiplicity and the
relative position of the eigenvalue of interest and not on the particulars of the opera-
tor family; it is expressed in terms of the homologies of Grassmannians.
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1 Introduction

Let Sym, (R) and Sym,, (C) denote the spaces of n x n real symmetric (correspond-
ingly, complex Hermitian) matrices. When referring to both spaces at once, we will
use the term ‘“self-adjoint matrices” and use the notation Sym,,. The eigenvalues
{/):i (A)}_, of a matrix A € Sym,, are real and will be numbered in the increasing
order,

M(A) <A (A) < -+ < Ay(A). (1.1)

Further, let M be a smooth (i.e. C°°) compact d-dimensional manifold. A smooth d-
parametric family of self-adjoint matrices (on M) is a smooth map F : M — Sym,,.

The aim of this paper is to develop the Morse theory for the k-th ordered eigen-
value

vy :Z/):k oF

viewed as a function on M. This question is motivated by numerous problems in
mathematical physics. The boundaries between isolating and conducting regimes in
a periodic (crystalline) structure are determined by the extrema of eigenvalues of
an operator' family defined on a d-dimensional torus M (for an introduction to the
mathematics of this subject, see [49]). Other critical points of the eigenvalues give
rise to special physically observable features of the density of states, the van Hove
singularities [63]. Classifying all critical points of an eigenvalue (also on a torus) by
their degree is used to study oscillation of eigenfunctions via the nodal-magnetic the-
orem [3, 4, 10, 20]. More broadly, the area of eigenvalue optimization encompasses
questions from understanding the charge distribution in an atomic nucleus [28], con-
figuration of atoms in a polyatomic molecule [24, 50], to shape optimization [40, 41]
and optimal partition of domains and networks [8, 39]. The dimension of the manifold
M in these applications can be very high or even infinite.

Morse theory is a natural tool for connecting statistics of the critical points with the
topology of the underlying manifold. However, the classical Morse theory is formu-
lated for functions that are sufficiently smooth, whereas the function X is generically
non-smooth at the points where A;(x) is a repeated eigenvalue of the matrix F(x).
And it is these points of non-smoothness that play an outsized role in the applications
[17,24].

By Bronstein’s theorem [15], each A is Lipschitz. Furthermore, by classical per-
turbation theory [48], the function A; is smooth along a submanifold N C M if the
multiplicity of Ar(x) is constant on N; the latter property induces a stratification of
M. There exist generalizations of Morse theory to Lipschitz functions [2], continu-
ous functions [33, §45], as well as to stratified spaces [35]. These generalizations will
provide the general foundation for our work, but the principal thrust of this paper is
to leverage the properties of Sym,, and to get explicit — and beautiful — answers for
the Morse data in terms of the local behavior of F at a discrete set of points we will
identify as “critical”. One of the surprising findings is that the Morse data attributable

IThe particulars of the operator depend on what is being conducted: electrons, light, sound, etc.
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Morse inequalities for ordered eigenvalues 285

to the non-smooth directions at a critical point does not depend on the particulars of
the family F.

To set the stage for our results we now review informally the main ideas of Morse
theory, which links the topological invariants of the manifold M to the number and
the indices of the critical points of a function ¢ on M.

In more detail, if ¢ is smooth, a point x € M is called a critical point if the differ-
ential of ¢ vanishes at x. The Hessian (second differential) of ¢ at x is a quadratic
form on the tangent space 7 M. In local coordinates it is represented by the matrix
of second derivatives, the Hessian matrix. The Morse index u(x) is defined as the
negative index of this quadratic form or, equivalently, the number of negative eigen-
values of the Hessian matrix. It is assumed that the second differential at every critical
point of ¢ is non-singular, i.e. the Hessian matrix has no zero eigenvalues; such crit-
ical points are called non-degenerate. Non-degenerate critical points are isolated and
therefore there are only finitely many of them on M. A smooth function ¢ is called a
Morse function if all its critical points are non-degenerate.

The main result of the classical Morse theory quantifies the change in the topology
of the level curves of ¢ around a critical point. To be precise, for a point x € M and
its neighborhood U (which we will always assume to be homeomorphic to a ball)
define the local sublevel sets,

U (@) :={yeU: ¢(y) <¢p(x)—e} and U (¢):={yeU: ¢(y) <¢(x)+e}.

If x is a non-degenerate critical point of index u = w(x), then, for a sufficiently
small neighborhood U of x and sufficiently small ¢ > 0, the quotient space
U (¢)/ Uy (¢) is homotopy equivalent to the ;-dimensional sphere S#. The global
consequences of this are the Morse inequalities: given a Morse function ¢, denote
by ¢4, g =0,...,d, the number of its critical points of index g. Then there exist d
integers r,; > 0 such that

co=PBo+r1,
cr=p1+ri+r,

2 =pPr+ry+rs3,
(1.2)

cd—1=Pa—1+ra—1+ra,
cd=PBa+rq,

where B, is the g-th Betti number of the manifold M, defined as the rank of the
homology group? H,(M)= H,;(M;Z). To put it another way, the Betti numbers S,
give the lower bound for the number of critical points of index g; extra critical points
can only be created in pairs of adjacent index.

Equations (1.2) can be expressed concisely in terms of generating functions: one
defines the Morse polynomial Py(t) of a Morse function ¢ as the sum of ") over all

2Throughout the paper, we use integer coefficient homology, unless specified otherwise.
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critical points x € M of ¢. On the topological side, the Poincaré polynomial Py (t)
of the manifold M is the sum of B,t9. Then the Morse inequalities are equivalent to
the identity

(Pp(t) — Py(0)) /(1 +1) = R(1), (1.3)

where R(t) is a polynomial with nonnegative coefficients.

Now assume that ¢ is just continuous; the local sublevel sets Ufcg (¢) are still
well-defined. Mimicking the classical Morse theory of smooth functions we adopt
the following definitions (cf. [33, §45, Def. 1, 2 and 3], the critical points are called
bifurcation points there):

Definition 1.1 A point x € M is a topologically regular point of a continuous func-
tion ¢ if there exists a small enough neighborhood U of x in M and & > 0 such that
U #(¢) is a strong deformation retract of U (¢). We say that a point is topologi-
cally critical if it is not topologically regular.

Remark 1.2 If ¢ is smooth, a topologically critical point x is also critical in the usual
(differential) sense. The converse is, in general, not true: for example, if M =R and
¢(x) = x3, then x = 0 is critical but not topologically critical. On the other hand, by
the aforementioned main result of the classical Morse theory, if x is a non-degenerate
critical point then it is also topologically critical.

Definition 1.3 Given a continuous function ¢ with a finite set of topologically critical
points, the Morse polynomial Py is the sum, over the topologically critical points x,
of the Poincaré polynomials of the relative homology groups H, (U (), U® (¢>)),
where U is a small neighborhood of x and ¢ > 0 is sufficiently small.

Remark 1.4 If ¢ is a smooth Morse function, Definition 1.3 reduces to the classical
one as the relative homology groups H, (U Teg), U® (¢)) coincide with the reduced
homology groups of the 1(x)-dimensional sphere S*™), where 1 (x) is the Morse

index of x, and so the contribution of x to the Morse polynomial Py(¢) is equal to
l‘#(x).

With Definitions 1.1 and 1.3, the Morse inequalities (1.3) hold true for contin-
uous functions ¢ with finite number of topologically critical points (see, e.g., [33,
§45, Theorem. 1]). The proof is essentially the same as the proof of the classical
Morse inequality given in [51, §5] and is based on the exact sequence of pairs: the
latter implies the subadditivity of relative Betti numbers and, more generally, of the
partial alternating sums of relative Betti numbers, which implies the required Morse
inequalities.

It is thus our goal to give a prescription for computing the Morse polynomial P,
in terms of F and its derivatives, under some natural assumptions on F. To that end
we will need to:

(1) Provide an explicit characterization of non-smooth topologically critical and
topologically regular points of Ag;
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(2) Give a natural definition of a non-degenerate non-smooth topologically critical
point;

(3) For a non-degenerate topologically critical point x of A, find the relative homol-
ogy

Hy (U (i), Uy (i)

for a sufficiently small neighborhood U of x and sufficiently small & > 0. As
a by-product, this will determine the correct contribution from x to the Morse
polynomial P, (¢) of A.

We remark that these questions are local in nature and we do not need to enforce
compactness of M while answering them.

In this work, we completely implement the above objectives in the case of generic
smooth families; additionally, our sufficient condition for a regular point is obtained
for arbitrary families. The first objective is accomplished in the form of a “first deriva-
tive test”, with the derivative being applied to the smooth object: the family F (see
equation (1.5) and Theorems 1.5 and 1.12 for details).

The Morse contribution of a critical point (third objective) will consist of two
parts: the classical index of the Hessian of 1; in the directions of smoothness of Aj
and a contribution from the non-smooth directions which, remarkably, turns out to
depend only on the size of the eigenvalue multiplicity and the relative position of
the eigenvalue of interest and not on the particulars of the operator family. Theo-
rem 1.14 expresses this contribution in terms of homologies of suitable Grassmanni-
ans; explicit formulas for the Poincaré polynomial are provided in Theorem 1.12. In
Sect. 2.2 we mention some simple practical corollaries of our results as well as pose
further problems.

1.1 A differential characterization of a topologically critical point

Our primary focus is on the points x € M where the eigenvalue A; has multiplic-
ity and is not differentiable. However, simple examples (for instance, Example 2.1
below) show that not every point of eigenvalue multiplicity is topologically critical.

Denote by E; the eigenspace of A at a point x € M of multiplicity v = dim Ez.
The compression of a matrix X € Sym,, to the space E; is the linear operator X, :
E; — E; acting as v — Pg, Xv, where P, is the orthogonal projector onto E;. The
matrix representation of Xg, can be computed as

Xg, ==U*XU, (1.4)

where U : F¥ — F” is a linear isometry such that Ran(l{) = E; (explicitly, the
columns of U/ are an orthonormal basis of E;). Introduce the linear operator H., :
T, M — Sym, acting as

Hy:vi> (df(x)v)Ek. (1.5)

While the operator H, depends on the choice of the isometry ¢/ in (1.4) (or, equiv-
alently, the choice of basis in E), we will only use its properties that are invariant
under unitary conjugation.
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We recall that a matrix A € Sym, is positive semidefinite (notation: A € Sym") if
all of its eigenvalues are non-negative, positive definite (notation: A € Sym ™) if all
eigenvalues are strictly positive. We denote by S+ the orthogonal complement of a
space S in Sym,, with respect to the Frobenius inner product (X,Y) := Tr(XY). For
future reference we note that if X € Sym* and ¥ € Sym, Y #0, then (X, Y) > 0
(see, e.g., [14, Example 2.24]).

Our first main result gives a sufficient condition for a point of eigenvalue multi-
plicity to be topologically regular.

Theorem 1.5 Let 7 : M — Sym,, be a smooth family whose eigenvalue iy has mul-
tiplicity v > 1 at the point x € M. If Ran'H, contains a positive definite matrix or,
equivalently,’

(RanH,)* N Sym} =0, (1.6)
then x is topologically regular for hy.

This theorem is proved in Sect. 3 by studying the Clarke subdifferential at the
point x. We formulate the conditions in terms of both Ran #, and (Ran )T because
the former emerges naturally from the proof while the latter is simpler in practical
computations: generically it is one- or zero-dimensional as we will see in Sect. 4.

Remark 1.6 Condition (1.6) should be viewed as being analogous to the “non-
vanishing gradient” in the smooth Morse theory. By what is sometimes called
Hellmann—Feynman theorem (see Appendix A and references therein), the eigen-
values of H,v € Sym,, give the slopes of the branches splitting off from the multiple
eigenvalue Ag (F (x)) when we leave x in the direction v. The regularity condition of
Theorem 1.5 is equivalent to having a direction in which all eigenvalues are increas-
ing.

To further illustrate this point, consider the special case v = 1 when the eigenvalue
Ak is smooth. Let i be the eigenvector corresponding to A at the point x. The oper-
ator H, : Ty M — R in this case maps v to <1p, (d}'(x)v)w)w which is equal to the
directional derivative of Ag(x) in the direction v. The condition of Theorem 1.5 is
precisely that this derivative is non-zero in some direction, i.e. the gradient does not
vanish.

Due to the topological nature of Definition 1.1, one cannot expect that a zero
gradient-type condition alone would be sufficient for topological criticality (cf.
Remark 1.2). To formulate a sufficient condition we need some notion of “non-
degeneracy”, which will have a smooth (S) and non-smooth (N) parts.

Definition 1.7 Let 7 : M — Sym,, be a smooth family whose eigenvalue A4 has mul-
tiplicity v > 1 at the point x € M. We say that F satisfies the non-degenerate criti-
cality condition (N) at the point x if

(RanH,)* =span{B}, B¢ Sym; . (1.7)

3Note that this equivalence is not immediate and is established in the beginning of the proof of Theorem 3.2
below.
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Remark 1.8 Condition (1.7) ensures non-degenerate criticality in the directions in
which A is non-smooth (hence “N”); a single condition plays two roles:

e it ensures that (1.6) is violated (intuitively, “the gradient is zero”), and

e it ensures that Ran 7, has codimension 1, which will be interpreted in Sect. 4 as
a type of transversality condition (intuitively, “non-degeneracy in the directions in
which A is non-smooth™).

Once condition (N) is satisfied at a point x, we need to pay special attention to a
submanifold S where the multiplicity of A; remains the same.

Proposition 1.9 Let F : M — Sym,, be a smooth family whose eigenvalue Ay has
multiplicity v > 1 at the point x € M. If F satisfies the non-degenerate criticality
condition (N) at the point x, then there exists a submanifold S C M such that for any
y in a small neighborhood of x in M, the multiplicity of M (y) is equal to v if and
onlyifyeS.

This submanifold, which we will call the (local) constant multiplicity stratum at-
tached to x, has the following properties:

(1) S has codimension s(v) :=dimSym,(F) — 1 in M,
(2) the restriction Ak‘ s is a smooth function which has a critical point at x, i.e.
d (M|g) (x) =0.

The proof of the above Proposition is in Sect. 4.

Definition 1.10 Assume F satisfies the non-degenerate criticality condition (N) at
the point x for the eigenvalue A, (in particular, x is a critical point of Ak| ). We will
say F satisfies the non-degenerate criticality condition (S) if x is a non-degenerate
critical point of Ay ‘ s

Naturally, “S” stands for smooth criticality. It turns out that, together, condi-
tions (N) and (S) are sufficient for topological criticality. To quantify the topological
change in the sublevel sets we need additional terminology. The relative index of the
k-th eigenvalue at point x is

i(x) =#{respec(F(x)): A <M(x)} —k+1. (1.8)

In other words, i(x) is the sequential number of A; among the eigenvalues equal
to it, but counting from the top. It is an integer between 1 and v(x), the mul-
tiplicity of the eigenvalue Ar(x) of the matrix F(x). We will need the quantity
s(i) := dimSym; (F) — 1, which already appeared in a different role in Proposi-
tion 1.9. It is given explicitly by

3+ -1, F=R,

1.9
i2—1, F=C. (1.9)

s(i) :=dimSym;(F) — 1 = {
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290 G. Berkolaiko, I. Zelenko

Finally, we denote by (Z)q the g-binomial coefficient,

(n) _ [T —g)
ko o =) [T —g))
which is well known ([47, Corollary 2.6]) to be a polynomial in g.

Definition 1.11 A smooth family F : M — Sym,,(F) is called generalized Morse if,
at every point x € M, F either satisfies the regularity condition (1.6) or satisfies the
non-degenerate criticality conditions (N) and (S).

Theorem 1.12 Consider the eigenvalue 1y of a smooth family F : M — Sym,,.

(1) If F satisfies non-degenerate criticality conditions (N) and (S) at x, then x is a
topologically critical point of Ay. The set of points x where conditions (N) and
(S) are satisfied is discrete.

(2) If M is a compact manifold and the family F is generalized Morse, Morse in-
equalities (1.3) hold for the function A : M — R with the Morse polynomial
Py(t) := Py, (t) given by

P (t)i= Y Pyt;x),

xeCP(F)

where the summation is over all topologically critical points x of F and, denoting
by v(x) the multiplicity of the eigenvalue Ay of F(x), by i(x) its relative index,
and by u(x) the Morse index of the restriction Ay |S’

L(v—1)/2] — P
( 12 )14, F=Randi is odd,

. s 0, F=R,iiseven,and v is odd,
. . 1 s
Pr (@30 i=1"%, =1 v—i (v/2—1 - .
t l(i/2—1),4’ F=1R,iis even, and v is even,

(7)), F=C.
(1.10)

The topological criticality claimed in part (1) follows immediately whenever the
Poincaré polynomial of the relative Z-homology — which is given in (1.10) — is
non-zero. The case in the second line of (1.10) is more complicated, because that
Poincaré polynomial is zero. To handle this case, in the final stages of the proof in
Sect. 7 we will additionally calculate the Poincaré polynomial of the relative Z,-
homology, see (7.3).

We also note that in equation (1.10) we introduced the notation ¥, for the family-
independent Morse contribution to P;, (¢; x). This contribution arises from the “non-
smooth” directions transverse to the “smooth” constant multiplicity stratum S. The
index ¢ = p(x) along the stratum S depends on the particulars of the family F.

Now we state a result showing that for a “typical” F, either Theorem 1.5 or The-
orem 1.12 holds at every point x € M.
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Theorem 1.13 The set of generalized Morse families is open and dense in the Whitney
topology in C" (M, Sym,)) for 2 <r < co.

This result will be established in Sect. 4 as a part of Theorem 4.11. We will use
transversality arguments similar to those in the proof of genericity of classical Morse
functions (see, for example, [43, Chap. 4, Theorem 1.2]) via the strong (or jet) Thom
transversality theorem for stratified spaces.

1.2 Geometrical description of the relative homology groups

In this subsection we provide some idea of what goes into the proof of Theorem 1.12,
describing some geometric objects whose integer homology is quantified in (1.10).

First we introduce some notation. We denote by Grp(k,n) the Grassmannian of
(non-oriented) k-dimensional subspaces in ”. Theorem 1.14 below uses certain ho-
mologies of Grr(k,n) with local coefficients, namely H, (GrR(k, n); Z). The con-
struction of this homology can be found, for instance, in [38, Sec. 3H] or [22,
Chap. 5]; it will also be briefly summarized in Sect. 8.

Recall that for a given topological space Y, the cone of Y is CY :=Y x [0, 1]/(Y X
{O}), and the suspension of Y is SY := CY/(Y X {1}). For example, SS* = SH+1,

Theorem 1.14 In the context of Theorem 1.12, we have the following equivalent de-
scriptions of the relative homology H, (U;“? (M), U (Ak)),

(1)
Z, if ix)=1, r=pk),
H (U0, U7 () = {0, if i(x)=1, r#ux),
o (SR i 1<it0 = v,
(1.11)
where
R :={ReSym': TrR=1,rankR < i}, (1.12)
and ﬁq denotes the q-th reduced homology group.
2)
H (UF0w), U5 0w)) (1.13)

Hr—p—si)(Grr(i — 1,v — 1)), F=Randi is odd,
= H,,M,s(i)(GrR(i —1L,v—-1); Z) F=Randi is even,
Hr_#_s(i)(Gr(c(i —1,v— l)), F=C.

To prove Theorem 1.14, in Sect. 5 we will first separate out the contribution to the
relative homology H, (U);Ir (A, USSP (Ak)) of the local constant multiplicity stratum
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S and reduce the computation to the case when S is a single point. In the latter case,
it will be shown that H, (U;rg (M), U (Ak)) reduces to the homology of the space
SRi. In the next step, we will see that SR/, is homotopy equivalent to the Thom
space of a real bundle of rank s(i) over the Grassmannian Grp(i — 1,v — 1). The
difference between the odd and the even i when F = R is that this real bundle is ori-
entable in the former case and non-orientable in the latter. So, part (2) of the Theorem
follows from the Thom isomorphism theorem in the oriented bundle case and more
general tools such as the usual/twisted version of Poincaré—Lefschetz duality in the
non-orientable bundle case [22, 32, 38].

The study of Z; and integer homology groups of the complex and real Grassman-
nians was at the heart of the development of algebraic topology and, in particular,
the characteristic classes. Starting from the classical works of Ehresmann [26, 27],
the answers appearing in (1.10) were explicitly calculated using the Schubert cell
decomposition and combinatorics of the corresponding Young diagrams [46, Theo-
rem [V, p. 108], [5]. The calculation of twisted homologies of real Grassmannians is
less well-known but can be deduced from the classical work [18] and incorporated
into a unified algorithm [16], or computed by means of the general theory of de Rham
cohomologies of homogeneous spaces, see [36, chapter XI, pp. 494-496].

Examples of local contributions to the Morse polynomial for topologically critical
points of multiplicities up to 8 are presented in Table 1 in the real case. The possible
contribution from the smooth directions is ignored because those are specific to the
family F. In other words, we set i(x) = 0 in equation (1.10). In the cases when the
second line of (1.10) applies, the contribution of 0 does not mean that the point is reg-
ular; 0 appears because the polynomial ignores the torsion part of the corresponding
homologies. We also observe that the contribution of the top eigenvalue (i = 1) is al-
ways 1°; the contribution of the bottom eigenvalue (i = v) is always #*(*). By analogy
with smooth Morse theory one can guess that the top eigenvalue always experiences
a minimum, while the bottom eigenvalue always experiences a maximum (s(v) be-
ing the dimension of the space of non-smooth directions). This guess is rigorously
established in Corollary 2.4 and its proof in Sect. 8.

Table 1 Non-smooth contributions T{, (t) to the Morse polynomial from a topologically critical point of
Ak (x) in the real case (F = R, first three cases of equation (1.10))

J\NE1 2 3 4 5 6 7 8
2 1 2

3 1 0o

4 1 P 0

5 1 0 49 0 14

6 1 t6 15 +t9 t11+t15 1‘14 120

7 1 0 O+24+18 o0 M e184422 ¢ 27

8 1 [8 15+19+ll3 tl3+tl7 +t2] l‘]4+t18+122 122+t26+l‘30 t27 135
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2 Examples, applications and an open question
2.1 Examples

In this section we collect examples illustrating our criteria for regularity and critical-
ity.

Example 2.1 Consider the two families

X2 —X] X2 2x

]-"1(x)=<x1 xz), and fz(x)z(xl xz), x=(x;,x) €RZ. (2.1

Both families F| and J, have an isolated point of multiplicity 2 at (xg, x2) = (0, 0).
Focusing on the lower eigenvalue A1, its level curves in the case of /] undergo a sig-
nificant change at the value 0 — they change from circles to empty, see Fig. 1(top).
Therefore, the point (0, 0) is topologically critical and, visually, A1 of /7 has a maxi-
mum at (0, 0). In contrast, the level curves and the sublevel sets of > remain homo-
topically equivalent, see Fig. 1(bottom). The point (0, 0) is not topologically critical
for A1 of F.

We now check the condition of Theorem 1.5 for the families F; and JF,. At the
point x = (0, 0) the eigenspace Ey is the whole of R? and no restriction is needed.

05
-2.0
-1.0
0.0,
1.0
05
A 05 0 05

Fig. 1 Eigenvalue surfaces (left) and contours of the first eigenvalue (right) for the families /7 (top) and
JF> (bottom) from equation (2.1)
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For the family 71, the mapping H, from (1.5) is

1 0 0 1
’Hx:v=<2;>+—>v1(o _1>+v2<1 0>,
L 10
(RanHy) —span{<0 1)}

satisfying non-degenerate criticality condition (N), (1.7). Since the point x = (0, 0)
of eigenvalue multiplicity 2 is isolated, the criticality condition (S) is vacuously true.
Theorem 1.12 applies at x = (0, 0) and the Morse data for the two sheets is given by
the v = 2 row of Table 1.

Proceeding to the family />, a similar calculation yields

(RanH, )t = span { (3 _01> }

contains no positive semidefinite matrices. Hence x is a topologically regular point
for 7, by Theorem 1.5.

and therefore

Example 2.2 The case of (Ran?{,)" being spanned by a semidefinite matrix which
satisfies neither (1.6) nor condition (1.7), is borderline. As an example, consider the
family

F(x)= (xl w2 ) . 2.2)

X2 Xx1x2+ xl2

For the point x = (0, 0) of multiplicity 2 we have

Raonzspan{<(l) 8),((1) é)}, (Raon)J‘zspan{<8 ?)}

Regularity condition (1.6) is violated and so is criticality condition (1.7). However,
the constant multiplicity stratum S is well-defined: it is the isolated point {x}. As can
be seen in Fig. 2, we have both behaviors (regular and critical) at once: the lower
eigenvalue has a topologically regular point at x while the upper has a topologically
critical point there.

Example 2.3 We now explore in detail the regularity and criticality conditions of The-
orems 1.5 and 1.12 for families of 2 x 2 matrices. We parametrize Sym, (R) using
R3 via the mapping

(x,y,z)r—><x+y z ) 2.3)

z xX—y

In this parameterization, the Frobenius inner product (normalized by 1/2) becomes
the Euclidean inner product, making orthogonality visual. In the (x, y, z) space, the
sign definite matrices form the interior of the cone, x? < y? + z°.
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Fig.2 Eigenvalue surfaces (left) and contours for the family F from equation (2.2). The point x = (0, 0)
is topologically regular for the bottom eigenvalue and topologically critical (non-smooth minimum) for
the top one

Fig.3 The cone whose interior consists of sign definite 2 x 2 matrices is visualized in the 3-dimensional
space parametrizing Sym; (R) via (2.3). The monochrome surfaces represent the images of the families
satisfying (on the left) the regularity condition and (on the right) criticality condition (N) at F(0) = 0. The
normal to the surface, representing a matrix in (Ran HO)J-, lies outside Symg' in the left graph and inside

Sym;"" (up to an overall sign) in the right graph

Assume that 7 depends on two parameters and satisfies F(0) = 0, with x = 0 be-
ing the only point of multiplicity 2. Figure 3 shows two such families. The regularity
condition of Theorem 1.5 is equivalent to the tangent space at O to the image of F
intersecting the sign definite cone, Fig. 3 (left). Similarly, criticality condition (N),
is equivalent to the tangent space to the image of F having dimension 2 and lying
outside the cone, which puts the normal to F at 0 inside the cone, see Fig. 3 (right).

2.2 Some applications

Now we give some consequences of our main Theorems. We start with the observa-
tion that a maximum of an eigenvalue A; cannot occur at a point of multiplicity where
A coincides with an eigenvalue below it (the proof of Corollary 2.4 is given at the
end of Sect. 8).

Corollary 2.4 Let x be a non-degenerate topologically critical point of the eigenvalue
Ak of a generalized Morse family (generic by Theorem 1.13) F : M — Sym, (F),
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where F =R or C. Then x is a local maximum (resp. minimum) of Ay if and only if
the following two conditions hold simultaneously:

(1) the eigenvalue Ay is the bottom (resp. top) eigenvalue among those coinciding
with A (x) at x; equivalently, the relative index i (x, k) = v(x) (resp. i(x) = 1).

(2) the restriction of A to the local constant multiplicity stratum attached to x has a
local maximum (resp. minimum) at x.

Consequently, for a generalized Morse family F over a compact manifold M, we
have the strict inequalities

max Ar_1(x) < max Ag(x), k=2,...,n;
xeM xeM
min Ag_1(x) < min Ag(x), k=2,...,n.
xeM xeM

Similarly4 to the classical Morse theory, Theorem 1.12 can be used to obtain lower
bounds on the number of critical points of a particular type, smooth or non-smooth.
Our particular example is motivated by condensed matter physics, where the den-
sity of states (either quantum or vibrational) of a periodic structure has singularities
caused by critical points [54, 60] in the “dispersion relation” — the eigenvalue spec-
trum as a function of the wave vector ranging over the reciprocal space. Van Hove
[63] classified the singularities (which are now known as “Van Hove singularities”)
and pointed out that they are unavoidably present due to Morse theory applied to the
reciprocal space, which is a torus due to periodicity of the structure.

Of primary interest is to estimate the number of smooth critical points which pro-
duce stronger singularities. Below we make the results of [63] rigorous, sharpening
the estimates in d = 3 dimensions. We also mention that higher dimensions, now
open to analysis using Theorem 1.12 are not a mere mathematical curiosity: they
are accessible to physics experiments through techniques such as periodic forcing or
synthetic dimensions [57].

Corollary 2.5 Assume that M is the torus T¢, d =2 or 3. Let F : M — Sym,, be
a generalized Morse family (generic by Theorem 1.13). Then the number c, (k) of
smooth critical points of A of Morse index © =0, ..., d satisfied the following lower
bounds.

(1) In d =2 any ordered eigenvalue has at least two smooth saddle points, i.e.

ci(k) =2, k=1,...,n.

2) Ind =3,
ci(l) =3, 2.4)
c1(k) +ca(k —1) > 4, k=2,...,n, (2.5)
ca(n) > 3. (2.6)

4The similarity is natural since our Theorem 1.12 reproduces the classical Morse inequalities if one sets
n=1.
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Remark 2.6 Only the simpler estimates (2.4) and (2.6) for the bottom and top eigen-
value appear in [63] for d = 3; the guaranteed existence of smooth critical points in
the intermediate eigenvalues (2.5) is a new result. The intuition behind this result is as
follows: when a point of eigenvalue multiplicity affects the count of smooth critical
points of Ag, it also affects the count of smooth critical point for neighboring ordered
eigenvalues, such as A;_1, and it does so in a strictly controllable fashion since the
Morse data depends little on the particulars of the family . Carefully tracing these
contributions across different ordered eigenvalues leads to sharper estimates.

Proof of Corollary 2.5 1t follows from Proposition 1.9(1) that the maximal multiplicity
of the eigenvalue is 2 (otherwise the codimension of § is larger than the dimension
d = 2 or 3 of the manifold).

In the case d = 2, the non-smooth critical points are isolated. According to the first
row of Table 1, such points do not contribute any ¢! terms. Therefore, the coefficient
of t in Py, is c¢1 (k) and, by Morse inequalities (1.3), it is greater or equal than the first
Betti number of T2, which is 2.

In the case d =3 we need a more detailed analysis of the Morse inequalities (1.3)
for L. We write them as

3
D (ept) +dp(0))t? = 1+ 1) + (1+ 1) (o (k) + a1 (k) + ea(k)?),
p=0

where d, (k) is the contribution to the polynomial P;, coming from the points of
multiplicity 2, (1 + 1)3 is the Poincaré polynomial of T3, and where « p(k) are the
nonnegative coefficients of the remainder term R(¢) in (1.3). Then similarly to (1.2),
we have

co(k) +dok) =1+ ap(k) > 1, 2.7
c1(k) +di(k) =3+ ag(k) + a1 (k) =2+ co(k) + do(k), (2.8)
ca(k) +dr(k) =3 +aj(k) + ax(k) = 2+ c3(k) + ds(k), (2.9)
e3(k) +ds(k) = 1+ aa (k) > 1. (2.10)

We also observe that if A; has a non-smooth critical point x counted in dy(k), then
v(x) =2 with u(x) =0and i(x) = 1 (since this is the only way to obtain %in (1.10)
for v = 2). This implies that Ax_j(x) = Ar(x) with the same constant multiplicity
curve S and the same point x is a critical point of Ay_; withv =2, u =0and i = 2.
From Table 1 we have Py, ,(t;x) = 12, namely x contributes to dy(k — 1). This
argument can be done in reverse and also extended to points contributing to dj (k)
(withv =2, u=1and i = 1), resulting in

dk)=dk—1), dik)=dstk—1), k=2,....n, @2.11)
do()=di(1)=0,  dor(n) =ds(n) =0. 2.12)

The boundary values in (2.12) are obtained by noting that we cannot have 1 (x) =
Ao(x) or A, (x) = Ay41(x) since eigenvalues Ao and A, 41 do not exist.
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For k =1, (2.12) substituted into (2.7) and (2.8) gives co(1) > 1 and c1(1) >
2 4+ co(1) = 3, establishing (2.4). Estimate (2.6) is similarly established from (2.12),
(2.10) and (2.9).

Replacing k with k — 1 in estimate (2.9) and using (2.11) gives

ca(k — 1) +do(k) > 2+ c3(k — 1) +di(k) >2+dy (k).

Adding this last inequality to line (2.8) results in (2.5) after cancellations and the
trivial estimate co(k) > 0. Il

Remark 2.7 1t is straightforward to extend (2.4)—(2.6) to an arbitrary compact 3-
dimensional manifold M with Betti numbers S, obtaining

ci () = B,
c1(k) +catk—1) > B1 + o — Bo — B3, k=2,...,n,

c2(n) = Bo.

These inequalities extend to d = 3 the results of Valero [62] who studied critical
points of principal curvature functions (eigenvalues of the second fundamental form)
of a smooth closed orientable surface.

Independence of the transverse Morse contributions from the particulars of the
family F also allows one to sort the terms in the Morse polynomial. This is illustrated
by the next simple result.

Let Conseq, , be the set of all subsets of {1, ..., n} containing k and consisting
of consecutive numbers, i.e. subsets of the form {ji, j1 + 1,..., j2} 2 k. Given J €
Conseqy, ,,, let i(k; J) be the sequential number of k in the set J but counting from
the top (cf. (1.8)). As usual, |J| will denote the cardinality of J.

Let 7 : M — Sym, () be a generalized Morse family. For any set J € Conseq ,,,
let

S(k, J)={x €M :xj(x)=x(x)if and only if j € J}.

By our assumptions, S(k, J) are smooth embedded submanifolds of M and the re-
strictions Ag|s(, sy of the eigenvalue A to S(k, J) are smooth.

Corollary 2.8 Given a generalized Morse family F : M — Sym, (F) the following
inequality holds

Y IO Payise, (0 = Pu0) = Py, (2.13)

JeConseqy ,

where P(t) > Q(t) if and only ifthe_ all coefficients of the polynomials P(t) — Q(t)
are nonnegative, the polynomials ‘Ii;kl;“ are defined in (1.10), and Py , (1) are
the Morse polynomials of the smooth functions Ar|sw,j) on S(k,J). In particular

Piilsw.u IS the total contribution of all smooth critical points of .
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Proof We only need to prove the left inequality in (2.13). By (1.10), the contribution
of a topologically critical point x € S(k, J) to Py, () is ) figkl; N (t). Therefore, the
left-hand side of (2.13) is different from Pj, (¢) in that the former also includes contri-
butions from smooth critical points of A |s, ) that do not give rise to a topologically
critical point of A;. However, those contributions are polynomials with non-negative
coefficients, producing the inequality. O

We demonstrate Corollary 2.8 in a simple example involving an intermediate
eigenvalue. Letting n = 3, k = 2, and using the first two rows of Table 1, inequal-
ity (2.13) reads:

P)‘2|S(2,{2}) (t) + t2P)\2|S(2,{2’3)) (t) + P)Lz|s(2.(1.2)) (Z) E PA.Z (t) : PM(I) (214)

Note that the term with Py, .3, (f) does not appear in (2.14) because T% =0
according to the second row of Table 1. Further simplifications of inequalities (2.14)
are possible if it is known a priori that A is a perfect Morse function when restricted
to the connected components of the constant multiplicity strata S, (x—1,)(F) and
Sk, tk k13 (F)-

2.3 Anopen question

Finally, we mention an open question which naturally follows from our work: to clas-
sify Morse contributions from points where the multiplicity v is higher than what is
suggested by the codimension calculation in the von Neumann—Wigner theorem [64].
Such points often arise in physical problems due to presence of a discrete symmetry;
for an example, see [11, 29]. At a point of “excessive multiplicity”, the transversality
condition (4.1) is not satisfied because d < s(v), but one can still define an analogue
of the “non-degeneracy in the non-smooth direction” (cf. Remark 1.8). It appears that
the Morse indices are independent of the particulars of the family F when the “ex-
cess” s(v) —d is equal to 1, but whether this persists for higher values of s(v) —d is
still unclear.

3 Regularity condition: proof of Theorem 1.5

In this section we establish Theorem 1.5, namely the sufficient condition for a point
to be regular (see Definition 1.1).

Recall the definition of the Clarke directional derivative® of a locally Lipschitz
function f : M — R (for details, see, for example, [19, 55]). Given v eATxM ,let V
be a vector field in a neighborhood of x such that v(x) = v and let ¢’V denote the
local flow generated by the vector field V. Then the Clarke generalized directional
derivative of f at x in the direction v is

oy
f°(x,v) =limsup M.
0+

SThis is usually a stepping stone to defining the Clarke subdifferential, but we will limit ourselves to Clarke
directional derivative which is both simpler and sufficient for our needs.

@ Springer



300 G. Berkolaiko, I. Zelenko

Independence of this definition of the choice of V follows from the flow-box the-
orem and the chain rule for the Clark subdifferential, see [55, Thm 1.2(i) and Prop
1.4(i)].

Definition 3.1 The point x is called a critical point of f in the Clarke sense, if
0< f°x,v) forall veT,M.
Otherwise, the point x is said to be regular in the Clarke sense.

The assumptions of Theorem 1.5 will be shown to imply that the point x is regular
in the Clarke sense, whereupon we will use the following result.

Theorem 3.2 [2, Proposition 1.2] A point regular in the Clarke sense is topologically
regular in the sense of Definition 1.1.

Proof of Theorem 1.5 We first establish that condition (1.6), namely
(RanH, )= N Sym} =0,

is equivalent to existence of a matrix C € Ran M, which is (strictly) positive definite.
Despite being intuitively clear, the proof of this fact is not immediate and we pro-
vide it for completeness; a similar result is known as Fundamental Theorem of Asset
Pricing in mathematical finance [25]. Assume the contrary,

Ran#H, N Sym} ™ =0.

The set Sym; ™ is open and convex (the latter can be seen by Weyl’s inequality for
eigenvalues). A suitable version of the Helly-Hahn—Banach separation theorem (for
example, [56, Thm 7.7.4]) implies existence of a functional vanishing on Ran 7, and
positive on Sym; . By Riesz Representation Theorem, this functional is (D, -) for
some D € Sym,,, for which we now have D € (RanH, )™ and (D, P) > 0 for all
P € Sym; ™. In particular, D is non-zero and belongs to the dual cone of Sym™,
namely to Sym;|r [14], contradicting condition (1.6).
Secondly, results of [21, Theorem 4.2] (see also® [42, Sect. 6]) show that

52 (x, v) < max [<u (df(x)v)u): u e By, |lul = 1}

=3 ((dF (v, ) = A" (H (),

where E; is the eigenspace of the eigenvalue A (x) of F(x); the middle equality is by
the variational characterization of the eigenvalues and the last by the definition (1.5)
of Hy.

We already established that there exists v such that H,(v) € Sym;*. Then
‘H (—v) is negative definite and we have

Ap(x,v) < kmax(?{x(—v)) <0.

SNote that there is a misprint in the direction of the inequality in [42, Sect. 6].
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The point x is regular in the Clarke sense and, therefore, regular in the sense of
Definition 1.1. O

4 Transversality and its consequences

Definition 4.1 We say that a family F is transverse (with respect to eigenvalue Ay ) at
a point x if

Z,+RanH, = Sym,, “.1)

where v is the multiplicity of A; at the point x and Z, := span(/,) C Sym,, is the
space of multiples of the identity matrix.

In this section we explore the consequences of the transversality condition, equa-
tion (4.1). In particular, in Lemma 4.2 we interpret condition (4.1) as transversality
of the family F and the subvariety of Sym,, (IFF) of matrices with multiplicity. We then
show that transversality at a non-degenerate topologically critical point allows us to
work separately in the smooth and non-smooth directions. In particular, we establish
that a non-degenerate topologically critical point satisfies the sufficient conditions of
Goresky—MacPherson’s stratified Morse theory. The latter allows us to separate the
Morse data at a topologically critical point into a smooth part and a transverse part;
the latter will be shown in Sect. 5 to be independent of the particulars of the family
F.

Let QZ’U be the subset of Sym,, (IF), where F is R or C, consisting of the matrices

whose eigenvalue A has multiplicity v. It is well-known [6] that the set Q} |, is a

semialgebraic submanifold of Sym,, of codimension’

v+ -1, F=R,

:=dimS F)—-1=
s(v) im Sym, () 21, F=C.

4.2)

In particular, if v > 1 (the eigenvalue Ax is not simple), then codim Q} > 2, if
F =R and codim QZ!V > 3, if F = C. We remark that we use real dimension in all
(co)dimension calculations.

Lemma4.2 Let 7 : M — Sym,, be a smooth family whose eigenvalue Ay has multi-
plicity v at the point x € M (i.e. F(x) € QZ,V). Then F is transverse at x in the sense
of (4.1) if and only if

Rand F (x) + Tr) Oy, = Tru)Sym, (=Sym, ). 4.3)

TThe reason for this codimension to be equal to dim Sym,, (F) — 1 is as follows: Symmetric matrices with
non-repeated eigenvalues can be encoded by their eigenvalues and unit eigenvectors. When an eigenvalue
is repeated v times, there is a loss of v — 1 parameters from the eigenvalues plus an extra freedom of choice
of an orthonormal basis in the corresponding eigenspace. Thus the desired codimension is equal to v — 1
plus the dimension of the space of orthonormal bases of FV, adding up to dim Sym,, (F) — 1.
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Fig.4 Examples of two families visualized in the 3-dimensional space parametrizing Sym, (R) via (2.3).
The subspace Z, is drawn as a line. The monochrome surfaces represent the images of the families F,
satisfying F(0) = 0. The family on the left is transverse at x = 0 and the family on the right is not. The
cones are drawn for comparison with Fig. 3

Remark 4.3 1t is easy to see that when v = 1, both conditions (4.1) and (4.3) are sat-
isfied independently of 7. When v = n, conditions (4.1) and (4.3) become identical.
The transversality condition in the case v =n =2 is illustrated in Fig. 4.

Proof of Lemma 4.2 Consider the linear mapping / : Sym,, — Sym,, acting as a com-
pression to E¢. Namely, A — Ag, =U" AU, where U is a linear isometry F” — Ey,
see (1.4). The mapping & is onto: for any B € Sym,,, choosing B =UBU* € Sym,,
yields h(E) =U*UBU*U = I, BI, = B. Furthermore, by Hellmann—-Feynman theo-
rem (Theorem A.1), A € Tr(y) QZ’V if and only if A(A) € Z, (informally, a direction
is tangent to Q;{”V if and only if the eigenvalues remain equal to first order). Finally,

by definition of #, we have #(RandF(x)) = Ran .
Assuming condition (4.3) and applying to it the mapping &, we get

Sym,, = h(Symn) = h(Randf(x)) + h(T}-(x) szv> =RanH, +7,,
establishing (4.1). Conversely, assume F violates condition (4.3), meaning that

Rand F(x) + T]-'(x) QZV =G+ T]-'(x) QZU

for some linear subspace G of dim G < codim 7r(y) O} , = s(v). Applying h to both
sides we get

Ran?l, +Z, = h (Rand F(x) + T Q}.,) =h (G + Trx) QF ) = h(G) + L.

Counting dimensions, we arrive to dim (RanH, +Z,) < s(v) + 1 =dim(Sym,,), and
therefore (4.1) cannot hold. O

Corollary 4.4 (1) If x satisfies non-degenerate criticality condition (N), see Defini-
tion 1.7, then F is transverse at x.
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(2) If F is transverse at a point x, the constant multiplicity stratum S of x is a
submanifold of M of codimension s(v) and the function \y restricted to S is
smooth.

Proof Recall that non-degenerate criticality condition (N) states that (Ran )" is
spanned by a positive definite matrix. In particular, the codimension of Ran 7 is 1.
Furthermore, the identity matrix /, is not in Ran#, because the identity cannot be
orthogonal to a positive definite matrix. Therefore condition (4.1) holds.

Now let F be transverse at x and let v = v(x) be the multiplicity of the eigen-

value A; at x. Then S is the connected component of F~! <QZ U) containing x.

Transversality implies S is a submanifold of codimension codim QZ’V = s(v). The
smoothness of A; restricted to S is a standard result of perturbation theory for linear
operators (see, for example, [48, Section II.1.4 or Theorem I1.5.4]). To see it, one uses
the Cauchy integral formula for the fotal eigenprojector (or Riesz projector), i.e. the
projector onto the span of eigenspaces of the eigenvalues lying in a small neighbor-
hood around A (x). It follows that the total eigenprojector is smooth in a sufficiently
small neighborhood of x € M (the neighborhood on M needs to be small enough so
that no eigenvalues cross the contour of integration). Once restricted to y € S, the
eigenprojector is simply Ag(y)1,, therefore A (y) is also smooth. O

Lemma4.5 If x satisfies non-degenerate criticality condition (N), then Ran H, | rs=
X

0 and x is a critical point of the locally smooth function \i | e

Proof By Hellmann—Feynman theorem, see Appendix A, the eigenvalues of H,v €
Sym,, give the slopes of the eigenvalues splitting off from the multiple eigenvalue
Ak (.7-" (x)) when we leave x in the direction v. Leaving in the direction v € TS,
where S is the constant multiplicity stratum attached to x, must produce equal slopes,
i.e. Hy(v) is a multiple of the identity matrix I, for every v € 7Ty S. But a non-zero
multiple of the identity cannot be orthogonal to B € Sym; ™, therefore Ran H,, | s =
0. In other words, the slopes of the branches splitting off from the multiple eigenvalue
Ak (x) are all zero. O

Proof of Proposition 1.9 Corollary 4.4 and Lemma 4.5, combined, give the conclu-
sions of Proposition 1.9. 0

The next step is to enable ourselves to focus on the directions transverse to S.

Corollary 4.6 Let F : M — Sym,, be a smooth family whose eigenvalue ;i satisfies
conditions (N) and (S) (Definitions 1.7 and 1.10) at the point x € M. Let S be the
constant multiplicity stratum at x and let N be a submanifold of M of dimension
dim N = codimy; S = s(v) which intersects S transversely at x.

Then the eigenvalue Ay of the restriction F ’ N also satisfies conditions (N) and (S).

Proof Transversality and dimension count imply that the constant multiplicity stra-

tum of F |, is the isolated point x. Therefore condition (S) for F|,; is vacuously true
at x.
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Condition (N) for F, combined with Lemma 4.5, yields Ran = 0. We thus

obtain

7.5

Ran'}-[x :Raon|TXN +Raon|TXS :Raon|TXN.

In other words, the space Ran #, remains unchanged after restricting F to N, there-
fore condition (N) holds for F ] N O

The next step is to separate the Morse data at a critical point x into a smooth part
(along §) and a transverse part (along N). For this purpose we will use the stratified
Morse theory of Goresky and MacPherson [35]. We now show that a point satisfying
non-degenerate criticality conditions (N) and (S) is nondepraved in the sense of [35,
definition in Sec. 1.2.3]. The setting of [35] calls for a smooth function on a certain
manifold which is then restricted to a stratified subspace of that manifold. To that end
we consider the graph of the function Ax on M, i.e. the set Zy := {(x, Ax(x)): x € M}
as a stratified subspace of M := M x R and the (smooth) function 7 : M — R which
is the projection to the second component of M. As before, the stratification (both on
M and on Zy) is induced by the multiplicity of the eigenvalue Ag(x).

Recall that a subspace Q of T, Z]VI is called a generalized tangent space to a strati-
fied subspace Z C M at the point z € Z, if there exists a stratum R of Z with z € R,
and a sequence of points {z;} C R converging to z such that

0= lim 7., R. (4.4)
1—> 00

Proposition 4.7 Let the family F : M — Sym,, be transverse and the point x € M
satisfy conditions of Theorem 1.12. Let 7 := (x, kk(x)) be the corresponding point
on the stratified subspace Zj C M defined above and S be the stratum of Zy contain-
ing z. Then the following two statements hold:

(1) For each generalized tangent space Q at 7 we have dm (z)’ 0 # 0 except when
0=T.5.
(2) x is isolated in the set of all points y that are critical for )‘k|s , Where Sy is the
)
constant multiplicity stratum attached to y.

Remark 4.8 A point 7 := (x, Ak(x)) satisfying conditions (1)—(2) of Proposition 4.7
and such that x is non-degenerate as a smooth critical point of Ay | ¢ 1s anondepraved
point of the map 7|z, in the sense of Goresky—MacPherson [35, Sec. 1.2.3].8°

8The definition of a nondepraved point in [35, Sec. 1.2.3] contains three conditions. Conditions (c) and
(a) of [35, Sec. 1.2.3] correspond to parts (1) and (2) of Proposition 4.7, respectively. The third condition
— condition (b) of [35, Sec. 1.2.3] — holds automatically in our case because x is non-degenerate as a
smooth critical point of Ag| ¢, by condition (S) assumed in Theorem 1.12). Thus we omit here the general
description of condition (b), which is rather technical.

9We also mention that [35] uses the term “critical” for the points y that are critical when the function in
question is restricted to their respective stratum of constant multiplicity.
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Corollary 4.9 Let the family F : M — Sym,, be transverse and the point x € M satisfy
conditions of item (1) of Theorem 1.12. Let 7 := (x, Ak (x)) be the corresponding
point on the stratified subspace Zj C Az defined above and w : M x R — R be the
projection to the second component of M. Then z is a nondepraved point of the map
7|z, in the sense of Goresky—MacPherson [35, Sec. 1.2.3].

Remark 4.10 Let us discuss informally the idea behind part (1) of Proposition 4.7,
the proof of which is fairly technical. When we leave x in the direction not tangent to
S, the multiplicity of eigenvalue XA, is reduced as other eigenvalues split off. Part (1)
stipulates that among the directions in which the multiplicity splits in a prescribed
manner, there is at least one direction in which the slope of Ay is not equal to zero.
This is again a consequence of transversality: the space of directions is too rich to
produce only zero slopes.

Proof of Proposition 4.7, part (1) First, if p : M x R — M denotes the projection to
the first component of M =M x R, then dp(x): T3M — Ty M is the corresponding
projection to the first component of T~M TxM x R; here X = (x, 1) for some
reR. ~

Since dn‘ng = d()‘k’s) o dp]Tj, where S = p(S) is the constant multiplicity

stratum of x, we conclude from Lemma 4.5 that dz (z) | 0= 0 when Q = ng.
Let now Q # TZ§ and assume that

dr (2)],=0. (4.5)

Let v be the multiplicity of the eigenvalue Ag(x) of F(x) and E;, dimE; = v, be the
corresponding eigenspace. Let R be the stratum used for the definition of Q in (4.4)
and vr < v be the multiplicity of A4 on p(R).

Let (z;) C R be the sequence defining Q and let x; = p(z;). Let Ex(x;) C F”
denote the v -dimensional eigenspace of the eigenvalue Ay of F(x;) and let If; be a
choice of linear isometry from F"? to Ei (x;). Finally, let W; C T, M denote the first
component of the tangent space at z; to R, namely W; =dp (z,-)(TZ ; R).

We would like to use Hellmann—-Feynman theorem at x;. In the directions from
Wi, the eigenvalue Ay retains multiplicity v in the linear approximation. In other
words, directional derivatives of the eigenvalue group of Ay are all equal. Formally,

U (dF (x)w)Ui = Dy (xi) T, for all w € W;; (4.6)

here Dy, A is the directional derivative of A;. This expression is invariant with respect
to the choice of isometry ;.

Using compactness of the Grassmannians and, if necessary, passing to a sub-
sequence, the spaces Ei(x;) converge to a subspace Ek72 of the v-dimensional
eigenspace E; of the matrix F(x). The isometries f; (adjusted if necessary) con-
verge to a linear isometry Uy from F'R to Ef Tangent subspaces W; also converge
to the subspace Wy := dp(z) Q. Passing to the limit in (4.6), the derivative on the
right-hand side of (4.6) must tend to 0 due to (4.5). Recalling the definition of # in
(1.5), we get

UL (dF )w)Ug = UsU(Hew)U U =0, forall w e Wo.
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In other words, the matrix H,w with w restricted to Wy maps vectors from V =
Ran(U*Ur) C FY to vectors orthogonal to V. We can express this as

Ran, |, C Sym, (v, VL) : “.7)

Wo
where Sym, (X, Y) denotes the set of all v x v self-adjoint matrices that map X
to Y. The space V is v -dimensional'” and, in a suitable choice of basis, a v x v
subblock of H,w is identically zero. Therefore, the dimension of Sym,, (V, V1) is

dim Sym, (v, VJ‘> —dimSym, —dimSym,_ =s(v) —s(R).  (48)
On the other hand, we have the following equalities,
codim Ker Hy = dimRan#H, =dimSym, — 1 =s(v) = codim 7, S.

The first is the rank-nullity theorem, the second is because Ran H, has codimension 1
(by condition (N)), the third is the definition of s(v) and the last is from the properties
of S. Using T, S C KerH, (Lemma 4.5) and counting dimensions, we conclude

KerHy, =T,S.

Now we want to show that the stratification on M induced by the multiplicity of
the eigenvalue Ay (x) satisfies Whitney condition A: any generalized tangent space
at z contains the tangent space of the stratum containing z. For this note that the
discriminant variety of Sym,,,

Discr, 1= U 0%,

1<k<n, v>1

is an algebraic variety. Therefore, by classical results of Whitney [65], Discr, admits
a stratification satisfying Whitney condition A. Consequently, if 7 : M — Sym, is a
transverse family then the fact that Discr, satisfies Whitney condition A implies that
the stratifications on M induced by the multiplicity of the eigenvalue A (x) satisfies
Whitney condition A as well.

Whitney condition A gives the inclusion 7S C Wy and therefore Ker H, C Wj.
Using the rank-nullity theorem again, we get

dimRan #H, ‘ Wo = codimyy, Ker H, ‘ Wo = codimy, Ker H, = dim Wy — dim Ker H,
= codimy, yy KerH, — codimz, y Wo =s(v) —s(vr). (4.9)

Comparing (4.7), (4.8) and (4.9) we conclude that

Sym,, (V, VJ‘> = Raon|WO.

10From properties of isometries and the inclusion EZa C Ey it can be seen that U UR)* U UR = 115 .
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Consequently,'!
1 L 1 L 1
(Ran?,) C(Raon|WO> — Sym, (v,v ) =sym,(V1,0),  (4.10)

i.e. V1 is in the kernel of the matrices from (Ran . )" which contradicts condition
(N), see (1.7). O

Proof of Proposition 4.7, part (2) Assume, by contradiction, that x is an accumulation
point of a sequence (x;) of points which are critical on their respective strata. Passing
to a subsequence if necessary, we can assume that all z; := (x,-, Ak(xi)) belong to the
same stratum R and that the sequence of spaces T;;’R converges to a space Q.

Note that Q is a nontrivial generalized tangent space to Z; at x. Since x; are
critical for Ay restricted to the stratum p(R), we have dm (z;) ‘ rLR= dAg ]p R) (x;) =

0 and finally dm (z) | 0= 0, which is a contradiction to part (1) of the Proposition. [l

We finish the section with establishing the comforting!? result of Theorem 1.13:
the set of generalized Morse families is open and dense. We restate Theorem 1.13 in
an expanded form.

Theorem 4.11 (Theorem 1.13) The set of families F having the below properties for
every Ak is open and dense in the Whitney topology of C" (M, Sym,), 2 <r < 00:

(1) at every point x, F is transverse in the sense of Definition 4.1,

(2) at every point x, either Ran H, or (Ran HX)J‘ contains a positive definite matrix,

(3) in the latter case, Ay restricted to the constant multiplicity stratum of x has a
non-degenerate critical point at x.

In particular, a family F satisfying the above properties is generalized Morse (Defi-
nition 1.11).

Remark 4.12 Observe that property (1) of Theorem 4.11 does not imply property (2):
a counter-example is provided by Example 2.2. Furthermore, when (1) and the sec-
ond case of (2) hold — and thus non-degenerate criticality condition (N) is fulfilled
— Lemma 4.5 shows that Ak| ¢ has a critical point at x. Property (3) posits non-
degeneracy of this point, strengthening the conclusion to non-degenerate criticality
condition (S).

Proof of Theorem 4.11 Lemma 4.2 showed that the transversality in the sense of Def-
inition 4.1 is equivalent to the transversality between F and the submanifold Qz’v
at x.

1Note that in equation (4.10) the same notation L is used for two different operations: on one hand, for
the operation of taking orthogonal complement for subspaces FV and, on the other hand, for the operation
of taking orthogonal complement for subspaces of Sym,,.

121 every particular case of JF, one still needs to establish non-degeneracy of the critical point “by hand”.
In some well-studied cases, such as discrete magnetic Schrodinger operators [3, 31], degenerate critical
points are endemic.
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As was mentioned before the discriminant variety Discr,, admits a stratification
satisfying Whitney condition A. For such stratifications,!> we have the stratified ver-
sion of the weak'* Thom transversality theorem (see [30, Proposition 3.6] or infor-
mal discussions in [7, Sect. 2.3]). Namely, for any 1 < r < oo, the set of maps in
C" (M, Sym,,) that are transverse to Discr, is open and dense in the Whitney topol-
ogy in C" (M, Sym,,).

This establishes that property 1 holds for families F from an open and dense set
in the Whitney topology of C" (M, Sym,,).

Properties 2—-3 are more challenging because they involve properties of the deriva-
tives of F. Let J!'(M, Sym,) denote the space of the 1-jets of smooth families of
self-adjoint matrices and let I''(F) c J!'(M, Sym,) denote the graph of the 1-jet
extension of a smooth family 7: M — Sym,,,

MHF) == {(x, F(x), dF(x)): x e M}.

We will show that our conclusions follows from the transversality (in the differential
topological sense) of I'! (F) to certain stratified subspaces of J '(m, Sym,,). Then the
proposition will follow from a stratified version of the strong (or jet) Thom transver-
sality theorem (see [7, p. 38 and p. 42] as well as [30, Proposition 3.6]): the set of
families whose 1-jet extension graph is transverse to a closed stratified subspace is
open and dense in the Whitney topology of C" (M, Sym,,) with 2 <r < co. The the-
orem holds if the stratified subspace satisfies Whitney condition A.
The jet space J ' (M, Sym,,) is the space of triples (x, A, L) such that

xXeEM, A €Sym,, L e Hom(TxM, TpSym,).

Given an integer k, | < k < n, a matrix A € szv and a “differential” L €
Hom(7TyM, T4Sym,), introduce the linear subspace

Ran Ly 4 = {u,jjA(Lv)uk,A: ve TXM} C Sym, (), 4.11)

where U 4 is a linear isometry from F to the v-dimensional eigenspace E;(A) of
the eigenvalue A of A.
We define the following subsets of J!(M, Sym,,).

o= | {(x,A,L): AeQp, (RanLk,A)L;ﬁo}.
1<k<n, v>1

= {(x,A,L):AeQ;{”V, 3B € (RanLy_4)* \ {0}, detB:O}.

1<k<n, v>1

We note that the subspace RanLj 4 does not depend on the base point x but it
depends the particular choice of the isometry U 4. Nevertheless, the properties of

13 And in fact only for them [61].

14The word “weak” here is used to distinguish it from the jet version of the Thom transversality theorem
which is usually called strong [7].
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Ran L 4 used in the definitions of 7¢ and 7§ above are independent of the choice of
the isometry Uy 4.

Lemma 4.13 T and Ty are stratified spaces satisfying Whitney condition A. Every
stratum of T has codimension at least d in J 1 (M, Sym,)), where d = dim M; every
stratum of Ty has codimension at least d + 1.

Proof Obviously the sets 7¢ and T are closed, with stratification induced by v and
the dimension of (Ran Ly, 4)1. Besides, they are smooth ! fiber bundles over M with
semialgebraic fibers and therefore satisfy Whitney condition A.

Semialgebraicity of the fibers of 7¢ and 7§ follows from the Tarski-Seidenberg
theorem stating that semialgebraicity is preserved under projections ([13, Theo-
rem 2.2.1], [53, Theorem 8.6.6]). Indeed, let IT: J1(M, Sym, ) — M be the canoni-
cal projection. For each x € M, we view I~ ! (x) = Sym,, x Hom(7, M, Sym,,) as a
vector space by canonically identifying 74 Sym, with Sym,,. Focusing on T¢, the set

{(A, L,3): det(A — A1) =0, (RanLg_a)* # 0 for some k}

is semialgebraic in the vector space IT~! (x) x R. Its projection on IT~! (x) is exactly
the fiber 7¢ N IT~! (x) and it is semialgebraic by the Tarski—Seidenberg theorem. The
argument for 7j is identical.

Now we prove that every stratum of 7 has codimension at least d. Let I1; :
Ji(M, Sym,,) — M x Sym,, be the canonical projection. Recall that the codimension
of Q. in Sym,, is s(v) :=dimSym,, — 1.

We consider two cases. If v is such that d < s(v), then dimRanL; 4 <d <
dim Sym,, and therefore (Ran Lk,A)L # 0 for every L. We get 1'[;1 (M x Qr)=T¢
and has codimension s(v) > d.

Assume now that v is such that d > s(v). Then for an A € Qy,, the codimension
of the top stratum of HII (x,A)NTCin Hfl (x, A) is equal to the codimension of the
subset of matrices of the rank dim Sym,, — 1 = s(v) in the space of all (dim Syrn,,) xd
matrices, i.e. it is equal to'® d — s(v). Hence, the codimension in J ! (M, Sym,,) of the
top stratum of T¢ is at least d — s(v) plus s(v), the codimension of l'[lf1 (M x Qk.,v)
in J'(M, Sym,).

To estimate the codimension of the strata of 7, we note that on the top strata
of T¢, (Ran Ly, 4)* must be one-dimensional. This implies that the codimension of
the intersection of TOC with such strata is at least d + 1, while the codimension of

intersections of 7;; with the lower strata of T¢ is automatically not less than d + 1.
O

We continue the proof of Theorem 4.11. Let F : M — Sym, be a transverse fam-
ily in the sense of Definition 4.1 so that the graph I'! (F) of its 1-jet extension is

15For bundles whose fibers are stratified spaces, smoothness is defined in the usual way — as smoothness
of trivializing maps. Smooth maps between stratified submanifolds are maps which are restrictions of
smooth maps on the corresponding ambient manifolds, see [35, p. 13].

16Here we use that the codimension of the set of ny X np matrices of rank r is equal to (ny —r)(ny —r).
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transverse to 7¢ and 7;;. As we mentioned above the set of such maps is open and
dense in the required topology. From the transversality of 7j to the d-dimensional

I'! (F) we immediately get
r'F N1 =0. (4.12)

Choose an arbitrary point z and eigenvalue Ay (of multiplicity v). If the corre-
sponding Ran #, contains a positive definite matrix, properties 2—-3 hold trivially. We
therefore focus on the opposite case: Ran#, N Sym™ = ¢. In the proof of Theo-
rem 1.5 in Sect. 3 we saw that this means (Ran#,)" contains a positive semidefinite
matrix B. We want to show that B is actually positive definite.

Assume the contrary, namely det B = 0; we will work locally in J!(M, Sym,,)
around the point in the graph I'' (F),

Z=(z,A,L):= (2, F(2), dF(2)).

We first observe that Ran Ly 4 defined in (4.11) coincides with RanH, defined via
(1.5). Since B € (RanH.)* \ {0} and det B = 0, we conclude that Z € I'' (F) N T,
contradicting (4.12). Property 2 is now verified.

We now verify property 3. We have a positive definite B € (RanH..)*, therefore,
by Lemma 4.5, z is a smooth critical point along its constant multiplicity stratum
S = S,. Also from the existence of B, we have

ZeTY (F)ynT".

Denote by ch, , the stratum of T containing the point Z. By definition of transversal-
ity to a stratified space, I'! (F) is transverse to T, inJ (M, Sym,). By dimension
counting and transversality, (Ran Ly, A)J' is 1-dimensional along 7’ .

Define two submanifolds of J! (M, Sym,,),

Ty = |(x, A,L)eJ'(M,Sym,): A e Qk} :
Js={(r. A, L) e I (M, Sym,): x €S, A€ 0f,, LS CTaQ},} C Jin.

To see that Jg is a manifold, we note that for each fixed (x, A) € § x Q’,Z’v, the set of
admissible L in Jg is a vector space smoothly depending on (x, A). In other words,
Js is a smooth vector bundle over S x Q..

We now use the following simple fact (twice): If U, V, and W are submanifolds
of M such that W is transverse to U in M and U C V,then W NV is transverse to U
in V. Since kav C Jk,v, we conclude that r'@n Ji,v 1s transverse to kav in Jg y.
And now, since

YA Ny ={(x, Fx),dF(x)): xe S} < Us, (4.13)
we conclude that Tk‘;V N J is transverse to T'! (F) N Jivin Js.
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We have successfully localized our x to S. The space (4.13) looks similar to the
graph of the 1-jet extension of F| ¢, except that the differential d.F (x) is defined on

T M and not on 7 S. Consider the map WV : Jg — JL(S, R),

W(x, 4, L) = (x, T(4), d(Rulgy, )(A) o Liz,s),

which is well-defined and smooth because /):k (defined in (1.1)) is smooth when re-
stricted to O ., d@HQZ )(A):T4Q} , > Rand Liz,s : TS — T4 Q} , by defini-
tion of Jg. ’

We want to show that W is a submersion and therefore preserves transversality. To
prove submersivity of a map it is enough to prove that, for any point ¢ in the domain,
any smooth curve in the codomain of the map passing through the image of g is the
image of a smooth curve in the domain passing through ¢.

Let (xo, Ao, Lo) be an arbitrary point on Jg. We will work in a local chart around
X0 € M in which S is a subspace. Let P denote the projection in 7x M onto TS,
which now does not depend on the point x € S. Consider a smooth curve (x;, f7, g;)
in J'(S, R) such that W(xq, Ag, Lo) = (xo, fo, go). Then the smooth curve

(31 Ao+ (fi = L, Lo+ (8 = 80)P).

is in Jg and is mapped to (x;, f;, g:) by W. To see this, observe that all sets QZ’V
are invariant under the addition of a multiple of the identity matrix and also that
M (A + ul) = A (A) 4+ n and therefore daleZ U)(A)I =1.

We now have that q"(ch,v N JS) is transverse to W (Fl FHn Jk‘v) in JI(S,R). It
is immediate that

w (rl (F)n Jk,u) =T (i 0 Fls) .
We now argue that

W(T¢, NJs) = {(x, 2 (4),00: xS, Ac 0]} (4.14)

Indeed, at Z, the space (Ran Ly, A)J‘ is spanned by a positive definite matrix and this
property holds in a small neighborhood of Z in 7} . By Lemma 4.5, Li al1, s =0,
while by Hellmann-Feynman theorem,

1 1
d(/):k|QZ’V)(A) olLl|r,s= " Tr (U AL 7, sUk.A) = " Tr(Lk,alz,s) =0.
Finally, it is well known that the transversality of the graph I'! @k o F| g) to the

0O-section space (4.14) is equivalent to the non-degeneracy of the critical point z of
Ak o Fls, see [43, Sect. 6.1] or [9, Lem 5.23]. Property 3 is now established. O

5 Topological change in the sublevel sets: part (1) of Theorem 1.14

In this section we describe the change in the sublevel sets of the eigenvalue A; when
passing through a non-degenerate topologically critical point x. It will be expressed
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in terms of the data introduced in Theorem 1.12, namely the Morse index u(x) of
A restricted to the local constant multiplicity stratum S attached to the point x, the
multiplicity v, and the relative index i = i (x) introduced in equation (1.8). As a result
of the section, we will establish part (1) of Theorem 1.14.

First we reduce our considerations to the directions transverse to the constant mul-
tiplicity stratum § at a critical point x.

Lemma 5.1 Let N be a submanifold of M of dimension dim N = codimy; S = s(v)
which intersects S transversely at x. Then, for small enough U and ¢ > 0,

Hy (U2 000, U 00 ) = Hrepao (U (k) U™ (ol ) )-
Proof By definition, see [35, Sec 1.3.5], the local Morse data is

(U7 ), 007 ) ),
where
U ot =Ur\Uc. (5.1)

The normal data and the tangential data is simply the data of A restricted to the
submanifolds N and S, respectively, see [35, Sec 1.3.6]. The normal data is

(K = (U7 () 007 (e ) ). (5.2)

and, by the local version of the main theorem of the classical Morse theory [51,
Theorem 3.2], the tangential data is

(P, Q)= (B, 9B4)),

where B#™) denotes the w(x)-dimensional ball.
We already established in Corollary 4.9 that (x, Ak (x)) is a nondepraved point

of the corresponding map. We can now use [35, Thm 1.3.7] to decompose the local
Morse data into a product of tangential and normal data. More precisely, if the tan-
gential data is (P, Q) and the normal data is (J, K), the local Morse data is homotopy
equivalent to (P x J, (P x K)U(Q x J)).

We want to compute

H (UF 0, U 00)) = Hy (U757 (00U () ) (5.3)
;H,(P % J,(P x K)U(Q x J)),

the first equality being by Excision Theorem and the second by [35, Thm 1.3.7]
(and homotopy invariance). By the relative version of the Kiinneth theorem, see [23,
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Proposition 12.10], we have the following short exact sequence

0— @ Hj(P,Q)® Hy(J,K)— H,(P x J,(P x K)U(Q x J)) (5.4)
Jjtk=r

— @ Tori (Hj(P. Q). H(J,K)) — 0.
Jjtk=r—1

Since

0, Jj#u),

5.5
L, J=px), 62

H(P, Q) = H; (B, 0B"W) = H; (") = {

where H, stands for the reduced homology, are free, the torsion product terms in
(5.4) are all 0. We therefore get

H (P xJ,(PxK)U(Qx J))= @ H;(P, Q) Q® Hi(J,K) (5.6)
Jtk=r

=Z® Hr—p,(x)(Js K) = Hr—u(x)(Js K),

where we used (5.5) again. Combining (5.3) with (5.6) and (5.2), we obtain the result.
a

The preceding lemma tells us that we can restrict our attention to the case M = N.
In this case the constant multiplicity stratum attached to x is the isolated point itself
and dimM = dim N = s(v) (see equation (4.2) for the formula defining s(v) and
some explanations). Since the considerations are purely local, we can assume that
M=R®, x=0,and F(x) =0.

Lemma 5.2 Let F : R'™) — Sym,, (F), F(0) =0, be a smooth family satisfying at
x = 0 non-degenerate criticality conditions (N) and (S). Then there exists a neighbor-
hood U of 0 in R*™Y) | such that for sufficiently small ¢ > O the sublevel set UJS (Ak)

deformation retracts to the set Dy ¢ U Uy €(Ax), where
Diei={xet: —e < (Fw) =+ =1 (Fw) =0}, (5.7)

Remark 5.3 1t is instructive to consider what happens in the boundary cases k = 1 and
k = v. We will see that condition (N) implies that F is injective and F(U) does not
contain any semidefinite matrices except O (for a suitably small U). Therefore, when
k=1,

Us(A1) =U =D UU; (1)

and no retraction is needed.
Similarly, when k = v, we have U, *(1,) =¥ and

D,.={xeU: F(x)=0}=0,
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and the Lemma reduces to the claim that Ug (Ay) deformation retracts to a point. Fur-
thermore, the set defined in (5.1) is U0_8’+€ (Ay) = U§ (1y). In the proof of Lemma 5.2,
we will see that US (%) is diffeomorphic to the intersection of a smooth s(v)-
dimensional manifold through O with a small ball around 0. Therefore, we obtain
that the normal Morse data in (5.2) is homeomorphic to the pair

(J, K) = B'™, p).

Proof of Lemma 5.2 Since F(0) = 0 € Sym,,, the eigenspace Ey in (1.5) is the whole
space RY and Ho = d F(0). From condition (N) we get that Rand F (0) = span{B}*
with B € Sym; . By the definition of s(v) and dimension counting we conclude that
dF(0): R*™ — Sym, is injective (since F is a map between vector spaces, we can
consider its differential to be a map between the same vector spaces).

Choose a neighborhood W of 0 such that d F(x) remains close to dF(0) for all
x € W (and, in particular, injective) and the suitably scaled normal to RandF(x)
remains close to B (and, in particular, positive definite). For future reference we note
that, under these smallness conditions, F is a diffeomorphism from W to F (W) and
the latter set contains no positive or negative semidefinite matrices except 0.

Denote by 85 the open ball in Sym,, of radius § around the origin in the operator
norm. Choose § sufficiently small so that 385N F(dW) = @. This is possible because
d F(0) is injective and the operator norm on F (3 W) is bounded from below. Now we
take U = F~! (%5 N ]-'(W)). This set is non-empty because it contains 0; it has the
useful property that the operator norm (equivalently, spectral radius) of F(x) is equal
to § for x € QU and is strictly smaller than § on U.

Given a matrix Fy € F (Ug (Ak)) we will describe the retraction trajectory I' g, (7),
t € [0, 1], starting at Fp. The trajectory will be piecewise smooth, with the pieces
described recursively. Define, for m <k,

GXi={FeSym,: - <iu(F)=---=M(F) <---},

which is the set of matrices with a gap below the eigenvalue A, (F) but no gap be-
tween A, (F) and A (F). It is easy to see that

GiNGh= | Gk (5.8)

1<m’<m

which we will call the egress set of G¥,.
Assume that Ax(Fp) > —e and that Fy € Gﬁm for some mg > 1; let o = 0. Define
two complementary spectral (Riesz) projectors corresponding to Fp,

P_i=P((A < M(F0)}).  Pyi=P((h = A(Fo)}).
and consider the affine plane in Sym,, defined by
{Fo —2esPy +rP_:s,reR}. 5.9

Since the projector P € Sym. is non-zero and the normal to dF(x) is positive
definite locally around x = 0, this affine plane is transverse to F(U) in Sym,,. Their

@ Springer



Morse inequalities for ordered eigenvalues 315

ZTo [ E; )\4
Fy
A3
Ao
/| 1
AL

Fig. 5 Left: the curves y%o (t) for k =2 and F7 from equation (2.1), for a pair of initial points F. The

curves are shown in the 2-dimensional plane F7 (U). The egress set for G% is the point (0, 0). Note that the
curves intersect on the egress set, which is the reason we chose to specify the flow rather than the vector
field. Middle and right: evolution of the eigenvalues of I" 5 (¢) for a pair of Fy with k =3 and the family
F(U) ={F € Symy : Tr(F) = 0}. Egress points correspond to points where A; increases its multiplicity
(the latter is shown with thicker lines)

intersection is nonempty because it contains Fj and thus, by the Implicit Function
Theorem, it is a 1-dimensional embedded submanifold of F(U). Denote by y}'(’)o the
connected component of the intersection that contains Fj.

Furthermore, implicit differentiation of the equation Fy — 2es Py +rP_ = F(x)
at a point F(x) € y;'éo shows that

dr _28 <B)C’ PJr)

Te2E r0=0, (5.10)

where B, is either positive or negative definite symmetric matrix that spans the or-
thogonal complement to the differential d.F(x). Since (By, P_) > 0 for any x € U,
the set of points of yg)o where y;:)‘) can be locally represented as a function of s is

both open and closed in the subspace topology of y;’;“. We conclude that y;';o can be

represented by a function of s globally, i.e. as long as the closure of y;""

in Sym,,
does not hit the boundary of F(U). In a slight abuse of notation, we will rOefer to this
function as yg(’)o. Figure 5(left) shows examples of the curves Vflb (s) for the family
JF1 from equation (2.1) and two different initial points Fjp.

The matrices on the curve yzz)o (s) have fixed eigenspaces but their eigenvalues
change with s. For small positive s the eigenvalues A,,,, = Ax and above decrease with
the constant speed 2¢ while the eigenvalues below 1,,, increase because the derivative
in (5.10) is positive. This closes the gap below the eigenvalue A,,, and decreases
the spectral radius (operator norm) of yf,’(’) (s). Therefore, the curve will intersect the
egress set (5.8) at some time § > 0 before it reaches the boundary F(3U).

Setting Fy := y}é" (§) and 11 =19 + §, we determine m; < mq such that F; € G],‘n]
and repeat the process starting at (¢1, F1). We then join the pieces together,

m
FFo(t):VEiJ(t_[j), i <t=<tj41.
There are two ways in which we will terminate this recursive process. If an egress

point F;, € G’f is reached (which has no eigenvalues strictly smaller than Ax(F;) and
equation (5.10) becomes undefined due to P_ = 0), we continue I'f, as a constant,
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I'p(t) = F, for t > t,. An example of this is shown in Fig. 5(middle). The case
mo = 1 which we previously excluded can now be absorbed into this rule.

Alternatively, since A decreases from an initial value below ¢ at the constant rate
2¢, we will reach a point in U, €(Ar) at some f < 1. In this case we also continue F (¢)
as a constant for ¢ > ¢, see Fig. 5(right) for an example (with = 2/3 in this particular
case). The case A;(Fp) < —e can now be absorbed into the above description by
setting f = 0.

The preceding paragraphs show that the final values F~! (F Fo(l)) belong to the
set Dy U U0_8 (Ak), see equation (5.7), and that x > I" F(,)(¢) acts as identity on
Dy VU, €(Ax) for all 7. This suggest that we have a deformation retraction

x,0) > F 1 (Trm®),

if we establish that the trajectories I'r(#) define a continuous mapping F(U) x
[0, 11— F(U).

We first note that each trajectory is continuous in ¢ by construction. Therefore, we
need to show that starting at a point F’ which is near F will result in I/ (¢) being
near ['r (7). A perturbation of arbitrarily small norm may split multiple eigenvalues,
therefore if F € G’fn with m < k, then, in general, F’ € G’};, with m < m’ (in fact,
generically, m’ = k). However,

A (F') = M (F)| = |Am (F') = A (F)| + [A(F) — A (F)|
<C|F - F'|,

with some F -independent17 constant C, and therefore after a time of order C|F —
F’|/2¢, the k-th eigenvalue 'z will collide with m-th eigenvalue. To put it more
precisely, there is 7, 0 < T < C|F — F’|/2¢, such that T'p/(t) € G’n‘1. By choosing
|F — F’| to be sufficiently small (while ¢ is small but fixed), we ensure that I' g () is
still in G’,‘n. By noting that the trajectories "¢/ (¢) are continuous in ¢ uniformly with
respect to F’, we conclude that I' g/ (7) is close to ['p (7).

For two initial points F and F’ in the same set ij,, the curves yg'(s) and y/’(s)
will remain nearby for any bounded time s < 1. This can be seen, for example, as sta-
bility of the transverse intersection of the manifold (U and the manifold (5.9). The
stability is with respect to the parameters F, Py and P_ and the spectral projections
are continuous in F precisely because F’ belongs the same set G’fn.

We now chain the two argument in the alternating fashion: short time to bring
two points to the same set G’,‘”, long time along smooth trajectories until one of the
trajectories reaches an egress point, then short time to bring them to the same set
G’,‘,, . and so on. Since we iterate a bounded number of times, the composition is a
continuous mapping. O

As before (see the paragraph before the formulation of Theorem 1.14), let CY
and SY be the cone and the suspension of a topological space Y. Also let XY =

17The constant is independent of F but may depend on the norm used for F; in case of the operator norm,
Weyl inequality yields C = 2.
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SY/({yo} x I) be the reduced suspension of Y, where yo € Y. Note that if ¥ is a
CW-complex, then XY is homotopy equivalent to SY. In Lemma 5.2 we saw that
Ug (Ax) is homotopy equivalent to the union of Uy (Ax) and the space Dy which
we aim to understand further. We will now show that Dy . is a cone of the space R’;}
introduced in equation (1.12).

In the present setting (namely, F(0) = 0 € Sym,, (I)), the relative index i is related
tok viai =v —k+ 1, cf. (1.8). Notationally, it will be more convenient to use k
instead of i, so we introduce a slight change in the notation,

R =Ry :={ReSym: TrR =1,dimKerR > k}. (5.11)

Lemma5.4 Let F, U and Dy ¢ be as in Lemma 5.2. Then, for sufficiently small ¢ > 0,
the topological space Dy ¢ is homeomorphic to CRy ,, and the topological space

(Uy * i) U Dye) /Uy € (M), 1<k<v, (5.12)
is homeomorphic to SRy .
Proof The choice of U ensured that F is a homeomorphism from Dy . C U to
F(Dre)={F € F(U):—& <A (F)="--=M(F) <0}.

We will now describe the homeomorphism from CRy,,, to F(Dg ¢).
Given a point R € Ry, consider the intersection of F(U) with the plane

{—etl +rR:t,r eR}. (5.13)

Mimicking the proof of Lemma 5.2, we conclude that the intersection is a 1-
dimensional submanifold which has a connected component ¢ containing the matrix
0. Moreover, implicit differentiation at F(x) € ¢ yields

dr  (By, D)

=R (5.14)

therefore the submanifold can be represented by a function of ¢,
O(R,t)=—¢et]l +r(t)R, r(0) =0.

When ¢ € [0, 1], we also have ® (R, t) € F (D) because equation (5.14) implies
r(t) > 0. We remark that (B, R) is bounded away from zero uniformly in x € U and
R € Ry, v, therefore, when ¢ is sufficiently small, ® (R, ¢) will remain in F(U) until
t > 1. Thus the function ® is a well-defined'® mapping from CRy, to F(Dy.e). It is
evidently continuous.

The properties of F imply that 7 (U) contains no multiples of identity and no
positive semidefinite matrices except for the zero matrix. Therefore, for every F €
F(Dye), F #0,

F— (P

F = m € Rk,v» (515)

18Namely, ® (R, 0) =0 for all R.
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is well-defined, and we also have —e < A{(F) < 0. Thus

@' F s {(RF’_@)’ irF#0,

(x,0), if F=0,
is a well-defined continuous mapping from F(Dy ) to CRk,,. It remains to verify
that @’ is the inverse of ®. It is immediate that ®' o ® = id. To prove that ® o ®' =id
we observe that the intersection ¢g,., corresponding to Rr of equation (5.15), con-
tains F'; we only need to show that F and 0 belong to the same connected component

of ¢ R-

The point F on the plane (5.13) corresponds to t = —XA1(F)/e > 0 and some r =
r’. Decreasing ¢ from this point decreases r(¢) and therefore decreases the operator
norm of ®. Thus we will not hit the boundary of F(Dy ) as long as ¢ > 0. Therefore,
we will arrive at the matrix 0 while staying on the same connected component.

We have established the first part of the lemma. To understand the quotient in
(5.12), we note that

(Ug ") U Dre) /Uy (hi)
= Dr.e/ (Uy® (i) N Die)
= F(Dre)/{F € F(Die): —e =M (F) =+ = M (F)}
=F(Dre)/{P(R, 1): Re Ry} = SRiv,

completing the proof. 0

Proof of Theorem 1.14, part (1) We review how the preceding lemmas link together to
give the proof of the theorem. Lemma 5.1 shows that the smooth part F | ¢ gives the
classical contribution to the sublevel set quotient and we can focus on understanding
the transverse part F | v+ We remark that by Corollary 4.6 the point x remains non-
degenerate topologically critical when we replace F with F | N

Combining Lemmas 5.1, 5.2, and 5.4, we compute the r-th homology group

Hy (U (), Ug 00 ) = Hre o (U3 ), U )
= H (U;s()»klN) U Dy ¢, U;E()Lk|N))

= Hy— o (U Okl U Dice) U Gk ) )

= H_ e (SRk,u)~

Taking into account (5.11), we obtain the claim for k£ < v. The answer for k = v
(equivalently, i = 1) was already established in Remark 5.3. O
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6 Topological change in the sublevel sets: part (2) of Theorem 1.14

We will go from part (1) to part (2) of Theorem 1.14 by relating the space Rk, to
the Thom space of a particular vector bundle. Recall [52] that the Thom space T (E)
of a real vector bundle E over a manifold is the quotient of the unit ball bundle
B(E) of E by the unit sphere bundle of E with respect to some Euclidean metric
on E. If the base manifold of the bundle E is compact, then the Thom space of E is
the Alexandroff (one point) compactification of the total space of E. As before, we
denote by Grp(k,n) the Grassmannian of (non-oriented) k-dimensional subspaces
in F".

Given a vector bundle E denote by S’E the symmetric tensor product of E.
Namely, S2E is the vector bundle over the same base as E; the fiber of SZE over
a point is equal to the symmetric tensor product with itself of the fiber of E over the
same point. Choosing a Euclidean metric on E we can identify S?E with the bundle
whose fiber over a point is the space of all self-adjoint isomorphisms of the fiber of
E over the same point. Then by SgE we denote the bundle of traceless elements of
S%E. Obviously

SPE=S}E®6!, (6.1)

where 01 is the trivial rank 1 bundle over the base of E. Finally, let Tauty(k, n) be
the tautological bundle over the Grassmannian Grr(k, n): the fiber of this bundle over
A € Grp(k, n) is the vector space A itself.

Lemma 6.1 Recall the relative index i of the eigenvalue, equation (1.8), which in the
present situation is equal to i =v — k + 1. Then the space

Riv :={R eSymj: TrR =1,dimKer R > k}

with 1 < k < v is homotopy equivalent to the Thom space of the real vector bundle
over the Grassmannian Grp(i — 1,v — 1),

Ei,:=S3 Tautp(i — 1,v — 1) @ Tautg(i — 1, v — 1). (6.2)

The rank of the bundle is s(i) — 1, where s(i) is given by (1.9). The bundle is non-
orientable if F =R and i is even, and orientable otherwise.

Remark 6.2 Let us consider the boundary case k = 1 or, equivalently, i = v. The
Grassmannian Grp(i — 1, v — 1) is a single point, so the vector bundle E, , is simply
a real vector space of dimension s(v) — 1. Its Thom space is the one-point compact-
ification of RS =1, namely the sphere S*)~!. Correspondingly, the cone CR{,, is
homotopy equivalent to the ball B*"). Therefore, we get that the normal data at the
bottom eigenvalue is homotopy equivalent to the pair

(J,K) = (]BSS(”), a]BaW)) .
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Proof of Lemma 6.1 The homotopy equivalence has been established in [1, Theo-
rem 1] and the proof thereof. For completeness we review the main steps here.
Fixing an arbitrary unit vector e € F¥ we define

1
Pr.v = {—kPGSymv: P2=P, dimKer P =k, eeKerP}
v —

= Grp(v —k,v—1).

One can show that Ry, \ Px,, is contractible: if P, = ee* is the projection onto e,
consider

(A,t)r—>¢k((l —t)A+tPe), AeRrv\Pryv, tel0,1] (6.3)
where ¢y (M) acts on the eigenvalues of M as
Aj(M) = max [0, ; (M) — A (M)], (6.4)

followed by a normalization to get unit trace. Using interlacing inequalities'® for the
rank one perturbation (up to rescaling) of A by P, one can show that (6.3) is a well-
defined retraction. In particular, (6.4) does not produce a zero matrix (which cannot
be trace-normalized) and the result of (6.3) is not in Py, for any ¢.

We now obtain that Ry ,, is homotopy equivalent to the Thom space of the normal
bundle of Pk, in Ry,,. Indeed, a tubular neighborhood T of Py, in Ry, is diffeo-
morphic to the normal bundle of P ,, while the above retraction allows one to show
Ry, is homotopy equivalent to Ry, / (Ri,v \ T).

The normal bundle of Py, in Rk, is a Whitney sum of the normal bundle of Py,
in

~ 1
Pry = {—kP €Sym,: P2=P, dimKerP:k},
])_

and the normal bundle of 7’51(,1, in Ry, . The fiber in the former bundle is (Ker P)J-:
it consists of the directions in which e can rotate out of Ker P. 'I:\herefore the former
bundle is Tautg (v — k, v — 1). The fiber in the normal bundle of P, in Ry, consists
of all self-adjoint perturbations to the operator ﬁ P that preserve its kernel and unit

trace. Identifying these with the space of traceless self-adjoint operators on (Ker P)=,
we get Sg Tautp (v — k, v — 1). We get (6.2) after recalling that v —k =i — 1.
To calculate the rank we use

i—1, F =R,

rank(Taut]F(i—l,v—l))={2(. ) F=C
i— =C,

and

Ii-Di—1, F=R,

I‘ank(S(%TaUt]F(i_l’U_l))z{(l’_l)z_l F=C,

197 particularly convenient form for this task can be found in [12, Thm 4.3].
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giving %(i — 1)(i +2) — 1 in total in the real case and i> — 2 in the complex
case.

Recall that a real vector bundle E is orientable if and only if its first Stiefel—
Whitney class wi(E) € H'(B,Z,) vanishes (here B is the base of the bundle).
The first Stiefel-Whitney class is additive with respect to the Whitney sum, there-
fore

wi(Eiy) =wi(S3) +wi(€),  &£=Tautg(i —1,v—1).

Using additivity on equation (6.1) gives wl(S(%E) = w1 (S2E) because w is zero
for the trivial bundle. The classical formulas for the Stiefel-Whitney classes of
symmetric tensor power (see, for example, [32, Sect. 19.5.C, Theorem 3]) yield
w1 (S2E) = (rank € 4+ D w; (€) and, finally,

wi(E; ) = (rank & + 2)w; (E), E=Tautg(i — 1,v —1).

Since the real tautological bundle £ is not orientable and has rank i — 1, wi(E; )
vanishes if and only if i 4+ 1 is zero modulo 2, completing the proof of the lemma.
O

Recall that the oriented Grassmannian GrR(k n) consisting of the oriented k-
dimensional subspaces in R" is a double cover of Grr(k,n). Let 7 denote the
orientation-reversing involution on GrR(k n). In the space of g-chains of GrR (k,n)
over the ring Z we distinguish the subspace of chains which are skew-symmetric with
respect to 7: T(o) = —«, where « is a chain. The subspaces of skew-symmetric g-
chains are invariant under the boundary operator and therefore define a complex. The
homology groups of this complex will be denoted H, (GrR (k,n); Z). In the sequel
we refer to them as twisted homologies, as they are homologies with local coefficients
in the module of twisted integers Z, i.e. Z considered as the module corresponding to
the nontrivial action of Z, on Z.

Proof of Theorem 1.14, part (2) In the case 1 < i(x) < v(x), we start from equa-
tion (1.11),

H (U5 0, U 00) Z A (SR ) 2 o (ERer)

= Ao (S(T (Ein)) ).

where E; , is given by (6.2).

Recall [44, Cor. 16.1.6] that the reduced suspension of a Thom space of a vector
bundle is homeomorphic to the Thom space of the Whitney sum of this bundle with
the trivial rank 1 bundle 6, i.e.

S(T(Ein)) =T (Eiv),  Eip:=Ei,®6' (6.5)

The bundle E\i’v is orientable if and only if E; , is orientable; its rank is one plus the
rank of E; ,. Lemma 6.1 supplies both pieces of information.
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The bundle E,U is orientable if F = C or if F = R and i is odd, and we can use the
homological version of the Thom isomorphism theorem [52, Lemma 18.2], which
gives

He ey (T(Ei ) = Hy— (o) -5 (Grei — 1, v — 1)),
which is the right-hand side of (1.13) in the corresponding cases.
When F =R and i is even, the bundle E; , is nonorientable (1.13) results from the
Thom isomorphism for nonorientable bundles [59, Theorem 3. 101,20

He ) (TCE;i ) = Hy—uoy—stiy (Gree(i — 1, v — 1): Z). (6.6)

In the special case k = v, not covered by Lemma 6.1, we compute directly using
Lemma 5.1 and Remark 5.3,

H, (U2 Gu), UX 5 00) ) 2 Hypao (U Gl U Gl )
=Hr ) (BS(U)» V’) = Hr—u()f)({x})
=~ ,_M(x)_s(i)<Gr]F(i —lLv— 1)),
since i =1, s(i) =0 and Grp(0, v — 1) is a single point. O
Remark 6.3 One can also derive (6.6), using Poincaré and Poincaré—Lefschetz dual-

ities in their usual and skew form, mimicking the proof of [52, Lemma 18.2]. This
alternative derivation is included as Appendix B.

7 Proof of part (1) of Theorem 1.12: criticality

[ = C. In the setting of Theorem 1.14, the Poincaré polynomials of the relative ho-
mology groups Hy (U (0), U™ 7¢ (1)) is equal to

t“(st(i)PGr@(i—l,u—l)(l)- (7.1

Betti numbers for complex Grassmannians were established by Ehresmann, see
[26, Theorem on p. 409, section I1.7]. The r-th Betti number is zero if r is odd and is
equal to the number of Young diagrams with r/2 cells that fit inside the k x (n — k)
rectangle, if » is even. The Poincaré polynomial Pgc,s) is nothing but the gener-
ating function for this restricted partition problem. The latter is well known to be of
the form

n
PGre(k,n) (1) = <k> ,
t2

20An analogous result for cohomologies can be found in [58].
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see [5, Theorem 3.1, p. 33]. By (7.1) and (7.1), the Poincaré polynomials of the
relative homology groups Hy (U*)7¢(4), U*)7¢(14)) does not vanish, so x is
a critical points.

F = R. The calculation of the Poincaré polynomials of integer homologies will
be done in the next section, but it is equal to zero in some cases and so does
not lead to the proof of criticality. Instead, we show that Z,-homology groups
H, (UF¥ (), U7# (Ak); Zo) are nontrivial.

Let Pyz,(t) be the Poincaré polynomial of Z,-homologies of a topological
space Y, i.e. the coefficient of ' in Py 7,(t) is equal to the number of copies of
Zos in H; (Y, Z>). The Poincaré polynomial of Z,-homologies of the Grassmannian
Grg(k, n) is well known ([5, Theorem 3.1, p. 33], [52, §7]) to be

PGrg k,m),2, (1) = (Z) . (7.2)
t

Moreover, when the coefficients are Zj, there is no difference between symmetric
and skew-symmetric chains, therefore if Py 7- (1) is the Poincaré polynomial of the
twisted Z,-homologies of Y, then PY,Z(t) = Py z,(t). Based on this and (7.2), in
the setting of Theorem 1.14, the Poincaré polynomial of the relative Z;-homology
groups H, (UM% (), UMD (0); Zy) is equal to

tu(x>+s(i>(‘f - 1) , (7.3)
i—-1/,

which is not zero. The proof of critically in the case of F = R is complete.

8 Proof of Theorem 1.12, part (2): computing the Poincaré
polynomials

Theorem 1.12 will be obtained as a combination of the next two lemmas. Lemma 8.1
provides an expression for the Poincaré polynomial of twisted homologies
H*(GrR(i —1,v—1) Z) by relating it to the Poincaré polynomial of the oriented
Grassmannian GrR. Lemma 8.2 below collates known expressions for the Poincaré
polynomials of Grassmannians and oriented Grassmannians.

Lemma 8.1 In the setting of Theorem 1.14, the Poincaré polynomials of the relative
homology groups H, (U)‘k(x)+g (M), UM)=¢ (kk)) is equal to

PGrg(i—1,0-1)(1), F=Randi is odd,
O Pargi—1.v-1)() = PGrg(i—1,b-1)(#), F=Randiiseven, (8.1)
PGrei—1,0-1) (1), F=C.

where Py (t) denotes the Poincaré polynomial of the manifold Y .

Proof Since we already established part (2) of Theorem 1.14, we only need to show
that the Poincaré polynomial of the homology groups Hy,(Grr(i — 1,v — 1); Z) is
equal to Pg, ;—1.9—1)() = PGrg(i—1,0-1) (7).
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We will use homologies with coefficients in Q (or R). Indeed, since the Betti num-
bers ignore the torsion part of H,(-; Z), the Universal Coefficients Theorem (see,
e.g. [38, Sect. 3.A]) implies they can be calculated as the rank of H,(-; G) with
any torsion-free abelian group G. The benefit of using Q is that now any chain ¢
in Grr(i — 1, v — 1) can be uniquely represented as a sum of a symmetric and a
skew-symmetric chains with coefficients in Q,

= %(c +1(0)) + %(c —1(0),

where 7 is the orientation reversing involution of Gr(i —1,v—1) (viewed as a double
cover of Gr(i — 1, v — 1)). The analogous statement is of course wrong in integer

1
coefficients, as — ¢ Z.

Since the boundary operator preserves the parity of a chain, the homology
H, (GrR(i —1,v—1); Q) decomposes into the direct sum of homologies of t-

symmetric and t-skew-symmetric chains on Grr(i — 1, v —1). The former homology
coincides with the usual homology of Grr (i — 1, v — 1). The latter yields, by defini-
tion, the twisted Q-homology of Grr(i — 1, v — 1). To summarize, we obtain

Hy(Grr(i — 1,v —1); Q) 8.2)
= H,(Grr(i — 1,v— 1); Q) ® H,(Grg(i — 1,v—1); Q).

The sum in (8.2) translates into the sum of Poincaré polynomials, yielding the middle
line in (8.1). O

Lemma 8.2 Let k,n € N, lj < n. The Poincaré polynomials of the Grassmannians
Gre(k, n), Grr(k, n) and Grr(k, n) are given by

PGrek,n) (1) = <Z> X (8.3)
t
<tZ;§JL> , if k(n — k) is even,
Parg e (1) = . o (8.4)
1+ rn1)<(k - 1)/2) K ifk(n — k) is odd,
t

nir [ — 1)/2) L .
(141t )<(k— D/2) . ifk is odd, n is odd,

i n/2-1 i .
P @) = 1+ )<(k - 1)/2)14 ifk is odd, n is even, (8.5)

A+A+1"7% (n)2
1+ k/2

) , ifkiseven,n iseven.
14

Remark 8.3 We will not need the Poincaré polynomial in the last line of (8.5) and we
include it for completeness only. The case of even k and odd n is covered by the first
line of (8.5) since GrR(k n)= GrR(n —k,n).
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Proof The complex case was already discussed in the beginning of Sect. 7.

The r-th Betti number of the real Grassmannian has a similar combinatorial de-
scription [46, Theorem IV, p. 108]: it is equal to the number of Young diagrams of r
cells that fit inside the k x (n — k) rectangle and have even length differences for each
pair of columns and for each pair of rows. From this it can be shown that the Poincaré
polynomial PGy x,n) satisfies (8.4) (see also [16, Theorem 5.1]). We remark that for
k and n both even, (8.4) is a consequence of (8.3) because the corresponding Young
diagrams must be made up from 2 x 2 squares.

Finally, the oriented Grassmannian is a homogeneous space, namely

Gr(k,n) = S0n)/(SOk) x SO(n —k)).

The corresponding Poincaré polynomial has been computed within the general theory
of de Rham cohomologies of homogeneous spaces, see, for example, [36, Chap. XI].
Up to notation, the first line of (8.5) corresponds to [36, Lines 2-3, col. 3 of Table II
on p. 494], the second line of (8.5) corresponds to [36, Lines 2—3, col. 1 of Table III
on p. 496] and the third line of (8.5) corresponds to [36, Lines 23, col. 2 of Table III
on p. 495]. O

Proof of Theorem 1.12, part (2) We first establish equation (1.10). Using Lemma 8.1
as well as Lemma 8.2 with

k:=i—1 and n:i=v-—1,

(1) The first line of (1.10) is obtained directly from the first line of (8.1) and the first
line of (8.4).

(2) The second line of (1.10) is obtained from the second line of (8.1) by combining
the second lines of (8.4) and (8.5).

(3) The third line of (1.10) is obtained from the second line of (8.1) by combining
the first lines of (8.4) and (8.5).

(4) Finally, the last line of (1.10) is obtained directly from the last line of (8.1) and
(8.3).

Finally, Morse inequalities (1.3) when M is compact are established by [33, § 45]
using the tools identical to [51, § 5]. O

Proof of Corollary 2.4 A critical point is a point of local maximum if and only if the
local Morse data is homotopy equivalent to (B¢, 9B%).

If x is a maximum, its contribution to the Poincaré polynomial is equal to 1<,
which occurs only in the cases described by Corollary 2.4.

To establish sufficiency, we compute the local Morse data at x. If condition (1) is
satisfied, the normal data at the point x has been computed in Remark 6.2, (J, K) =
(B*™, 9B*™). From condition (2) we get the tangential data

(P, Q) = (Bd—s(u)7 aBd—s(v)) .
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By [35, Thm 1.3.7], the local Morse data is then
(PxJ,(PxK)U(QxJ)= (IB%d,E)IB%d),
implying the point is a maximum.
Similarly, a critical point is a point of local minimum if and only if the local
Morse data is homotopy equivalent to (BY, #). If x is a minimum, its contribution to
the Poincaré polynomial is equal to 1, which occurs only in the cases described by

Corollary 2.4.
Conversely, condition (1) implies the normal data is

. K)=(B.9),
see Remark 5.3. From condition (2), the tangential data is

(P, 0) = (B, 0).

Combining these using [35, Thm 1.3.7] gives the required result. g

Appendix A: Hellmann-Feynman Theorem

In this section we review the mathematical formulation of the formula that is known
in physics as Hellmann—Feynman Theorem or first-order perturbation theory. We
base our formulation on [48, Thm I1.5.4] (see also [37]).

Theorem A.1 Let T : R — Sym, (F) be differentiable at x = 0. Let A be an eigen-
value of T (0) of multiplicity v, E C F" be its eigenspace. Then, for small enough x,
there are exactly v eigenvalues of T (x) close to A and they are given by

Ajx)=A+xp;+o(x), j=1,...,v,

where {1} are the eigenvalues of the v X v matrix (T/(O))E, see (1.4).

Appendix B: Twisted Thom space homologies from
Poincaré-Lefschetz duality

The Poincaré-Lefschetz duality (see, e.g. [38, Theorem 3.43]) states that if ¥ is com-
pact orientable n-dimensional manifold with boundary Y, then

H.(Y,0Y) = H""(Y), H'(Y,dY)= Hy,_,(Y). (B.1)

There is also a twisted analogue?! of Poincaré—Lefschetz duality for non-oriented
manifolds: if Y is compact non-orientable n-dimensional manifold with boundary

21gee [34, Prop 15.2.10] or [22, Chap. 5]. It is also sometimes known as Poincaré—Verdier duality, see [45,
VL3].
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dY, then
H,(Y,8Y)§H"_r(Y;Z), H' (Y,0Y) = H,_,(Y; Z) (B.2)

Here, the twisted homology H.(Y; Z) was already introduced in Sect. 6. To define
twisted cohomology groups, denote by Y the orientation cover of ¥ and by 7 the cor-
responding orientation-reversing involution. H*(Y; Z) are the cohomologies of the
cochain complex defined on the spaces of cochains ¢ satisfying c(r(oz)) = —c(a) for
every chain ¢ in Y (see [38, Se. 3H] for a more general point of view). Such cochains
will be called skew-symmetric cochains. Note that the space of skew-symmetric
cochains can be identified with the dual space to the space of skew-symmetric chains,
as expected.

(a) Assume now that v is even. Then the base Gr(i — 1, v — 1) of the vector bundle
E, v is non- -orientable and, since the vector bundle is also non-orientable, the total
space B (E, ) is orientable. By the usual Poincaré-Lefschetz duality (B.1),

H(B(E;,), 0B(E; ,)) = HIm B (B(E; ,)) = HI™ B (Grg i — 1,0 — 1),

where dim E, i v is the dimension of the total space B (E,v). In the last identification
we used that the base Gr(i — 1, v — 1) is the deformation retract of the total space of
the bundle.

Further, since Gr(i — 1, v — 1) is non-orientable when v is even, we use the twisted
analog of Poincaré duality for nonorientable manifolds (see [38, Theorem 3H.6] as
well as (B.2) with 9Y = () to get

HI™E T (Grg (i — 1, v — 1)) = Hy_y(Gra(i — 1, v — 1) Z),
where we used
dimE; , — dimGrg(i — 1,v — 1) =rank E;, = 5(i).

(b) Consider the case of odd v. Then the base Gr(i — 1, v — 1) is orientable, the
bundle is non-orientable and therefore the total space B(E; ) is non-orientable. By
the twisted Poincaré-Lefschetz duality (B.2),

H, (B(E: ), 0B(E; ) = H™Evo— (B(E, ), 7)

The orientation double cover E, ivof E,',U can be constructed from the tautological
bundle of the oriented Grassmannian GrR (i —1,v — 1) in the same way as E, iv Was
constructed from the tautological bundle of the Grassmannian Grg(i — 1, v — 1) by
relations (6.2) and (6.5). In particular, E, v is a bundle of rank s(i) over the oriented
Grassmannian GrR (i =1, v —1). Therefore, retracting the unit ball bundle B (E, v) of
E,,v to its base, we get that the integer cohomology groups of B (E,}l,) are isomorphic
to the integer cohomology groups of the oriented Grassmannian Grg(i — 1,v — 1),
ie.

HImE—r (B(E; ) = HO™ Eiv = Grg (i — 1, v — 1)).
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Moreover, the retraction can be made to preserve the spaces of skew-symmetric
chains, which implies that

HI™Er (B(E, ): Z) = HI™Ew = (Grg (i — 1, v — 1) 7).

When v is odd, Grg (i — 1, v — 1) is orientable and so is GrR(i —1,v—1). More-
over, the map from the usgal Poincaré duality (see [38, Thm. 3.30] as well as (B.1)
with 0T = @) applied to Grr(i — 1, v — 1) sends the equivalence classes of skew-
symmetric cochains to the corresponding skew-symmetric chains. Thus, we arrive
to

HY™ Eini=" (Grg (i — 1, v — 1); Z) = Hy_yi)(Grr (i — 1, v — 1); Z).
To summarize, we get the corresponding line in (1.13) whether v is even or odd.

Acknowledgements We are grateful to numerous colleagues who aided us with helpful advice and friendly
encouragement. Among them are Andrei Agrachev, Lior Alon, Ram Band, Mark Goresky, Yuji Kodama,
Khazhgali Kozhasov, Peter Kuchment, Sergei Kuksin, Sergei Lanzat, Antonio Lerario, Jacob Shapiro,
Stephen Shipman, Frank Sottile, Bena Tshishiku, and Carlos Valero. We also thank anonymous reviewers
for many insightful comments that improved our paper.

Funding GB was partially supported by NSF grants DMS-1815075 and DMS-2247473. 1Z was partially
supported by NSF grant DMS-2105528 and Simons Foundation Collaboration Grant for Mathematicians
524213.

References

1. Agrachev, A.A.: Spaces of symmetric operators with multiple ground states. Funkc. Anal. Prilozh.
45, 1-15 (2011). English translation: Funct. Anal. Appl. 45(4), 241-251 (2011)

2. Agrachev, A.A., Pallaschke, D., Scholtes, S.: On Morse theory for piecewise smooth functions. J.
Dyn. Control Syst. 3, 449469 (1997)

3. Alon, L., Goresky, M.: Morse theory for discrete magnetic operators and nodal count distribution
for graphs. J. Spectr. Theory 13, 1225-1260 (2023). Preprint: arXiv:2212.00830

4. Alon, L., Goresky, M.: Nodal count for a random signing of a graph with disjoint cycles. Preprint
(2024). arXiv:2403.01033

5. Andrews, G.E.: The Theory of Partitions. Encyclopedia of Mathematics and Its Applications, vol. 2.
Addison-Wesley, Reading (1976)

6. Arnold, V.I.: Modes and quasimodes. Funkc. Anal. Priloz. 6, 12-20 (1972). English translation:
Funct. Anal. Appl. 6(2), 94-101 (1972)

7. Arnold, V.I., Gusein-Zade, S.M., Varchenko, A.N.: Singularities of Differentiable Maps. Volume 1:
Classification of Critical Points, Caustics and Wave Fronts. Modern Birkhiuser Classics. Springer,
New York (2012). Reprint of the 1985 edition

8. Band, R., Berkolaiko, G., Raz, H., Smilansky, U.: The number of nodal domains on quantum graphs
as a stability index of graph partitions. Commun. Math. Phys. 311, 815-838 (2012)

9. Banyaga, A., Hurtubise, D.: Lectures on Morse Homology. Kluwer Texts in the Mathematical Sci-
ences, vol. 29. Kluwer Academic, Dordrecht (2004)

10. Berkolaiko, G.: Nodal count of graph eigenfunctions via magnetic perturbation. Anal. PDE 6,
1213-1233 (2013). Preprint: arXiv:1110.5373

11. Berkolaiko, G., Comech, A.: Symmetry and Dirac points in graphene spectrum. J. Spectr. Theory
8, 1099-1147 (2018). Preprint: arXiv:1412.8096

12. Berkolaiko, G., Kennedy, J.B., Kurasov, P., Mugnolo, D.: Surgery principles for the spectral analysis
of quantum graphs. Trans. Am. Math. Soc. 372, 5153-5197 (2019)

@ Springer


https://arxiv.org/abs/2212.00830
https://arxiv.org/abs/2403.01033
https://arxiv.org/abs/1110.5373
https://arxiv.org/abs/1412.8096

Morse inequalities for ordered eigenvalues 329

13.

14.

15.

16.

17.

18.
19.

20.

21.

22.

23.

24.

25.
26.

217.

28.

29.

30.
31.

32.

33.
34.

35.

37.

38.
39.

40.

41.
42.

43.

Bochnak, J., Coste, M., Roy, M.-F.: Real Algebraic Geometry. Ergebnisse der Mathematik und Threr
Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 36. Springer, Berlin (1998).
Translated from the 1987 French original, Revised by the authors

Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)
Bronstein, M.D.: Smoothness of roots of polynomials depending on parameters. Sib. Mat. Zh. 20,
493-501, 690 (1979). English translation: Sib. Math. J. 20(3), 347-352 (1980)

Casian, L., Kodama, Y.: On the cohomology of real Grassmann manifolds. Preprint (2013). arXiv:
1309.5520 [math.AG]

Castro Neto, A., Guinea, F., Peres, N., Novoselov, K., Geim, A.: The electronic properties of
graphene. Rev. Mod. Phys. 81, 109-162 (2009)

Chern, S.-S.: Topics in Differential Geometry. The Institute for Advanced Study, Princeton (1951)
Clarke, F.H.: Optimization and Nonsmooth Analysis, 2nd edn. Classics in Applied Mathematics,
vol. 5. SIAM, Philadelphia (1990)

Colin de Verdiere, Y.: Magnetic interpretation of the nodal defect on graphs. Anal. PDE 6,
1235-1242 (2013). Preprint: arXiv:1201.1110

Cox, S.J.: Extremal eigenvalue problems for the Laplacian. In: Recent Advances in Partial Differ-
ential Equations (El Escorial, 1992). RAM Res. Appl. Math., vol. 30, pp. 37-53. Masson, Paris
(1994)

Davis, J.E., Kirk, P.: Lecture Notes in Algebraic Topology. Graduate Studies in Mathematics,
vol. 35. Am. Math. Soc., Providence (2001)

Dold, A.: Lectures on Algebraic Topology, 2nd edn. Grundlehren der Mathematischen Wis-
senschaften [Fundamental Principles of Mathematical Sciences], vol. 200. Springer, Berlin (1980)
Domcke, W., Yarkony, D.R., Koppel, H.: Conical Intersections: Electronic Structure, Dynamics and
Spectroscopy. World Scientific, Singapore (2004)

Duffie, D.: Dynamic Asset Pricing Theory, 3rd edn. Princeton University Press, Princeton (2001)
Ehresmann, C.: Sur la topologie de certains espaces homogenes. Ann. Math. (2) 35, 396443
(1934)

Ehresmann, C.: Sur la topologie de certaines variétés algébriques réelles. J. Math. Pures Appl. (9)
16, 69-100 (1937) (in French)

Esteban, M.J., Lewin, M., Séré, E.: Dirac—Coulomb operators with general charge distribution IIL.
The lowest eigenvalue. Proc. Lond. Math. Soc. 123, 345-383 (2021)

Fefferman, C.L., Weinstein, M.I.: Honeycomb lattice potentials and Dirac points. J. Am. Math. Soc.
25, 1169-1220 (2012)

Feldman, E.A.: The geometry of immersions. I. Trans. Am. Math. Soc. 120, 185-224 (1965)
Filonov, N., Kachkovskiy, I.: On the structure of band edges of 2-dimensional periodic elliptic
operators. Acta Math. 221, 59-80 (2018)

Fomenko, A., Fuchs, D.: Homotopical Topology, 2nd edn. Graduate Texts in Mathematics, vol. 273.
Springer, Cham (2016)

Fomenko, A., Fuks, D.: A Course in Homotopical Topology. Nauka, Moscow (1989) (in Russian)
Geoghegan, R.: Topological Methods in Group Theory. Graduate Texts in Mathematics, vol. 243.
Springer, New York (2008)

Goresky, M., MacPherson, R.: Stratified Morse Theory. Results in Mathematics and Related Areas
(3), vol. 14. Springer, Berlin (1988)

Greub, W., Halperin, S., Vanstone, R.: Connections, Curvature, and Cohomology. Volume III: Co-
homology of Principal Bundles and Homogeneous Spaces. Pure and Applied Mathematics, vol. 47.
Academic Press, New York (1976)

Grushin, V.: Multiparameter perturbation theory of Fredholm operators applied to Bloch functions.
Math. Notes 86, 767-774 (2009)

Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

Helffer, B., Hoffmann-Ostenhof, T.: On a magnetic characterization of spectral minimal partitions.
J. Eur. Math. Soc. 15, 2081-2092 (2013)

Henrot, A.: Extremum Problems for Eigenvalues of Elliptic Operators. Frontiers in Mathematics.
Birkhiuser, Basel (2006)

Henrot, A. (ed.): Shape Optimization and Spectral Theory De Gruyter Open, Warsaw (2017)
Hiriart-Urruty, J.-B., Lewis, A.S.: The Clarke and Michel-Penot subdifferentials of the eigenvalues
of a symmetric matrix. Comput. Optim. Appl. 13, 13-23 (1999)

Hirsch, M.W.: Differential Topology. Graduate Texts in Mathematics, vol. 33. Springer, New York
(1994). Corrected reprint of the 1976 original

@ Springer


https://arxiv.org/abs/1309.5520
https://arxiv.org/abs/1309.5520
https://arxiv.org/abs/1201.1110

330 G. Berkolaiko, |. Zelenko

44. Husemoller, D.: Fibre Bundles, 3rd edn. Graduate Texts in Mathematics, vol. 20. Springer, New
York (1994)

45. Iversen, B.: Cohomology of Sheaves. Universitext. Springer, Berlin (1986)

46. Iwamoto, H.: On integral invariants and Betti numbers of symmetric Riemannian manifolds. I.
J. Math. Soc. Jpn. 1, 91-110 (1949)

47. Kac, V., Cheung, P.: Quantum Calculus. Universitext. Springer, New York (2002)

48. Kato, T.: Perturbation Theory for Linear Operators. Classics in Mathematics. Springer, Berlin
(1995). Reprint of the 1980 edition

49. Kuchment, P.: An overview of periodic elliptic operators. Bull. Am. Math. Soc. (N.S.) 53, 343-414
(2016)

50. Matsika, S.: Electronic structure methods for the description of nonadiabatic effects and conical
intersections. Chem. Rev. 121, 9407-9449 (2021)

51. Milnor, J.: Morse Theory, Based on Lecture Notes by M. Spivak and R. Wells. Annals of Mathe-
matics Studies, vol. 51. Princeton University Press, Princeton (1963)

52. Milnor, J.W., Stasheff, J.D.: Characteristic Classes. Annals of Mathematics Studies, vol. 76. Prince-
ton University Press, Princeton; University of Tokyo Press, Tokyo (1974)

53. Mishra, B.: Algorithmic Algebra. Texts and Monographs in Computer Science. Springer, New York
(1993)

54. Montroll, E.W.: Dynamics of a square lattice. 1. Frequency spectrum. J. Chem. Phys. 15, 575-591
(1947)

55. Motreanu, D., Panagiotopoulos, P.D.: Minimax Theorems and Qualitative Properties of the So-
lutions of Hemivariational Inequalities. Nonconvex Optimization and Its Applications, vol. 29.
Kluwer Academic, Dordrecht (1999)

56. Narici, L., Beckenstein, E.: Topological Vector Spaces, 2nd edn. Pure and Applied Mathematics,
vol. 296. CRC Press, Boca Raton (2011)

57. Price, H.: Simulating four-dimensional physics in the laboratory. Phys. Today 75, 38—44 (2022)

58. Rudjak, J.B.: On the Thom—-Dold isomorphism for nonorientable vector bundles. Dokl. Akad. Nauk
SSSR 255, 1323-1325 (1980)

59. Sklyarenko, E.G.: The Thom isomorphism for nonorientable bundles. Fundam. Prikl. Mat. 9,
55-103 (2003). (in Russian). Translation in J. Math. Sci. (N.Y.) 136(5), 41664200 (2006)

60. Smollett, M.: The frequency spectrum of a 2-dimensional ionic lattice. Proc. R. Soc. Lond. A 65,
109-115 (1952)

61. Trotman, D.J.A.: Stability of transversality to a stratification implies Whitney (a)-regularity. Invent.
Math. 50, 273-277 (1978/79)

62. Valero, C.: Morse theory for eigenvalue functions of symmetric tensors. J. Topol. Anal. 1, 417-429
(2009)

63. Van Hove, L.: The occurence of singularities in the elastic frequency distribution of a crystal. Phys.
Rev. 89, 1189-1193 (1953)

64. von Neuman, J., Wigner, E.: Uber merkwiirdige diskrete Eigenwerte. Uber das Verhalten von Eigen-
werten bei adiabatischen Prozessen. Phys. Z. 30, 467-470 (1929)

65. Whitney, H.: Tangents to an analytic variety. Ann. Math. (2) 81, 496-549 (1965)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and appli-
cable law.

@ Springer



	Morse inequalities for ordered eigenvalues of generic self-adjoint families
	Abstract
	Introduction
	A differential characterization of a topologically critical point
	Geometrical description of the relative homology groups

	Examples, applications and an open question
	Examples
	Some applications
	An open question

	Regularity condition: proof of Theorem 1.5
	Transversality and its consequences
	Topological change in the sublevel sets: part (1) of Theorem 1.14
	Topological change in the sublevel sets: part (2) of Theorem 1.14
	Proof of part (1) of Theorem 1.12: criticality
	Proof of Theorem 1.12, part (2): computing the Poincaré polynomials
	Appendix A: Hellmann–Feynman Theorem
	Appendix B: Twisted Thom space homologies from Poincaré–Lefschetz duality
	References


