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Abstract—Operation efficiency in cyber physical system (CPS)
has been significantly improved by digitalization of industrial
control systems (ICS). However, digitalization exposes ICS to
cyber attacks. Of particular concern are cyber attacks that
trigger ICS failure. To determine how cyber attacks can trigger
failures and thereby improve the resiliency posture of CPS,
this study presents the Resiliency Graph (RG) framework that
integrates Attack Graphs (AG) and Fault Trees (FT). RG uses
Al planning to establish associations between vulnerabilities
and system failures thereby enabling operators to evaluate and
manage system resiliency. Our deterministic approach represents
both system failures and cyber attacks as a structured set of
prerequisites and outcomes using a novel Al planning language.
AT planning is then used to chain together the causes and the
consequences. Empirical evaluations on various ICS network
configurations validate the framework’s effectiveness in capturing
how cyber attacks trigger failures and the framework’s scalabil-
ity.

Index Terms—resiliency graph, cyber physical system, attack
graph, fault tree, AI planning.

I. INTRODUCTION

Cyber Physical System (CPS) operations have witnessed a
radical transformation in the last decade through technological
developments in the Operational Technology (OT) of Industrial
Control Systems (ICS), in particular digitalization. While it
brings numerous benefits and improvements to ICS, digital-
ization also exposes the ICS OT to new and sophisticated
cyber-attacks. These cyber-attacks can in turn trigger ICS
failures in manners not previously thought of. When software
vulnerabilities in Information Technology (IT) are combined
with system failures of the Operational Technology (OT),
attackers get access to new attack surfaces. For example, a
software vulnerability may not be instantly exploitable in nor-
mal working conditions, but in the event of a network failure, it
can become a critical point of exploitation. Such situations can
trigger safety events in the CPS causing devastating outcomes.

IT practitioners have often used Attack Graphs (AG) to ana-
lyze their systems for security vulnerabilities and leverage that
analysis to deploy a robust cybersecurity defense. Similarly,
ICS operators have used Fault Trees (FT) to prepare for safety
issues in ICS. AG can identify likely paths an attacker could
take to exploit system vulnerabilities, with a focus on cyber
threats, while FT illustrates the logical relationships between
system failures and their root causes. However, neither AG nor

FT can by themselves identify how cyber attacks can trigger
safety failures in CPS. Moreover, to our knowledge, there
is no such framework that can help analyze how a system
vulnerability can trigger a safety event, resulting in cascading
failures in a CPS.

Towards this end, we present a new framework which we
call Resiliency Graph (RG), to improve the security posture
of CPS. This framework is developed from a composition of
AG depicting cyber-attacks in the CPS, and FT indicating
failures. RG uses Al Planning to identify the relationship
between vulnerabilities with the corresponding faults that the
vulnerability can trigger. This framework will allow the CPS
operators to analyze, evaluate, and manage the safety profile
of their systems. We particularly use Al planning to develop
our framework since it can be scaled to very large problem
spaces which is important for a CPS.

Thomas et al. [1] patented a methodology for assessing the
impact of cyberattacks on CPS. However, they used a proba-
bilistic approach to map undesirable changes in CPS behavior
caused by cyberattacks. As opposed to this, our technique is
deterministic and is based on a formal representation of the
pre/post-conditions of both attacks and failures. This method
prevents the ambiguities that probabilistic approaches intro-
duce and guarantees the accuracy and mathematical validity
of the solution provided.

In this paper, we provide a planning formulation that
adequately represents cascading failure analysis. Although
there have been previous studies [2]-[5] on learning planning
representations for AG, these methods are not applicable here
since the representation must be supplemented by information
from various sources, such as physical failures. To address
this, we offer an algorithm that extends an RG populated with
attack information by integrating failure data obtained from
interactions with a physical system. This integration enables a
more thorough and accurate assessment of system resilience
in the face of cyber and physical threats.

In this work, we make the following major contributions:

1) We present a novel modeling paradigm, Resiliency

Graph (RG) that combines the power of Natural Lan-
guage Processing (NLP) and Al Planning (PDDL) to
evaluate and analyze how a cyber-attack can trigger
safety events in the CPS.
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2) We developed an algorithm called Resilience Path
Learning Algorithm (RPLA) which autonomously mod-
els the dependencies between vulnerabilities and system
faults within a resiliency graph to enhance ICS resiliency
analysis.

3) Using the Resiliency Graph (RG), we have demonstrated
how the cascading effects of safety events can be cap-
tured, analyzed, and evaluated.

4) A series of empirical assessments on networks with vari-
ous configurations are conducted to prove the scalability
and applicability of our approach.

The paper is structured as follows: Section II reviews
relevant literature and highlights major findings and limitations
from previous studies. The background on AI Planning is
discussed in Section IIL. In Section IV, we formally describe
our new modeling paradigm RG. The steps used to construct
RG are described in Section V. In Section VI, we perform
analysis on cascading failure. An empirical evaluation of RG is
conducted in Section VIL In the end, Section VIII presents the
importance of the research issue and how this new framework
will contribute to the field.

II. RELATED WORK

Network vulnerabilities are often comprehended and man-
aged using attack tree/graphs analysis (see, for instance, [6]-
[13]). This approach has its roots in FT analysis [14]-[17].
The ICS community has been constantly looking for potential
issues resulting from safety events due to component failures
and accidental human errors.

Since the introduction of attack graphs by Phillips et al. in
1998 [18], the field has seen significant advancements. Shahri-
ari and Jalili developed a polynomially bounded algorithm [19]
for analyzing network vulnerabilities using graph-based tech-
niques. Sheyner et al. introduced tools for automated attack
graph creation and analysis [20], leveraging the NuSMV [21]
model-checker to evaluate security measures. Hankin et al
introduced “Attack Dynamics™ [22], a tool using the CAPEC
database for detailed attack path visualization. Jajodia et al.
enhanced this with their Topological Vulnerability Analy-
sis [23], which examines dependency among vulnerabilities.
Kerem et al. proposed a distributed search method in a multi-
agent setup [9], addressing large network management and
state space issues. Ingols et al. developed NetSPA [24], which
uses MP graphs for swift and scalable network evaluations,
highlighting areas for further improvement in recommendation
algorithms and graph visualization.

Not only in AG generation but using AG as a tool to analyze
security incidents, researchers showed the importance of AGs
in cybersecurity. Lee et al. introduced ontology-based semantic
attack graphs [25], enhancing machine readability and address-
ing scalability. Noel and Jajodia simplified these graphs by
consolidating attack paths into broader nodes [26], reducing
complexity for analysts. Hong and Kim proposed a dual-layer
graph architecture [27], which separates host vulnerabilities
and network topology, enhancing distributed processing and
reducing overhead. Mehta et al. adapted Google’s PageRank to

assess node reachability in AG [28], providing a probabilistic
analysis. Templeton and Levitt’s model [29] aids adminis-
trators in identifying vulnerabilities and formulating counter-
measures. Ibrahim et al. also employed AADL in CPS [30],
visualizing attack sequences to support defense strategies.
Wang et al. integrated attack graphs with a hidden Markov
model [31] for analyzing security state probabilities and
introduced a breadth-first search algorithm [32] for security
metrics based on attack likelihood. Kordy et al.’s ADTool [33],
based on Attack-Defense Trees, facilitates modeling and real-
time analysis of security scenarios. Lallie et al. compared the
Adapted Attack Graph and Fault Tree methods [34], focusing
on enhancing cyber-attack comprehension across user groups.

However, this work faces an inherent challenge, scalability.
To tackle this issue, Ammann et al. used the concept of
monotonicity to develop a scalable graph-based model [35],
using a Java-based algorithm to identify minimal attack chains
without exhaustive search to encode attack trees. Ou et al. [8]
also proposed a framework that acknowledges the challenges
of scalability. Khouzani et al. [36] provide a mathematical
framework for cyber-security planning in which the problem
is formulated as a multi-objective bi-level optimization, with
security risks and control costs balanced. Their approach is
scalable and capable of handling large AGs.

Similarly, in the area of fault analysis, there have been
many notable works. Event Tree Analysis (ETA) is a technique
used in probabilistic risk assessment, often applied in high-
stakes industries like nuclear power, to understand potential
accident sequences following a specific initiating event or set
of events [37]. Various techniques have been employed to
construct an ETA, for instance, Andrews et al. developed a
technique using binary decision diagrams (BBD) [38] to effec-
tively manage complex event trees and streamline probability
computations. In a distinct approach, Kenarangui employed the
principles of fuzzy logic [39] to ETA, resulting in a system
where a range of ‘fuzzy’ probabilities are assigned instead of
specific values to better handle uncertainty.

Fault Tree Analysis (FTA) is a deductive, top-down method
used for system reliability and safety studies. Originally devel-
oped at Bell Telephone Laboratories in 1962 for the analysis
of the intercontinental Minuteman missile’s launch control
system [14], it is now widely used in industries such as nuclear
power plants, aerospace, and defense. Modern FTA includes
various types, from static, and dynamic to non-coherent fault
trees, and employs classical and modern techniques, with
advanced topics covering importance analysis, common-cause
failures, and application of fault trees in analyzing multi-state
systems and phased-mission systems.

Failure Mode and Effects Analysis (FMEA), initially in-
troduced in the aerospace industry [40], is a method used to
predict and prevent failures in systems, processes, or services.
This method aims to identify potential failure modes, under-
stand their causes and effects, and consequently formulate
strategies to mitigate the likelihood of these failures [41].

Crucitti et al. [42] presented a model that depicts cascading
failures in convoluted networks. Using the concept of dynamic
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redistribution of flow within a network they proved how the
failure of the node with the highest load might result in the
decline of the network efficiency. However, in their work they
mainly employed specific network topologies such as Erdds-
Rényi (ER) and Barabdsi-Albert (BA) networks, limiting their
findings to other types of networks. Wang et al. [43] develop a
method for identifying vulnerabilities in the Industrial Internet
of Things (IIoT), which improves attack path quantification
and streamlines path-finding. This method involves creating
a vulnerability graph model from AG using a maximum loss
flow algorithm. Their approach combines a cyber simulation
model with a control simulation model to detect undesirable
changes in CPS behavior caused by errors or failures. This
mapping procedure identifies which cyber events can cause
these defects or errors by examining the lexical similarities of
block names in the cyber and control simulation models, as
well as the structural similarities between their components.
However, due to the probabilistic nature of this mapping, users
must choose probabilistic thresholds. This can lead to mistakes
in the analysis, such as false positives (identifying a safe
condition as harmful) and false negatives (failing to identify a
true threat). Furthermore, it is unclear how these probabilities
might be used to estimate the likelihood of cascading failures,
if at all, in which one failure causes a chain of subsequent
failures. In contrast, our technique is deterministic, which is
based on a formal representation of the pre-conditions and
post-conditions of both attacks and failures. This formalism
ensures that the solution is accurate and mathematically valid,
avoiding the ambiguities that probabilistic approaches intro-
duce.

However, utilizing AG for cyber resiliency analysis in
OT networks, especially analyzing for the cascading failure
triggered by cyber attacks, presents several challenges. Unlike
FT, AG lacks a standardized formalism. Various researchers
model the concept of an AG differently, leading to variations
in their properties. There is a research gap between AG and
FT [44]. It is quite evident that cyber attacks and safety issues
are interlinked. For, example an attack can cause a fault in the
OT system, similarly, a fault can create a vulnerability that an
attacker uses to exploit further. Thomas et al. [1] patented a
methodology for assessing the impact of cyber attacks on CPS,
which is comparable to the approach we are proposing. In their
framework, they used a cyber and control simulation model to
detect behavioral changes caused in CPS due to safety failures
by cyber attacks. This probabilistic nature of mapping can lead
to false positives and false negative errors. It is also unclear
how their framework estimates the likelihood of cascading
failures. Our approach, on the other hand, avoids ambiguities
ensuring correctness and mathematical validity for its deter-
ministic nature. From the above study, it is clear that there are
many works on AG and FTA but to our knowledge, there is
no formal framework that can also represent undesirable fault
and failure states in OT networks caused by vulnerabilities.

III. BACKGROUND

A standard planning problem is represented by a tuple of
the form M = (F, A, I, G), where F is a set of propositional
fluents or variables that defines the state space of the model.
Each state s is uniquely defined by the set of fluents or
variables that are true in that state s C F. A denotes the set
of executable actions, I represents the initial state (I C F),
and G specifies the goal description (G C F). A planning
problem can be represented as a directed graph, known as
a transition system. In this graph, the nodes represent the
different states of the system. The directed edges in the graph
indicate transitions between states that occur as a result of
executing an action. Each action a € A is further specified
by the tuple a = (pre(a), add(a),del(a)). Here, pre(a) C F
represents the preconditions that determine the states in which
the action can be executed. The set add(a) includes the add
effects, specifying the fluents that will be set to true upon
executing the action, while del(a) C F' comprises the delete
effects, indicating the fluents that will be set to false upon
execution. The outcome of executing an action in a state s is
captured by a transition function © 54, such that

O (s, a) = (s\ del(a)) Uadd(a),if pre(a) Cs. (1)

The planning problem involves identifying a path from the
initial state to a goal state. A solution to this problem, known
as a plan, is represented by a sequence of actions. An action
sequence ™ = (@i,...,a;) is considered a valid plan if
O (I s 1r) DG

Ghosh [45] used a variant of Planner called SGPlan to
generate a minimal attack graph in polynomial time which
makes the attack graph scalable and avoids the state-space
explosion problem. Yichao et al. [46] proposed a compact
graph planning-based attack paths discovery algorithm using
a depth-first backward search algorithm to discover hidden
attack paths. There are many other works [47]-[49] that use
variations of classical planning to discover attack paths. Pre-
vious research has not investigated the impact of cyber attacks
on CPS. Therefore, in this paper we introduces the Resiliency
Graph (RG) framework, which elucidates how cyber attacks
can precipitate safety incidents within CPS.

IV. RESILIENCY GRAPH

To maintain system resiliency, it is critical to understand the
relationship between attacks and the faults caused by them in
the system. This allows the organization to continue operating
and recovering regardless of adversarial attacks and random
faults. To capture this dynamic interactions, we introduce the
concept of a new modeling paradigm called Resiliency Graph
(RG). For a given network, RG consists of a group of hosts
or computers organized in a particular network topology each
identified by a label uniquely. An attribute set consisting of
propositional facts is used to capture the host-level information
of the network such as host configurations, vulnerabilities,
faults, etc, and are represented as true and false values for
a given propositional fact.
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Definition 1: The attribute set Cy is a set of propositions
that could be true for a host in a given network. Such as
Cy = {c1,¢02,...,¢c,}, where c; is a proposition about a
host’s attribute. We denote the set of unique hosts and their
labels using H, H = {Hy,H>,...,H,}. Each host H; € H
has a specific set of attributes from Cy that are true for that
host.

The set of pre-conditions for a specific attack/fault is
represented as pre. Hence, for an attack/fault to be feasible
on host H;, pre! C C; where C; is the set of attributes true
for host H;. Additionally, post = (post™, post™) represents
the set of post-conditions for a specific attack/fault. After an
attack/fault on host Hj;, the positive post-conditions postit
will be added to the set of attributes, and the negative post-
conditions post’~ will be removed from the set of attributes.

RG comprises of hosts/nodes, attack edges, and fault edges,
illustrating the paths through which attacks and faults propa-
gate. The RG enables the analysis of paths that combine attack
and fault sequences, ultimately leading to a resilient solution
from a source to a destination node.

Definition 2: A Resiliency Graph RG is defined as a
directed graph RG = (N, A, F) where N is the set of nodes
and are defined as N' = H x 2CH, each representing a host
in the network. A = {(ni,n;) | ni,n; € N} is the set of
directed edges called attack edges, where each edge (n;,n;)
represents a potential attack. F = {(n;,n;) | ni,n; € N'} is
the set of directed edges called fault edges, where each edge
(ni,nj) represents a potential fault path from node n; to node
n;. For each possible attack and fault edge, e € AU F, the
pre-conditions (pre) and post-conditions (post™ post™) have
to be true, where

« prei(e) C C;, where n; = (H;,C;)

o for the node n; = (H;,C;), we have C; C post™(e)

and C; N post~I(e) =0

Additionally, let Sp = (n € N') = {n;} be the source node
and D, = (n € N) = {n;} be the destination node. The
current graph takes the form of an OR graph, however, it can
be easily extended to support resiliency graphs that need to be
represented as AND-OR graphs. The PDDL formalism that we
are using to concisely capture RG graphs, can also be used to
capture AND-OR graphs easily.

Definition 3: An attack path is a path through the graph
between two arbitrary nodes and it only contains attacks.

Definition 4: A fault path is a path through the graph

between two arbitrary nodes and it only contains faults.

Definition 5: A resilience path Pr from Sy to D; is a

sequence of nodes (Sp, N1, ..., Nk, Ng41, - - - , D) where there
exists a partitioning of the path such that:

o (n4,ni41) € AUF foric {0,1,...,t}.

o There exists at least one sub-path composed of attack
edges followed by a sub-path composed of fault edges,
or vice versa.

An attack is initiated at the source node S and traverses

through a sequence of attack edges (n;,m;31) € A until

reaching an intermediate node nj. Upon compromising node
ng, a fault/failure is triggered, activating the traversal of
fault edges (n;,n;31) € F. Continue the traversal through
a sequence of fault edges from nj, to the destination node D.
The resilience path Pp is constructed by combining both the
attack and fault phases, ensuring a continuous path from S to
D.

Definition 6: For a given RG, initial node state S, and goal
state D has attribute Cy, a representative planning model is
defined as M = (F,A,I,G), where

o F contains a fluent for each host attribute pair in H xCly,
where we use the function 6 to capture the mapping
from H x Cy to F.

o A contains an action for each attack or fault edge
ine € AUF. Let a. be the action corresponding
to an edge e from node n; = (H;,C;) to node
n; = (Hj,C;). Here the action precondition is given
as pre(a.) = {0M(H; x pre)}. It’s an resiliency edge,
(pre, post™, post™), then add(a.) = 6™ ({H;} x post™),
and del(a.) = M ({H;} x post™).

o I={M((H.,c,)}, and G = {6M((H,c.)}.

With this mapping, our model of RG can be represented
accurately without loss of information.

V. METHODOLOGY

In this section, we discuss the steps for learning the Re-
siliency Graph (RG) and identifying the Resilience Path (Pg).

A. Resilience Path Learning Algorithm

To generate the RG, which is a combination of a num-
ber of P, we develop an algorithm named the Resilience
Path Learning Algorithm (RPLA) described in Algo. 1. It
connects the vulnerabilities with the safety events they trig-
ger using Al planning. Initially, we start with an optimistic
representation of an underlying model in PDDL, which we
iteratively refine towards the true representation is expressed
as, M& = (Ff A% If G¥), where F¥¢ is a set of fluents,
A€ represents set of actions, I€ is the initial state and G¢
denotes the goal state, has been created. We also assume that
we have a base model M that contains the ground truth
information of the entire system necessary to build an RG.
This base model, in our case, acts as a black box and only
provides the agent information about the state when an action
a € A is performed. The agent can also reset the base model’s
current state after each iteration.

At the beginning of the Algo. 1, the initial states of both the
M and M? are stored in s° and s respectively. Afterward,
a plan is generated for the model M? using A* search. Next,
in order to produce the Pgr, the algorithm begins updating
the post-conditions of each action in the plan of the M?
iteratively. Initially, it pops an action a from the plan and
checks whether the pre-conditions of the a are the subset of
the current state of the MS. If the condition is true, it updates
the current state of the M by adding the post-conditions of
a, and concurrently it finds the state of the M after executing
action a. The algorithm also looks for dissimilarities between
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Algorithm 1: Resilience Path Learning Algorithm

Input : M5 = (F% A% If G%)

Output: plan

5% + INITIALSTATE(M®)

s+« If

plan, T + GENERATEPLAN(M?)

if plan # @ then

while x # @ do

a + xz.pop()

if pre(a) C s° then

sj +— CURRENTSIMSTATE(a)

5% + s U post(a)

if s5 £ sgptcl‘len
f = EXTRAFLUENTS(s%, s%)
remove f from add(a)
remove f from s

end
if @ C s then

| return plan
end

end

end
else

|  No plan exist
end

the current state of the MS and M after executing action a.
Then it removes the extra fluents, that are not present in the
states of M, from the current states and the post-conditions
of action a of ME. This step ensures the consistency and
alignment between the MS and M states. At each step of
this iterative process, the algorithm checks whether the goal
G is a subset of the M? current state, and once the goal is
reached the Pp has been identified. It returns the plan that
leads to this Pg. Finally, for various initial and goal states our
algorithm generates an RG through combining multiple Pg
for the entire system by updating the actions required to reach
the particular goal.

The limitation of RPLA is that it can not create all Pg, that
exists in the system at once. It can only create the Pp based
on the selected initial and goal state of the optimistic model.

Proposition 1: The Algorithm 1 will always identify a
Resilience Path’s plan if one exists, else it will return an empty
plan if there is no Pg exists.

The model is an optimistic approximation [50], which
means the model only allows for a super set of true plans,
so if plan is not found, it can not exist.

B. Workflow Overview

The overall architectures for developing the RG framework
for CPS is illustrated in Fig. 1. This novel approach unifies
security-related data usually represented by AGs and safety-
related data usually modeled with FTs. At first, the data
related to safety events and cyber attacks are collected from
user manuals, technical reports, CVE descriptions, network
topology, etc. Then, these data are given to an NLP-based
extractor which analyzes the textual data, and extracts all
the necessary pre/post conditions for safety events and cyber-
attacks. Pre-conditions refer to the states that need to hold
for an event to take place while post-conditions are the states
that will hold following the occurrence of the event. After
extracting the pre/post-conditions, it is forwarded to the PDDL

Use cases for Safety Events

Use cases for Cyber Attacks

Fig. 1: Workflow representing steps involved in generating RG
from Attack Graphs and Fault Trees of CPS.

generator to generate specific domain and problem files for
AG using AGBuilder [4] and FT by domain-expert. The base
mode] will provide ground truth about the state when an action
is performed. The optimistic model’s state space will change
by using Algo. 1 by iteratively updating the post-conditions
of the actions based on the base model’s output. Thus the
generation of a comprehensive RG framework that takes into
account the system’s security and safety postures for the CPS.

VI. RESILIENCY GRAPH ANALYSES

To illustrate the workflow of Resiliency Graph (RG) we are
using Flare System as a testbed. We also present a precise
and systematic representation of RG for this system. Finally,
a detailed analysis of how RG is able to capture the cascading
failure is discussed.

A. System Description

We are using LNG complex at GL1/Z-SONATRACH -
Algeria [51], [52], which comprised three flare systems: a cold
flare system for gases of a temperature lower than 0°C, a hot
flare for gases of a temperature higher than 0°C, and the tank
flare system for excess vapors from the LNG storage tanks as
test-bed.

The Flare System is an OT system, which uses hardware and
software to monitor and control physical processes, devices,
and infrastructure. In the Flare System, various Programmable
Logic Controllers (PLCs) are responsible for automating and
controlling various processes to ensure that the flare operates
safely as illustrated in Fig. 2, efficiently, and in compliance
with environmental regulations. Table I shows all the PLCs and
which physical aspects of the Flare System it is controlling or
monitoring, and a list of vulnerabilities associated with each
PLC. These PLCs are connected to the remote desktop with
a Microsoft Windows 12 server and a Cisco Adaptive Secu-
rity Appliance (ASA) firewall. An adversary can access the
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Fig. 2: Overview of OT and IT component of Flare System.

PLC Name #CVE Name Op in OT Network

Siemens §7-1200 CVE-2017-12741, Control the Ignition Device.
CVE-2018-13810

Siemens §7-300/400 CVE-2017-12741, Control the opening/closing of Nitro-
CVE-2016-8673 gen Valve,

Schneider  Electric | CVE-2017-6032, Monitor the Mechanical & Instrumen-

Modicon M221 CVE-2017-6034 tal reading of sensors.

Schneider  Electric | CVE-2019-6815, Monitor the windspeed and pumping

Modicon M580 CVE-2018-7789 of flare system.

Allen-Bradley CVE-2017-9312 Control the isolation valve.

ControlLogix

Allen-Bradley CVE-2017-12089 Control the relief PCVs and switching

MicroLogix 1100 of flares.

Yokogawa CVE-2018-10594 Control and monitor Fuel Gas line.

STARDOM

Mitsubishi MELSEC- | CVE-2017-9638 Monitor and control the condensate

Q) Series T in Fuel Gas.

TABLE I: List of PLCs, their associated CVE vulnerabilities
and functions in Flare System.

internal network by exploiting various vulnerabilities (CVE-
2019-0575, CVE-2019-0584, CVE-2018-0538) and executing
a remote code or exploiting the vulnerabilities (CVE-2018-
0296) of the firewall.

B. RG Construction of Flare System

To construct RG utilizing the Attack Graph (AG) and Fault
Tree (FT) shown in Fig. 14 (appendix), we first build a base
model to represent the Flare System. For the purpose of this
experiment, this base model is constructed using PDDL, a
well-established technique to convert attack graphs and asso-
ciated faults to a planning problem. The process of generating
the base model using PDDL for some parts is dependent on
domain experts [44]. Also, with each addition of new systems
the base model is subjected to an incremental refinement to
address new security concerns and safety issues.

Initially, we model an AG (as domain and problem file) for
the Flare System are shown in Fig. 3 and Fig. 5 respectively
capturing the pre and post-conditions of cyber attack in that
system constructed using AGBuilder. Similarly Fig. 4 and Fig.
6 represent the (FT), capturing the pre and post-conditions
of safety events in that system constructed using the help of
domain experts using PDDL. Fig. 7, illustrates an optimistic
representation of the Flare System where each action’s post-
conditions contain all the possible faults that can be triggered

(define (domain flare-attack-graph-domain)
(:reguirements :=ztrips :typing)

(:types: node]

(:predicates

{has-compromised-customer-pc ?node - nodel

{has—vulnerability-CVE-2017-6022 ?Tnode — node]

(ple-compromised ?node — node) ...}

{:action access—to-windows—server

:parameters (?at - node)

:precondition (and
(has—compromised-customer—pel
(has-compromised-engineering—workstations] )
ceffect (and

(has—access—to-windows—server Zas}))

i:action exploits—vulnerability-CVE-2017-6032
:parameters (?at ?tc — node]
:precondition (and
(has-connected Zat ?to)l})
(has—access—to—network ?at)
(has—vulnerability-CVE-2017-6032 ?to]}]
reffect (and

(has—Schneider-Electric—Modicon—Modbus l-design-viclation

2ta)

(has—session-related-weakness—in-Modicon-Modbus-Protocol ?to]

(has—susceptiblity-to—brute-force ks ?to)
(has—unauthorised-access—to-FLCE ?to]
(has-access—to-plc—port—502-tcp 7to)

(ple—compromised ?solll]

Fig. 3: A PDDL (Domain) representation of Attack Graph of
Flare System.

(define (domain flare-fault—tree-domain]
(:requirements :strips :typing)

(:types node)

(:predicates
(has—fauls hanical-failure-due promised Tnode - node)
(has—fault-pcv—faulty—due—to-compromised ?node — node)

(has—fault—flare—flameous) ...}
(:action causes-fault-pcv—faulty-due—to-mechanical-failuze
:parameters (Tto — node)
:precondition {and
(has-fault—mechanical—failure-dus—to-compromised Ttol)
:effect (and
(has-fault-pcv—faulty-due—to-compromised Ztoll)

i:action causes—fault—flare-flameout

:parameters (?nodel ?node — node]
:precondition {and
(has-fault—flam due—t ised ?nadel)

(has-fault—-pilot—extinction-due—to-compromised ?node2))
:effect (and
(has-fault—flare—flameout)) )]

Fig. 4: A PDDL (Domain) representation of Fault Tree of Flare
System.

{define (problem flare-attack-graph-problem)

(:domain flare-attack-graph-domain)

(:objects

Microsoft—Windows-12-Server firewall-wpn ... — node)

(:init

{has—compromised-custamer—pc)

(has ised-engineering-workstationa) ...)
(:goal

{and {plc-compromised))])

Fig. 5: A PDDL (Problem) representation of Attack Graph of
Flare System.

within the system without knowing which vulnerabilities are
responsible for triggering a safety event. Fig. 8 represents the
problem file for the Flare System which contains the initial
and goal state. Then the domain file (Fig. 7) of the optimistic
model is given as an input to the Algo. 1. As a specific set of
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{define (problem flare—fault—tree—problem)
{:domain flare-fault-tree—domain)
{:objects
plc-Bllen-Bradley-Micrologin—1100 plc-3iemens—57-1200 ...

{zinit

- node)

(has—fault-mechanical-failure-dus—to-compromised] ...)
(:goal
(and (has—faults—flare-flameout}))]

Fig. 6: A PDDL (Problem) representation of Fault Tree of
Flare System.

vulnerabilities is responsible for each safety event occurrence
(before changing it using Resilience Path Learning Algorithm
(RPLA)), it iteratively starts to change the post-conditions of
the actions based on the fault it triggers and removing all extra
faults from that action as shown in Fig. 9. Once all the post-
conditions of the actions to reach a specific goal (d; € D)
states from initial (s; € S) states are updated by RPLA, a
plan for resilience path (p,; € Pg) is created. By combining
all the resilience paths (p,1,pr2 - - . pri € Pg) for all possible
initial (s1,82...8r € S) and goal (d1,dz...dr € D) states
we can get the Resiliency Graph (RG). Fig. 10 illustrated the
domain file of the final RG. An overall visual representation
of Attack Graph (a), Fault Tree (b), and the corresponding
Resiliency Graph (c) for Flare System has been illustrated in
Fig. 14 (appendix).

C. Cascading Failure Analyses with RG

A cascading safety event in the context of CPS is a series of
malfunctions or failures in a system that spread through con-
nected components resulting in a catastrophic system failure.
Fig. 11 represents a snapshot of such a scenario in the Flare
System represented by the red line. When an attacker compro-
mises a customer PC in the Flare System, it also gets access to
the Microsoft Windows 12 server. By compromising a series
of vulnerabilities such as CVE-2019-0575, CVE-2019-0584,
CVE-2018-0538, and CVE-2017-9312, the attacker manages
to take control of PLC Allen-Bradley ControlLogix which
is responsible for controlling the isolation valve. Once the
PLC Allen-Bradley gets compromised, it triggers a series
of cascading safety events in the Flare System. From Table
1 it is evident that by compromising PLC Allen-Bradley
ControlLogix, an attacker could make the PLC go offline
(DoS attack). But previous researchers did not address the
consequences when the PLC goes offline. At first, it closes the
valve block in the CPS. Next, it turns off the manual isolation
valve followed by a low-pressure supply in the pilot and finally
the extinction of the pilot. Using our Resilience Path Learning
Algorithm (RPLA) this cascading effect of failures can be
captured by Resiliency Graph (RG) as shown in Fig. 12 (as
plan for that resilience path). Not only this, but for every
possible cyber-attack on the OT system, RG is able to express
the relation between an attack and its corresponding faults (a
cascading failure) in terms of a resilience path (or plan). This
allows the CPS operators to better analyze and understand the
cascading effect of a safety hazard that has not been addressed
in earlier research.

(define (domain flare—domain-all)
(:requirements :strips :typing)

i:types node)

(:predicates
(ha=-compromised-customer—ps)
(has—compromised-enginesri ions)
({haz—connected ZPat — node 7to - node)

iplc—offline Znode — node)
(ple-compromiszed Tnode — node) ... ]
i:action causes—fault-mechanical-failure—due—to
:parameters (2to — node)
:precondition (and
{has—wvulnerability—CVE-2017-6032 ?to]
{has—Schneider—Electric—Modicon-Modbus—Protocol-design—vieclation ?to)
(has—session-rel in-] i ~Hodbus-Frotocol ?to)
(has ibli
{has—unauthorised-access—to—FLCE ?to]

to—brute—force ?to)

({has-access—to-plc-port—502-tcp Ttol
(plc-compromised ?tal)
:effect (and

(has—fault ical-fail due—to- imed ?to)
(has—fault—i 1-£ail due—to imed Tto)
{has-fault-pcvr—faulty—dus—to imed ?tcl
(has-fault-valve-bl —close-dus—to imed 7to)
(has—fault fault-due—to ized 2%l

(has-fault-manual-isolation—valve-close-due-to—compromised ?to)
(has-fault—fg—i ized 7to)
(has-fault-isolation-of-fg-line-for-works-due—to—compromised 2to)

(has-fault-no—flow—of-fusl-gas—due—to-compromised Tto)

(has—fault—failure-—on-ignition-aystem-due—to ised ?ta)
({has-fault-ignition—pipe-cl ~due—to— imed Tto)
(has-fault-defect—on-ignition-system—due—to ised ?ta)
(has-fault-pilot-low—supply due—to ised ?ta)
(has—fault-ni alve—open—due—to imed 7to)
(has—fault in-fg-due—to ised ?ta)

(has-fault-pipe—not—drained)
(has-fault-pilot-supply-pipe-isclated-due—to—compromised ?to)

(has—fault-relief—p. losed-to ised Ztol
(has—fault-switching—to flare—due—to: ized Tto)
(has—fault—low—flow-gas-flaring-due—to ised Ptao)
{has—fault- i -due—to ised Zto)
(haz—fault-windspeed-greater—than-120-km-per-hr-due—to-compromised
Teo)
(haz—fault-£lame due—tor ised Ztol
(has—fault-pilot—extinction—due—to ised Ztol

(has—fault—flare—flameout)))

(:action causes—fault—pcv—faulty—due—to: ical-failure

:parameters (7to — node)
:precondition (and

(has—fault ical-fail due—to- imed ?zo))
:effect (and

(has—fault ical-fail due—to- imed ?to)

(has—fault—i 1-£ail due—to imed Tto)

{has-fault-pcvr—faulty—dus—to ized 2%l

(has-fault-valve-bl —close-dus—to imed 7to)

(has—fault fault-due—to imed ?tcl

(has-fault-manual-isolation—valve-close-due-to—compromised ?to)
(has-fault—fg—i ized 7to)
(has-fault-isolation-of-fg-line-for-works-due—to—compromised 2to)

(has-fault-no—flow—of-fusl-gas—due—to-compromised Tto)

(has-fault—failure-—on-ignition-aystem-due—to ised ?ta)
({has-fault-ignition—pipe-cl ~due—to— imed Tto)
(has-fault-defect—on-ignition-system—due—to ised ?ta)
(has-fault-pilot-low—supply due—to ised ?ta)
(has—fault-ni alve—open—due—to imed 7to)
(has—fault in-fg-due—to ised ?ta)

(has-fault-pipe—not—drained)
(has-fault-pilot-supply-pipe-isclated-due—to—compromised ?to)

(has—fault-relief—p. losed-to ised Ztol
(has—fault-switching—to flare—due—to: ized Tto)
(has—fault—low—flow-gas-flaring-due—to ised Ptao)
{has—fault- i -due—to ised Zto)
(haz—fault-windspeed-greater—than-120-km-per-hr-due—to-compromised
Teo)
(haz—fault-£lame due—tor ised Ztol
(has—fault-pilot—extinction—due—to ised Ztol

(has—fault—flare—flameout))))

Fig. 7: A PDDL (Domain) representation of overall Flare
System before learning the Pg.

VII. EVALUATION

Our primary focus is to evaluate how the performance
characteristics of Resiliency Graph (RG) changed with respect
to the complexity of network (such as number of nodes,
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(define (problem £lare-problem)
(:domain flare—domain-all)
(:cbjects
Mi i 12-3erver firewall-vpn ... — node)
(zimit
(has= 2 Pl
(ha= =S = i tions) ...
[:goal
(and (has—fauls—pilot inction—due—t mpromised) )}

Fig. 8: A PDDL (Problem) representation of overall Flare
System before learning the Pg.

(:action causes—fault ical-failure—due—to
:paremeters (7o - node)
:precondition (and
(has—vulnerability—CVE-2017-€032 2?to)
(has ider-Electric—Modi —Modbus-Protocol-design—viclation ?to)
(has—session-related-weakness—in-Modicon-Modbus—Protocel ?to)
(ha=s ptiblity—to—brute—for acks ?to)
(has—unauthorized-access—to—PLCE ?to)
(has—access—to-plc—port—502-tcp Zto}
(plc—compromised 7to))
:effect (and
(has—faule ical-failure—due—t mp ised ?to)
I - Loy mp ised2&
I - - mp ised2&
= e o
i e a2
I Le=¢ ignitd mp a2
T P e Fred—2
. - e X
bt eEiy-p e
p = e o
P =
Pt pply=pip e a2
I it=relisf=p mp a2
£ S e : ey
[ - 1 - mp )
RN
P e
I ie—flaze=£l RS

Fig. 9: Updating actions of the Optimistic Model using RPLA.

faults & vulnerabilities). We developed various experimental
test scenarios to evaluate RG’s performance. We ran our
experiment on a 2.21 GHz Octa-Core Intel Core i7 processor,
with 32 GB 2208 MHz, and LPDDR3 memory.

To evaluate the time complexity of Resilience Path Learning
Algorithm (RPLA), we converted the Flare System into an
optimistic model with 11 nodes, 40 vulnerabilities, and 24
faults (visualization of RG shown in Fig. 14). For the analysis,
we began with a set of initial states which is true for the
Flare System, and set a goal such that it triggers a fault in
the Flare System. Hence, for the investigation, we set the goal
(has-fault-flare-flameout) to flame out the Flare
System. The RPLA algorithm needed to update 10 actions
within the Flare system. To do this the algorithm required 39
iterations and 2837.364 microseconds to find the relationships
between vulnerabilities and the potential safety events i.e.
flaming out the Flare System within the OT network.

We are generating test networks using Barabdsi—Albert
preferential attachment [53] with random connections, number
of vulnerabilities, and faults to assess the performance of RG.
Fig. 13 shows the results of different network graphs in which

£laze— in)

:requirements :strips :typing)

:types node)

:predicates
{has-compromised-customez—p<)
(has imed-engineszi iona)
(has-connected ?at — node Tto — node)
{plc—offline ?node — node)
{plc-compromised ?node — node)...)

{:action causes—fault—mechanical-failure-due—to
:parameters (?to — node)
:precondition (and
{has—vulnerability-CVE-2017-6032 ?tol
{has-Schneider-Electric—Modicon—Modbus—Protocol-design—viclation ?tol
(has— ion-re 1 -Modbua-Protocol 7tol
(has iblity—to-brute—force 7zl

{has—unauthorised-access—to—PFLCE Zto]

in-Modi

{has-access—to-plc-port—502-tcp Ttal
{plc-compromised ?tol)

:effect (and
(has—fault

(:action causes—fault—p

ical-fail —dus—to ised ?toll}

ical-failure

£aul ty-dus—to
:parameters {?to - node)
:precondition (and

(has—fault ical-failure—dus—to ised Zuol)
:effect (and
{has—fault—p faulty—dus—to imed %toll}
{:action causes—fault-pilot—low—supply due—tor to-pov-faulty
:parameters (?to — node)
:precondition (and
{has—fault—p faulty—dus—to imed %tol)
:effect (and
(has—fault-pilot—low—supply due—tor ised 2woll]

{:action causes—fault-pilot—extinction—due—to-pilot—low-supply-pressure
:parameters (?to — node)
:precondition (and

{has—£ault—pilot—low—supply
:effect (and
(ha=—fault-pilot—extincti

ised ?tol)

—due—to ised ?tol}}})

Fig. 10: A PDDL (Domain) representation of overall Flare
System after learning the Pg and generating RG.

(B) Fault Tree

(C) Resiliency Graph

Fig. 11: Visual representation of a Resilience Path (Pg) captur-
ing cascading failure with RG where P is “or” condition & Q)
is “and” condition, and the blue line represented a resilience
path p, € Pg.

we tested our algorithm. The graphs show that as network size
increases the algorithm needs more time (in milliseconds) to
discover the relationships between vulnerabilities and faults for
all configurations. This is because, in comparison to smaller
networks with fewer nodes, vulnerabilities, and faults, larger
networks are required to make this connection which proves
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[access—to-windows—server)

(exploits—vulnerability—CVE—-2015-0575)
(exploits—vulnerability—CVE-2017-%312)
(causes—fault—valve-blocked—close—due—to)
(causes—fault-manual-isolation—valve-close—due—to—valve-blocked-close)
(causes—fault—pilet-low-=upply—pressure-due—to—manual-izclatien—valve—close)
(causes—fault-pilot—extincticn-due—to—pilot—low—=upply—pres=sure)

; cost = € (unit cost)

Fig. 12: Plan generated for Cascading Failures captured by
RPLA for Fig. 11

that our Algo. 1 is working consistently. On the other hand, the
complexity of the goal has a big impact on how many iterations
are needed. If achieving a goal (i.e., triggering specific faults)
requires multiple actions to be adjusted, the algorithm needs
more iterations to learn the Resilience Path (Pg). As we can
see from Fig. 13(a), even though the network of node = 50,
vulnerabilities = 50, and faults = 25 is larger compared to a
network containing node = 35, vulnerabilities = 35, and faults
= 17 it takes less number of iterations to learn the Pg as
the goal state might have takes less number of actions to be
modified. Thus, from the results, it can be concluded that our
algorithm is working consistently that is the execution time
is directly proportional to the network size. Additionally, it
can be also observed that the time takes to learn Pg heavily
depends on the safety events it triggers.

VIII. CONCLUSION

The Resiliency Graph (RG) framework aims to give CPS
operators a tool, and insights needed to better evaluate and
analyze how system vulnerabilities could cause safety is-
sues and cascading failures. By revealing the intricate inter-
dependencies between cyber threats, system vulnerabilities,
and safety hazards, the RG gives a complete framework
to identify, prioritize, and mitigate potential threats to the
integrity and reliability of industrial control systems. This
approach enhances the overall safety and reliability posture of
CPS, ensuring continuous and secure operations in industrial
environments. However, the current Resilience Path Learning
Algorithm (RPLA) is limited in that it can only identify a
single path, Pg, between the initial and goal states, rather
than all possible paths within the system. Future work aims
to improve this algorithm to identify all P paths for a given
model, thereby further strengthening the system’s resilience.
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(b) No. of Vulnerabilities and Faults varied keeping Nodes constant at 30.
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(c) No. of Faults varied keeping Nodes and Vulnerabilities constant at 30. (d) No. of Nodes varied keeping Vulnerabilities and Faults constant at 30.

Fig. 13: No. of Iterations and Time required by the RPLA to identify the connections between AG Vulnerabilities and the
Faults they can trigger in the FT across different network configurations. It can be observed that larger networks require more
time but not necessarily more iterations, depending on the complexity of the desired fault to be triggered in the system.
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Fig. 14: Resiliency Graph for LNG Complex Flare System
of Figure 2 (a), modeling safety issues via fault trees (b).
Resiliency Graphs (c) allow us to compose (4 represents
composition, (P is “or” condition & @) is “and” condition)
(a) and (b) into a single unified representation. The dotted
lines represent the areas where security and safety need to be
composed.
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