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Abstract—The classical result of Eisenhart states that, if a Riemannian metric g admits a
Riemannian metric that is not constantly proportional to g and has the same (parameterized)
geodesics as g in a neighborhood of a given point, then g is a direct product of two Riemannian
metrics in this neighborhood. We introduce a new generic class of step 2 graded nilpotent Lie
algebras, called ad-surjective, and extend the Eisenhart theorem to sub-Riemannian metrics
on step 2 distributions with ad-surjective Tanaka symbols. The class of ad-surjective step 2
nilpotent Lie algebras contains a well-known class of algebras of H-type as a very particular
case.
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1. INTRODUCTION

1.1. Affine Equivalence in Riemannian Geometry: Nonrigidity and Product Structure

The paper is devoted to a problem in sub-Riemannian geometry, but we start with a historical
overview of the same problem in Riemannian geometry. Recall that two Riemannian metrics g1
and g2 on a manifold M are called projectively equivalent if they have the same geodesics, as
unparameterized curves, namely, for every geodesic γ(t) of g1 there exists a reparameterization
t = ϕ(τ) such that γ

(
ϕ(τ)

)
is a geodesic of g2. They are called affinely equivalent if they are

projective equivalent and the reparameterizations ϕ(τ) above are affine functions, i. e., they are

of the form ϕ(τ) = aτ + b. We will write g1
p∼ g2 and g1

a∼ g2 in the case of projective and affine
equivalence, respectively. In the sequel, we will mainly be interested in the local version of the
same definitions for germs of Riemannian metrics at a point when conditions on the coincidence of
geodesics hold in a neighborhood of this point.

From the form of the equation for Riemannian geodesics, it follows immediately that two
Riemannian metrics are affinely equivalent if and only if they have the same geodesics as
parameterized curves, which in turn is equivalent to the condition that they have the same Levi-
Civita connection, i. e., one metric is parallel with respect to the Levi-Civita connection of the
other.

Obviously, given any Riemannian metric g and a positive constant c, the metrics cg and g are
affinely equivalent. The metric cg will be said a constantly proportional metric to the metric g.
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ON EISENHART’S TYPE THEOREM FOR SUB-RIEMANNIAN METRICS 305

The Riemannian metric g is called affinely rigid if the metrics constantly proportional to it are the
only affinely equivalent metric to it.

A class of Riemannian metrics g that are not affinely rigid are the metrics admitting a product
structure, i. e., when the ambient manifold M can be represented as M = M1 ×M2, where each M1

and M2 are of positive dimension, and there exist Riemannian metrics g1 and g2 on M1 and M2,
respectively, such that, if πi : M → Mi, i = 1, 2, they are canonical projections, then

g = π∗
1g1 + π∗

2g2. (1.1)

Then, obviously, for every two positive constants C1 and C2

g
a∼ (C1π

∗
1g1 +C2π

∗
2g2) (1.2)

and the metric (C1π
∗
1g1 + C2π

∗
2g2) is not constantly proportional to g if C1 �= C2, i. e., the metric

g is not affinely rigid. In 1923 L.P. Eisenhart proved that locally the converse is true, i. e., the
following theorem holds.

Theorem 1 ([5]). If a Riemannian metric g is not affinely rigid near a point q0, i.e., admits a
locally affinely equivalent nonconstantly proportional Riemannian metric in a neighborhood of a
point q0, then the metric g is the direct product of two Riemannian metrics in a neighborhood of q0.

This theorem is closely related to (and actually is a local version of) the De Rham decomposition
theorem [4] on the direct product structure of a simply connected complete Riemannian manifolds
in terms of the decomposition of the tangent bundle into invariant subbundles with respect to the

action of the holonomy group. Indeed, if g1
a∼ g2 and these metrics are not constantly proportional,

then the eigenspaces of the transition operators between these metrics (see (3.4) below for the
definition of the transition operator) form such a decomposition of the tangent bundle with respect
to the action of the holonomy group of both g1 and g2 (recall that they have the same Levi-Civita
connection).

1.2. Affine Equivalence of Sub-Riemannian Metrics: the Main Conjecture

First, recall that a distribution D on a manifold M is a subbundle of the tangent bundle
TM . A sub-Riemannian manifold/structure is a triple (M,D, g), where M is a smooth manifold,
D is a bracket-generating distribution, and for any q, g(q) is an inner product on D(q) which
depends smoothly on q. We say that g is a sub-Riemannian metric on (M,D). A Riemannian
manifold/structure/metric appears as the particular case where D = TM .

In the sequel, we will assume that the distribution D is bracket-generating, i. e., for every point
q ∈ M the iterative Lie brackets of vector fields tangent to a distribution D (i. e., of sections of D)
span the tangent space TqM . In more detail, one can define a filtration

D = D1 ⊂ D2 ⊂ . . . Dj(q) ⊂ . . . (1.3)

of the tangent bundle, called a weak derived flag, as follows: set D = D1 and define recursively

Dj = Dj−1 + [D,Dj−1], j > 1. (1.4)

If X1, . . . ,Xm are m vector fields constituting a local basis of a distribution D, then Dj(q) is the
linear span of all iterated Lie brackets of these vector fields, of length not greater than j, evaluated
at a point q,

Dj(q) = span{
[
Xi1(q), . . . [Xis−1 ,Xis ](q) . . .

]
: (i1, . . . , is) ∈ [1 : m]s, s ∈ [1 : j]} (1.5)

(here, given a positive integer n, we denote by [1 : n] the set {1, . . . , n}). A distribution D is
called bracket-generating (or completely nonholonomic) if for any q there exists μ(q) ∈ N such that

Dμ(q)(q) = TqU . The number μ(q) is called the degree of nonholonomy of D at a point q. If the
degree of nonholonomy is equal to a constant μ at every point, one says that D is step μ distribution.

Since we work locally, the assumption of bracket-genericity is not too restrictive: if a distribution
is not bracket-generating, then in a neighborhood U of a generic point there exists a positive integer
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306 LIN, ZELENKO

μ such that Dμ+1 = Dμ
� TM . So, Dμ is a proper involutive subbundle of TU and the distribution

D is bracket-generating on each integral submanifold of Dμ in U . So, we can restrict ourselves to
these integral submanifolds instead of U .

What are sub-Riemannian geodesics? There are at least two different approaches to this concept.
One approach is variational: a geodesic is seen as an extremal trajectory, i. e., a candidate for the
“shortest” or “energy-minimizing” path connecting its endpoints, with respect to the corresponding
length or energy functional. The other approach is differential-geometric: geodesic is the “straightest
path”, i. e., the curves for which the vector field of velocities is parallel along the curve, with respect
to a natural connection. While in Riemannian geometry these two approaches lead to the same set
of trajectories, in proper sub-Riemannian geometry (i. e., when D �= TM) they lead to different sets
of trajectories (see [3] for details), and in general, for the second approach, the natural connection
only exists under additional (and rather restrictive) assumptions of constancy of sub-Riemannian
symbol [8].

In the present paper, we consider the geodesic defined by the variational approach. A horizontal
curve γ : [a, b] → M is an absolutely continuous curve tangent to D, i. e., γ′(t) ∈ D (γ(t)). In
the sequel, the manifold M is assumed to be connected. By the Rashevskii – Chow theorem the
assumption that D is bracket-generating guarantees that the space of horizontal curves connecting
two given points q0 and q1 is not empty. The following energy-minimizing problem:

E(γ) =

∫ b

a
g
(
γ′(t), γ′(t)

)
dt → min,

γ′(t) ∈ D
(
γ(t)

)
a.e. t,

γ(a) = q0, γ(b) = q1

(1.6)

can be solved using the Pontryagin Maximum Principle [2, 9] in optimal control theory that defines
special curves in the cotangent bundle T ∗M , called the Pontryagin extremals, so that a minimizer
of the optimal control problem (1.6) is a projection from T ∗M to M of some Pontryagin extremal
(for a more explicit description of Pontryagin extremals, see the beginning of Section (3) below).

Definition 1. The (variational) sub-Riemannian geodesics are projections of the Pontryagin
extremals of the optimal control problem (1.6).

Note that in the Riemannian case the geodesics given by Definition 1 coincides with the usual
Riemannian geodesics. We thus extend the definitions of projective and affine equivalences of
Riemannian metrics to the general sub-Riemannian case in the following way.

Definition 2. Let M be a manifold and D be a bracket-generating distribution on M . Two sub-
Riemannian metrics g1 and g2 on (M,D) are called projectively equivalent at q0 ∈ M if they have
the same geodesics, up to a reparameterization, in a neighborhood of q0. They are called affinely
equivalent at q0 if they have the same geodesics, up to affine reparameterization, in a neighborhood
of q0.

Again, we will write g1
p∼ g2 and g1

a∼ g2 in the case of projective and affine equivalence,
respectively. By complete analogy with the Riemannian case, for a sub-Riemannian metric g on
(M,D) and a positive constant c the metrics cg and g are affinely equivalent. The metric cg will
be said a constantly proportional metric to the metric g.

Definition 3. A sub-Riemannian metric g on (M,D) is called affinely rigid if the sub-Riemannian
metrics constantly proportional to it are the only sub-Riemannian metrics on (M,D) that are
affinely equivalent to g.

As in the Riemannian case, examples of affinely nonrigid sub-Riemannian structures can be
constructed with the help of an appropriate notion of product structure. For this we first have
to define distributions admitting product structure as follows:
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Definition 4. A distribution D on a manifold M admits a product structure if there exist two
manifolds M1 and M2 of positive dimension endowed with two distributions D1 and D2 of positive
rank (on M1 and M2, respectively) such that the following two conditions holds:

1) M = M1 ×M2;

2) If πi : M → Mi, i = 1, 2, are the canonical projections and π∗
iDi denotes the pullback of the

distribution Di from Mi to M , i. e.,

π∗
iDi(q) = {v ∈ TqM : dπi(q)v ∈ Di

(
πi(q)

)
},

then

D(q) = π∗
1D1(q) ∩ π∗

2D2(q). (1.7)

In this case, we will write that (M,D) = (M1,D1)× (M2,D2).

Definition 5. A sub-Riemannian structure (M,D, g) admits a product structure if there ex-
ist (nonempty) sub-Riemannian structures (M1,D1, g1) and (M2,D2, g2) such that (M,D) =
(M1,D1)× (M2,D2) and, if πi : M �→ M1 are the canonical projections, then identity (1.1) holds.
In this case we will write that (M,D, g) = (M1,D1, g1)× (M2,D2, g2).

It is easy to see that, if (M,D, g) = (M1,D1, g1)× (M2,D2, g2), then this sub-Riemannian metric
is affinely equivalent to

(M1,D1, c1g1)× (M2,D2, c2g2) (1.8)

for every two positive constants c1 and c2, but the latter metric is not constantly proportional to
(M,D, g) if c1 �= c2, i. e., a sub-Riemannian metric admitting product structure is not affinely rigid.
The main question is whether or not the converse of this statement, at least in a local setting, i. e.,
the analog of the Eisenhart theorem (Theorem 1) holds.

Conjecture 1 ([6]). If a sub-Riemannian metric g is not affinely rigid near a point q0, i. e., admits
a locally affinely equivalent nonconstantly proportional sub-Riemannian metric in a neighborhood of
a point q0, then the metric g is the direct product of two sub-Riemannian metrics in a neighborhood
of q0.

In this paper, we prove this conjecture for sub-Riemannian metrics on a class of step 2
distributions, see Theorem 3.

2. THE ROLE OF TANAKA SYMBOL/NILPOTENT APPROXIMATION
AND THE MAIN RESULT

Conjecture 1 is still widely open. In the present paper, we prove it for sub-Riemannian metrics
on a particular, but still rather large class of distributions (see Theorem 3 below). To formulate
our main result (Theorem 3) we need to introduce some terminology.

2.1. Direct Product Structure on the Level of Tanaka Symbol/Nilpotent Approximation

In [6] we proved, among other things, a weaker product structure result for affinely nonrigid sub-
Riemannian structures, in which the product structure necessarily occurs on the level of Tanaka
symbol/ nilpotent approximation of the the sub-Riemannian structure.

To define the Tanaka symbol of the distribution D at a point q, we need another assumption
on D near q, called equiregularity. A distribution D is called equiregular at a point q if there
is a neighborhood U of q in M such that for every j > 0 the dimensions of subspaces Dj(y) are
constant for all y ∈ U , whereDj is in (1.4) (equivalently, as in (1.5)). Note that a bracket-generating
distribution is equiregular at a generic point.
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From now on we assume that D is an equiregular bracket-generating distribution with the degree
of nonholonomy μ. Set

m−1(q) := D(q), m−j(q) := Dj(q)/Dj−1(q), ∀j > 1 (2.1)

and consider the graded space

m(q) =
−1⊕

j=−μ

mj(q), (2.2)

associated with the filtration (1.3).

The space m(q) is endowed with the natural structure of a graded Lie algebra, i. e., with the
natural Lie product [·, ·] such that

[mi1(q),mi2(q)] ⊂ mi1+i2 (2.3)

defined as follows:

Let pj : D
j(q) �→ m−j(q) be the canonical projection to a factor space. Take Y1 ∈ m−i1(q) and

Y2 ∈ m−i2(q). To define the Lie bracket [Y1, Y2] take a local section Ỹ1 of the distribution Di1 and

a local section Ỹ2 of the distribution Di2 such that

pi1

(
Ỹ1(q)

)
= Y1, pi2

(
Ỹ2(q)

)
= Y2. (2.4)

It is clear from the definitions of the spaces Dj that [Ỹ1, Ỹ2] ∈ Di1+i2 . Then set

[Y1, Y2] := pi1+i2

(
[Ỹ1, Ỹ2](q)

)
. (2.5)

It can be shown [10, 12] that the right-hand side of (2.5) does not depend on the choice of sections

Ỹ1 and Ỹ2. By constructions, it is also clear that (2.3) holds.

Definition 6. The graded Lie algebra m(q) from (2.2) is called the symbol of the distribution D
at the point q.

By constructions, it is clear that the Lie algebra m(q) is nilpotent. The Tanaka symbol is the
infinitesimal version of the so-called nilpotent approximation of the distribution D at q, which can

be defined as the left-invariant distribution D̂ on the simply connected Lie group with the Lie

algebra m(q) and the identity e, such that D̂(e) = m−1(q).

Further, since D is bracket-generating, its Tanaka symbol m(q) at any point is generated by the
component m−1(q).

Definition 7. A (nilpotent) Z−-graded Lie algebra

m =
−1⊕

j=−μ

mj (2.6)

is called a fundamental graded Lie algebra (here Z− denotes the set of all negative integers) if it is
generated by m−1.

The following notion will be crucial in the sequel:

Definition 8. A fundamental graded Lie algebra m is called decomposable if it can be represented
as a direct sum of two nonzero fundamental graded Lie algebras m1 and m2 and it is called
indecomposable otherwise. Here the jth component of m is the direct sum of the jth components
of m1 and m2.

Obviously, if a distribution D admits product structure, then its Tanaka symbol at any point is
decomposable.
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Example 1 (contact and even contact distributions). Assume that D is a corank 1 distri-
butions, dimD(q) = dimM − 1 , and assume α is its defining 1-form, i. e., D = kerα .

• Recall that the distribution D is called contact if dimM is odd and the form dα|D is
nondegenerate. In this case the Tanaka symbol at a point q is isomorphic to the Heisenberg
algebra m−1(q)⊕m−2(q) of dimension equal to dimM , wherem−2(q) is the (one-dimensional)
center and the brackets on m−1(q) (∼= D(q)) are given by [X,Y ] := dα(X,Y )Z, where Z is the
generator of m−1 so that α(Z) = 1. Note that the Heisenberg algebra is indecomposable as
the fundamental graded Lie algebra. Otherwise, since dimm−2(q) = 1 one of the components
in the nontrivial decomposition of m(q) will be commutative and belong to m−1(q) and hence
to the kernel of dα|D, which contradicts the condition of contactness.

• Recall that the distribution D is called quasi-contact (in some literature even contact) if
dimM is even and the form dα|D has a one-dimensional kernel (i.e., of the minimal possible
dimension for a skew-symmetric form on an odd-dimensional vector space). In this case by
the arguments similar to the previous item the Tanaka symbol is the direct some of the
Heisenberg algebra (of dimension dimM − 1) and R (the kernel of dα|D), i. e., the Tanaka
symbol is decomposable.

Remark 1. It is easy to show that the decomposition of a fundamental graded m Lie algebra into
indecomposable fundamental Lie algebras is unique modulo the center of m and a permutation of
components.

The following theorem is a consequence of the results proved in [6] and it is a weak version of
Conjecture 1:

Theorem 2 ([6, a consequence of Theorem 7.1, Proposition 4.7, and Corollary 4.9
there]). If a sub-Riemannian metric on an equiangular distribution D is not affinely rigid near a
point q0, then its Tanaka symbol at q0 is decomposable.

In other words, the problem of affine equivalence is nontrivial only on the distributions with
decomposable Tanaka symbols (at points where the distribution is equiregular).

2.2. Ad-Surjective Tanaka Symbols and the Main Result

Now we are almost ready to formulate the main result of the paper. We restrict ourselves here
to step 2 distributions, i. e., when D2 = TM . Such distributions are automatically equiregular (at
any point). Then it is clear that the components in the decomposition of the Tanaka symbols of
such distribution are of step not greater than 2 (i. e., with μ � 2 in (2.6)). So, they are either of
step 2 or commutative.

Definition 9. We say that a step 2 fundamental graded Lie algebra m = m−1 ⊕m−2 is ad-surjective
if there exists X ∈ m−1 such that the map adX : m−1 → m−2,

Y �→ [X,Y ], Y ∈ m−1,

is surjective. An element X ∈ m−1 for which adX is surjective is called an ad-generating element
of the algebra m.

Remark 2. Note that the direct sum m1 ⊕m2 of two ad-surjective Lie algebras mi = mi
−1 ⊕mi

−2,

i = 1, 2, is ad-surjective. Indeed, ifXi ∈ mi
−1, i = 1, 2, are such that adXi : m

i
−1 → mi

−2 is surjective,
then

ad(X1 +X2) : m
1
−1 ⊕m

2
−1 → m

1
−2 ⊕m

2
−2

is surjective as well. And vice versa, if a step 2 fundamental Lie algebra m is ad-surjective, then any
component of its decomposition into fundamental graded Lie algebra is ad-surjective: the projection
of an ad-generating element of m to any component is ad-generating element of this component.
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Remark 3. Nilpotent Lie algebras of H-type, introduced by A. Kaplan [7] in 1980 and extensively
studied since then, are ad-surjective because, among other properties of Lie algebras of H-type, it
is required that every element of m−1 be ad-generating.

The following proposition will be proved in Appendix A:

Proposition 1. Any step 2 fundamental graded Lie algebra m = m−1 ⊕m−2 such that the following
three conditions hold:

1) dim m−2 � 3;

2) dim m−2 < dimm−1;

3) the intersection of m−1 with the center of m is trivial

is ad-surjective.

Note that, if dim m−2 � 2, then item (2) of the previous proposition holds automatically. Besides,
item (2) is obviously a necessary condition for ad− surjectivity.

Corollary 1. The only non-ad-surjective step 2 fundamental graded Lie algebra with m−2 � 3 is
the truncated step 2 free Lie algebra with 3 generators.

Note that Proposition 1 does not hold if one drops item (1), see Appendix A, Example 2, for a family
of counterexamples with dimm−2 = 4 and dimm−1 = 5. These counterexamples are semidirect sums
of the truncated step 2 free Lie algebras with three generators and the 3-dimensional Heisenberg
algebra.

Nevertheless, following [6, Section 8], given integers m > 0 and d � 0, if we denote by
GLNA(m,m+ d) the set of all fundamental graded nilpotent Lie algebras m of step not greater
than 2 satisfying

dim m−1 = m, dim m−2 = d, (2.7)

we have the following genericity results:

Lemma 1. If m > d, the subset of all ad-surjective graded nilpotent Lie algebras belonging to
GLNA(m,m+ d) is generic in GLNA(m,m+ d).

Proof. Indeed, for such Lie algebras, the Lie algebra structure is encoded by the Levi operator

Lq ∈ Hom
(∧2

m−1,m−2

)
which is defined as follows:

L(X,Y ) = [X,Y ], ∀X,Y ∈ m−1, (2.8)

and the fundamentality assumption implies that L is surjective. Equivalently, one can consider the

dual operator L∗ ∈ Hom
(
(m−2)

∗,
∧2(m−1)

∗),

L∗(p)(X,Y ) = p([X,Y ]) X,Y ∈ m−1, p ∈ (m−2)
∗. (2.9)

Here we use the natural identification
(∧2

m−1

)∗ ∼=
∧2(m−1)

∗, which in turn is naturally identified

with the space of skew-symmetric bilinear forms on m−1. Note that, again from the surjectivity of
L, its dual L∗ is injective and is described by its image, which is a d-dimensional space. So, the
space of all fundamental graded nilpotent Lie algebras of step not greater than 2 satisfying (2.7) is
isomorphic to the Grassmannian of d-dimensional subspaces in the space of skew-symmetric forms
of an m-dimensional vector space, modulo the natural action of the general linear group on this
space. In particular, the latter Grassmannian is a connected algebraic variety and the subset of
ad-surjective graded nilpotent Lie algebras of step not greater than 2 satisfying (2.7) with m > d
corresponds to a nonempty Zariski open subset of it, therefore it is generic. �
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Remark 4. By [6, Proposition 8.1], the subset of indecomposable graded nilpotent Lie algebras in
GLNA(m,m+ d) is generic GLNA(m,m+ d) for all pairs (m,d) with the exception of the following
three cases:

1) d = 0, m > 1 (Riemannian case of dimension greater than 1);

2) d = 1, m > 1 and odd (the quasi-contact case);

3) d = 2, m = 4.

Moreover, in cases (1) and (2) all graded Lie algebras in GLNA(m,m+ d) are decomposable, while
in case (3) the set of decomposable fundamental symbols is nonempty open and corresponds to
symbols for which the set of solutions of the equation L∗(p)∧ L∗(p) = 0 considered as the equation
with respect to p ∈ (m−2)

∗, where L∗(p) is as in (2.9), consists of two distinct (real) lines.

The main result of the present paper is the following

Theorem 3. Assume that D is a step 2 distribution such that its Tanaka symbol is ad-surjective.
If a sub-Riemannian metric (M,D, g1) is not affinely rigid near a point q0, then it admits a product
structure in a neighborhood of q0.

Remark 5. First note that by Theorem 2.1 under the hypothesis of the previous theorem the
Tanaka symbol of D must be decomposable and by the second sentence of Remark 2 all components
of this decomposition are ad-surjective. Second, by Remark 1, if such a decomposition consists
of indecomposable components only, the number of these components is independent of the

decomposition. Let us denote this number by k̂. Then the sub-Riemannian metric in Theorem 3 is

a product of at least two and at most k̂ sub-Riemannian structures each of which is affinely rigid
(in the neighborhood of the projection of q0 to the corresponding manifold).

The rest of the paper is devoted to the proof of Theorem 3. This theorem confirms Conjecture 1
for sub-Riemannian metrics on step 2 distributions with ad-surjective Tanaka symbol. As a direct
consequence of Theorem 3 and Corollary 1, we get the following

Corollary 2. Assume that D is a step 2 distribution such that its Tanaka symbol is decomposed

into k̂ � 2 nonzero indecomposable fundamental graded Lie algebras with degree −2 components of
dimension not greater than 3 and such that among them there is no truncated step 2 free Lie algebra
with 3 generators. If a sub-Riemannian metric (M,D, g1) is not affinely rigid near a point q0, then

it admits a product of of at least two and at most k̂ sub-Riemannian structures each of which is
affinely rigid (in the neighborhood of the projection of q0 to the corresponding manifold).

The assumption of ad-surjectivity of the Tanaka symbol is crucial for our proof of Theorem 3
because we strongly use a natural quasi-normal form for ad-surjective Lie algebras, see (4.8). We
hope that analogous quasi-normal forms can be found for more general graded nilpotent Lie algebras
so that Conjecture 1 can be proved similarly for a more general class of sub-Riemannian metrics.

3. ORBITAL EQUIVALENCE AND FUNDAMENTAL ALGEBRAIC SYSTEM

In general, there are two types of Pontryagin extremals for optimal control problems, normal
and abnormal [1, 2]: for the former, the Lagrange multiplier near the functional is not zero, and
for the latter, it is zero. In particular, abnormal extremals, as unparameterized curves, depend on
the distribution D only and not on a metric g on it. This indicates that only normal extremals
are essential for the considered problems of affine/projective equivalence (see Proposition 2 for the
precise formulation). Therefore, we give an explicit description only of normal extremals. They are

the integral curves of the Hamiltonian vector field �h on T ∗M corresponding to the Hamiltonian

h(p, q) = || p|D(q)||2, q ∈ M,p ∈ T ∗
q M, (3.1)
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and lying on a nonzero level set of h. Here || p|D(q)|| denotes the operator norm of the functional

p|D(q), i. e.,

|| p|D(q)|| = max{p(v) : v ∈ D(q), g(q)(v, v) = 1}.
The Hamiltonian h defined by (3.1) is called the Hamiltonian associated with the metric g or shortly
the sub-Riemannian Hamiltonian.

In [6], following [11], the problems of projectively and affine equivalence of sub-Riemannian
metric were reduced to the study of the orbital equivalence of the corresponding sub-Riemannian
Hamiltonian systems for normal Pontryagin extremals of the energy minimizing problem (1.6),
which in turn is reduced to the study of solvability of a special linear algebraic system with
coefficients being polynomial in the fibers, called the fundamental algebraic system [6, Proposition
3.10]. In this section we summarize all information from [6] we need for the proof of Theorem 3.

As before, fix a connected manifold M and a bracket-generating equiregular distribution D on
M , and consider two sub-Riemannian metrics g1 and g2 on (M,D). We denote by h1 and h2 the

respective sub-Riemannian Hamiltonians of g1 and g2, as defined in (3.1). Let the annihilator D⊥

of D in T ∗M be defined as follows:

D⊥ = {(p, q) ∈ T ∗M : p|D(q) = 0}. (3.2)

It coincides with the zero level set of the sub-Riemannian Hamiltonian h from (3.1).

Definition 10. We say that �h1 and �h2 are orbitally diffeomorphic on an open subset V1 of T
∗M\D⊥

if there exists an open subset V2 of T ∗M\D⊥ and a diffeomorphism Φ : V1 → V2 such that Φ is

fiber-preserving, i. e., π
(
Φ(λ)

)
= π(λ), and Φ sends the integral curves of �h1 to the reparameterized

integral curves of �h2, i. e., there exists a smooth function s = s(λ, t) with s(λ, 0) = 0 such that

Φ
(
et
�h1λ
)
= es

�h2
(
Φ(λ)

)
for all λ ∈ V1 and t ∈ R for which et

�h1λ is well defined. Equivalently, there
exists a smooth function α(λ) such that

dΦ�h1(λ) = α(λ)�h2
(
Φ(λ)

)
. (3.3)

The map Φ is called an orbital diffeomorphism between the extremal flows of g1 and g2.

The reduction of projective (respectively, affine) equivalence of sub-Riemannian metrics to the
orbital (respectively, a special form of orbital) equivalence of the corresponding sub-Riemannian
Hamiltonian systems is given by the following:

Proposition 2 ([6, a combination of Proposition 3.4 and Theorem 2.10 there]). Assume
that the sub-Riemannian metrics g1 and g2 are projectively equivalent in a neighborhood U ⊂ M

and let π : T ∗M → M be the canonical projection. Then, for a generic point λ1 ∈ π−1(U)\D⊥, �h1
and �h2 are orbitally diffeomorphic on a neighborhood V1 of λ1 in T ∗M . Moreover, if g1 and g2 are

affinely equivalent in a neighborhood U ⊂ M , then the function α(λ) in (3.3) satisfies �h1(α) = 0.

Further, the differential equation (3.3) can be written [6, Lemma 3.8] and transformed to the
algebraic system via a sequence of prolongations [6, Proposition 3.9] in a special moving frame
adapted to the sub-Riemannian structures g1 and g2. For this, first, we need the following

Definition 11. The transition operator at a point q ∈ M of the pair of metrics (g1, g2) is the linear
operator Sq : D(q) → D(q) such that

g2(q)(v1, v2) = g1(q)(Sqv1, v2), ∀v1, v2 ∈ D(q). (3.4)

Obviously, Sq is a positive g1-self-adjoint operator and its eigenvalues α2
1(q), . . . , α

2
m(q) are positive

real numbers (we choose α1(q), . . . , αm(q) as positive numbers as well). The field S of transition
operators is a (1, 1)-tensor field that will be called the transition tensor.

The important simplification in the case of the affine equivalence compared to the projective
equivalence is given in the following
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Proposition 3 ([6, Propostion 4.7]). If two sub-Riemannian metrics g1, g2 on (M,D) are
affinely equivalent on an open connected subset U ⊂ M , then all the eigenvalues α2

1, . . . , α
2
m of

the transition operator are constant.

This proposition implies that the number of the distinct eigenvalues k(q) of the transition operators
Sq is independent of q ∈ U , i. e., k(q) ≡ k on U for some positive integer k. Also, there are k
distributions Di such that

D(q) =

k⊕

i=1

Di(q) (3.5)

is the eigenspace decomposition of D(q) with respect to the eigenspaces of the operator Sq. Now
let

m
i
−1(q) = Di(q), m

i
−j(q) = (Di)

j(q)/
(
(Di)

j(q) ∩Dj−1(q)
)
, ∀j > 1.1) (3.6)

Set

m
i(q) =

μ⊕

j=1

m
i
−j(q). (3.7)

By construction mi, i = 1, . . . , k, are fundamental graded Lie algebras.

Remark 6. Note that in general mi(q) is not equal/isomorphic to the Tanaka symbol of the
distribution Di at q, as when defining the components mi

−j(q) with j > 1 we also make the quotient

by the powers of D. In fact, the proof that mi(q) is isomorphic to the Tanaka symbol of the
distribution Di under the assumption of affine nonrigidity is one of the main steps in the proof of
Theorem 3.

Proposition 4 ([6, Theorem 6.2 and Theorem 7.1]). If sub-Riemannian metrics g1, g2 are
affinely equivalent and not constantly proportional to each other in a connected open set U , then for
every q ∈ U the Tanaka symbol m(q) of the distribution D at q is the direct sum of the fundamental
graded Lie algebras mi(q), i = 1, . . . , k defined by (3.6) and (3.7), i. e.,

m(q) =
k⊕

i=1

mi(q), (3.8)

as the direct sum of Lie algebras.

Further, in a neighborhood U1 of any point q0 ∈ U we can choose a g1-orthonormal local
frame X1, . . . ,Xm of D whose values at any q ∈ U1 diagonalize Sq, i. e., Xi(q) is an eigenvector

of Sq associated with the eigenvalues α2
i (q), i = 1, . . . ,m. Note that 1

α1
X1, . . . ,

1
αm

Xm form a g2-

orthonormal frame of D. We then complete X1, . . . ,Xm into a frame {X1, . . . ,Xn} of TM adapted
to the distribution D near q0, i. e., such that for every positive integer j this frame contains a local
frame of Dj . We call such a set of vector fields {X1, . . . ,Xn} a (local) frame adapted to the (ordered)
pair of metrics (g1, g2). The structure coefficients of the frame {X1, . . . ,Xn} are the real-valued

functions ckij , i, j, k ∈ {1, . . . , n} defined near q by

[Xi,Xj ] =
n∑

k=1

ckijXk. (3.9)

Let u = (u1, . . . , un) be the coordinates on the fibers T ∗
q M induced by this frame, i. e.,

ui(q, p) = p
(
Xi(q)

)
. (3.10)

1)Since (Di)
j ⊂ Dj , the space m

i
−j is a subspace of m−j .
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These coordinates in turn induce a basis ∂u1 , . . . , ∂un of Tλ(T
∗
q M) for any λ ∈ π−1(q). For

i = 1, . . . , n, we define the lift Yi of Xi as the (local) vector field on T ∗M such that π∗Yi = Xi

and duj(Yi) = 0 ∀1 � j � n. The family of vector fields {Y1, . . . , Yn, ∂u1 , . . . , ∂un} obtained in this
way is called a frame of T (T ∗M) adapted at q0. By a standard calculation, we obtain the expression
for the sub-Riemannian Hamiltonian h1 of the metric g1 and the corresponding Hamiltonian vector

field �h1:

h1 =
1

2

m∑

i=1

u2i (3.11)

�h1 =

m∑

i=1

ui�ui =

m∑

i=1

uiYi +

m∑

i=1

n∑

j,k=1

ckijuiuk∂uj . (3.12)

Indeed, to prove (3.12), recall that, if for a vector field Z in M , we denote

HZ(p, q) = p
(
Z(q)

)
, q, p ∈ T ∗

q M,

then for any two vector fields Z1 and Z2 on M we have the following identities:

−−→
HZ1(HZ2) = dHZ2

(−−→
HZ1

)
= H[Z1,Z2]. (3.13)

From this and (3.9) it follows immediately that

�ui = Yi +
n∑

j=1

�ui(uj)∂uj = Yi +
n∑

j=1

n∑

k=1

ckijuk∂uj , (3.14)

which immediately implies (3.12).

Assume now that �h1 and �h2 are orbitally diffeomorphic near λ0 ∈ H1 ∩ π−1(q0) and let Φ be the
corresponding orbital diffeomorphism. Let us denote by Φi, i = 1, . . . , n, the coordinates ui of Φ
on the fiber, i. e., u ◦Φ(λ) =

(
Φ1(λ),Φ2(λ), . . . ,Φn(λ)

)
. Then first it is easy to see [11, Lemma 1]

that the function α from (3.3) satisfies

α =

√∑m
i=1 α

2
i u

2
i∑m

i=1 u
2
i

(3.15)

and

Φk =
α2
kuk
α

,∀1 � k � m. (3.16)

In [6], in order to find the equations for the rest of the components Φm+1, . . .Φn of Φ we first

plugged into (3.3) the expression (3.12) for �h1 and a similar expression for �h2 and then we made
the “prolongation” of the resulting differential equation by recursively differentiating it in the

direction of �h1 and replacing the derivatives of Φi’s in the direction of �h1 by their expressions from
the first step. The resulting system of algebraic equations for Φm+1, . . . ,Φn is summarized in the
following

Proposition 52) ([6, a combination of Proposition 3.4, Proposition 4.3, Proposition 3.10
applied to the case of affine equivalence]). Assume that the sub-Riemannian metrics g1 and
g2 are projectively equivalent in a neighborhood U ⊂ M and let Φ be the corresponding orbital
diffeomorphism between the normal extremal flows of g1 and g2 with coordinates (Φ1, . . . ,Φn). Set

Φ̃ = α(Φm+1, . . . ,Φn).

2)Since in the present paper we mainly work with the affine equivalence only, for which αi’s are constant and
�h1(α) = 0, the expressions in (3.18) and (3.22) are significantly simpler than in [6], where the more general case
of the projective equivalence is considered.
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Let also

qjk =

m∑

i=1

ckijui (3.17)

and

Rj = α2
j
�h1(uj)−

∑

1�i,k�m

ckijα
2
kuiuk. (3.18)

Then Φ̃ satisfies a linear system of equations,

AΦ̃ = b, (3.19)

where A is a matrix with (n−m) columns and an infinite number of rows, and b is a column vector
with an infinite number of rows. These infinite matrices can be decomposed in layers of m rows,
each as

A =

⎛

⎜⎜
⎜⎜
⎜
⎜⎜
⎜⎜
⎜
⎝

A1

A2

...

As

...

⎞

⎟⎟
⎟⎟
⎟
⎟⎟
⎟⎟
⎟
⎠

and b =

⎛

⎜⎜
⎜⎜
⎜
⎜⎜
⎜⎜
⎜
⎝

b1

b2

...

bs

...

⎞

⎟⎟
⎟⎟
⎟
⎟⎟
⎟⎟
⎟
⎠

, (3.20)

where the coefficients asjk of the (m× (n−m)) matrix As, s ∈ N, are defined by induction as
⎧
⎪⎪⎨

⎪⎪⎩

a1j,k = qjk, 1 � j � m, m < k � n,

as+1
j,k = �h1(a

s
j,k) +

n∑

l=m+1

asj,lqlk, 1 � j � m, m < k � n,
(3.21)

(note that the columns of A are numbered from m+ 1 to n according to the indices of Φ̃) and the
coefficients bsj, 1 � j � m, of the vector bs ∈ R

m are defined by
⎧
⎪⎪⎨

⎪⎪⎩

b1j = Rj ,

bs+1
j = �h1(b

s
j)−

n∑

k=m+1

asj,k

m∑

i=1

uiα
2
i qki

(3.22)

Definition 12. The system (3.19) with A and b defined recursively by (3.21) and (3.22) is called the

fundamental algebraic system for the affine equivalence of the sub-Riemannian metrics g1 and g2
3).

The subsystem

AiΦ̃ = bi (3.23)

with Ai and bi as in (3.20) is called the ith layer of the fundamental algebraic system (3.19).

The matrix A has n−m columns and infinitely many rows and b is the infinite-dimensional
column vector. So, the fundamental algebraic system (3.19) is an over-determined linear system
on (Φm+1, . . . ,Φn), and all entries of A and b are polynomials (3.21) and (3.22) in uj ’s. Therefore,

3)The column vector b in (3.19) here corresponds to αb in the notation of the fundamental algebraic system in [6].
It is more convenient in the context of affine equivalence as all components of b become polynomial in uj ’s, i. e.,
the polynomials on the fibers of T ∗M .
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all (n−m+ 1)× (n−m+ 1) minors of the augmented matrix [A|b] must be equal to zero. Since
all of these minors are polynomials in uj’s, the coefficient of every monomial of these polynomials

is equal to zero. It results in a huge collection of constraints on the structure coefficient ckij . By

discovering and analyzing the monomials with the “simplest” coefficients we were able to prove our
main theorem, Theorem 3. This analysis is given, for example, in Lemmas 4, 5, and 7. Quasi-normal
forms (4.8) for ad-surjective Lie algebras were crucial for this analysis.

4. PROOF OF THEOREM 3

Let (M,D, g1) be a sub-Riemannian metric satisfying the assumptions of Theorem 3. Assume
that g2 is a sub-Riemannian metric that is affinely equivalent and nonconstantly proportional to
g1 in a neighborhood U of a point q0. Let k be the number of distinct eigenvalues of the transition
operators of the pair of metrics (g1, g2). As mentioned after Proposition 3, k is constant on U and

by Remark 5 we have 2 � k � k̂. Consider the sub-distributions Di, i ∈ [1 : k] defined by (3.5), and
the algebras mi(q) as in (3.6)–(3.7). Hence,

D = D1 ⊕D2 ⊕ . . .⊕Dk. (4.1)

By Remark 2 the algebra mi for every i ∈ [1 : k] is ad-surjective.

4.1. Main Steps in the Proof of Theorem 3

Observe that in general

Di(q) ⊂ D(q) ∩ (Di)
2(q), ∀i ∈ [1 : k̃]. (4.2)

One can define the canonical projection of quotient spaces

pri : (Di)
2(q)/Di(q) → (Di)

2(q)/
(
D(q) ∩ (Di)

2(q)
)
. (4.3)

Further, given X ∈ Di(q), we can define two different operators

(adX)modD : D(q) → D2(q)/D(q),

(adX)modDi
: Di(q) → (Di)

2(q)/Di(q),
(4.4)

where in the first case we apply the Lie brackets with X as in the Tanaka symbol of the distribution
D at q and in the second case we apply the Lie brackets with X as in the Tanaka symbol of the
distribution Di at q.

The main steps in the proof of Theorem 3 are described by the following five propositions
together with the final step in Section 4.7 below:

Proposition 6. Assume that X ∈ Di(q) is such that the restriction of the map (adX)modD to
Di(q) is onto (Di)

2(q)/
(
D(q) ∩ (Di)

2(q)
)
. Then the projection pri as in (4.3) defines the bijection

between the image of the map (adX)modDi
and the image of the restriction of the map (adX)modD

to Di(q).

Proposition 7. Assume that X ∈ Di(q) satisfies the assumption of the previous lemma. Then
(Di)

2(q)/Di(q) coincides with the image of the map (adX)modDi
.

Proposition 8. The following identity holds:

D(q) ∩ (Di)
2(q) = Di(q) ∀i ∈ [1 : k̃]. (4.5)

Proposition 9. The following identity holds:

(Di)
3(q) = (Di)

2(q) ∀i ∈ [1 : k̃] (4.6)

and therefore the distribution D2
i is involutive.
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Proposition 10. For every two distinct r and t from [1 : k] the distribution D2
r +D2

t is involutive.

First, let us show that Propositions 6 and 7 imply Proposition 8. Indeed, we have the following
chain of inequalities/equalities:

dim(Di)
2(q)/Di(q)

(4.2)

� dim(Di)
2(q)/

(
D(q) ∩ (Di)

2(q)
) Prop. 7

=

rank ((adX)modDi
)
Prop.6
= rank

(
(adX)modD|Di(q)

)
� dim(Di)

2(q)/Di(q).

Hence, dim(Di)
2(q)/Di(q) = dim(Di)

2(q)/
(
D(q) ∩ (Di)

2(q)
)
, which implies (4.5).

Further, as a direct consequence of Propositions 8 and 9 and the assumption that D is a step 2
distribution one gets the following

Corollary 3. The Tanaka symbol of Di at q is isomorphic to mi(q) and the distribution D2
i is of

rank equal to dimmi.

To guide the reader, the rest of the proof of Theorem 3 is organized as follows: Proposition 6 is
proved in Section 4.2, Proposition 10 is proved in Sections 4.3 and 4.6, Proposition 9 is proved in
Section 4.5, and Proposition 7 is proved in Section 4.4. The final step in the proof of Theorem 3 is
done in Section 4.7.

4.2. Proof of Proposition 6

Let mi(q), i = 1, 2 be as in (3.6)–(3.7). Note that by the paragraph after Proposition 3 and the
fact that the graded algebras mi(q) are of step not greater than 2, dimmi

j(q) are independent of q.
Let

mi := dimmi
−1(q), di := dimmi

−2(q);

ni :=

i∑

j=1

mj , ei :=

i∑

j=1

dj ;

I1
i = [(ni−1 + 1) : ni] , I2

i = [(m+ ei−1 + 1) : (m+ ei)] .

(4.7)

Note that n0 = e0 = 0.

Since mi is ad-surjective for every i ∈ [1 : k], we can choose a local g1-orthonormal basis
(X1, . . . ,Xm) of D such that the following conditions hold for every i ∈ [1 : k]:

1) Di = span{Xj}j∈I1
i
;

2) Xni−1+1(q) is an ad-generating (in a sense of Definition 9) element of the algebra mi(q).

Then one can complete (X1, . . . ,Xm) to the local frame (X1, . . . ,Xn) of TM by setting

Xm+ei−1+j := [Xni−1+1,Xni−1+j+1], ∀i ∈ [1 : k], j ∈ [1 : di]. (4.8)

A local frame (X1, . . . ,Xn) of TM constructed in this way will be called a quasi-normal frame

adapted to the tuple {Xni−1+1}ki=1 of ad-generating elements (one for each mi).

By construction, quasi-normality implies the following conditions for the structure functions of
the frame:

clni−1+1,j = δl,m+j+ei−1−ni−1−1, ∀i ∈ [1 : k], j ∈ [ni−1 + 2 : ni−1 + di + 1], l ∈ [1 : n], (4.9)

where δs,t stands for the Kronecker symbol.

In the sequel, we will work with quasi-normal frames: we start with one quasi-normal frame and,
if necessary, perturb it to other quasi-normal frames adapted to the same tuple of ad-generating
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elements. The statement of Proposition 6 is true if one shows that pri restricted to Im(adX)modDi
is

injective, while the surjectivity follows automatically from the definition of the projection. Without
loss of generality, we can assume that i = 1, as the proof for i �= 1 is completely analogous. The
injectivity of pr1|Im(adX)modD1

is equivalent to

ker(pr1|Im(adX)modD1
) = 0. (4.10)

Clearly,

ker(pr1) =
(
(D1)

2(q) ∩D(q)
)
/D1(q). (4.11)

Set X = X1 Then by (4.11)

ker(pr1|Im(adX)modD1
) =

((
(D1)

2(q) ∩D(q)
)
/D1(q)

)
∩
(
Im(adX)modD1

)
. (4.12)

So, the desired relation (4.10) is equivalent to

ck1l = 0, for l ∈ I1
1 , k ∈

k⋃

j=2

I1
j . (4.13)

In the sequel, we will use the following proposition many times:

Proposition 11 ([11, Proposition 6]). If g1 and g2 are affinely equivalent but not constantly
proportional to each other, then the following properties hold:

1) cjji = 0, for any i ∈ I1
s , j ∈ I1

v with s �= v;

2) cijk = −ckji, for any i �= k ∈ I1
s , j ∈ I1

v with s �= v;4)

3) (α2
j − α2

i )c
k
ji + (α2

j − α2
k)c

i
jk + (α2

i − α2
k)c

j
ik = 0 for every pairwise distinct i, j, k from [1 : m].

Note that item (2) above is the consequence of item (3) applied to the case when one pair in the

triple {i, j, k} belongs to the same I1
s . In all subsequent lemmas, we will assume that the relations

given in items (1)–(3) of Proposition 11 hold.

Now let us give more explicit expressions for the vector b in the fundamental algebraic
system (3.19), which will be helpful in the sequel:

Lemma 2. The entries b1j in (3.22) with j ∈ I1
i are given by

b1j = (αni−1+1)
2
∑

l∈I2
i

qjlul +
∑

s �=i

(
(αni−1+1)

2 − (αns−1+1)
2
)∑

l∈I1
s

qjlul, (4.14)

where qjk are defined by (3.17).

Proof. Using (3.12), (3.13), and (3.9), we get

�h1(uj) =

m∑

i=1

ui�ui(uj) =

n∑

k=1

m∑

i=1

uiukc
k
ij =

n∑

k=1

qjkuk. (4.15)

4)In more detail, one of the conclusions of [11, Proposition 6], formulated for projective equivalence, is that

Xi

(
α2
j

α2
i

)
= 2cjji

(
1− α2

j

α2
i

)
, but in the case of affine equivalence α2

i and α2
j are constant and we find that cjji = 0.
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From (3.22) and (3.18), using (3.17) and the fact that by our constructions (αl)
2 = (αni−1+1)

2

for every l ∈ I1
i , we have

b1j = (αni−1+1)
2�h1(uj)−

∑

1�i,l�m

(αl)
2uiulc

l
ij

= (αni−1+1)
2

n∑

k=1

qjkuk −
k∑

i=1

(αni−1+1)
2
∑

l∈I1
i

qjlul.

(4.16)

Note that from (3.8) and (3.17) we have qjk = 0 for k ∈
⋃

s �=i

I2
s , so

n∑

k=1

qjkuk =
k∑

s=1

m∑

l=I1
s

qjlul +
∑

l∈I2
i

qjlul. (4.17)

Substituting (4.17) into (4.16), we get (4.14). �

Lemma 2 implies that, to analyze maximal minors of the augmented matrix [A|b], it is convenient
to perform the following column operation by setting

b̃ = b−
k∑

i=1

(αni−1+1)
2

ei∑

t=ei−1

(A)tum+t, (4.18)

where (A)j represents the jth column of A and ei are defined in (4.7), so the corresponding maximal

minors of [A|b] and [A|b̃] coincide.

Remark 7. Using the first line of (3.21), one gets that the first term in (4.14) is canceled by the
column operations, namely,

b̃1j =
∑

v �=i

(
(αni−1+1)

2 − (αnv−1+1)
2
)∑

l∈I1
v

qjlul, j ∈ I1
i , (4.19)

where b̃1j is the jth component (from the top) of the column vector b̃1. Hence, b̃1 has no term of

ui’s, with i > m.

Lemma 3. Let i, v ∈ [1 : k], i �= v, j ∈ I1
i and r, l ∈ I1

v . Then b̃j does not contain a monomial urul
and, in particular, it does not contain squares u2r.

Proof. Indeed, by (4.19), using (3.17), the coefficient of the monomial urul is equal to
((

αni−1+1)
2 − (αnv−1+1

)2)(
clrj + crlj

)
, (4.20)

which is equal to zero by items (1) and (2) of Proposition 11. �

Now we will make a long analysis of coefficients of specific monomials in the specific (n−m+

1)× (n−m+ 1) minor of the augmented matrix [A|b] (equivalently, [A|b̃]).

First, to achieve (4.13), given i0 ∈ [1 : k], we consider submatrices Mi0 of [A|b̃] consisting of rows
with indices from the set

Si0 := [ni0−1 + 1 : ni0−1 + di0 + 1] ∪
⋃

i∈[1:k]\{i0}
[ni−1 + 1 : ni−1 + di]. (4.21)
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From (3.8) it follows that Mi0 is a block-diagonal matrix,

Mi0 =

⎛

⎜
⎜⎜
⎜
⎝

Mi0,1 0 0

0
. . . 0

0 0 Mi0,k

⎞

⎟
⎟⎟
⎟
⎠

, (4.22)

where Mi0,i0 is of size (di0 + 1)× di0 and Mi0,i, i �= i0 is of size di0 × di0 .

Remark 8. Note that, given j ∈ [1 : k], the blocks Mi,j are the same for all i �= j.

Let b1|Si0
(resp. b̃1|Si0

) be the subcolumn of the column b1 (reps. b̃1) consisting of the same rows

as in Mi0 , i.e., the rows of b (resp. b̃) from the set Si0 as in (4.21). Since the fundamental algebraic
system is an overdetermined linear system admitting a solution, the determinant det([Mi0 |b1|Si0

])

must vanish, as a polynomial with respect to ui’s. It implies that the coefficients of each monomial
w.r.t ui’s in det(M1|b1,1) must vanish as well. We have the following

Lemma 4. Given i0 ∈ [1 : k], if the coefficients of all monomials of the form

ulus

⎛

⎝
∏

i �=i0

uni−1+di+1

⎞

⎠ (uni0−1+1)
di0

⎛

⎝
∏

i �=i0

(uni−1+1)
di−1

⎞

⎠ , l ∈ I1
i0 , s ∈ [1 : m]\I1

i0 (4.23)

in det([Mi0 |b1|Si0
]) vanish, then

csni0−1+1 l = 0, l ∈ I1
i0 , s ∈ [1 : m]\I1

i0 . (4.24)

Proof. In the sequel, we will refer to the classical formula for determinants in terms of permutations
of the matrix elements as the Leibniz formula for determinants. Without loss of generality, we can
assume that i0 = 1 and s ∈ I1

2 . Using (3.17), the first line of (3.21), and (4.9), it is easy to conclude
that the variable uni−1+1 appears only in the following columns of the augmented matrix [M1|b1|S1 ]:

(A1i) The columns containing all columns of the matrix M1,i if i = 1 or all columns of M1,i except
the last one, if i ∈ [2 : k] . Moreover, in each of these columns, uni−1+1 appears exactly in
the entry (M1,i)j+1j, i.e., in the entry situated right below the diagonal of the block M1,i.
Besides, the coefficient of uni−1+1 in this entry is equal to 1;

(A2i) the last column of the matrix [M1|b1|S1 ].

Applying the normalization conditions (4.9) to (4.19), one gets

(A3i) The components of the column vector b1|S1 in the rows corresponding to the rows of the
block M1,i of M1 do not contain uni−1+1.

For our purpose, it is enough to set variables ui not appearing in (4.23) to be equal to 0.
From item (A1i) above, the fact that uni−1+1 appears in the power not less than di − 1 in
the monomial (4.23), and that by Lemma 3 and (A3i) the participating entries do not contain

(uni−1+1)
2, it follows that in the Leibniz formula for the determinant of the matrix (M1|b̃1|S1) the

contribution to the monomial (4.23) from the block M1,i comes only from the following terms:

(B1i) Terms containing all factors of the form (M1,i)j+1 j. Moreover, from the facts that all rows
of M1,i except the first one are used, that M1 has block diagonal structure, and that

(a) for i = 1 all columns appearing in M1,i are used, it follows that in this case the terms

giving the desired contribution must contain the factor b11 as the only possible factor
from the first row of the augmented matrix (M1|b1|S1).
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(b) for i ∈ [2 : k] all columns of M1,i except the last one are used, it follows that in this case
the terms giving the desired contribution must contain the entry (M1,i)1 d2 . Note that,
if we take into account only those ui’s which appear in (4.23) (or, equivalently, set all

other ui’s equal to zero) and that, by (4.9), cm+e1
n1+1,s = δn1+d2+1,s, we have

(M1,i)1 di = −uni−1+di+1. (4.25)

(B2i) (possible only if either i = 1 or i = 2 and s �= n1 + 15)) Terms containing all factors of the
form (M1,i)j+1 j, j ∈ [1 : d2 − 1] except one. Then these terms also contain a factor from the

column b1|S1 depending on the variable uni−1+1.

Now consider four possible cases separately:

(C1) Assume that (B21) and (B22) occur simultaneously. Since for every i ∈ [3 : k]
item (B1i) holds, the participating factor b1j must satisfy j ∈ [1 : d1 + 1] ∪ [n1 + 1 : n1 + d2]. On

the other hand, it must contain the monomial u1un1+1, which by (A31) and (A32) implies that
j /∈ [1 : d1 + 1] ∪ [n1 + 1 : n1 + d2], so we got the contradiction. So, the considered term does not
contribute to the monomial (4.23).

(C2) Assume that (B1i) for all i ∈ [2 : k] and (B21) occur simultaneously. Then the
participating factor b1j from b1|S1 must, on the one hand, satisfy j ∈ [1 : d1] and, on the other

hand, must contain u1, which contradicts (A31). So, the considered term does not contribute to
the monomial (4.23).

(C3) Assume that (B1i) for i �= 2 and (B22) occur simultaneously. In this case the
contribution to the monomial (4.23) is from the coefficient of the monomial ulun1+1 in the factor

b11, which is equal to ((αn1+1)
2 − α2

1)c
n1+1
1l .

(C4). Assume that (B1i) occur simultaneously for every i ∈ [1 : k]. In this case, the
coefficient of the monomial (4.23) is equal, up to a sign, to the coefficient of the monomial
ulusun1+d2+1 in the polynomial b11(M1,2)1,d2 , because the coefficients of the relevant monomials
in all other factors in the corresponding term of Leibniz formula are equal to 1. From (4.25) it
follows that the coefficient of the monomial ulusun1+d2+1 in the polynomial b11(M1,2)1,d2 is equal to

the coefficient of ulus in b11, which by (4.19) is equal to
(
(αn1+1)

2 − α2
1

)
cs1l. (4.26)

Now we are ready to complete the proof of the lemma. First, assume that s = n1 + 1. Then the
case (B22) and therefore (C3) is impossible, so (C4) holds and the coefficient of the monomial (4.23)
is equal, up to a sign, to the expression in (4.26) with s = n1 + 1, so vanishing of this coefficient
implies (4.24) for s = n1 + 1.

Further, the last paragraph implies that the case (C3) does not contribute to the coefficients
of the monomials (4.23), so the only contribution is from the case (C4), which is equal to the
expression in (4.26). Vanishing of the latter implies (4.24), which completes the proof of Lemma 4.

�
Now given i ∈ [1 : k], assume that Xni−1+1 is a local section of Di such that Xni−1+1(q) is an

ad-generating element of mi(q) in the sense of Definition (9) for every q. Let

KXni−1+1 := ker
(
(adXni−1+1)modDi

)
(4.27)

HXni−1+1 := (span{Xni−1+1})⊥ ∩Di, (4.28)

where ⊥ stands for the g1-orthogonal complement. As a direct consequence of Lemma 4, we get
the following

5)Otherwise the desired power of uni−1+1 in (4.23) cannot be achieved.
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Corollary 4. For any di-dimensional subspace Fi of HXni−1+1 with

Fi ∩KXni−1+1 = 0 (4.29)

the image of the restriction of the map (adXni−1+1)modD1 to the subspace Fi coincides with the
entire image of the map (adXni−1+1)modDi

,

Im
((

adXni−1+1)modDi

∣
∣
Fi

)
= Im

(
(adXni−1+1)modDi

)
. (4.30)

In particular, this image of the restriction is independent of Fi.

Proof. Indeed, previously we used span{Xni−1+1, . . . ,Xni} as a subspace Fi, but relation (4.29)
was the only property we actually used to get the conclusion of Lemma 4. �

We will denote the space in (4.30) by LXni−1+1 ,

LXni−1+1 := Im
(
(adXni−1+1)modDi

)
. (4.31)

Remark 9. Note that, if di = 0, then any element of Di is trivially an ad-generating element of
mi.

Remark 10. If di = 1, then dimKXni−1+1 = dimHXni−1+1 = mi − 1 but KXni−1+1 �= HXni−1+1 ,

because Xni−1+1 belongs to KXni−1+1 but does not belong to HXni−1+1 , so KXni−1+1 ∩HXni−1+1

is a codimension 1 subspace HXni−1+1 . Therefore, we can perturb the original quasi-normal frame

(X1, . . . ,Xn) to a quasi-normal frame (X̃1, . . . , X̃n) adapted to the same tuple of ad-generating

elements as the original frame such that for every i ∈ [1 : k] and j ∈ I1
i the line generated by X̃j

is transversal to KXni−1+1 . Since di = 1 and by Corollary 4 [Xni−1+1, X̃j ] �= 0modD (otherwise

X̃j ∈ KXni−1+1), we get that X̃j is also an ad-generating element of mi.

4.3. Proof that [Dr,Dt] ∈ LXnr−1+1 + LXnt−1+1 mod Dr +Dt r �= t

(Toward the Proof of Proposition 10)

The claim in the title of the subsection is equivalent to

csjl = 0 ∀j ∈ I1
r , s ∈ I1

t , l ∈ I1
i ,

where{i, r, t} ∈ [1 : k] are pairwise distinct.
(4.32)

In particular, for k � 2 Eq. (4.32) is void, so it is relevant to assume that k � 3.

Given i0 ∈ [1 : k], consider submatrices Pi0 of [A|b̃] consisting of rows with indices from the set

Ri0 :=

⎛

⎝
⋃

i∈[1:k]\{i0}
[ni−1 + 2 : ni−1 + di + 1]

⎞

⎠ ∪ [ni0−1 + 1 : ni0−1 + di0 + 1]. (4.33)

From (3.8) it follows that Pi0 is a block-diagonal matrix,

Pi0 =

⎛

⎜
⎜⎜
⎜
⎝

Pi0,1 0 0

0
. . . 0

0 0 Pi0,k

⎞

⎟
⎟⎟
⎟
⎠

, (4.34)

where Pi0,i0 is of size (d10 + 1)× di0 and Pi0,i, i �= i0 is of size di0 × di0 . Note that by construction

Pi0,i0 = Mi0,i0 , (4.35)

where Mi0,i0 is defined in (4.22).

Similar to the previous subsection, let b̃1|Pi0
be the subcolumn of the column b̃1 consisting of

the same rows as in Pi0 ,
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Lemma 5. If for every triple of pairwise distinct integers {i0, r, t} ∈ [1 : k] the coefficient of all
monomials of the form

ujulusu
di0−1
ni0−1+1

∏

i∈[1:k]\{i0}
udini−1+1, where j ∈ [nr−1 + 1 : nr−1 + dr + 1],

l ∈ [nt−1 + 1 : nt−1 + dt + 1], s ∈ [ni0−1 + 1 : ni0−1 + di0 + 1]

(4.36)

in the determinant det[Pi0 |b̃|Ri0
] vanishes, then

csjl = 0,where j ∈ [nr−1 + 1 : nr−1 + dr + 1],

l ∈ [nt−1 + 1 : nt−1 + dt + 1], s ∈ [ni0−1 + 1 : ni0−1 + di0 + 1]
(4.37)

or, equivalently,

[Xj ,Xl] ∈ Lr + Lt mod(Dr +Dt),

j ∈ [nr−1 + 1 : nr−1 + dr + 1], l ∈ [nt−1 + 1 : nt−1 + dt + 1].
(4.38)

Proof. Without loss of generality, we can assume that r = 1, t = 2, and i0 = k. Further, using (4.35),
similarly to the proof of Lemma 4 (statements of items (A1i) and (A2i) there), one can conclude
that the variable uni−1+1, i ∈ [1 : k] appears only in the following columns of the augmented matrix

[N1|b̃|T1 ]:

(D1i) The columns containing all columns of Pk,i if i ∈ [1 : k− 1], and all columns of Pk,i except the
last one, if i = k. Moreover, in each of these columns uni−1+1 appears exactly in the diagonal
entry (Pk,i)jj if i ∈ [1 : k − 1], and in the entry (Pk,i)j+1j, i. e., in the entry situated right
below the diagonal of the block Pk,i, if i = k. Besides, the coefficient of uni−1+1 in this entry
is equal to 1;

(D2i) the last column of the matrix [Pk|b̃|Rk
];

As before, we can set all irrelevant variables u’s (which are not in (4.36)) to zero. From this and
the normalization condition (4.9) it follows that

(D3) The only nonzero entry of the first row of Pk,k is the entry in the s− nk−1 − 1 column, i. e.,
Pk,k|1,s−nk−11 and it is equal to −us.

Finally, the statement of (A3i) with M1 replaced by Pk, M1,i replaced by P1,i, and S1 replaced by
Rk holds true, i. e.,

(D4i) The components of the column vector b1|R1 in the rows corresponding to the rows of the
block Pk,i of Pk do not contain uni−1+1.

From item (D1i) above, the fact that uni−1+1 appears in the monomial (4.36) in the power di
for i ∈ [1 : k − 1] and in the power not less than di − 1 if i = k, and that by Lemma 3 and (D4i)
the participating entries do not contain (uni−1+1)

2 it follows that in the Leibniz formula for the

determinant of the matrix (Pk|b̃1|Rk
) the contribution to the monomial (4.36) from the block Pk,i

comes only from the following terms:

(E1) Terms containing all factors of the form (Pk,i)j j, j ∈ [1 : di], if i ∈ [1 : k − 1]. Otherwise, if
one of them is omitted, then a nondiagonal entry of Pk,i has to be used as well, therefore,
another diagonal term of Pk,i has to be omitted, however, in this way there is no way to
reach uni−1 in the power di in the resulting monomial.
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(E2) Terms containing all factors of the form (Pk,i)j j+1, j ∈ [1 : dk], if i = k and s = nk−1 + 1.

In this case, the desired contribution must contain the component of b̃1 which belongs to the

row, corresponding to the first row of Pk,k, i. e., b̃nk−1+1.

(E3) Terms containing all factors of the form (Pk,k+1)j+1 j , j ∈ [1 : dk except one, if i = k and
s �= nk−1 + 1 .Then by (D3) and the fact that Pk has the block-diagonal form as in (4.34),
it follows that the omitted factor is (Pk, ks−nk−1,s−nk−1−1). Hence, the desired contribution

must contain the component of b̃1 which belongs to the row, corresponding to the s− nk−1th

row of Pk,k, i. e., the component b̃s.

So, we have two cases:

(F1) s = nk−1 + 1. In this case, by combining (E1) and (E2), we conclude that the coefficient of

the monomial (4.36) in det[Pi0 |b̃|Ri0
] is, up to a sign, equal to the coefficient of the monomial

ujul in b̃nk−1+1, which by (4.19) is equal to
(
α2
k − α2

1

)
cjl,nk−1+1 +

(
α2
k − α2

2

)
clj,nk−1+1. (4.39)

(F2) s �= nk−1 + 1. In this case, by combining (E1) and (E3) and using (4.19), we conclude that

the coefficient of the monomial (4.36) in det[Pi0 |b̃|Ri0
] is, up to a sign, equal to the coefficient

of the monomial ujul in b̃s, which by (4.19) is equal to (4.36)
(
α2
k − α2

1

)
cjl,s +

(
α2
k − α2

2

)
clj,s = 0. (4.40)

So, by the assumptions of the lemma, expressions in (4.39) and (4.40) vanish.

Repeating the same arguments for an arbitrary pairwise distinct triple {r, s, i0} ∈ [1 : k] instead
of {1, 2, k}, we will get that

(
α2
i0 − α2

r

)
cjl,s +

(
α2
i0 − α2

t

)
clj,s = 0, ∀j ∈ [nr−1 + 1 : nr−1 + dr + 1],

l ∈ [nt−1 + 1 : nt−1 + dt + 1], s ∈ [ni0−1 + 1 : ni0−1 + di0 + 1].
(4.41)

Permuting the indices in (4.41), we can get
(
α2
t − α2

r

)
cjs,l +

(
α2
t − α2

i0

)
csj,l =

(
α2
r − α2

t

)
cjl,s +

(
α2
t − α2

i0

)
csj,l = 0. (4.42)

Finally, item (3) of Proposition 11 implies
(
α2
i0 − α2

t

)
cjs,l +

(
α2
r − α2

i0

)
clj,s +

(
α2
r − α2

t

)
csj,l = 0. (4.43)

The linear homogeneous system with respect to cjl,s, c
l
j,s, and csj,s, consisting of Eqs. (4.41)–(4.43),

has the matrix
⎛

⎜⎜
⎜⎜
⎝

α2
i0
− α2

r α2
i0
− α2

t 0

α2
r − α2

t 0 α2
t − α2

i0

α2
i0
− α2

t α2
r − α2

i0
α2
r − α2

t

⎞

⎟⎟
⎟⎟
⎠

, (4.44)

whose determinant is equal to

(α2
t − α2

i0)
(
(α2

i0 − α2
j )

2 + (α2
r − α2

t )
2 + (α2

i0 − α2
t )

2
)

and is not zero as by our assumption that α2
i0
, α2

r , and α2
t are pairwise distinct. This implies (4.37).

�
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Lemma 5 proves only a subset of relations from (4.32). Using the flexibility given by Corollary 4,
one can show that (4.32) holds not for the original quasi-normal frame but for its perturbation

adapted to the same tuple of ad-generating vector fields {Xni−1+1}ki=1.

Corollary 5. Let KXni−1+1 and HXni−1+1 be as in (4.27) and (4.28), respectively. For every

i ∈ [1 : k] let Yi be either equal to Xni−1+1 or a normalized (i. e., g(Yi, Yi) = 1) local section of
HXni−1+1 so that

Yi /∈ KXni−1+1 . (4.45)

Then for every r �= t from [1 : k]

[Yr, Yt] ∈ Lr + Lt mod(Dr +Dt). (4.46)

Proof. Indeed, (4.45) implies that we can find a quasi-normal frame (X1, . . . ,Xn) such that either
Xni−1+1 = Yi or Xni−1+2 = Yi. Then (4.46) follows from (4.38) of Lemma 5. �

If di � 1, then dimKXni−1+1 � dimHXni−1+1 andKXni−1+1 �= HXni−1+1 . The latter holds because

Xni−1+1 is in KXni−1+1 but not in HXni−1+1 . So, in this case the complement of KXni−1+1 ∩HXni−1+1

to HXni−1+1 is open and dense in HXni−1+1 . Therefore, by a finite number of consecutive small

perturbations of the original quasi-normal frame (X1, . . . ,Xn), one can build a quasi-normal frame

(X̃1, . . . , X̃n) adapted to the same tuple of ad-generating elements as the original frame such that
for every r ∈ [1 : k]

• if dr � 1, then every j ∈ I1
r \{nr−1 + 1}, the vector field X̃j is in the complement of

KXni−1+1 ∩HXni−1+1 to HXni−1+1 ;

• if dr = 0, then no additional conditions on X̃j with j ∈ I1
r are imposed and by permutation

any X̃j can be seen as Xnr−1+1 (note that in this case any element of Dr is trivially an
ad-generating element of mr).

So, by (4.46) this frame satisfies

[Xj ,Xl] ∈ Lr + Lt mod(Dr +Dt), j ∈ I1
r , l ∈ I1

t , r �= t ∈ [1 : k], (4.47)

which is equivalent to (4.32).

Remark 11. Note that, if (4.47) holds for some quasi-normal frame, then it holds for any quasi-
normal frame adapted to the same tuple of ad-generating elements as the original one.

As the direct consequence of (4.19) and (4.32), we get that for any triple {i, r, t} of pairwise

distinct integers from [1 : k] and any j ∈ I1
i , j ∈ I1

r , and l ∈ I1
t , the polynomial b̃j does not contain

a monomial urut. Combining this with Lemma 3, we get

Lemma 6. Given j ∈ I1
i , b̃j does not contain monomials urul with r, l ∈ [1 : m]\I1

i , or, equiva-

lently, every monomial of b̃j must contain a variable ur with r ∈ I1
i .

Moreover, from (4.19) and Lemma 4 it follows that

Corollary 6. For every i ∈ [1 : k]

b̃ni−1+1 = 0. (4.48)
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4.4. Proof of Proposition 7

The statement of Proposition 7 is equivalent to showing that

D2
i (q) ∩

⊕

j∈[1:k]\{i}
Dj(q) = {0}. (4.49)

In terms of structure functions of a quasi-normal frame, it is equivalent to showing that

cslr = 0, for l, r ∈ I1
i , s ∈ [1 : m]\I1

i . (4.50)

Remark 12. Note that by Remarks 9 and 10, if di = 0 or di = 1 for some i ∈ [1 : k], one can

perturb the original quasi-normal frame to a quasi-normal frame (X̃1, . . . , X̃n) for which all X̃j

are ad-generating elements of mi (for di = 0 any quasi-normal frame satisfies this property). This
implies that for this (perhaps perturbed) frame relation (4.50) will follow from Lemma 4 because we
can apply this lemma for the frame obtained from the original quasi-normal frame by an appropriate
permutation.

To show (4.50), first, given i0 ∈ [1 : k], we construct a submatrix Ni of A with row indices

Ti0 :=

(
k⋃

i=1

[ni−1 + 1 : ni−1 + di]

)

∪ {m+ ei0−1 + 1}. (4.51)

Then Ni0 has the following form:

Ni0 =

⎛

⎜
⎜⎜
⎜⎜
⎜
⎜
⎝

Ni0,1 0 0

0
. . . 0

0 0 Ni0,k

a2ni0−1+1

⎞

⎟
⎟⎟
⎟⎟
⎟
⎟
⎠

, (4.52)

where Ni0,j is of size di × di, and a2ni0−1+1 is the (ni0−1 + 1)th row of the matrix A2 from the second

layer of the fundamental algebraic system (3.19). Moreover,

Ni0,j =

{
Mi0,j if j �= i0

Ms,i0 if j = i0 (here s �= i0),
(4.53)

where Mi,j are as in (4.22). Note that by Remark 8 the right hand-side in the second line of (4.53)
is independent of s �= i0.

Denote by b|Ti0
the subcolumn of the column b of the fundamental algebraic system (3.19)

consisting of the same rows as in matrix Ni0 , i. e., the rows of b indexed by the set Ti0 as in (4.51).

Lemma 7. Assume that (4.24) holds and that, given i0 ∈ [1 : k], the coefficients of all monomials
of the form

ulusuj

(
k∏

i=1

uni−1+di+1

)(
k∏

i=1

(uni−1+1)
di−1

)

with

l ∈ [ni0−1 + 2 : ni0−1 + di0 + 1], s ∈ [1 : m]\I1
i0 , and j ∈ I2

i0

(4.54)

in det([Ni0 |b|Ti0
] vanish. Then

cslr = 0, l, r ∈ [ni0−1 + 2 : ni0−1 + di0 + 1], and s ∈ [1 : m]\I1
i0 . (4.55)
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Proof. Without loss of generality we can assume that i0 = 1 and that s ∈ I1
2 . Let b̃T1 be the

subcolumn of the column b̃ consisting of the rows of b̃ indexed by the set T1, where b̃ is as in (4.19).

Further, using (4.53), similarly to the proof of Lemma 4 (statements of items (A1i) and (A2i)
there), one can conclude that the variable uni−1+1, i ∈ [1 : k] appears only in the following columns

of the augmented matrix [N1|b̃|T1 ]:

(F1i) The columns containing all columns of N1,i except the last one. Moreover, in each of these
columns uni−1+1 appears exactly in the entry (N1,i)j+1j , i.e., in the entry situated right below
the diagonal of the block N1,i. Besides, the coefficient of uni−1+1 in this entry is equal to 1;

(F2i) the last column of the matrix [N1|b̃|T1 ];

(F3i) the last row of the matrix [N1|b̃|T1 ].

Besides, applying the normalization conditions (4.9) to (4.19), one gets

(F4i) The components of the column vector b̃|T1 in the rows corresponding to the rows of the block
N1,i of N1 do not contain uni−1+1.

The following sublemma is important in the sequel, but its proof consists of tedious computations
and is postponed to Appendix B:

Sublemma 1. The entry from the last column and the last row of [N1|b̃|T1 ], i. e., b̃m+1, is
independent of uj with j ∈ I2

1 .

From Sublemma 1 and the fact that the elements of the blocks N1,v defined by (4.52) do not

depend on variables uj with j > m, it follows that a term L in the Leibniz formula for det[N1|b̃|T1 ],
which contributes to the monomial (4.54), cannot contain as a factor the entry from the last column

and the last row of the augmented matrix [N1|b̃|T1 ]. Therefore, the term L must contain one factor

of the form b̃r, where r ∈
k⋃

i=1

[ni−1 + 2 : ni−1 + di] (here we also use Corollary 6) and one factor

from the last row of [N1|b̃|T1 ], i. e., a
2
1,m+t. Moreover, by Remark 7, since the second line of (B.5)

is independent of uj with j > m, we must have

t ∈ [1 : d1]. (4.56)

Now, for definiteness, assume that r ∈ [ni1−1 + 2 : ni1−1 + di1 ] for some i1 ∈ [1 : k]. By property

(F4i), b̃r does not contain uni1−1+1. Besides, the entry (N1,i1)r − ni1−1, r − ni1−1 − 1 cannot

be a factor in L. So, using properties (F1i)–(F3i) and the fact that uni1−1+1 appears in the

monomial (4.54) in the power not less than di1 − 1, we get that the factor a21,m+t must contain

uni1−1+1. Hence, the desired contribution of a21,m+t to the monomial (4.54) is equal to the coefficient

of the monomial uni1−1+1uj in a21,m+t.

To find this coefficient, note that a21,m+d1
is given by (B.5). From (3.17) it follows that the

second term of (B.5) depends only on ui’s with i ∈ [1 : m], so it does not contribute to the

required monomial. Therefore, we have to find the contribution of the first term, i. e., of �h1(q1,m+t).
From (3.17), the decomposition of the Tanaka symbol (3.8), and the normalization conditions (4.9)
it follows that

q1,m+t = −ut+1 −
n1∑

x=d1+2

cm+d1
1x ux. (4.57)
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Then, using (4.15),

�h1(q1m+t) = −�h1(ut+1 +

n1∑

x=d1+2

cm+t
1x ux)

= −
(

n∑

v=1

qt+1vuv +

n1∑

x=d1+2

n∑

v=1

cm+t
1x qxvuv +

n1∑

x=d1+2

�h1(c
m+t
1x )ux

)

.

(4.58)

The last term in (4.58) depends only on uw’s with w ∈ [1 : m] and does not contribute to the

coefficient of the monomial uni1−1+1uj with j ∈ I2
1 in �h1(q1,m+d1). As qik depends on ui’s with

i ∈ [1 : m] only (see (3.17)), in the first two terms of (4.58) only summands with v = j contribute

to the coefficient of the monomial uni1−1+1uj in �h1(q1,m+d1). So, again by (3.17), this coefficient is

equal to

−cjni1−1t+1 −
n1∑

x=d1+2

cjni1−1xc
m+t
1x . (4.59)

Since j ∈ I2
1 , by the decomposition of the Tanaka symbol (3.8), the expression in (4.59) is equal

to zero for i1 ∈ [2 : k]. So a nonzero contribution is obtained only if

i1 = 1 ⇒ r ∈ [2 : d1]. (4.60)

In this case the coefficient of the monomial u1uj in �h1(q1,m+d1) is equal to

−cj1t+1 −
n1∑

x=d1+2

cj1xc
m+t
1x = −

n1∑

x=2

cj1xc
m+t
1x , (4.61)

where the last equality follows from the normalization conditions (4.9). If we set

vs = (cs1,2, c
s
1,3, . . . , c

s
1,m1

) s ∈ [m+ 1 : m+ d1], (4.62)

then (4.61) can be rewritten in terms of the standard inner product 〈·, ·〉 in R
d1 as follows:

−〈vj , vm+t〉. (4.63)

Further, as before, for our purpose, it is enough to set variables ui not appearing in (4.54) to be

equal to zero. Let us check what happens in the rows of [N1|b̃|T1 ] containing the first rows of each
block N1,i, Consider the cases i > 2 and i ∈ {1, 2} separately:

(G1) The case i > 2. Any term L in the Leibniz formula for det[N1|b̃|T1 ] contributing to the
monomial (4.54) must contain as factors all entries of the form (N1,i)x+1x, x ∈ [1 : di − 1] and
also the entry (N1,i)1,di . Indeed, in this case, the only nonzero entry in the first row of N1,i is
(N1,i)1,di and, using Corollary 6, (N1,i)1,di must appear as a factor in the term L. Furthermore, if
for some x0 ∈ [1 : di − 1] the entry (N1,i)x0+1x0 is omitted, then by (4.52) and (4.56) the term L will
contain a factor of the form (N1,i)y,x0 for some y ∈ [2 : di]\{x0 + 1}. Hence, the entry (N1,i)yy−1

does not appear as a factor in the term L either. Then from properties (F1i)–(F3i) and the fact
that by (4.60) the factor a21m+t from the last row of N1 does not contain uni−1+1, it follows that the

power of uni−1+1 in the term considered is less than di − 1, but in the monomial (4.54) it is at least
di − 1 and we get the contradiction. Note also that in the case at hand, using the normalization
conditions (4.9), we have

(N1,i)x+1x = uni−1+1, (N1,i)1,di = −uni−1+di+1, (4.64)

so the total contribution of these factors to the coefficient of the monomial (4.54) is ±1, i. e., trivial.

(G2) The cases i = 1 and i = 2. From Corollary 6 it follows that
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• the only nonzero entries in the first row of [N1|b̃|T1 ] are

(N1,1)1 l−1 = −ul, (N1,1)1 d1 = −ud1+1; (4.65)

• the only nonzero entries in the row of [N1|b̃|T1 ] containing the first row of N1,2 are

(N1,2)1 s−n1−1 = −us, if s ∈ [n1 + 2 : n1 + d1 + 1] (4.66)

(N1,2)1 d1 = −un1+d2+1. (4.67)

Consequently, we have the following four possibilities:
(G2a) The entries (N1,1)1 d1 and (N1,2)1 d2 are factors in L. This and (4.60) implies that the

entries (N1,2)x+1,x for all x ∈ [1 : d2 − 1] are factors in L, and there exists r ∈ [2 : d1] such that b̃r is

a factor in L. The latter implies that the entry (N1,1)r,r−1 is not a factor in L and therefore a21,m+r−1

is a factor in L, otherwise more than one of the entries of the form (N1,1)x+1,x, x ∈ [1 : d1 − 1] will
not appear as factors in N1,1 and it will contradict the fact that u1 appears in the monomial (4.54)
in the power not less than d1 − 1.

Recall that in a21,m+r−1 we are interested in the coefficient of the monomial u1uj, which by (4.63)
is equal to

−〈vj , vm+r−1〉. (4.68)

Taking into account all factors we revealed in L, relations (4.64), (4.65), (4.67), and (4.64), and also

that in a21,m+r−1 we are interested in the monomial u1uj, we conclude that in b̃r we are interested

in the coefficient of ulus, as ul and us are the only variables in the monomial (4.54) that have still
not been used. By (4.19) the latter coefficient is equal to (α2

1 − α2
2)c

s
lr. So, this, together with (4.68)

and the last sentence of (G1), implies that the total contribution of all possible terms satisfying
the assumptions of (G2a) (i. e., for every r ∈ [2, d1]) can be written as

(α2
1 − α2

2)

〈
d2∑

r=2

sgn(σr)c
s
lrv

m+r−1, vj

〉

, (4.69)

where sgn(σr) stands for the sign of the permutation related to the corresponding term in the Leibniz

formula for det[N1|b̃|T1 ]. Since the value of sgn(σr) is not important to the final conclusions, its
explicit expression is not written out here.

(G2b) The entries (N1,1)1 l−1 and (N1,2)1 d2 are factors in L. First, regarding the entries
from the block N1,2 we can use the same arguments and the same conclusions as in (G1a). Regarding
the entries of the block N1,1, since the entry (N1,1)1 l−1 is already used in L, the entry (N1,1)l l−1

should not appear as a factor in L, but then, by the same arguments about the lower bound for
the power of u1 that we have already used both in (G1) and (G2a), all other entries of the form

(N1,1)x,x−1 have to be in L. Therefore, the entries a21,m+d1
and b̃l must appear as factors of L.

By (4.63), the former contributes to the monomial (4.54) the factor

−〈vj , vm+d1〉. (4.70)

Next, similarly to (G2a), the contribution to the monomial (4.54) from b̃l is equal to the coefficient
of ud1+1us which by (4.19) is equal to −(α2

1 − α2
2)c

s
ld1+1, so that the contribution of the terms from

(G2b) to the monomial (4.54) is equal to

(α2
1 − α2

2)〈sgn(σd2+1)c
s
ld2+1v

m+d2 , vj〉, (4.71)

where sgn(σd2+1) stands for the sign of the corresponding permutation. Combining (4.69)
and (4.71), we get that the contribution of the terms satisfying the conditions of (G2a) or (G2b)
can be written as

(α2
1 − α2

2)

〈
d2+1∑

r=2

sgn(σr)c
s
lrv

m+r−1, vj

〉

. (4.72)
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Further note that by (4.66) for s /∈ [n1 + 2 : n1 + d1 + 1] the cases (G2a) and (G2b) are
the only possible cases, so in this case the expression in (4.72) is equal to the coefficient
of the monomial (4.54). Vanishing of this coefficient for any j ∈ I2

1 implies that the vector
∑d1+1

r=2 sgn(σr)c
s
lrv

m+r−1, which belongs to span{vx : x ∈ I2
1}, is orthogonal to vj for all j ∈ I2

1 .
Hence,

d1+1∑

r=2

sgn(σr)c
s
lrv

m+r−1 = 0. (4.73)

From ad-surjectivity, and, more precisely, since X1 is chosen as an ad-generating element, the tuple

of vectors (vm+1, vm+2, . . . , vm+d1) forms a basis in R
d1 . Therefore,

cslr = 0, for l, r ∈ [2 : d1 + 1], and s /∈ [1 : d1] ∪ [n1 + 2 : n1 + d1 + 1]. (4.74)

(G2c) The entries (N1,1)1 d1 and (N1,2)1 s−n1−1 are factors in L (relevant only for
s ∈ [n1 + 2 : n1 + d2 + 1]). For the block N1,2 let us apply the arguments similar to the ones we
used for the block N1,1 in (G2b):

Since the entry (N1,2)1 s−n1−1 is already used in L, the entry (N1,2)s−n1 s−n1−1 should not appear
as a factor in L, but then, by the same arguments about the lower bound for the power of u1 that we
have already used both in (G1) and (G2a), all other entries of the form (N1,2)x,x−1, x ∈ [2 : d2] have

to be in L. Then the contribution to L of the row of the matrix [N1|b̃|T1 ] containing the (s− n1)th
row of N1,2 must be equal to the entry (N1,2)s−n1,d2 . Here we also use that this contribution cannot

be from the last column of [N1|b̃|T1 ], because of (4.60). Since by (4.66) Us is already used, the
term in (N1,2)s−n1,d2 that may give a contribution to the monomial (4.54) is the one containing

un1+d2+1. Further, passing to the rows of [N1|b̃|T1 ] containing the block N1,1, since ud1+1 is used in

(N1,1)d1 , the only possible contribution of b̃r comes from the monomial ulun1+1, the coefficient of

which by (4.19) is equal to (α2
1 − α2

2)c
n1+1
l,r . However, this coefficient is zero by (4.74). Hence, there

is no contribution to the monomial (4.54) from the terms satisfying (G2c).

(G2d) The entries (N1,1)1 l−1 and (N1,2)1 s−n1−1 are factors in L (relevant only for
s ∈ [n1 + 2 : n1 + d2 + 1]). The only difference from (G2c) is that since (N1,1)1 l−1 in L is used, one

has to use the term b̃l, and since, by (4.65), it is already used in (N1,1)1 l−1, in b̃l we are interested

in the coefficient of the monomial ud1+1un1+1. By (4.19), this coefficient is equal to (α−
1 α

2
2)c

n1+1
d1+1l,

which is equal to zero by (4.74). Hence, there is no contribution to the monomial (4.54) from the
terms satisfying (G2d).

So, for s ∈ [n1 +2 : n1 + d1 +1] also the coefficient of the monomial (4.54) in det[N1|b̃|T1 ] is equal
to (4.72). Repeating the same arguments as after (4.72), we will get that the equality in (4.74) holds
also for s ∈ [n1 + 2 : n1 + d1 + 1]. This completes the proof of Lemma 7 in the case of i0 = 1 and
s ∈ I1

2 . Since we can always permute the indices, it also proves this lemma in general. �

Lemma 7 proves only a subset of relations from (4.50). Using again the flexibility given by
Corollary 4, one can show that (4.50) holds not for the original quasi-normal frame but for its
perturbation adapted to the same choices of Xni−1+1, which will be enough to finish the proof of
Proposition 7.

Corollary 7. Let KXni−1+1 and HXni−1+1 be as in (4.27) and (4.28), respectively. If Yi and Zi are

sections of HXni−1+1 satisfying

dim span{Yi, Zi} = 2, span{Yi, Zi} ∩KXni−1+1 = 0, (4.75)

then
[Yi, Zi] ∈ LXni−1+1 modDi, (4.76)

where LXni−1+1 is defined as in (4.31).
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Proof. Indeed, from (4.75) it follows that we can find a quasi-normal frame (X1, . . . ,Xn) such

that Xni−1+2 =
Yi

(g1(Yi, Yi))1/2
and Xni−1+3 ∈ span{Yi, Zi}. Then (4.76) follows from Lemmas 7

and Corollary 4. �

By Remark 12, we can assume that di � 2, as for di = 0 or 1, relations (4.50) have already been
proved there, perhaps for a perturbed quasi-normal frame. Under this assumption the set of planes
in HXni−1+1 having a trivial intersection with KXni−1+1 is generic. Therefore, by a finite number

of consecutive small perturbations, one can build a quasi-normal frame (X1, . . . ,Xn) such that, for
every ni−1 + 2 � i < j � ni, the pair (Yi, Zi) = (Xi,Xj) satisfies (4.75) and so by Corollary 7 this
frame satisfies (4.50). Besides, by Remark 11, the new quasi-normal frame obtained in this step
will automatically satisfy (4.47). This completes the proof of Proposition 7.

4.5. Proof of Proposition 9

From (4.50) and Lemma 6, using (3.17), one can get that

b̃j = 0, ∀j ∈ [1 : m]. (4.77)

This, together with (4.18), implies that, if for all v ∈ [1 : k] and j ∈ I2v we set Ψj := Φj −α2
nv−1+1uj

and Ψ := (Ψ1, . . . ,Ψm)T , then A1Ψ = 0. This, again together with (4.18), implies that the tuple

Φ̃ = (Φm+1, . . . ,Φn)
T with

Φj = α2
nv−1+1uj, j ∈ I2

v , (4.78)

which corresponds to Ψ = 0, is the solution to the first layer A1Φ̃ = b1 of the fundamental algebraic
system (3.19).

Further, note that the m× (n−m)-matrix A1 has the maximal rank n−m at a generic point, as

from the normalization conditions (4.9) the coefficient of the monomial

k∏

v=1

udvnv−1+1 in its maximal

minor consisting of rows from the set

k⋃

v=1

[nv−1 + 2 : nv−1 + di + 1] is equal to 1. Hence, (4.78)

defines the unique (rational in u’s) solution of the the system A1Φ̃ = b1 and therefore it must
coincide with the solution of the whole fundamental algebraic system (3.19), i. e., it must satisfy
other layers of it. In other words,

k∑

v=1

∑

l∈I2
v

ast,lα
2
ni−1+1ul = bst , ∀s � 1, t ∈ [1 : m], (4.79)

where ast,k and bst satisfy (3.21) and (3.22), respectively. Note that, by (4.18), relation (4.79) is

equivalent to

b̃ = 0. (4.80)

Without loss of generality, it is enough to prove Proposition 9 for i = 1.

Lemma 8. The coefficients of the monomials

uyuluj, y, l ∈ [2 : d1 + 1], j ∈ I1
v ∪ I2

v , v �= 1 (4.81)

in b̃m+1 are equal to
⎧
⎨

⎩

−
(
α2
1 − α2

nv−1+1

)(
cjy,m+l−1 + cjl,m+y−1

)
, y �= l ∈ [2 : d1 + 1], j ∈ I1

v ∪ I2
v , v �= 1

−
(
α2
1 − α2

nv−1+1

)
cjy,m+y−1, y = l ∈ [2 : d1 + 1], j ∈ I1

v ∪ I2
v , v �= 1.

(4.82)
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Proof. We use the expression for b̃m+1 given by (B.10) in Appendix B. Consider the cases j ∈ I2
v

and j ∈ I1
v separately.

Case 1: j ∈ I2
v . The first term of this expression does not contribute to the monomial (4.81),

because every monomial in it contains uw with w ∈ [1 : m]\I1
1 . Also, since w ∈ [1 : m]\I1

1 , by
Lemma 4 q1,w are independent of uz for z ∈ I1

1 , hence the second term of (B.10) does not
contain the monomial (4.81). Further, the third term of (B.10) does not depend on uj with j > m
because by (3.17) all qjl depend only on ui’s with i ∈ [1 : m]. Therefore, in the case at hand the
monomial (4.81) may appear in (B.10) only in the fourth term, i. e., in

k∑

i=2

(
(α1)

2 − (αni−1+1)
2
) m+d1∑

r=m+1

∑

t∈I2
i

q1rqrtut. (4.83)

Finally, by the normalization conditions (4.9) one can easily show that the coefficient of this
monomial in (4.83) is equal to (4.82).

Case 2: j ∈ I1
v . In this case the fourth term of (B.10) does not contribute to the monomial (4.81)

in b̃m+1, because each monomial in this term contains factor ut with t > m.
Let us analyze the second term of (B.10): by Lemma 4, the factor q1w does not contain us

with s ∈ I1
1 , so it must contribute the coefficient of uj, which is equal to cwj1. Hence, the index x,

appearing in the second term of (B.10) must be in I11 , hence it must be equal to either y or l, where
y and l are as in (4.81). So, the total contribution of the second term of (B.10) to the coefficient of

the monomial (4.81) in b̃m+1 is equal to

k∑

i=2

(
(α1)

2 − (αni−1+1)
2
) ∑

w∈I1
i

cwj1(c
y
lw + clyw) = 0, (4.84)

because cylw + clyw = 0 by item (2) of Proposition 11. So, the second term of (B.10) does not

contribute to the monomial (4.81) in b̃m+1

Now let us analyze the first term of (B.10): First, the index w appearing there must be equal to
j from (4.81). Second, as in (B.13),

�h1(q1j) =

m∑

r=1

n∑

x=1

cjr1qrxux +

m∑

r=1

�h1(c
j
r1)ur. (4.85)

In the second term of (4.85) we are interested in r ∈ I1
1 , but in this case, by Lemma 4, cjr1 = 0

and therefore the second term of (4.85) does not contribute to (4.89).

For the same reason, the index r in the first term of (4.85) can be taken from [1 : m]\I11 , Hence,
the coefficient of uyul which is of interest to us in the first term of (4.85) for the monomial (4.81)
is equal to

m∑

r=m1+1

cjr1(c
y
lr + clyr) = 0, (4.86)

because cylr + clyr = 0 by item (2) of Proposition 11 again. Consequently, the first term of (B.10)

does not contribute to the monomial (4.81) in b̃m+1.
So, in the case at hand the monomial (4.81) may appear in (B.10) only in the third term, i. e.,

in
k∑

i=2

(
(α1)

2 − (αni−1+1)
2
) m+d1∑

r=m+1

∑

w∈I1
i

q1rqrwuw. (4.87)

Finally, by the normalization conditions (4.9) one can easily show that the coefficient of this
monomial in (4.87) is equal to (4.82). �

REGULAR AND CHAOTIC DYNAMICS Vol. 29 No. 2 2024



ON EISENHART’S TYPE THEOREM FOR SUB-RIEMANNIAN METRICS 333

From condition (4.80) and Lemma 9 it follows that
{
cjy,m+l−1 + cjl,m+y−1 = 0, y �= l ∈ [2 : d1 + 1], j ∈ [1 : n]\(I1

1 ∪ I2
1);

cjy,m+y−1 = 0, y = l ∈ [2 : d1 + 1], j ∈ [1 : n]\(I1
1 ∪ I2

1).
(4.88)

Lemma 9. The coefficients of the monomials

u21uj, j ∈ I1
v ∪ I2

v , v �= 1 (4.89)

in b̃m+f , f ∈ [2 : d1 + 1] are equal to
(
α2
1 − α2

nv−1+1

)
cj1,m+f−1. (4.90)

Proof. We use the expression for b̃m+f given by formula (B.10) from Appendix B. Consider the

cases j ∈ I2
v and j ∈ I1

v separately.

Case 1: j ∈ I2
v . The first and the third term of (B.10) do not contribute to the monomial (4.89)

by the same arguments as in the proof of case 1 of Lemma 8, while the same holds for the second term
not only by Lemma 4 but also by Lemma 7. Hence, as in the proof of Lemma 8, the monomial (4.89)
may appear only in the fourth term, i. e., in

k∑

i=2

(
(α1)

2 − (αni−1+1)
2
) m+d1∑

r=m+1

∑

t∈I2
i

qfrqrtut. (4.91)

Finally, by the normalization conditions (4.9) one can easily show that the coefficient of this
monomial in (4.91) is equal to (4.90).

Case 2: j ∈ I1
v . In this case the fourth term of (B.10) does not contribute to the monomial (4.89)

in b̃m+1 for the same reason as in the proof of case 2 of Lemma 8.

The analysis of the first and second terms of (B.10) is also completely analogous to the one in
the proof of case 2 of Lemma 8. The main differences are that here we use Lemma 7 together with
Lemma 4 there and item (1) of Proposition 11 instead of item (2) of Proposition 11 there.

In more detail, for the second term of (B.10) by Lemma 7 the factor qfw does not contain us
with s ∈ I1

1 , so it must contribute the coefficient uj , which is equal to cwj1. Hence, the index x

appearing in the second term of (B.10) must be in I11 , and hence it must be equal to 1. So, the

total contribution of the second term of (B.10) to the coefficient of the monomial (4.89) in b̃m+f is
equal to

k∑

i=2

(
(α1)

2 − (αni−1+1)
2
) ∑

w∈I1
i

cwjfc
1
1w = 0, (4.92)

because c11w = 0 by item (2) of Proposition 11. So, the second term of (B.10) does not contribute

to the monomial (4.89) in b̃m+f .

Now let us analyze the first term of (B.10): First, the index w appearing there must be equal to
j from (4.89). Second, as in (B.13),

�h1(qfj) =
m∑

r=1

n∑

x=1

cjrfqrxux +
m∑

r=1

�h1(c
j
rf )ur. (4.93)

In the second term of (4.86) we are interested in r = 1, but in this case, by Lemma 4, cjr1 = 0
and therefore the second term of (4.85) does not contribute to (4.89).
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By similar reasoning, using now also Lemma 7, the index r in the first term of (4.85) can be
taken from [1 : m]\I11 . Hence, the coefficient of u21 which is of interest to us in the first term of (4.93)
for the monomial (4.89) is equal to

m∑

r=m1+1

cjrfc
r
1r = 0, (4.94)

because c11r = 0 by item (1) of Proposition 11 again. Consequently, the first term of (B.10) does

not contribute to the monomial (4.89) in b̃m+f .

So, in the case at hand the monomial (4.81) may appear in (B.10) only in the third term, i. e.,
in (4.87). Finally, by the normalization conditions (4.9) one can easily show that the coefficient of
this monomial in (4.87) is equal to (4.90). �

From condition (4.80) and Lemma 9 it follows that

cj1,l = 0, l ∈ I2
1 , j ∈ [1 : n]\(I1

1 ∪ I2
1). (4.95)

In other words,

ad(X1)(D
2
1) ⊂ D2

1. (4.96)

Lemma 10. The following inclusion holds:

ad(Xy)(D
2
1) ⊂ D2

1, ∀y ∈ I1
1 . (4.97)

Proof. Take y, l ∈ [2 : d1 + 1]. Using the normalization conditions (4.8) and the Jacobi identity, we
have

[Xy,Xm+l−1]
(4.8)
= [Xy, [X1,Xl]] = [[Xy ,X1],Xl]

+ [X1, [Xy ,Xl]]
(4.8)
= [−Xm+y−1,Xl] + [X1, [Xy,Xl]].

(4.98)

Hence, using (4.96),

[Xy,Xm+l−1]− [Xl,Xm+y−1] = [X1, [Xy ,Xl]] ∈ ad(X1)(D
2
1) ⊂ D2

1 , (4.99)

which implies

cjy,m+l−1 − cjl,m+y−1 = 0, y, l ∈ [2 : d1 + 1], j ∈ [1 : n]\(I1
1 ∪ I2

1). (4.100)

Combining (4.88) and (4.100), we get

cjy,m+l−1 = cjl,m+y−1 = 0, y, l ∈ [2 : d1 + 1], j ∈ [1 : n]\(I1
1 ∪ I2

1 ). (4.101)

In other words, taking into account (4.96), we get

ad(Xy)(D
2
1) ⊂ D2

1, ∀y ∈ [1 : d1 + 1]. (4.102)

Furthermore, when y ∈ [d1 + 2 : m1] and l ∈ [1 : d1], the Jacobi identity yields

[Xy,Xm+l] = [Xy, [X1,Xl+1]] = [[Xy ,X1],Xl+1] + [X1, [Xy ,Xl+1]]

⊂ ad(Xl+1)(D
2
1) + ad(X1)(D

2
1)

(4.102)
⊂ (D2

1),
(4.103)

which implies (4.97). �

Finally, observe that (4.97) implies (D1)
3(q) = (D1)

2(q). This completes the proof of Proposi-
tion 9.
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4.6. Completing the Proof of Proposition 10

Without loss of generality, it is enough to prove that D2
1 +D2

2 is involutive. Moreover, for this,
by Proposition 9, it is enough to show that

[Xr,Xj ] ∈ D2
1 +D2

2 , (r, j) ∈ (I1
1 × I2

2 ) ∪ (I2
1 × I1

2). (4.104)

Without loss of generality (swapping the indices), it is enough to show it for (r, j) ∈ (I2
1 × I1

2). For
this, using the normalization conditions (4.8) and the Jacobi identity, we get

[Xr,Xj ]
(4.8)
= [[X1,Xr−m+1],Xj ] = [[X1,Xj ],Xr−m+1] + [X1, [Xr−m+1,Xj ]]. (4.105)

Since 1 and r −m+ 1 belong to I1
1 and j ∈ I2, by the decomposition of the Tanaka symbol (3.8)

and Lemma 5 it follows that

[X1,Xj ] ∈ D1 +D2, [Xr−m+1,Xj ] ∈ D1 +D2. (4.106)

Consequently, using Lemma 5, from the right hand-side of (4.105) and (4.106) it follows that

[Xr,Xj ] ∈ D2
1 +D2 ⊂ D2

1 +D2
2,

which completes the proof of Proposition 10.

4.7. Completing the Proof of Theorem 3 by Rotating the Frames on Di’s

By Proposition 9, we have that the distributions D2
i , i ∈ [1 : k] are involutive. Moreover, by

Proposition 10 the distributions D2
i ⊕D2

j , i, j ∈ [1 : k] are involutive as well. The latter implies

that for every subset J ⊂ [1 : k] the distribution

ΔJ :=
⊕

i∈J
D2

i (4.107)

is involutive. Let FJ (q) be the integral submanifolds of the distirbution ΔJ passing through the
point q.

By constructions, for any i ∈ [1 : k] and point q ∈ M , the manifold F{i}(q) is transversal to

F[1:k]\{i}(q). By the transversality and the inverse function theorem, for any q0 ∈ M there exists a

neighborhood U of q0 such that, for any q1 ∈ U and q2 ∈ U , the leaf F{i}(q1) intersects with the

leaf F[1:k]\{i}(q2) at exactly one point. Then the following projection map πq0
i : U → F{i}(q0) is well

defined:

πq0
i (q) = F{i}(q0) ∩ F[1:k]\{i}(q) (4.108)

for any q ∈ U . Note that the map πq0
i is a diffeomorphism between Fi(q) ∩ U and Fi(q0) ∩ U . As a

consequence, for any r ∈ I i
1, there exists a unique vector field X̃r on U such that

X̃r is a section of D2
i and

dπq0
i

(
X̃r(q)

)
= Xr(π

q0
i (q)), where r ∈ I i

1.
(4.109)

Lemma 11. X̃r is a section of Di for every r ∈ I1
i .

Proof. From the decomposition of the Tanaka symbol (3.8) and the involutivity of distributions

ΔJ it follows that that for any i ∈ [1 : k] and any section V of the distribution
⊕

j∈[1:k]\{i}
Dj

[V,Di ⊕Δ[1:k]\{i}] ⊂ Di ⊕Δ[1:k]\{i}, (4.110)

which implies that the local flow etV , generated by the vector field V , consists of local symmetries
of the distribution Di ⊕Δ[1:k]\{i}, i. e.,

(etV )∗
(
Di ⊕Δ[1:k]\{i}

)
= Di ⊕Δ[1:k]\{i}. (4.111)
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By construction, for any section V of the distribution
⊕

j∈[1:k]\{i}
Dj (and even for any section V of

the distribution Δ[1:k]\{i}) , we have

πq0
i ◦ etV = πq0

i . (4.112)

This, together with (4.111) and the fact that

ker(dπq0
i )(q) = Δ[1:k]\{i}(q), (4.113)

implies that

dπq0
i

(
Di(e

tV q0)
)
= Di(q0). (4.114)

Consequently, by the definition of X̃r with r ∈ I i
1 given by (4.109), we get

Xr

(
etV q0

)
∈ Di

(
etV q0

)
. (4.115)

Finally, by the Rashevskii –Chow theorem, the point q0 can be connected with any point of

FΔ[1:k]\{i}(q0)∩U by a finite concatenation of integral curves tangent to the distribution
⊕

j∈[1:k]\{i}
Dj

and so we can apply relations (4.113) and (4.115) a finite number of times (with corners of the
concatenation instead of q0) to get the conclusion of the lemma. �

Lemma 12. If i �= j ∈ [1 : k], then for every r ∈ I1
i and l ∈ I1

j the vector fields X̃r and X̃l

commute,

[X̃r, X̃l] = 0, ∀r ∈ I1
i , l ∈ I1

j , i �= j. (4.116)

Proof. As before, let i ∈ [1 : k] and V be a section of the distribution Δ[1:k]\{i}. Then, using the

standard properties of Lie derivatives and (4.112), one gets

(πq0
i )∗[V, X̃r](q) =

d

dt
(πq0

i )∗(e
−tV )∗X̃r(e

tV (q))

∣
∣∣
∣
t=0

(4.112)
=

d

dt
(πq0

i )∗X̃r(e
tV (q))

∣∣
∣∣
t=0

=
d

dt
Xr(π

q0
i (q)) = 0,

(4.117)

where (πq0
i )∗ denotes the pushforward of the map πq0

i . Then, by (4.113), the above calculations
show that

[V, X̃r] ∈ Δ[1:k]\{i}, r ∈ I1
i , V is a section of Δ[1:k]\{i}. (4.118)

Using (4.118), first for V = X̃l such that l ∈ I1
j and j �= i, then switching the roles of i and j, and

finally using the distribution Δ{i,j}, we get

[X̃r, X̃l] ∈ Δ[1:k]\{i} ∩Δ[1:k]\{j} ∩Δ{i,j} = 0, ∀r ∈ I1
i , l ∈ I1

j , i �= j, (4.119)

i. e., the vector fields X̃r and X̃l commute. �

Our final goal is to show the following

Lemma 13. The frame (X̃1, . . . , X̃m) defined by (4.109) is g1-orthonormal.

Proof. By Lemma 11, the collection {X̃r}r∈I1
i
is a local frame of Di, hence for every q ∈ U there

exists a mi ×mi matrix Ti(q) :=
(
tirs(q)

)
r,s∈I1

i
∈ GL(mi), making the transition from the originally

chosen local frame (Xi)i∈I1
i
of Di to (X̃i)i∈I1

1
, i. e.,

X̃r =
∑

s∈I1
i

tirsXs, i ∈ [1 : k], r ∈ I1
i . (4.120)

The lemma will be proved if we show that Ti ∈ SO(mi) for every i ∈ [1 : k].
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First, from the commutativity relation (4.116) by direct computations it follows that the entries
of the transition matrix-valued function Ti satisfy the following system of partial equations 2:

Xl(t
i
rs) = −

∑

v∈I1
i

cslvt
i
rv, ∀r, s ∈ I1

i , l ∈ [1 : m]\I1
i . (4.121)

Now, using (4.121), we have

Xl

⎛

⎝
∑

s∈I1
i

tirst
i
ws

⎞

⎠ =
∑

s∈I1
i

(
Xl(t

i
rs)t

i
ws + tirsXl(t

i
ws)
)

(4.121)
= −

∑

s∈I1
i

∑

v∈I1
i

(
cslvt

i
rvt

i
ws + cslvt

i
wvt

i
rs

)
= −

∑

s,v∈I1
i

(cslv + cvls)t
i
rvt

i
ws = 0,

(4.122)

where the second expression of the chain of equalities in the second line of (4.122) is obtained
by swapping indices s and v in the second term of the first expression of the chain of equalities
in the second line of (4.122), and the last equality in (4.122) follows from items (1) and (2) of
Proposition 11. Therefore,

∑
s∈I1

i
tirst

i
ws is constant on each piece of a leaf of F[1:k]\{i} lying in U .

Besides, by (4.109),

X̃r(q) = Xr(q), ∀r ∈ I1
i , q ∈ F{i}(q0) ∩ U,

so by g1-orthonormality of {Xr}r∈I1
i
this implies that

∑

s∈I1
i

tirs(q)t
i
ws(q) = δrw, ∀r, w ∈ I1

i , q ∈ F{i}(q0) ∩ U,

and hence, by (4.122),
∑

s∈I1
i

tirs(q)t
i
ws(q) = δrw, ∀r, w ∈ I1

i , q ∈ U.

This proves the g1-orthonormality of {X̃r}r∈I1
i
. �

We complete the proof of the main theorem, Theorem 3, by noticing that, if gi1 denotes the
sub-Riemannian metric on the distribution Di on the leaf Fi(q0) defined by the condition that
{Xr}r∈I1

i
is orthogonal in this metric, then

(U,D|U , g1|U ) =
k

i=1

(
Fi(q0) ∩ U,Di|Fi(q0)∩U , g

i
1|Fi(q0)∩U

)
.

APPENDIX A. PROOF OF PROPOSITION 1

Assume by contradiction that m is not ad-surjective. Let m := dim m−1 and d := dim m−2. We
start with consideration for general d. Assume that

r := max
X∈m−1

rank(adX). (A.1)

Then from the non-ad-surjectivity assumption we have r < d. Take X1 such that

rank(adX1) = r. (A.2)

Then the rank-nullity theorem implies that

dim ker(adX1) = m− r. (A.3)

Obviously, X1 ∈ ker(adX1). Let us complete it to the basis (X1, . . . ,Xm) of m−1 such that

ker(adX1) = span{X1,Xr+2, . . . ,Xm}. (A.4)
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Let

Yl := [X1,Xl+1], l ∈ [1 : r]. (A.5)

By constructions, Y1, . . . , Yr are linearly independent, and

Im(adX1) = Im(adX1|span{X2,...,Xr+1}) = span{Y1, . . . , Yr}. (A.6)

Since m is step 2 and fundamental, there exists i < j ∈ [2,m] such that

[Xi,Xj ] /∈ Im(adX1). (A.7)

Set

Yr+1 := [Xi,Xj ]. (A.8)

Lemma 14. The index j (and therefore also i) in (A.7) does not exceed r + 1.

Proof. Assume by contradiction that j � r + 2. From maximality of r in (A.1), (A.2), and (A.6) it
follows that for sufficiently small t

rank(ad(X1 + tXi)|span{X2,...,Xr+1}) = r (A.9)

and the spaces Im(ad(X1 + tXi)|span{X2,...,Xr+1}) are sufficiently closed to Im(adX1) so that

Yr+1 /∈ Im(ad(X1 + tXi)|span{X2,...,Xr+1}). (A.10)

On the other hand, from (A.4) and (A.8) it follows that

[X1 + tXi,Xj ] = tYr+1, (A.11)

which implies that rank(ad(X1 + tXi)) > r for sufficiently small t �= 0. This contradicts the
maximality of r in (A.1) and completes the proof of the lemma. �

In the proof of the previous lemma, based on (A.4) and (A.6) we actually have shown that

[ker(adX1),m−1] ⊂ Im(adX1). (A.12)

After permuting indices we can assume that (i, j) = (2, 3), i. e., that

[X2,X3] /∈ Im(adX1). (A.13)

Now, given X and X̃ from m−1, set

LX,X̃ := ker(adX) ∩ ker(adX̃). (A.14)

Let

k := min
X,X̃∈m−1

dimLX,X̃ . (A.15)

By genericity of (A.2), (A.13) and (A.15) we can choose X1, X2, and X3, maybe after a small
perturbation, such that (A.2), (A.13), and

dim
(
ker(adX1) ∩ ker(adX2)

)
= k (A.16)

hold simultaneously.

Now, by item 1 of Proposition 1 d � 3. Therefore, either r = 1 or r = 2. Consider these two cases
separately.

Case 1: r = 1. By (A.4)

ker(adX1) = span{X1,X3, . . . ,Xm} (A.17)

and by this and (A.12)

[Xi,Xj ] ∈ Im(adX1), ∀i ∈ [2 : m], j ∈ [3,m] (A.18)
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or, equivalently, from the fundamentality of m,

m−2 = Im(adX1), (A.19)

so in fact d = r (= 1) and this case is done.

Case 2: r = 2. By the previous constructions,

[X1,X2] = Y1, [X2,X3] = Y3, (A.20)

where

Y3 /∈ Im(adX1), (A.21)

as a particular case of (A.10) for r = 2. Then from (A.20) and (A.21) by maximality of r = 2
in (A.1),

Im(adX2) = span{Y1, Y3}. (A.22)

From this, (A.6), and (A.12) it follows that

[X2,Xi] ∈ Im(adX1) ∩ Im(adX2) = span{Y1}, ∀i ∈ [4 : m]. (A.23)

Since [X1,X2] = Y1 for any i ∈ [4 : m] one can replace Xi by

X̃i ≡ Xi mod span{X1} (A.24)

such that [X2, X̃i] = 0, i. e.,

ker(adX2) = span{X2, X̃4, . . . , X̃m}.

This, together with (A.4) and (A.24), implies that

LX1,X2 = span{X̃4, . . . , X̃m}.
Therefore, by (A.16),

k = m− 3. (A.25)

The following lemma will give a contradiction with item 3 of the assumptions of Proposition 1 and
therefore will complete the proof of it in the case of r = 2:

Lemma 15. The space LX,X1 is the same for all X ∈ m−1 for which dimLX,X1 = m− 3, and so

the space LX,X1 lies in the center of m 6).

Proof. Assume by contradiction that there exist X2 and X3 such that dimLXi,X1 = m− 3, i = 2, 3
but

LX2,X1 �= LX3,X1 . (A.26)

Obviously, X1, X2 and X3 are linearly independent. By openness of condition (A.26) we can always
assume that

adX1(spanX2) �= adX1(spanX3). (A.27)

We claim that

LX2,X3 = LX2,X1 ∩ LX3,X1 . (A.28)

Before proving (A.28), note that, if it holds, then by (A.26) it will follow that dimLX2mX3 < m− 3,
which will contradict the minimality of k = m− 3 in (A.15).

It remains to prove (A.28). First, it is clear that

LX2,X1 ∩ LX3,X1 =
3⋂

i=1

ker(adXi) ⊂ LX2,X3 . (A.29)

6)The latter conclusion follows from the fact that the set of such X is generic in m−1.
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On the other hand, from the dimension assumptions it follows that

ker(adXi) = span{Xi} ⊕ LXi,X1 , i = 2, 3. (A.30)

So if v ∈ LX2,X3 , then

v ≡ α2X2 mod ker(adX1) ≡ α3X3 mod ker(adX1). (A.31)

Note that (A.27) means that X2 and X3 are linearly independent modulo ker(adX1). Hence, (A.31)
implies that α2 = α3 = 0, i. e., v ∈ ker(adX1). This implies that v ∈ LX2,X1 ∩ LX3,X1 , i.e.,

LX2,X3 ⊂ LX2,X1 ∩ LX3,X1 .

This and inclusion (A.29) complete the proof of (A.28) and therefore that of Lemma 15. �

Finally, note that in the case of dimm−2 = 4, even if assumptions 2 and 3 hold, Proposition 1
is wrong. Here is a counterexample:

Example 2. Let m = m−1 ⊕m−2 be the step 2 graded Lie algebra such that

m−1 = span{X1, . . . ,X5}
m−2 = span{Y1, . . . , Y4}

(A.32)

so that, up to skew-symmetricity, the following brackets of the chosen basis are the only nonzero
ones:

[X1,Xi] = Yi−1, ∀i ∈ [2 : 4],

[X2,X3] = Y4, [X2,X5] = βY3,

[X3,X5] = δY3, [X4.X5] = λY3,

(A.33)

where β, δ, λ are nonzero constants. Note that span{X1,X2,X3, Y1, Y2, Y4} is a subalgebra of m
isomorphic to the truncated step 2 free Lie algebras with three generators and span{X4,X5, Y3}
is an ideal of m isomorphic to the 3-dimensional Heisenberg algebra. Thus, m is a semidirect sum
of the truncated step 2 free Lie algebras with three generators and the 3-dimensional Heisenberg
algebra.

It can be checked by straightforward computations that here r defined by (A.1) is equal to
3 < d = 4 and that m−1 meets the center trivially, i. e., it is indeed a counterexample.

Indeed, if X ∈ m−1,

X =

5∑

i=1

CiXi, (A.34)

then the map adX has the following matrix with respect to the bases (X1, . . . ,X5) and Y1, . . . , Y4)
of m−1 and m−2:

adX =

⎛

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎜
⎝

−C2 −C3 −C4 0

C1 0 −βC5 C3

0 C1 δC5 C2

0 0 C1 − λC3 0

0 0 βC2 + δC3 + λC4 0

⎞

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎟
⎠

. (A.35)

It is easy to check that the maximal rank of this matrix (as a function of C’s) is equal to 3, which
implies that r = 3. Also, this matrix is not equal to zero if (C1, . . . , C5) �= 0, which means that m−1

meets the center trivially.
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Finally, note that m is not decomposable. Assume the converse, i. e., that m = m1 ⊕m2 for some
nonzero fundamental graded Lie algebra m1 and m2. Without loss of generality assume that

dim m
1
−1 � dim m

2
−1. (A.36)

Since m−1 meets the center trivially, it is impossible that dim m2
−1 = 1. Hence by (A.36) and the fact

that dimm−1 = 5, we have that dim m2
−1 = 2 and the algebra m−1 is nothing but the 3-dimensional

Heisenberg algebra. Therefore, for every nonzero X ∈ m2
−1, the rank of adX is equal to 1. However,

it is straightforward to show that, if the rank of the matrix (A.35) is not greater than 1, then
(C1, . . . , C5) = 0, which leads to a contradiction. So m is indecomposable.

An alternative, more conceptual, way to prove indecomposability of m is to observe that,
otherwise, each component in its decomposition will have −2 degree part of dimension not greater
than 3 (but not equal to 0) and by Proposition 1 each component is ad-surjective. Then by Remark 2,
m is ad-surjective, which is not the case.

APPENDIX B. PROOF OF SUBLEMMA 1

Let us derive an expression for b̃m+f with f ∈ [1 : m1]. For the proof of Sublemma 1 we need
only the case f = 1, but the cases of more general f are needed in Section 4.5, in particular, in
Lemma 9. First, by column operations (4.18)

b̃m+f = b2f −
k∑

i=1

(αni−1+1)
2

ei∑

t=ei−1

a2f,m+tum+t, (B.1)

where by (3.21) and (3.22)

a2f,m+j =
�h1(qf,m+j) +

n∑

r=m+1

qf,rqr,m+j, (B.2)

b2f = �h1(b
1
f )−

k∑

i=1

(αni−1+1)
2

n∑

r=m+1

∑

w∈I1
i

q1rqrwuw, (B.3)

and qjk and b1f are as in (3.17) and (4.14), respectively. Note that from the decomposition of the

Tanaka symbol (3.8) it follows that

qwr = 0, ∀w ∈ I1
i , r ∈ I2

v with i �= v. (B.4)

Substituting (B.4) into (B.2), we get

a2f,m+t =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�h1(qf,m+t) +

m+d1∑

r=m+1

qfrqr,m+t, t ∈ [1 : d1]

m+d1∑

r=m+1

qfrqr,m+t, t ∈ [1 : n−m]\[1 : d1].

(B.5)

Moreover, (B.4) implies that (B.3) can be rewritten as follows:

b2f = �h1(b
1
f )−

k∑

i=1

(αni−1+1)
2

m+d1∑

r=m+1

∑

v∈I1
i

qfrqrvuv. (B.6)

By (B.1), (B.5), and (B.6), we have

b̃m+f = �h1(b
1
f )−

k∑

i=1

(αni−1+1)
2

m+d1∑

r=m+1

∑

w∈I1
i

qfrqrwuw

−
k∑

i=1

(αni−1+1)
2

ei∑

t=ei−1+1

a2f,m+tum+t.

(B.7)
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Using (4.14) and (4.15), we get

�h1(b
1
f ) =

�h1

⎛

⎝(α1)
2

m+d1∑

r=m+1

qfrur +

k∑

i=2

(
(α1)

2 − (αni−1+1)
2
) ∑

w∈I1
i

qfwuw

⎞

⎠

= α2
1

m+d1∑

r=m+1

�h1(qfr)ur + α2
1

m+d1∑

r=m+1

qfr�h1(ur) +
k∑

i=2

(
(α1)

2 − (αni−1+1)
2
) ∑

w∈I1
i

�h1(qfw)uw

+

k∑

i=2

(
(α1)

2−(αni−1+1)
2
)∑

w∈I1
i

qfw�h1(uw) = α2
1

m+d1∑

r=m+1

�h1(qfr)ur + α2
1

m+d1∑

r=m+1

n∑

x=1

qfrqrxux

+

k∑

i=2

(
(α1)

2 − (αni−1+1)
2
) (∑

w∈I1
i

(
�h1(qfw)uw +

n∑

x=1

qfwqwxux

))
.

(B.8)

Substituting (B.5) and (B.8) into (B.7), and taking into account (B.5) again, we get the following
cancellations:

b̃m+f =
����������
α2
1

m+d1∑

r=m+1

�h1(qfr)ur + α2
1

m+d1∑

r=m+1

n∑

w=1

qfrqrwuw

+

k∑

i=2

(
(α1)

2 − (αni−1+1)
2
)(∑

w∈I1
i

(
�h1(qfw)uw +

n∑

x=1

qfwqwxux

))

−
k∑

i=1

(αni−1+1)
2

m+d1∑

r=m+1

∑

w∈I1
i

qfrqrwuw −
�����������
α2
1

d1∑

t=1

�h1(qfm+t)um+t

−
k∑

i=1

(αni−1+1)
2

ei∑

t=ei−1+1

m+d1∑

r=m+1

qfrqr,m+tum+t.

(B.9)

Applying the relation [1 : n] =
k⋃

i=1

I1
i ∪ I2

i to the sum in the second term of (B.9), we get

b̃m+f =

k∑

i=2

(
(α1)

2 − (αni−1+1)
2
) (∑

w∈I1
i

(
�h1(qfw)uw +

n∑

x=1

qfwqwxux

)

+

m+d1∑

r=m+1

∑

w∈I1
i

qfrqrwuw +

m+d1∑

r=m+1

∑

t∈I2
i

qfrqrtut

)
.

(B.10)

From now on let f = 1. Since by (3.17) all qjk depend only on ui’s with i ∈ [1 : m], from

expression (B.10) the variable uj with j ∈ I2
1 may appear only in the following terms of (B.10):

k∑

i=2

(
(α1)

2 − (αni−1+1)
2
) ∑

w∈I1
i

(
�h1(q1w)uw + q1wqwjuj

)
. (B.11)

Moreover, qwj = 0 for w ∈ [1 : m]\I1
1 and j ∈ I2

1 by (B.4), so the variable uj with j ∈ I2
1 may appear

only in the following terms of (B.10):

k∑

i=2

(
(α1)

2 − (αni−1+1)
2
) ∑

w∈I1
i

�h1(q1w)uw (B.12)
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or, more precisely, in terms �h1(q1w) with w ∈ [1 : m]\I1
1 , i ∈ [2 : k]. Let us analyze these terms.

Using (3.17) and (4.15), we get

�h1(q1w) =

m∑

r=1

(
cwr1

�h1(ur) + �h1(c
w
r1)ur

)

=

m∑

r=1

n∑

x=1

cwr1qrxux +

m∑

r=1

�h1(c
w
r1)ur.

(B.13)

The second term in (B.13) does not depend on uj with j ∈ I2
1 , while to get this uj in the first term

the index x must be equal to j. So, the terms containing uj in �h1(q1w) are

uj

m∑

r=1

cwr1qrj. (B.14)

Recall that {
cwr1 = 0, if r ∈ I1

1 w ∈ [1 : m]\I1
1 ;

qrj = 0, if r ∈ [1 : m]\I1
1 .

(B.15)

Here the first line comes from (4.24) and the second line comes from (B.4). So, plugging (B.15)

into (B.14), we get that uj does not appear in b̃m+1 and the proof of Sublemma 1 is completed.
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