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Abstract—The classical result of Eisenhart states that, if a Riemannian metric ¢ admits a
Riemannian metric that is not constantly proportional to g and has the same (parameterized)
geodesics as g in a neighborhood of a given point, then g is a direct product of two Riemannian
metrics in this neighborhood. We introduce a new generic class of step 2 graded nilpotent Lie
algebras, called ad-surjective, and extend the Eisenhart theorem to sub-Riemannian metrics
on step 2 distributions with ad-surjective Tanaka symbols. The class of ad-surjective step 2
nilpotent Lie algebras contains a well-known class of algebras of H-type as a very particular
case.
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1. INTRODUCTION
1.1. Affine Equivalence in Riemannian Geometry: Nonrigidity and Product Structure

The paper is devoted to a problem in sub-Riemannian geometry, but we start with a historical
overview of the same problem in Riemannian geometry. Recall that two Riemannian metrics g;
and go on a manifold M are called projectively equivalent if they have the same geodesics, as
unparameterized curves, namely, for every geodesic 7(t) of g; there exists a reparameterization
t = ¢(7) such that ’y(go(T)) is a geodesic of go. They are called affinely equivalent if they are
projective equivalent and the reparameterizations ¢(7) above are affine functions, i.e., they are

of the form ¢(7) = at + b. We will write g1 £ g2 and g1 ~ gy in the case of projective and affine
equivalence, respectively. In the sequel, we will mainly be interested in the local version of the
same definitions for germs of Riemannian metrics at a point when conditions on the coincidence of
geodesics hold in a neighborhood of this point.

From the form of the equation for Riemannian geodesics, it follows immediately that two
Riemannian metrics are affinely equivalent if and only if they have the same geodesics as
parameterized curves, which in turn is equivalent to the condition that they have the same Levi-
Civita connection, i.e., one metric is parallel with respect to the Levi-Civita connection of the
other.

Obviously, given any Riemannian metric g and a positive constant ¢, the metrics c¢g and g are
affinely equivalent. The metric cg will be said a constantly proportional metric to the metric g.
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ON EISENHART’S TYPE THEOREM FOR SUB-RIEMANNIAN METRICS 305

The Riemannian metric g is called affinely rigid if the metrics constantly proportional to it are the
only affinely equivalent metric to it.

A class of Riemannian metrics g that are not affinely rigid are the metrics admitting a product
structure, i. e., when the ambient manifold M can be represented as M = My x My, where each M;
and M, are of positive dimension, and there exist Riemannian metrics g; and go on My and Ms,
respectively, such that, if m; : M — M;, ¢ = 1,2, they are canonical projections, then

g =791+ T5go. (1.1)

Then, obviously, for every two positive constants C7 and Cs

g~ (Cimig1 + Camigo) (1.2)

and the metric (C17]g1 + Camsg2) is not constantly proportional to g if C # Ca, i.e., the metric
g is not affinely rigid. In 1923 L.P. Eisenhart proved that locally the converse is true, i.e., the
following theorem holds.

Theorem 1 ([5]). If a Riemannian metric g is not affinely rigid near a point qqo, i.e., admits a
locally affinely equivalent nonconstantly proportional Riemannian metric in a neighborhood of a
point qo, then the metric g is the direct product of two Riemannian metrics in a neighborhood of qq.

This theorem is closely related to (and actually is a local version of) the De Rham decomposition
theorem [4] on the direct product structure of a simply connected complete Riemannian manifolds
in terms of the decomposition of the tangent bundle into invariant subbundles with respect to the
action of the holonomy group. Indeed, if g1 ~ ¢» and these metrics are not constantly proportional,
then the eigenspaces of the transition operators between these metrics (see (3.4) below for the
definition of the transition operator) form such a decomposition of the tangent bundle with respect
to the action of the holonomy group of both g; and gy (recall that they have the same Levi-Civita
connection).

1.2. Affine Equivalence of Sub-Riemannian Metrics: the Main Conjecture

First, recall that a distribution D on a manifold M is a subbundle of the tangent bundle
TM. A sub-Riemannian manifold /structure is a triple (M, D, g), where M is a smooth manifold,
D is a bracket-generating distribution, and for any ¢, g(¢) is an inner product on D(q) which
depends smoothly on g. We say that g is a sub-Riemannian metric on (M, D). A Riemannian
manifold /structure/metric appears as the particular case where D = T'M.

In the sequel, we will assume that the distribution D is bracket-generating, i.e., for every point
g € M the iterative Lie brackets of vector fields tangent to a distribution D (i.e., of sections of D)
span the tangent space T, M. In more detail, one can define a filtration

D=D'cD?*c...Di(g)C... (1.3)
of the tangent bundle, called a weak derived flag, as follows: set D = D' and define recursively
DI =D+ [D,D'7Y, j>1 (1.4)

If Xi,...,X,, are m vector fields constituting a local basis of a distribution D, then D’(q) is the
linear span of all iterated Lie brackets of these vector fields, of length not greater than j, evaluated
at a point g,

Di(q) = span{[Xil(q), o X X () - ] c(t1, .. yis) €[L:m]® s e [1: 4]} (1.5)

(here, given a positive integer n, we denote by [1:n]| the set {1,...,n}). A distribution D is
called bracket-generating (or completely nonholonomic) if for any ¢ there exists u(q) € N such that

DM (q) = T,U. The number yu(q) is called the degree of nonholonomy of D at a point g. If the
degree of nonholonomy is equal to a constant p at every point, one says that D is step u distribution.

Since we work locally, the assumption of bracket-genericity is not too restrictive: if a distribution
is not bracket-generating, then in a neighborhood U of a generic point there exists a positive integer
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306 LIN, ZELENKO

p such that DAL = D g TM. So, D* is a proper involutive subbundle of T'U and the distribution
D is bracket-generating on each integral submanifold of D* in U. So, we can restrict ourselves to
these integral submanifolds instead of U.

What are sub-Riemannian geodesics? There are at least two different approaches to this concept.
One approach is variational: a geodesic is seen as an extremal trajectory, i.e., a candidate for the
“shortest” or “energy-minimizing” path connecting its endpoints, with respect to the corresponding
length or energy functional. The other approach is differential-geometric: geodesic is the “straightest
path”, i.e., the curves for which the vector field of velocities is parallel along the curve, with respect
to a natural connection. While in Riemannian geometry these two approaches lead to the same set
of trajectories, in proper sub-Riemannian geometry (i.e., when D # T'M) they lead to different sets
of trajectories (see [3] for details), and in general, for the second approach, the natural connection
only exists under additional (and rather restrictive) assumptions of constancy of sub-Riemannian
symbol [8].

In the present paper, we consider the geodesic defined by the variational approach. A horizontal
curve 7 : [a,b] — M is an absolutely continuous curve tangent to D, i.e., 7'(t) € D (y(t)). In
the sequel, the manifold M is assumed to be connected. By the Rashevskii—Chow theorem the
assumption that D is bracket-generating guarantees that the space of horizontal curves connecting
two given points g and ¢; is not empty. The following energy-minimizing problem:

b
E(y) = / g(7/(1), 7' (1)) di — min,

Y(t) € D(y(t)) ae. t,
v(a) =q, ~0b)=aq

(1.6)

can be solved using the Pontryagin Maximum Principle [2, 9] in optimal control theory that defines
special curves in the cotangent bundle T* M, called the Pontryagin extremals, so that a minimizer
of the optimal control problem (1.6) is a projection from 7*M to M of some Pontryagin extremal
(for a more explicit description of Pontryagin extremals, see the beginning of Section (3) below).

Definition 1. The (variational) sub-Riemannian geodesics are projections of the Pontryagin
extremals of the optimal control problem (1.6).

Note that in the Riemannian case the geodesics given by Definition 1 coincides with the usual
Riemannian geodesics. We thus extend the definitions of projective and affine equivalences of
Riemannian metrics to the general sub-Riemannian case in the following way.

Definition 2. Let M be a manifold and D be a bracket-generating distribution on M. Two sub-
Riemannian metrics g; and go on (M, D) are called projectively equivalent at qy € M if they have
the same geodesics, up to a reparameterization, in a neighborhood of qg. They are called affinely
equivalent at qg if they have the same geodesics, up to affine reparameterization, in a neighborhood
of qq.

Again, we will write g¢; 2 go and g1 ~ g» in the case of projective and affine equivalence,
respectively. By complete analogy with the Riemannian case, for a sub-Riemannian metric g on
(M, D) and a positive constant ¢ the metrics cg and g are affinely equivalent. The metric cg will
be said a constantly proportional metric to the metric g.

Definition 3. A sub-Riemannian metric g on (M, D) is called affinely rigid if the sub-Riemannian
metrics constantly proportional to it are the only sub-Riemannian metrics on (M, D) that are
affinely equivalent to g.

As in the Riemannian case, examples of affinely nonrigid sub-Riemannian structures can be
constructed with the help of an appropriate notion of product structure. For this we first have
to define distributions admitting product structure as follows:
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ON EISENHART’S TYPE THEOREM FOR SUB-RIEMANNIAN METRICS 307

Definition 4. A distribution D on a manifold M admits a product structure if there exist two
manifolds M7 and Ms of positive dimension endowed with two distributions D and Dy of positive
rank (on M; and Ma, respectively) such that the following two conditions holds:

1) M:M1><M2;

2) If mj : M — M;, i = 1,2, are the canonical projections and 7} D; denotes the pullback of the
distribution D; from M; to M, i.e.,

m; Di(q) = {v € T;M : dmi(q)v € Di(m(q))},
then
D(q) = m1D1(q) N 73D2(q). (L.7)

In this case, we will write that (M, D) = (M, D1) x (Ms, Ds).

Definition 5. A sub-Riemannian structure (M, D,g) admits a product structure if there ex-
ist (nonempty) sub-Riemannian structures (M, Di,g1) and (Ma, D2, g2) such that (M,D) =
(My,Dy) x (Ma, D) and, if m; : M — M; are the canonical projections, then identity (1.1) holds.
In this case we will write that (M, D, g) = (M, D1,g1) x (Ma, D, g2).

It is easy to see that, if (M, D, g) = (M, D1, g1) x (Ma, D2, g2), then this sub-Riemannian metric
is affinely equivalent to

(M1, Dy, c191) % (Ma, D2, caga) (1.8)

for every two positive constants ¢; and ¢y, but the latter metric is not constantly proportional to
(M, D, g) if ¢; # ¢, i.e., a sub-Riemannian metric admitting product structure is not affinely rigid.
The main question is whether or not the converse of this statement, at least in a local setting, i.e.,
the analog of the Eisenhart theorem (Theorem 1) holds.

Conjecture 1 ([6]). If a sub-Riemannian metric g is not affinely rigid near a point qq, i. ., admits
a locally affinely equivalent nonconstantly proportional sub-Riemannian metric in a neighborhood of
a point qq, then the metric g is the direct product of two sub-Riemannian metrics in a neighborhood

of qo-

In this paper, we prove this conjecture for sub-Riemannian metrics on a class of step 2
distributions, see Theorem 3.

2. THE ROLE OF TANAKA SYMBOL/NILPOTENT APPROXIMATION
AND THE MAIN RESULT

Conjecture 1 is still widely open. In the present paper, we prove it for sub-Riemannian metrics
on a particular, but still rather large class of distributions (see Theorem 3 below). To formulate
our main result (Theorem 3) we need to introduce some terminology.

2.1. Direct Product Structure on the Level of Tanaka Symbol/Nilpotent Approximation

In [6] we proved, among other things, a weaker product structure result for affinely nonrigid sub-
Riemannian structures, in which the product structure necessarily occurs on the level of Tanaka
symbol/ nilpotent approximation of the the sub-Riemannian structure.

To define the Tanaka symbol of the distribution D at a point ¢, we need another assumption
on D near ¢, called equireqularity. A distribution D is called equireqular at a point ¢ if there
is a neighborhood U of ¢ in M such that for every j > 0 the dimensions of subspaces D’(y) are
constant for all y € U, where D7 is in (1.4) (equivalently, as in (1.5)). Note that a bracket-generating
distribution is equiregular at a generic point.
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From now on we assume that D is an equiregular bracket-generating distribution with the degree
of nonholonomy p. Set

m_1(q) := D(q), m_;(q):=D’(q)/D’"*(q), ¥j>1 (2.1)
and consider the graded space
-1
m(q) = P m(a), (2.2)
J=—p
associated with the filtration (1.3).

The space m(q) is endowed with the natural structure of a graded Lie algebra, i.e., with the
natural Lie product [, ] such that

[mi, (9), miy (@)] C iy (2.3)
defined as follows:
Let p; : DI(g) = m_j(q) be the canonical projection to a factor space. Take Y; € m_;,(¢q) and

Yo € m_;,(q). To define the Lie bracket [Y7,Ys] take a local section Y1 of the distribution D! and
a local section Ys of the distribution D% such that

It is clear from the definitions of the spaces D7 that [Y7,Ys] € D2, Then set
Y1, V2] o= piy i, (Y1, Y2l (q)). (2.5)

It can be shown [10, 12] that the right-hand side of (2.5) does not depend on the choice of sections
Y; and Ya. By constructions, it is also clear that (2.3) holds.

Definition 6. The graded Lie algebra m(q) from (2.2) is called the symbol of the distribution D
at the point q.

By constructions, it is clear that the Lie algebra m(q) is nilpotent. The Tanaka symbol is the
infinitesimal version of the so-called nilpotent approzimation of the distribution D at ¢, which can

be defined as the left-invariant distribution D on the simply connected Lie group with the Lie
algebra m(q) and the identity e, such that D(e) = m_;(q).

Further, since D is bracket-generating, its Tanaka symbol m(g) at any point is generated by the
component m_1(q).

Definition 7. A (nilpotent) Z_-graded Lie algebra

—1
m= @@ m (2.6)

Jj=—p

is called a fundamental graded Lie algebra (here Z_ denotes the set of all negative integers) if it is
generated by m_;.

The following notion will be crucial in the sequel:

Definition 8. A fundamental graded Lie algebra m is called decomposable if it can be represented
as a direct sum of two nonzero fundamental graded Lie algebras m! and m? and it is called
indecomposable otherwise. Here the jth component of m is the direct sum of the jth components
of m! and m?.

Obviously, if a distribution D admits product structure, then its Tanaka symbol at any point is
decomposable.
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Example 1 (contact and even contact distributions). Assume that D is a corank 1 distri-
butions, dim D(q) = dim M — 1 , and assume « is its defining 1-form, i.e., D = ker v .

e Recall that the distribution D is called contact if dim M is odd and the form do|p is
nondegenerate. In this case the Tanaka symbol at a point ¢ is isomorphic to the Heisenberg
algebra m_;(q) @ m_2(q) of dimension equal to dim M, where m_3(q) is the (one-dimensional)
center and the brackets on m_1(q) (& D(q)) are given by [X,Y] := da(X,Y)Z, where Z is the
generator of m_; so that «(Z) = 1. Note that the Heisenberg algebra is indecomposable as
the fundamental graded Lie algebra. Otherwise, since dimm_s(q) = 1 one of the components
in the nontrivial decomposition of m(q) will be commutative and belong to m_1(¢) and hence
to the kernel of da|p, which contradicts the condition of contactness.

e Recall that the distribution D is called quasi-contact (in some literature even contact) if
dim M is even and the form da|p has a one-dimensional kernel (i.e., of the minimal possible
dimension for a skew-symmetric form on an odd-dimensional vector space). In this case by
the arguments similar to the previous item the Tanaka symbol is the direct some of the
Heisenberg algebra (of dimension dim M — 1) and R (the kernel of da|p), i.e., the Tanaka
symbol is decomposable.

Remark 1. It is easy to show that the decomposition of a fundamental graded m Lie algebra into
indecomposable fundamental Lie algebras is unique modulo the center of m and a permutation of
components.

The following theorem is a consequence of the results proved in [6] and it is a weak version of
Conjecture 1:

Theorem 2 ([6, a consequence of Theorem 7.1, Proposition 4.7, and Corollary 4.9
there]). If a sub-Riemannian metric on an equiangular distribution D is not affinely rigid near a
point qqg, then its Tanaka symbol at qo is decomposable.

In other words, the problem of affine equivalence is nontrivial only on the distributions with
decomposable Tanaka symbols (at points where the distribution is equiregular).

2.2. Ad-Surjective Tanaka Symbols and the Main Result

Now we are almost ready to formulate the main result of the paper. We restrict ourselves here
to step 2 distributions, i.e., when D? = T M. Such distributions are automatically equiregular (at
any point). Then it is clear that the components in the decomposition of the Tanaka symbols of
such distribution are of step not greater than 2 (i.e., with 1 < 2 in (2.6)). So, they are either of
step 2 or commutative.

Definition 9. We say that a step 2 fundamental graded Lie algebra m = m_1 & m_o is ad-surjective
if there exists X € m_q such that the map adX : m_; — m_o,

Y [X,Y], Yem_,

is surjective. An element X € m_; for which adX is surjective is called an ad-generating element
of the algebra m.

Remark 2. Note that the direct sum m! @ m? of two ad-surjective Lie algebras m’ = m’ | @ m’ ,,
i = 1,2, is ad-surjective. Indeed, if X; € m* |, i = 1,2, are such that ad X; : m* | — m’ , is surjective,
then

ad(X; + Xo) :mly, om?, —» ml,om?,

is surjective as well. And vice versa, if a step 2 fundamental Lie algebra m is ad-surjective, then any
component of its decomposition into fundamental graded Lie algebra is ad-surjective: the projection
of an ad-generating element of m to any component is ad-generating element of this component.
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Remark 3. Nilpotent Lie algebras of H-type, introduced by A. Kaplan [7] in 1980 and extensively
studied since then, are ad-surjective because, among other properties of Lie algebras of H-type, it
is required that every element of m_; be ad-generating.

The following proposition will be proved in Appendix A:

Proposition 1. Any step 2 fundamental graded Lie algebra m = m_1 @ m_o such that the following
three conditions hold:

1) dim m_y < 3;
2) dim m_s < dimm_q;

3) the intersection of m_y with the center of m is trivial
1s ad-surjective.

Note that, if dim m_y < 2, then item (2) of the previous proposition holds automatically. Besides,
item (2) is obviously a necessary condition for ad— surjectivity.

Corollary 1. The only non-ad-surjective step 2 fundamental graded Lie algebra with m_o < 3 is
the truncated step 2 free Lie algebra with 3 generators.

Note that Proposition 1 does not hold if one drops item (1), see Appendix A, Example 2, for a family
of counterexamples with dimm_» = 4 and dimm_; = 5. These counterexamples are semidirect sums
of the truncated step 2 free Lie algebras with three generators and the 3-dimensional Heisenberg
algebra.

Nevertheless, following [6, Section 8], given integers m >0 and d >0, if we denote by
GLNA(m,m + d) the set of all fundamental graded nilpotent Lie algebras m of step not greater
than 2 satisfying

dimm_1=m, dimm_o=d, (2.7)
we have the following genericity results:

Lemma 1. If m > d, the subset of all ad-surjective graded nilpotent Lie algebras belonging to
GLNA(m,m + d) is generic in GLNA(m,m + d).

Proof. Indeed, for such Lie algebras, the Lie algebra structure is encoded by the Levi operator
Ly € Hom(/\2 m_q, m_2) which is defined as follows:

L(X,Y)=[X,Y], VX,V em_y, (2.8)

and the fundamentality assumption implies that £ is surjective. Equivalently, one can consider the
dual operator £* € Hom ((m_z)*, A2 (m_1)%),

Lp)(X,Y)=p([X,Y]) XY e€m_q, p€ (m_2)" (2.9)

*
Here we use the natural identification ( A’ m_1> >~ A%*(m_;)*, which in turn is naturally identified

with the space of skew-symmetric bilinear forms on m_;. Note that, again from the surjectivity of
L, its dual £* is injective and is described by its image, which is a d-dimensional space. So, the
space of all fundamental graded nilpotent Lie algebras of step not greater than 2 satisfying (2.7) is
isomorphic to the Grassmannian of d-dimensional subspaces in the space of skew-symmetric forms
of an m-dimensional vector space, modulo the natural action of the general linear group on this
space. In particular, the latter Grassmannian is a connected algebraic variety and the subset of
ad-surjective graded nilpotent Lie algebras of step not greater than 2 satisfying (2.7) with m > d
corresponds to a nonempty Zariski open subset of it, therefore it is generic. O
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Remark 4. By [6, Proposition 8.1], the subset of indecomposable graded nilpotent Lie algebras in
GLNA(m, m + d) is generic GLNA(m, m + d) for all pairs (m, d) with the exception of the following
three cases:

1) d =0, m > 1 (Riemannian case of dimension greater than 1);
2) d=1,m > 1 and odd (the quasi-contact case);
3) d=2,m=4.

Moreover, in cases (1) and (2) all graded Lie algebras in GLNA (m, m + d) are decomposable, while
in case (3) the set of decomposable fundamental symbols is nonempty open and corresponds to
symbols for which the set of solutions of the equation L£*(p) A L*(p) = 0 considered as the equation
with respect to p € (m_2)*, where L*(p) is as in (2.9), consists of two distinct (real) lines.

The main result of the present paper is the following

Theorem 3. Assume that D is a step 2 distribution such that its Tanaka symbol is ad-surjective.
If a sub-Riemannian metric (M, D, g1) is not affinely rigid near a point qo, then it admits a product
structure in a neighborhood of qq.

Remark 5. First note that by Theorem 2.1 under the hypothesis of the previous theorem the
Tanaka symbol of D must be decomposable and by the second sentence of Remark 2 all components
of this decomposition are ad-surjective. Second, by Remark 1, if such a decomposition consists
of indecomposable components only, the number of these components is independent of the
decomposition. Let us denote this number by k. Then the sub-Riemannian metric in Theorem 3 is

a product of at least two and at most k sub-Riemannian structures each of which is affinely rigid
(in the neighborhood of the projection of gy to the corresponding manifold).

The rest of the paper is devoted to the proof of Theorem 3. This theorem confirms Conjecture 1
for sub-Riemannian metrics on step 2 distributions with ad-surjective Tanaka symbol. As a direct
consequence of Theorem 3 and Corollary 1, we get the following

Corollary 2. Assume that D is a step 2 distribution such that its Tanaka symbol is decomposed
into k > 2 nonzero indecomposable fundamental graded Lie algebras with degree —2 components of
dimension not greater than 3 and such that among them there is no truncated step 2 free Lie algebra
with 3 generators. If a sub-Riemannian metric (M, D, g1) is not affinely rigid near a point qq, then

it admits a product of of at least two and at most k sub-Riemannian structures each of which is
affinely rigid (in the neighborhood of the projection of qo to the corresponding manifold).

The assumption of ad-surjectivity of the Tanaka symbol is crucial for our proof of Theorem 3
because we strongly use a natural quasi-normal form for ad-surjective Lie algebras, see (4.8). We
hope that analogous quasi-normal forms can be found for more general graded nilpotent Lie algebras
so that Conjecture 1 can be proved similarly for a more general class of sub-Riemannian metrics.

3. ORBITAL EQUIVALENCE AND FUNDAMENTAL ALGEBRAIC SYSTEM

In general, there are two types of Pontryagin extremals for optimal control problems, normal
and abnormal [1, 2]: for the former, the Lagrange multiplier near the functional is not zero, and
for the latter, it is zero. In particular, abnormal extremals, as unparameterized curves, depend on
the distribution D only and not on a metric g on it. This indicates that only normal extremals
are essential for the considered problems of affine/projective equivalence (see Proposition 2 for the
precise formulation). Therefore, we give an explicit description only of normal extremals. They are

the integral curves of the Hamiltonian vector field h on T*M corresponding to the Hamiltonian

h(p.q) = lplp@ll’, a€ M,peT;M, (3.1)
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and lying on a nonzero level set of h. Here || p|p(g)|| denotes the operator norm of the functional
p|D(q)> Le,

1plp(gl| = max{p(v) : v € D(q), g(q)(v,v) = 1}.
The Hamiltonian h defined by (3.1) is called the Hamiltonian associated with the metric g or shortly
the sub-Riemannian Hamiltonian.

In [6], following [11], the problems of projectively and affine equivalence of sub-Riemannian
metric were reduced to the study of the orbital equivalence of the corresponding sub-Riemannian
Hamiltonian systems for normal Pontryagin extremals of the energy minimizing problem (1.6),
which in turn is reduced to the study of solvability of a special linear algebraic system with
coefficients being polynomial in the fibers, called the fundamental algebraic system [6, Proposition
3.10]. In this section we summarize all information from [6] we need for the proof of Theorem 3.

As before, fix a connected manifold M and a bracket-generating equiregular distribution D on
M, and consider two sub-Riemannian metrics g; and gy on (M, D). We denote by hy and hg the
respective sub-Riemannian Hamiltonians of g; and g, as defined in (3.1). Let the annihilator D+

of D in T*M be defined as follows:
D+ ={(p,q) € T*M : p|p(y) = 0}. (3.2)

It coincides with the zero level set of the sub-Riemannian Hamiltonian A from (3.1).

Definition 10. We say that hy and hy are orbitally diffeomorphic on an open subset V; of T* M\ D+
if there exists an open subset V5 of T*M \DL and a diffeomorphism ® : V; — V5 such that ® is
fiber-preserving, i.e., 7(®(X)) = m()), and ® sends the integral curves of h1 to the reparameterized
integral curves of hg, i.e., there exists a smooth function s = s(\,t) with s(),0) = 0 such that

q)(etﬁl A) = eshz (®(N)) for all A € V; and t € R for which e\ is well defined. Equivalently, there
exists a smooth function a()\) such that

d® hi(\) = a(M)h2 (B(N)). (3.3)
The map & is called an orbital diffeomorphism between the extremal flows of g; and gs.

The reduction of projective (respectively, affine) equivalence of sub-Riemannian metrics to the
orbital (respectively, a special form of orbital) equivalence of the corresponding sub-Riemannian
Hamiltonian systems is given by the following:

Proposition 2 ([6, a combination of Proposition 3.4 and Theorem 2.10 there]). Assume
that the sub-Riemannian metrics g1 and go are projectively equivalent in a neighborhood U C M

and let m: T*M — M be the canonical projection. Then, for a generic point Ay € 7~ +(U)\ D+, 1
and i_ig are orbitally diffeomorphic on a neighborhood Vi of A\ in T*M . Moreover, if g1 and gs are
affinely equivalent in a neighborhood U C M, then the function a(X) in (3.3) satisfies hi(a) = 0.

Further, the differential equation (3.3) can be written [6, Lemma 3.8] and transformed to the
algebraic system via a sequence of prolongations [6, Proposition 3.9] in a special moving frame
adapted to the sub-Riemannian structures g; and go. For this, first, we need the following

Definition 11. The transition operator at a point ¢ € M of the pair of metrics (g1, g2) is the linear
operator S, : D(q) — D(q) such that

92(a)(v1,v2) = g1(a)(Sqvr,v2),  Yoi,v2 € D(q). (3-4)

Obviously, S, is a positive g;-self-adjoint operator and its eigenvalues af(q), ..., a2,(g) are positive

real numbers (we choose a1(q),...,amn(q) as positive numbers as well). The field S of transition
operators is a (1, 1)-tensor field that will be called the transition tensor.

The important simplification in the case of the affine equivalence compared to the projective
equivalence is given in the following
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Proposition 3 ([6, Propostion 4.7]). If two sub-Riemannian metrics gi,g2 on (M,D) are
affinely equivalent on an open connected subset U C M, then all the eigenvalues a%,...,a?n of
the transition operator are constant.

This proposition implies that the number of the distinct eigenvalues k(q) of the transition operators
Sy is independent of ¢ € U, i.e., k(q) =k on U for some positive integer k. Also, there are k
distributions D; such that

D(q) = EBDz-(q) (3.5)

is the eigenspace decomposition of D(q) with respect to the eigenspaces of the operator S,;. Now
let

m’y(q) = Di(q), m’;(q) = (D)’ (a)/ (D:)’ () N D" Y(g)), Vj > 1.1 (3.6)
Set
m'(q) = Pm’;(q)- (3.7)
j=1
By construction m?, i = 1,..., k, are fundamental graded Lie algebras.

Remark 6. Note that in general m’(q) is not equal/isomorphic to the Tanaka symbol of the
distribution D; at ¢, as when defining the components m* j(q) with j > 1 we also make the quotient
by the powers of D. In fact, the proof that m‘(q) is isomorphic to the Tanaka symbol of the

distribution D; under the assumption of affine nonrigidity is one of the main steps in the proof of
Theorem 3.

Proposition 4 ([6, Theorem 6.2 and Theorem 7.1]). If sub-Riemannian metrics gi,ga are
affinely equivalent and not constantly proportional to each other in a connected open set U, then for
every q € U the Tanaka symbol m(q) of the distribution D at q is the direct sum of the fundamental
graded Lie algebras m(q), i = 1,...,k defined by (3.6) and (3.7), i.e.,

m(q) = Pm(q), (3.8)
as the direct sum of Lie algebras.

Further, in a neighborhood U; of any point ¢y € U we can choose a gi-orthonormal local

frame X,..., X, of D whose values at any ¢ € U; diagonalize S, i.e., X;(¢) is an eigenvector
of S, associated with the eigenvalues a?(q), 1 =1,...,m. Note that O%Xl, e ﬁXm form a go-

orthonormal frame of D. We then complete Xi,..., X, into a frame {X3,..., X} of TM adapted
to the distribution D near qq, i. e., such that for every positive integer j this frame contains a local
frame of D7. We call such a set of vector fields {X1,..., X, } a (local) frame adapted to the (ordered)
pair of metrics (g1,92). The structure coefficients of the frame {Xi,..., X, } are the real-valued

functions cfj, i,7,k € {1,...,n} defined near g by

n
X5, X5) =D ki X (3.9)
k=1
Let u = (u1,...,up) be the coordinates on the fibers 7,7 M induced by this frame, i.e.,

ui(g,p) = p(Xi(q)). (3.10)

USince (D;)? C D7, the space m" ; is a subspace of m_;.
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These coordinates in turn induce a basis Oy,,...,0, of Th\(T;M) for any A€ 7 1(q). For
i=1,...,n, we define the lift ¥; of X; as the (local) vector field on T*M such that =.Y; = X;
and du;(Y;) =0 V1 < j < n. The family of vector fields {Y1,...,Y,0y,,...,0y,} obtained in this
way is called a frame of T(T*M) adapted at qp. By a standard calculation, we obtain the expression
for the sub-Riemannian Hamiltonian hy of the metric ¢g; and the corresponding Hamiltonian vector
field hq:

1 2
=3 > (3.11)

m m m n
hi = Z WUy = Z u; Y; + Z Z ijuiukauj. (3.12)
i—1 i=1 i=1 j k=1

Indeed, to prove (3.12), recall that, if for a vector field Z in M, we denote
Hz(p,q) =p(Z(q)), a,p€T;M,

then for any two vector fields Z; and Z> on M we have the following identities:

— —
Hyz,(Hyz,) =dHg,(Hz,) = Hiz, 7, (3.13)
From this and (3.9) it follows immediately that
n n n
G =Y+ ()0, = Y+ Y Y chugdy, (3.14)
j=1 j=1k=1

which immediately implies (3.12).

Assume now that El and i_ig are orbitally diffeomorphic near A\g € H1 N W‘l(qo) and let ® be the
corresponding orbital diffeomorphism. Let us denote by ®;, i = 1,...,n, the coordinates u; of ®
on the fiber, i.e., uo ®(X) = (®1(A), P2(A), ..., Pn(A)). Then first it is easy to see [11, Lemma 1]
that the function a from (3.3) satisfies

(3.15)

and

O, = V1< k< m. (3.16)

In [6], in order to find the equations for the rest of the components ®,,.1,...®, of ® we first

plugged into (3.3) the expression (3.12) for A, and a similar expression for hy and then we made
the “prolongation” of the resulting differential equation by recursively differentiating it in the
direction of k; and replacing the derivatives of ®;’s in the direction of hy by their expressions from
the first step. The resulting system of algebraic equations for ®,,1,...,®, is summarized in the
following

Proposition 52 ([6, a combination of Proposition 3.4, Proposition 4.3, Proposition 3.10
applied to the case of affine equivalence]). Assume that the sub-Riemannian metrics g1 and
go are projectively equivalent in a neighborhood U C M and let ® be the corresponding orbital
diffeomorphism between the normal extremal flows of g1 and go with coordinates (®1,...,P,). Set

= Pryt,..., Pn).

?)Since in the present paper we mainly work with the affine equivalence only, for which a;’s are constant and

h1(a) = 0, the expressions in (3.18) and (3.22) are significantly simpler than in [6], where the more general case
of the projective equivalence is considered.
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Let also
m
QK = Z cf]uZ (3.17)
i=1
and
R; = a?ﬁl(uj) - Z cfjoz%uiuk. (3.18)
1<i,k<m

Then ® satisfies a linear system of equations,
AD = b, (3.19)

where A is a matriz with (n —m) columns and an infinite number of rows, and b is a column vector
with an infinite number of rows. These infinite matrices can be decomposed in layers of m rows,
each as

Al bt
A2 b?

A= : and b= . (3.20)
A b®

where the coefficients a3 of the (m X (n —m)) matriz A°, s € N, are defined by induction as

a;,kZija 1<]<m,m<k<n,
n
. . (3.21)
ajf,;l = hi(ajy) + Z a3 ik 1<js<m, m<k<n,
l=m+1

(note that the columns of A are numbered from m + 1 to n according to the indices of &)) and the
coefficients bj, 1 < j < m, of the vector b* € R™ are defined by

b; = Rj,

- - (3.22)
b= b)) = Y aj ) wiofaw
k=m+1 1=1

Definition 12. The system (3.19) with A and b defined recursively by (3.21) and (3.22) is called the

fundamental algebraic system for the affine equivalence of the sub-Riemannian metrics ¢; and go?).
The subsystem

AP = b (3.23)
with A and b as in (3.20) is called the ith layer of the fundamental algebraic system (3.19).

The matrix A has n —m columns and infinitely many rows and b is the infinite-dimensional
column vector. So, the fundamental algebraic system (3.19) is an over-determined linear system
on (®y41,...,Py), and all entries of A and b are polynomials (3.21) and (3.22) in u;’s. Therefore,

3 The column vector b in (3.19) here corresponds to ab in the notation of the fundamental algebraic system in [6].
It is more convenient in the context of affine equivalence as all components of b become polynomial in u;’s, i.e.,
the polynomials on the fibers of T* M.
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all (n—m+1) x (n—m+ 1) minors of the augmented matrix [A|b] must be equal to zero. Since
all of these minors are polynomials in u;’s, the coefficient of every monomial of these polynomials
is equal to zero. It results in a huge collection of constraints on the structure coefficient cf] By

discovering and analyzing the monomials with the “simplest” coefficients we were able to prove our
main theorem, Theorem 3. This analysis is given, for example, in Lemmas 4, 5, and 7. Quasi-normal
forms (4.8) for ad-surjective Lie algebras were crucial for this analysis.

4. PROOF OF THEOREM 3

Let (M, D, g1) be a sub-Riemannian metric satisfying the assumptions of Theorem 3. Assume
that g» is a sub-Riemannian metric that is affinely equivalent and nonconstantly proportional to
g1 in a neighborhood U of a point gg. Let k& be the number of distinct eigenvalues of the transition
operators of the pair of metrics (g1, g2). As mentioned after Proposition 3, k is constant on U and

by Remark 5 we have 2 < k < k. Consider the sub-distributions Dy, i € [1 : k] defined by (3.5), and
the algebras m’(q) as in (3.6)—(3.7). Hence,

D=D1®Ds®... 5 Dy. (4.1)

By Remark 2 the algebra m’ for every i € [1 : k] is ad-surjective.

4.1. Main Steps in the Proof of Theorem 3

Observe that in general

Di(q) C D(q) N (Dy)*(q), Viel[l:k]. (4.2)
One can define the canonical projection of quotient spaces
pr; : (Di)*(q)/Di(q) = (Di)?(q)/ (D(q) N (Di)*(q)) - (4.3)

Further, given X € D;(q), we can define two different operators

(ad X)mod p : D(q) = D*(q)/D(q),
(ad X)mod b, : Di(q) = (Di)*(q)/Di(q),

where in the first case we apply the Lie brackets with X as in the Tanaka symbol of the distribution
D at g and in the second case we apply the Lie brackets with X as in the Tanaka symbol of the
distribution D; at q.

The main steps in the proof of Theorem 3 are described by the following five propositions
together with the final step in Section 4.7 below:

(4.4)

Proposition 6. Assume that X € D;(q) is such that the restriction of the map (ad X)modp to
D;(q) is onto (D;)*(q)/ (D(q) N (Di)*(q)). Then the projection pr; as in (4.3) defines the bijection
between the image of the map (ad X)mod p, and the image of the restriction of the map (ad X )mod D
to D;(q).

Proposition 7. Assume that X € D;(q) satisfies the assumption of the previous lemma. Then
(D;)*(q)/Di(q) coincides with the image of the map (ad X)mod b, -

Proposition 8. The following identity holds:
D(q) N (Di)*(q) = Di(q) Vie[l:k] (4.5)

Proposition 9. The following identity holds:
(Di)*(q) = (Dy)*(a) Vie[l:k] (4.6)

and therefore the distribution D? is involutive.
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Proposition 10. For every two distinct r and t from [1 : k] the distribution D? + D? is involutive.

First, let us show that Propositions 6 and 7 imply Proposition 8. Indeed, we have the following
chain of inequalities/equalities:

. 2 (42) . 2 2 Prop. 7
dim(D;)*(q)/Di(q) < dim(Dy)*(q)/ (D(g) N (D:)*(9)) =

Prop. .
rank ((adX)moap,) = % rank ((adX)modn| Dy (q)) < dim(D;)*(q)/Di(q).

Hence, dim(D;)*(q)/D;(q) = dim(D;)?(q)/ (D(g) N (D;)*(q)), which implies (4.5).
Further, as a direct consequence of Propositions 8 and 9 and the assumption that D is a step 2
distribution one gets the following

Corollary 3. The Tanaka symbol of D; at q is isomorphic to m'(q) and the distribution DZ-2 is of
rank equal to dimm’.

To guide the reader, the rest of the proof of Theorem 3 is organized as follows: Proposition 6 is
proved in Section 4.2, Proposition 10 is proved in Sections 4.3 and 4.6, Proposition 9 is proved in
Section 4.5, and Proposition 7 is proved in Section 4.4. The final step in the proof of Theorem 3 is
done in Section 4.7.

4.2. Proof of Proposition 6

Let mi(q), i = 1,2 be as in (3.6)—(3.7). Note that by the paragraph after Proposition 3 and the
fact that the graded algebras m‘(q) are of step not greater than 2, dim mé-(q) are independent of g.
Let

m; = dimm’ | (¢), d; == dimm’ ,(q);

n; .= ij, €e; ‘= Zdj; (47)
=1 j=1

I} =i+ 1) :n], TZ=[m+e1+1):(m+e).
Note that ng = eg = 0.

Since m’ is ad-surjective for every i € [1: k|, we can choose a local gj-orthonormal basis
(X1,...,X;) of D such that the following conditions hold for every i € [1 : k]:

1) D; = Span{Xj}jeI};
2) X, ,+1(q) is an ad-generating (in a sense of Definition 9) element of the algebra m‘(q).

Then one can complete (X1,...,X,,) to the local frame (X1,...,X,,) of TM by setting
Xm+€i—1+j = [Xni—1+17Xni—1+j+1]7 Vi e [1 : k]v] € [1 : dl] (4'8)

A local frame (Xi,...,X,) of TM constructed in this way will be called a quasi-normal frame
adapted to the tuple {X,, ,+1}¥_, of ad-generating elements (one for each m?).

By construction, quasi-normality implies the following conditions for the structure functions of
the frame:

Cﬁn,l—i-Lj = 5l,m+j+ei,1—ni,1—1a Vi € [1 : k‘],] € [ni_l +2:n;1+d; + 1],[ c [1 : n], (4.9)

where J,; stands for the Kronecker symbol.

In the sequel, we will work with quasi-normal frames: we start with one quasi-normal frame and,
if necessary, perturb it to other quasi-normal frames adapted to the same tuple of ad-generating
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elements. The statement of Proposition 6 is true if one shows that pr; restricted to Im(ad X )moedp, is
injective, while the surjectivity follows automatically from the definition of the projection. Without
loss of generality, we can assume that ¢ = 1, as the proof for i # 1 is completely analogous. The

injectivity of prlhm(ad X)modD; is equivalent to

ker (pr1 [1m(ad X)mean, ) = 0- (4.10)
Clearly,

ker(pry) = ((D1)%(¢) N D(q)) /D1(q). (4.11)
Set X = X; Then by (4.11)

ker (Pr1 [1m(ad X)moap, ) = (((D1)*(9) N D(q)) /D1(q)) N (Im(ad X )modn, )- (4.12)

So, the desired relation (4.10) is equivalent to

k
=0, for eI} ke| ]I} (4.13)
j=2
In the sequel, we will use the following proposition many times:

Proposition 11 ([11, Proposition 6]). If g1 and g2 are affinely equivalent but not constantly
proportional to each other, then the following properties hold:

1) C‘;Z =0, for any i € I}, j € T} with s # v;

2) cé-k,: ﬂ,foranyz#ke , j €I} with s # vY

3) (a? —a; )c + (a —a3) ;k + (a2 — az)cgk =0 for every pairwise distinct i, j, k from [1 : m].

Note that item (2) above is the consequence of item (3) applied to the case when one pair in the
triple {4, j, k} belongs to the same Z!. In all subsequent lemmas, we will assume that the relations
given in items (1)—(3) of Proposition 11 hold.

Now let us give more explicit expressions for the vector b in the fundamental algebraic
system (3.19), which will be helpful in the sequel:

Lemma 2. The entries bjl- in (3.22) with j € I} are given by
by = (otn,_y41)” D g+ Y ((am_y41)* = (0n,_111)?) D e, (4.14)
leT? s7#1 leTl

where qji, are defined by (3.17).

Proof. Using (3.12), (3.13), and (3.9), we get

n

m
Z witl; (uy) Z Uu; ukc Z QKU - (4.15)

k=11=1

In more detail, one of the conclusions of [11, Proposition 6], formulated for projective equivalence, is that

a2 ; o?
X; <;]g) = 2C§'i (1 - ) but in the case of affine equivalence a? and ozj are constant and we find that c7 =0.
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From (3.22) and (3.18), using (3.17) and the fact that by our constructions (a;)? = (a,, ,+1)>
for every | € T}, we have

bf = (an,01)*ha(uy) — > () el

1<i,l<m
n k (4.16)
= (an; 1 41)? D> ggwur — > _(an, 1 +1)* Y g
k=1 i=1 leT}
Note that from (3.8) and (3.17) we have ¢;, = 0 for k € UI2
s#£i

Zq]kuk = Z Z grur+ Y g (4.17)

s=1(=T! leT2
Substituting (4.17) into (4.16), we get (4.14). O

Lemma 2 implies that, to analyze maximal minors of the augmented matrix [A|b], it is convenient
to perform the following column operation by setting

€

k
b=t (n11)? > (Aetmsr, (4.18)

i=1 t=e;—1

where (A); represents the jth column of A and e; are defined in (4.7), so the corresponding maximal
minors of [A[b] and [A|b] coincide.

Remark 7. Using the first line of (3.21), one gets that the first term in (4.14) is canceled by the
column operations, namely,

i)]l = Z ((anz‘fl-l-l)z anv 1+1 Z q;iul, JE Izl7 (419)

v#£i leTl

where l;]l is the jth component (from the top) of the column vector bl. Hence, b' has no term of
u;’s, with i > m.

Lemma 3. Leti,v € [L:k],i# v, j €T} andr,l € Z}. Then l;j does mot contain a monomial u,u;

and, in particular, it does not contain squares u?.

Proof. Indeed, by (4.19), using (3.17), the coefficient of the monomial u,v; is equal to

((Oéni_l—i-l)2 - (anv71+1)2) (Ci«j + C;j), (4.20)

which is equal to zero by items (1) and (2) of Proposition 11. O

Now we will make a long analysis of coefficients of specific monomials in the specific (n —m +
1) x (n —m + 1) minor of the augmented matrix [A|b] (equivalently, [A|b]).

First, to achieve (4.13), given 4o € [1 : k], we consider submatrices M;, of [A|b] consisting of rows
with indices from the set

Sip = [Mig—1 + 1 mig1 +dig + U | [nim1 +1:ni1 +di). (4.21)
i€[1:k]\{io}
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From (3.8) it follows that M;, is a block-diagonal matrix,

Miyax 0 0
Mi,=1 0o - 0 | (4.22)
0 0 Mk

where M;, 4, is of size (d;, + 1) x d;, and M, ;, i # ig is of size d;, X d,.
Remark 8. Note that, given j € [1 : k], the blocks M; ; are the same for all i # j.

Let b1|3i0 (resp. l~)1|3i0) be the subcolumn of the column b! (reps. b') consisting of the same rows

as in Mj,, i.e., the rows of b (resp. b) from the set Sy, as in (4.21). Since the fundamental algebraic
system is an overdetermined linear system admitting a solution, the determinant det([M;,|b'] Sip))
must vanish, as a polynomial with respect to u;’s. It implies that the coefficients of each monomial
w.r.t u;’s in det(M;|bY!) must vanish as well. We have the following

Lemma 4. Given iy € [1: k|, if the coefficients of all monomials of the form

UUs H Un;_1+d;i+1 (uni071+1)di0 H (unz‘fl-i-l)di_l , e Iz'107 s € [1 : m]\Iz{) (4'23)
i#io Gall
in det([MiO\bl\SiO]) vanish, then

ot =0, L€Ty, s € [L:m\I. (4.24)

107

Proof. In the sequel, we will refer to the classical formula for determinants in terms of permutations
of the matrix elements as the Leibniz formula for determinants. Without loss of generality, we can
assume that ig = 1 and s € Z;. Using (3.17), the first line of (3.21), and (4.9), it is easy to conclude
that the variable u,,, , 1 appears only in the following columns of the augmented matrix [Mj |b!|g, ]:

(A1;) The columns containing all columns of the matrix M ; if i = 1 or all columns of M ; except
the last one, if ¢ € [2: k] . Moreover, in each of these columns, u,, ,+1 appears exactly in
the entry (Mi;);+14, i-e., in the entry situated right below the diagonal of the block M ;.
Besides, the coefficient of w,, ,4+1 in this entry is equal to 1;

(A2;) the last column of the matrix [M|b!|g,].
Applying the normalization conditions (4.9) to (4.19), one gets

(A3;) The components of the column vector b!|g, in the rows corresponding to the rows of the
block M ; of M; do not contain wy; ;4+1.

For our purpose, it is enough to set variables u; not appearing in (4.23) to be equal to 0.
From item (Al;) above, the fact that w,, ,41 appears in the power not less than d; —1 in
the monomial (4.23), and that by Lemma 3 and (A3;) the participating entries do not contain
(tn, ,+1)?, it follows that in the Leibniz formula for the determinant of the matrix (M;|b!]g,) the
contribution to the monomial (4.23) from the block M;; comes only from the following terms:

(B1;) Terms containing all factors of the form (M ;)j4+1,. Moreover, from the facts that all rows
of M ; except the first one are used, that M; has block diagonal structure, and that

(a) for i =1 all columns appearing in M, ; are used, it follows that in this case the terms
giving the desired contribution must contain the factor bl as the only possible factor
from the first row of the augmented matrix (Mi|b]g,).
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(b) fori € [2: k] all columns of M; ; except the last one are used, it follows that in this case
the terms giving the desired contribution must contain the entry (M ;)1 4,. Note that,
if we take into account only those w;’s which appear in (4.23) (or, equivalently, set all

other u;’s equal to zero) and that, by (4.9), cﬁtff’s = Opy+do+1,5, WE have
(Mi)1d; = —Un_y+d;+1- (4.25)

(B2;) (possible only if either i = 1 or i = 2 and s # ny + 1%) Terms containing all factors of the
form (Mi;)j414, J € [1:da — 1] except one. Then these terms also contain a factor from the

column b'|s, depending on the variable w,, ,11.

Now consider four possible cases separately:

(C1) Assume that (B2;) and (B23) occur simultaneously. Since for every i € [3: k]
item (B1;) holds, the participating factor b}- must satisfy j € [1:dy +1]U[ny +1:n3+ds]. On
the other hand, it must contain the monomial wju,, 1, which by (A3;) and (A32) implies that
j¢l:di+1]U[ny 4+ 1:n1+dg], so we got the contradiction. So, the considered term does not
contribute to the monomial (4.23).

(C2) Assume that (B1;) for all i € [2: k] and (B2;) occur simultaneously. Then the
participating factor b} from b'|s, must, on the one hand, satisfy j € [1:d;] and, on the other
hand, must contain u;, which contradicts (A31). So, the considered term does not contribute to
the monomial (4.23).

(C3) Assume that (Bl;) for i #2 and (B2;) occur simultaneously. In this case the
contribution to the monomial (4.23) is from the coefficient of the monomial u;uy,,+; in the factor
bt, which is equal to ((an,+1)% — af)c .

(C4). Assume that (B1;) occur simultaneously for every i € [1:k|. In this case, the
coefficient of the monomial (4.23) is equal, up to a sign, to the coefficient of the monomial
UUslp, +dy+1 in the polynomial b} (Mi2)1,4,, because the coefficients of the relevant monomials
in all other factors in the corresponding term of Leibniz formula are equal to 1. From (4.25) it
follows that the coefficient of the monomial wjusty, +4,+1 in the polynomial b%(MLg)LdQ is equal to
the coefficient of wjus in bi, which by (4.19) is equal to

((any+1)* = af) el (4.26)

Now we are ready to complete the proof of the lemma. First, assume that s = ny + 1. Then the
case (B22) and therefore (C3) is impossible, so (C4) holds and the coefficient of the monomial (4.23)
is equal, up to a sign, to the expression in (4.26) with s = ny + 1, so vanishing of this coefficient
implies (4.24) for s =ny + 1.

Further, the last paragraph implies that the case (C3) does not contribute to the coefficients
of the monomials (4.23), so the only contribution is from the case (C4), which is equal to the

expression in (4.26). Vanishing of the latter implies (4.24), which completes the proof of Lemma 4.
O

Now given i € [1: k], assume that X,,, 11 is a local section of D; such that X,,, ,+1(¢) is an
ad-generating element of m’(q) in the sense of Definition (9) for every q. Let

KX, 1= ker ((ad Xm_l—‘rl)modDi) (4.27)
Hx = (Span{Xni—l—H})J_ N D, (4.28)

ng—1+1

where * stands for the gi-orthogonal complement. As a direct consequence of Lemma 4, we get
the following

®)Otherwise the desired power of un, ;41 in (4.23) cannot be achieved.
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Corollary 4. For any d;-dimensional subspace F; of Hx,, with

FinKx,,

_1+1
—0 (4.29)

1+1

the image of the restriction of the map (ad Xy, ,+1)modD, to the subspace F; coincides with the
entire image of the map (ad Xy, | +1)modD;

Im((ad X, 1 41)modD, F) - Im((ad an.flﬂ)mod,;,i). (4.30)

In particular, this image of the restriction is independent of Fj;.

Proof. Indeed, previously we used span{Xy,, ,+1,...,Xp,} as a subspace Fj, but relation (4.29)
was the only property we actually used to get the conclusion of Lemma 4. O

We will denote the space in (4.30) by Lx,,

i—1+1?

ﬁXni_1+l = Im((ad Xni,l-i-l)modDi)' (4.31)
Remark 9. Note that, if d; = 0, then any element of D; is trivially an ad-generating element of
m;.
Remark 10. If d; =1, then dim K,  ,, =dimHx, ., =m;—1but Kx, ., #Hx,
because Xp, 41 belongs to Kx,. ., but does not belong to Hx, .,,so Kx, .,
is a codimension 1 subspace H Xn, 141 Therefore, we can perturb the original quasi-normal frame
(X1,...,Xp) to a quasi-normal frame (Xl, ... ,Xn) adapted to the same tuple of ad-generating
elements as the original frame such that for every i € [1: k] and j € Z} the line generated by X;
is transversal to Ky, .,. Since d; =1 and by Corollary 4 (X141, X;] #0modD (otherwise

X i € Kx,. | +1), we get that X ; is also an ad-generating element of m,;.

4.3. Proof that [D,, D] € Lx, 1+tLx, o modD,+Dyr#t
(Toward the Proof of Proposition 10)
The claim in the title of the subsection is equivalent to
=0 VjeI,sel}lel], (432)
where{i,r,t} € [1 : k] are pairwise distinct.
In particular, for k£ < 2 Eq. (4.32) is void, so it is relevant to assume that k& > 3.
Given ig € [1 : k], consider submatrices Py, of [A|b] consisting of rows with indices from the set

Rio = U [ni_l +2:n;1+d; + 1] U [nio—l +1: Njo—1 + dio + 1]. (4.33)
1€[1:k]\{io}
From (3.8) it follows that P;, is a block-diagonal matrix,

Pyai 0 0
Po=1 0 . 0 |- (4.34)
0 0 }%mk

where P ;, is of size (di, + 1) x d;, and P, ;, i # 1o is of size d;, X d;,. Note that by construction
Pio,io = Mig,io» (4'35)
where M;, 4, is defined in (4.22).

Similar to the previous subsection, let l~)1| Py, be the subcolumn of the column b consisting of
the same rows as in P,
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Lemma 5. If for every triple of pairwise distinct integers {ig,r,t} € [1: k] the coefficient of all
monomials of the form

di —1 dz .
ujulusun;;_lﬂ H Uyt 4y, where j € [np_1+1:n,1 +dr+ 1],

ie[1:k]\{io} (4.36)
lene1+1:n1+di+1],s € nijg—1 + 1 :njy—1 + diy + 1]

in the determinant det[Pj, |b| R;,] vanishes, then

cj; = 0, where j € mp—1+1:n,—1 +d, +1],

(4.37)
leni1+1:n1+di+1),s € [nig—1 + 1 :njy—1 + diy + 1]

or, equivalently,
[Xj,Xl] S ﬁr + ﬁt mod(Dr + Dt),

_ (4.38)
VRS [Tlr_l—l-l:nr_l-i-dr-i-l],l € [nt_1+1:nt_1+dt+1].

Proof. Without loss of generality, we can assume that »r = 1, ¢ = 2, and ig = k. Further, using (4.35),
similarly to the proof of Lemma 4 (statements of items (Al;) and (A2;) there), one can conclude
that the variable u,, ,11,¢ € [1 : k] appears only in the following columns of the augmented matrix

[N1|5|T1]:

(D1;) The columns containing all columns of Py, ; if i € [1 : k — 1], and all columns of Py, ; except the
last one, if i = k. Moreover, in each of these columns u,, ,41 appears exactly in the diagonal
entry (Py;);; if i € [1: k—1], and in the entry (Pg;)j+1;, i.e., in the entry situated right
below the diagonal of the block P ;, if i = k. Besides, the coefficient of u,, ,4+1 in this entry
is equal to 1;

(D2;) the last column of the matrix [Py|b|R,];

As before, we can set all irrelevant variables u’s (which are not in (4.36)) to zero. From this and
the normalization condition (4.9) it follows that

(D3) The only nonzero entry of the first row of Py, is the entry in the s —ny_; — 1 column, i.e.,
Py kl1,5—n,_,1 and it is equal to —u,.

Finally, the statement of (A3;) with M replaced by Py, M ; replaced by P ;, and S; replaced by
R;. holds true, i.e.,

(D4;) The components of the column vector b!|r, in the rows corresponding to the rows of the
block Py ; of P, do not contain wy,; ,4+1.

From item (D1;) above, the fact that u,, ,+1 appears in the monomial (4.36) in the power d;
for i € [1: k — 1] and in the power not less than d; — 1 if i = k, and that by Lemma 3 and (D4;)
the participating entries do not contain (u,, ,+1)? it follows that in the Leibniz formula for the

determinant of the matrix (Py|b'|g,) the contribution to the monomial (4.36) from the block Py ;
comes only from the following terms:

(E1) Terms containing all factors of the form (Py;);j, j € [1:di], ifi € [1: k — 1]. Otherwise, if
one of them is omitted, then a nondiagonal entry of P ; has to be used as well, therefore,
another diagonal term of P ; has to be omitted, however, in this way there is no way to
reach u,, , in the power d; in the resulting monomial.
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(E2) Terms containing all factors of the form (Py;)jj+1, j € [1:dg], if i =k and s =np—1 + 1.
In this case, the desired contribution must contain the component of b! which belongs to the
row, corresponding to the first row of Py 1, i.e., by, 41

(E3) Terms containing all factors of the form (Pgg+1)j+14, J € [1:dg except one, if i =k and
s #ngp_1+ 1 .Then by (D3) and the fact that Py has the block-diagonal form as in (4.34),
it follows that the omitted factor is (Pk,k,_,, | s—pn, ,—1)- Hence, the desired contribution

must contain the component of b! which belongs to the row, corresponding to the s — nx_1th
row of Py 1, i.e., the component b;.

So, we have two cases:

(F1) s =ng_1 + 1. In this case, by combining (E1) and (E2), we conclude that the coefficient of
the monomial (4.36) in det[P;, [b|R, | is, up to a sign, equal to the coefficient of the monomial
wjuy in by, 41, which by (4.19) is equal to

(o —af) ¢ 1+ (ak = 03) 11 (4.39)

(F2) s # nk_1 + 1. In this case, by combining (E1) and (E3) and using (4.19), we conclude that
the coefficient of the monomial (4.36) in det[F;, [b|r,, ] is, up to a sign, equal to the coefficient

of the monomial u;u; in b, which by (4.19) is equal to (4.36)

(ai — a%) clj’s + (a% - a%) 03-75 =0. (4.40)

So, by the assumptions of the lemma, expressions in (4.39) and (4.40) vanish.

Repeating the same arguments for an arbitrary pairwise distinct triple {r,s,ig} € [1 : k] instead
of {1,2, k}, we will get that

(af, —a?) clj’s + (o, — of) cé»’s =0, Vjen_1+1:n_1+d +1],

lem—1+1:n1+di +1],s € [nig—1 + 1 : njg—1 + di, + 1]. (441)
Permuting the indices in (4.41), we can get
(af - a%) c;l + (af - 04220) cj1= (oz,% - af) Clj,s + (oz? - 0%20) c;;=0. (4.42)
Finally, item (3) of Proposition 11 implies
(04?0 — a?) cﬁ;’l + (oz,% — oz?o) 02-78 + (oz,% — a?) c;;=0. (4.43)
The linear homogeneous system with respect to cl] o c§-7 s» and ¢f ., consisting of Egs. (4.41)—(4.43),
has the matrix
a?o — a% 0%20 — a% 0
a? —af 0 a? — 0%20 ’ (4.44)
ap, —af af —ai of—af

whose determinant is equal to
(of = a2)((02 — ad)? + (a2 = a})? + (0, — a})?)
2

0 a2, and o7 are pairwise distinct. This implies (4.37).

O

and is not zero as by our assumption that «
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Lemma 5 proves only a subset of relations from (4.32). Using the flexibility given by Corollary 4,
one can show that (4.32) holds not for the original quasi-normal frame but for its perturbation
adapted to the same tuple of ad-generating vector fields {Xni71+1}f:1.

Corollary 5. Let Kx, ., and Hx, .,

i€[l:k] let Y; be either equal to X,, ,11 or a normalized (i.e., g(Y;,Y;) = 1) local section of
Hx so that

be as in (4.27) and (4.28), respectively. For every

nj—1+1

Y ¢ Kx (4.45)

nj_1+1’
Then for every r #t from [1 : k|
D/?"v Y;] e L, + L mod(DT + Dt) (446)

Proof. Indeed, (4.45) implies that we can find a quasi-normal frame (X7, ..., X,,) such that either
Xn;, 141 =Y or X, .42 =1Y;. Then (4.46) follows from (4.38) of Lemma 5. O

Iftd; > 1, thendim Kx,,  ,, >2dimHx,  ,, andKx, ., # Hx,  .,.-Thelatter holds because
Xnp, y+118in Kx,, ., butnotin Hx, . S0, in this case the complement of Ky, ., NHx
to H Xni,l +1
perturbations of the original quasi-normal frame (X7,..., X)), one can build a quasi-normal frame

ni—1+1
is open and dense in Hy, . Therefore, by a finite number of consecutive small
i

(f( Tyeo- ,Xn) adapted to the same tuple of ad-generating elements as the original frame such that
for every r € [1 : k]

o if d. >1, then every j € Z'\{n,_; +1}, the vector field X; is in the complement of
Kx N Hx . to Hx - :

ni—1+1

e if d, = 0, then no additional conditions on X ; with j € T} are imposed and by permutation

any Xj can be seen as X, 41 (note that in this case any element of D, is trivially an
ad-generating element of m,.).

So, by (4.46) this frame satisfies

(X;, X)) € Lo+ L, mod(D,+Dy),j €I 1e€T}, r#te[l:k], (4.47)
which is equivalent to (4.32).
Remark 11. Note that, if (4.47) holds for some quasi-normal frame, then it holds for any quasi-

normal frame adapted to the same tuple of ad-generating elements as the original one.

As the direct consequence of (4.19) and (4.32), we get that for any triple {i,r,t} of pairwise

distinct integers from [1 : k] and any j € Z}, j € Z}, and | € Z}, the polynomial l;j does not contain
a monomial u,u;. Combining this with Lemma 3, we get

Lemma 6. Given j € T}, l;j does mot contain monomials uyu; with r,l € [1: m]\Z}, or, equiva-
lently, every monomial of b; must contain a variable u, with r € 7}

Moreover, from (4.19) and Lemma 4 it follows that

Corollary 6. For everyi € [1: k]

bn, 11 = 0. (4.48)
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4.4. Proof of Proposition 7

The statement of Proposition 7 is equivalent to showing that
Di )N P Dila) = {0} (4.49)
Je[l:k\ i}

In terms of structure functions of a quasi-normal frame, it is equivalent to showing that

¢, =0, forl,r € T}, s € [1: m]\Z}. (4.50)
Remark 12. Note that by Remarks 9 and 10, if d; =0 or d; =1 for some i € [1 : k], one can
perturb the original quasi-normal frame to a quasi-normal frame (X7,...,X,) for which all X;

are ad-generating elements of m; (for d; = 0 any quasi-normal frame satisfies this property). This
implies that for this (perhaps perturbed) frame relation (4.50) will follow from Lemma 4 because we
can apply this lemma for the frame obtained from the original quasi-normal frame by an appropriate
permutation.

To show (4.50), first, given ig € [1 : k], we construct a submatrix INV; of A with row indices

k
T;, = (U[ni_l +1:n,1+ dl]> @] {m + €jp—1 t+ 1}. (4.51)

i=1

Then N;, has the following form:

Nig1 0 0
0 0
Niy = , (4.52)
0 0 Nig k
\ a72%0—1+1

where N;, ; is of size d; x d;, and a%_ml“ is the (n;,—1 + 1)th row of the matrix A? from the second

(2

layer of the fundamental algebraic system (3.19). Moreover,

M ;i ifj=#£1i
g = 4 w770 , (4.53)
M, if j =g (here s # i),

where M; ; are as in (4.22). Note that by Remark 8 the right hand-side in the second line of (4.53)
is independent of s # 4.

Denote by b\TZ.O the subcolumn of the column b of the fundamental algebraic system (3.19)
consisting of the same rows as in matrix IV, i.e., the rows of b indexed by the set T}, as in (4.51).

Lemma 7. Assume that (4.24) holds and that, given ig € [1 : k], the coefficients of all monomials
of the form

k k
UjUs U5 (H Unil-i-di-i-l) <H(um—1+1)di_l) with (4 54)

i=1 i=1
L€ [nig—1 +2:njg—1 +diy + 1],s € [1: m]\Z}, and j € IZ?O

in det([Nj, [blz, | vanish. Then
¢ =0, 1,7 € [nig_1+2:n_1+di+1], and s € [1: m]\Z;. (4.55)
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Proof. Without loss of generality we can assume that 79 = 1 and that s € Z). Let by, be the
subcolumn of the column b consisting of the rows of b indexed by the set T3, where b is as in (4.19).

Further, using (4.53), similarly to the proof of Lemma 4 (statements of items (Al;) and (A2;)
there), one can conclude that the variable u,, ,+1, i € [1 : k] appears only in the following columns

of the augmented matrix [Ny|b|z]:

(F1;) The columns containing all columns of Nj; except the last one. Moreover, in each of these
columns u,, ,+1 appears exactly in the entry (N1 ;) 414, i.e., in the entry situated right below
the diagonal of the block NNy ;. Besides, the coefficient of w,, ;41 in this entry is equal to 1;

(F2;) the last column of the matrix [Ny |b|7];
(F3;) the last row of the matrix [Ny |b|7,].

Besides, applying the normalization conditions (4.9) to (4.19), one gets

(F4;) The components of the column vector b|7, in the rows corresponding to the rows of the block
Ny ; of Ny do not contain w,; ,4+1.

The following sublemma, is important in the sequel, but its proof consists of tedious computations
and is postponed to Appendix B:

Sublemma 1. The entry from the last column and the last row of [N1|l~)|T1], i€, bmy1, is
independent of uj with j € I%.

From Sublemma 1 and the fact that the elements of the blocks Ni, defined by (4.52) do not

depend on variables u; with j > m, it follows that a term £ in the Leibniz formula for det[N; 0|7, ],
which contributes to the monomial (4.54), cannot contain as a factor the entry from the last column

and the last row of the augmented matrix [N |l~)|T1] Therefore, the term £ must contain one factor

k
of the form BT, where r € U[m‘_1 +2:n;_1 +d;] (here we also use Corollary 6) and one factor
i=1
from the last row of [Ny|b|z,], i.e., a%m +¢- Moreover, by Remark 7, since the second line of (B.5)
is independent of u; with j > m, we must have

tell:d). (4.56)

Now, for definiteness, assume that r € [n;;—1 + 2 : n;,—1 + d;, ] for some i; € [1: k]. By property
(F4;), b, does not contain Un,; ,+1. Besides, the entry (N14y)r —n4y—1,7 —nj;—1 — 1 cannot
be a factor in L. So, using properties (F1;)—(F3;) and the fact that Un, ,+1 appears in the
monomial (4.54) in the power not less than d;, — 1, we get that the factor aim 4+ must contain
Up,, _,+1. Hence, the desired contribution of aim 4 to the monomial (4.54) is equal to the coefficient
of the monomial uy, ,+1u; in a%mH.

To find this coefficient, note that a%m Lq, 18 given by (B.5). From (3.17) it follows that the
second term of (B.5) depends only on w;’s with i € [1:m], so it does not contribute to the

required monomial. Therefore, we have to find the contribution of the first term, i.e., of l_il (q1,m+t)-
From (3.17), the decomposition of the Tanaka symbol (3.8), and the normalization conditions (4.9)
it follows that

ny
m—+d
QUmtt = —Upg1 — g M. (4.57)
r=d1+2
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Then, using (4.15),

h(qme) = = (w1 + Z Ay
d1+2
o (4.58)
_ (zqtﬂvuﬁ 3 S et 3 ) )
r=di1+2v=1 r=di+2

The last term in (4.58) depends only on w,’s with w € [1: m] and does not contribute to the
coefficient of the monomial U, 4 +1Uj with j € 112 in ﬁl(ql,mﬂh). As ¢;, depends on wu;’s with
i € [1:m] only (see (3.17)), in the first two terms of (4.58) only summands with v = j contribute
to the coefficient of the monomial up, ,4+1u; in Hl(q17m+d1). So, again by (3.17), this coefficient is
equal to

ni
j j m—+t
_C1]’Li1_1t+1 - Z Clel 1IECL’E ° (459)
r=di1+2

Since j € Z? , by the decomposition of the Tanaka symbol (3.8), the expression in (4.59) is equal
to zero for i; € [2: k|. So a nonzero contribution is obtained only if

n=1=re [2 : dl] (460)

In this case the coefficient of the monomial uju; in i_il(querl) is equal to

ni
o mAt jm+t
c{t—i-l Z l:L‘C].CC chxclx ) (461)
r=d1+2

where the last equality follows from the normalization conditions (4.9). If we set
v® = (cl9,Cl 3, s Clm) SEM+1:m+di], (4.62)
then (4.61) can be rewritten in terms of the standard inner product (-,-) in R% as follows:

— (07, ™, (4.63)

Further, as before, for our purpose, it is enough to set variables u; not appearing in (4.54) to be

equal to zero. Let us check what happens in the rows of [N1|l~)|Tl] containing the first rows of each
block N ;, Consider the cases ¢ > 2 and i € {1,2} separately:

(G1) The case i > 2. Any term L in the Leibniz formula for det[Ny|b|z,] contributing to the
monomial (4.54) must contain as factors all entries of the form (Ni;)zt1z, € [1:d; —1] and
also the entry (Ni;)1,4,- Indeed, in this case, the only nonzero entry in the first row of Ny ; is
(N14)1,4;, and, using Corollary 6, (N1;)1,4, must appear as a factor in the term L. Furthermore, if
for some zq € [1 : d; — 1] the entry (N1 ;)41 1S omitted, then by (4.52) and (4.56) the term £ will
contain a factor of the form (Ny;)ya, for some y € [2: d;]\{zo + 1}. Hence, the entry (Ni;)yy—1
does not appear as a factor in the term L either. Then from properties (F1;)—(F3;) and the fact
that by (4.60) the factor a},,, from the last row of Ny does not contain u, 41, it follows that the
power of u,, ,+1 in the term considered is less than d; — 1, but in the monomial (4.54) it is at least
d; —1 and we get the contradiction. Note also that in the case at hand, using the normalization
conditions (4.9), we have

(N1i)at1z = Un; 141, (N1 1d; = —Ung_y+di+1 (4.64)
so the total contribution of these factors to the coefficient of the monomial (4.54) is £1, i. e., trivial.

(G2) The cases i =1 and i = 2. From Corollary 6 it follows that
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e the only nonzero entries in the first row of [N1|b|z,] are
(Ni)1-1 =~ (Nii)iay, = —Udy 415 (4.65)

e the only nonzero entries in the row of [Ny|b|7,] containing the first row of N 5 are
(N12)1s—ni—1 = —us, ifs€ni+2:n1+d+1] (4.66)
(Ni2)1d; = —Unitda+1- (4.67)

Consequently, we have the following four possibilities:

(G2a) The entries (N;1)14, and (Ny2)14, are factors in £. This and (4.60) implies that the
entries (N1 2)g41,, for all € [1: do — 1] are factors in £, and there exists r € [2 : d;] such that b, is
a factor in £. The latter implies that the entry (/Nq,1),,—1 is not a factor in £ and therefore a%m 1
is a factor in £, otherwise more than one of the entries of the form (Ny 1)z41.4, 2 € [1:d; — 1] will
not appear as factors in Nj ; and it will contradict the fact that u; appears in the monomial (4.54)
in the power not less than d; — 1.

Recall that in aim +r—1 we are interested in the coefficient of the monomial u;u;, which by (4.63)
is equal to

— (v Ly, (4.68)
Taking into account all factors we revealed in £, relations (4.64), (4.65), (4.67), and (4.64), and also
that in aim 4r_1 We are interested in the monomial uju;, we conclude that in b, we are interested
in the coefficient of wjug, as u; and ug are the only variables in the monomial (4.54) that have still
not been used. By (4.19) the latter coefficient is equal to (af — a3)c;.. So, this, together with (4.68)

and the last sentence of (G1), implies that the total contribution of all possible terms satisfying
the assumptions of (G2a) (i.e., for every r € [2,d;]) can be written as

do
(a2 — a%)< Z sgn (o, )cp ™t vj>, (4.69)
r=2

where sgn(o,.) stands for the sign of the permutation related to the corresponding term in the Leibniz
formula for det[N;|b|,]. Since the value of sgn(c,) is not important to the final conclusions, its
explicit expression is not written out here.

(G2b) The entries (Ny1)1;—1 and (Ni2)14, are factors in L. First, regarding the entries
from the block N; 2 we can use the same arguments and the same conclusions as in (Gla). Regarding
the entries of the block Nj 1, since the entry (Nj1)1;—1 is already used in L, the entry (Ni1)11—1
should not appear as a factor in £, but then, by the same arguments about the lower bound for
the power of uy that we have already used both in (G1) and (G2a), all other entries of the form
(N11)z,2—1 have to be in L. Therefore, the entries aim d and l;l must appear as factors of L.
By (4.63), the former contributes to the monomial (4.54) the factor

— (07, ), (4.70)

Next, similarly to (G2a), the contribution to the monomial (4.54) from b; is equal to the coefficient
of ug, +1us which by (4.19) is equal to —(a? — a%)cfdlﬂ, so that the contribution of the terms from
(G2b) to the monomial (4.54) is equal to

(af — a3)(sgn(d,+1)cfg, 102, 07), (4.71)

where sgn(og4,+1) stands for the sign of the corresponding permutation. Combining (4.69)
and (4.71), we get that the contribution of the terms satisfying the conditions of (G2a) or (G2b)
can be written as

do+1
(af — a§)< Z sgn(ar)cfrvm+T_1,vj>. (4.72)

r=2
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Further note that by (4.66) for s ¢ [n1+2:ny+d; + 1] the cases (G2a) and (G2b) are
the only possible cases, so in this case the expression in (4.72) is equal to the coefficient
of the monomial (4.54). Vanishing of this coefficient for any j € Z? implies that the vector
Zfl;gl sgn(o,)c; ™1 which belongs to span{v” : x € If}, is orthogonal to v/ for all j € Z3.
Hence,

di+1
Z sgn (o, )cg o™ = 0. (4.73)
r=2

From ad-surjectivity, and, more precisely, since X is chosen as an ad-generating element, the tuple

m-+2
5.

.. 1
of vectors (v v .. ,vm+d1) forms a basis in R% . Therefore,

¢, =0, forl,re[2:dy+1], and s ¢ [1:di]U[n1 +2:ny +dy + 1. (4.74)

(G2c) The entries (Nii)14, and (Ni2)i1s—n,—1 are factors in L (relevant only for
s € [n1 +2:n; +dy + 1]). For the block N2 let us apply the arguments similar to the ones we
used for the block Nj; in (G2b):

Since the entry (N1,2)1s—n,—1 is already used in £, the entry (IV1,2)s—n; s—n,—1 should not appear
as a factor in £, but then, by the same arguments about the lower bound for the power of u; that we
have already used both in (G1) and (G2a), all other entries of the form (Nj2)gz 21, € [2 : d2] have
to be in £. Then the contribution to £ of the row of the matrix [N|b|7,] containing the (s — n;)th
row of N1 must be equal to the entry (N1 2)s—n, 4, Here we also use that this contribution cannot
be from the last column of [N1|b|z,], because of (4.60). Since by (4.66) U, is already used, the
term in (N12)s—n, d, that may give a contribution to the monomial (4.54) is the one containing

Un, +dy+1- Further, passing to the rows of [Nl\Z;\Tl] containing the block N i, since ug, 41 is used in
(N1.1)d,, the only possible contribution of b, comes from the monomial ujuy, 41, the coefficient of

which by (4.19) is equal to (a2 — a%)cl"fl. However, this coefficient is zero by (4.74). Hence, there

is no contribution to the monomial (4.54) from the terms satisfying (G2c).
(G2d) The entries (Ni1)1;—1 and (Ni2)1s—n,—1 are factors in £ (relevant only for
s € [n1 +2:ny +dy+ 1]). The only difference from (G2c) is that since (Nj,1)1;—1 in £ is used, one

has to use the term by, and since, by (4.65), it is already used in (Ny 1)1, 1, in b we are interested

in the coefficient of the monomial ug, 1un,+1. By (4.19), this coefficient is equal to (afa%)cgfib,

which is equal to zero by (4.74). Hence, there is no contribution to the monomial (4.54) from the
terms satisfying (G2d).

So, for s € [n1 +2 : nq 4 d; + 1] also the coefficient, of the monomial (4.54) in det[Ny|b|7,] is equal
to (4.72). Repeating the same arguments as after (4.72), we will get that the equality in (4.74) holds
also for s € [ny +2: ny 4+ dy + 1]. This completes the proof of Lemma 7 in the case of ig = 1 and
s € Z1. Since we can always permute the indices, it also proves this lemma in general. O

Lemma 7 proves only a subset of relations from (4.50). Using again the flexibility given by
Corollary 4, one can show that (4.50) holds not for the original quasi-normal frame but for its
perturbation adapted to the same choices of X, 11, which will be enough to finish the proof of
Proposition 7.

Corollary 7. Let Kx,, and Hx,, ., be asin (4.27) and (4.28), respectively. If Y; and Z; are

sections of Hx,,. ., satééjjg;ing
dimspan{Y;, Z;} = 2, span{Y;, Z;} N Kx, ., =0, (4.75)
then
i, Zi]) € Lx,,, , modD;, (4.76)
where Lx, ., is defined as in (4.31).
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Proof. Indeed, from (4.75) it follows that we can find a quasi-normal frame (Xi,...,X,) such

Y;
Y and X,, 13 € span{Y;, Z;}. Then (4.76) follows from Lemmas 7

and Corollary 4. O

that Xni71+2 =

By Remark 12, we can assume that d; > 2, as for d; = 0 or 1, relations (4.50) have already been
proved there, perhaps for a perturbed quasi-normal frame. Under this assumption the set of planes

in Hx, ., having a trivial intersection with K, ., is generic. Therefore, by a finite number
1— i—

of consecutive small perturbations, one can build a quasi-normal frame (X1, ..., X)) such that, for
every nj—1 + 2 < i < j < ny, the pair (Y;, Z;) = (X;, X;) satisfies (4.75) and so by Corollary 7 this
frame satisfies (4.50). Besides, by Remark 11, the new quasi-normal frame obtained in this step
will automatically satisfy (4.47). This completes the proof of Proposition 7.

4.5. Proof of Proposition 9
From (4.50) and Lemma 6, using (3.17), one can get that
b; =0, Vjel:m] (4.77)
This, together with (4.18), implies that, if for all v € [1 : k] and j € I2 we set U := &, —a2 . u;
and W := (Uy,...,¥,,)7, then Ay ¥ = 0. This, again together with (4.18), implies that the tuple
®=(Ppi1,...,P,)7" with
®j=ap  uj, jET (4.78)

which corresponds to ¥ = 0, is the solution to the first layer A'® = b! of the fundamental algebraic
system (3.19).

Further, note that the m x (n —m)-matrix A' has the maximal rank n — m at a generic point, as

k
from the normalization conditions (4.9) the coefficient of the monomial H ui’;_l 41 in its maximal
v=1
k
minor consisting of rows from the set U [My—1 +2:ny—1+d; +1] is equal to 1. Hence, (4.78)
v=1

defines the unique (rational in u’s) solution of the the system A'® = b! and therefore it must
coincide with the solution of the whole fundamental algebraic system (3.19), i.e., it must satisfy
other layers of it. In other words,

k

Z Z aila%i_lﬂul =b;, Vs=>1,tell:m], (4.79)
v=11e7?

where af; and b] satisfy (3.21) and (3.22), respectively. Note that, by (4.18), relation (4.79) is
equivalent to

b=0. (4.80)
Without loss of generality, it is enough to prove Proposition 9 for ¢ = 1.
Lemma 8. The coefficients of the monomials
uywug, Yl €[2:dy+1],j cT}UT? v #1 (4.81)
m 5m+1 are equal to
—(3=a2 ) (Dmrir + ey ), yALER di+1]j €TLUTE 0 #1

. (4.82)
- (a% - a%%l“) c;7m+y_1, y=1€[2:d; +1],j €T} UT2 v #1.
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Proof. We use the expression for by,,1 given by (B.10) in Appendix B. Consider the cases j € T2
and j € 7. separately.

Case 1: j € Z2. The first term of this expression does not contribute to the monomial (4.81),
because every monomial in it contains wu, with w € [1:m]\Z{. Also, since w € [1 : m]\Z{, by
Lemma 4 ¢i, are independent of w, for z € Z{, hence the second term of (B.10) does not
contain the monomial (4.81). Further, the third term of (B.10) does not depend on u; with j > m
because by (3.17) all ¢;; depend only on w;’s with i € [1: m]. Therefore, in the case at hand the
monomial (4.81) may appear in (B.10) only in the fourth term, i.e., in

k m-+di
D (@) =y 41)?) Do D qurgriun. (4.83)
i=2 r=m+1¢ec7?

Finally, by the normalization conditions (4.9) one can easily show that the coefficient of this
monomial in (4.83) is equal to (4.82).

Case 2: j € T.. In this case the fourth term of (B.10) does not contribute to the monomial (4.81)
in l~)m+1, because each monomial in this term contains factor u; with ¢ > m.

Let us analyze the second term of (B.10): by Lemma 4, the factor ¢, does not contain wus
with s € 7], so it must contribute the coefficient of u;, which is equal to c}}. Hence, the index z,
appearing in the second term of (B.10) must be in I}, hence it must be equal to either y or I, where
y and [ are as in (4.81). So, the total contribution of the second term of (B.10) to the coefficient of
the monomial (4.81) in by, is equal to

k
((@1)* = (an, 1+1)%) D (el + ) =0, (4.84)

1=2 wET}

because ¢}, —i—c;w =0 by item (2) of Proposition 11. So, the second term of (B.10) does not

contribute to the monomial (4.81) in by, ;1
Now let us analyze the first term of (B.10): First, the index w appearing there must be equal to
j from (4.81). Second, as in (B.13),

m

qy) =) Z ! Gratia + Z ha(c) (4.85)

r=1z=1 r=1

In the second term of (4.85) we are interested in r € Ill, but in this case, by Lemma 4, 5'7]”1 =
and therefore the second term of (4.85) does not contribute to (4.89).

For the same reason, the index r in the first term of (4.85) can be taken from [1 : m]\I{, Hence,
the coefficient of u,u; which is of interest to us in the first term of (4.85) for the monomial (4.81)
is equal to

m .
Z CZ"I(C?T + C;T) = 07 (486)

r=mi+1
because ¢} + cér = 0 by item (2) of Proposition 11 again. Consequently, the first term of (B.10)

does not contribute to the monomial (4.81) in by, 1.
So, in the case at hand the monomial (4.81) may appear in (B.10) only in the third term, i.e.,
in

k m-+dq
Z al a”z 1+1 ) Z Z q1rqrwlw- (487)
1=2 r=m+1 e}

Finally, by the normalization conditions (4.9) one can easily show that the coefficient of this
monomial in (4.87) is equal to (4.82). O
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From condition (4.80) and Lemma 9 it follows that

{C?];,m—H 1+Cl7m+y—1 :07 y#le [2:d1+1]7j € [1 n]\(IllU'le)a (4.88)
& g1 =0, y=1le2:di+1],j€[1:n\(Z] UI}).
Lemma 9. The coefficients of the monomials

wiuj, jEIIUI2v#1 (4.89)
in by, f€[2:d+1] are equal to

<O¢% - Oé%v,1+1> Cim-g-f_l- (490)

Proof. We use the expression for Z;m+ ¢ given by formula (B.10) from Appendix B. Consider the
cases j € Ig and j € 7} separately.

Case 1: j € Z2. The first and the third term of (B.10) do not contribute to the monomial (4.89)
by the same arguments as in the proof of case 1 of Lemma 8, while the same holds for the second term

not only by Lemma 4 but also by Lemma 7. Hence, as in the proof of Lemma 8, the monomial (4.89)
may appear only in the fourth term, i.e., in

k m+dy
Z (en;_1+1)°) Z Z qfrQrtts. (4.91)
=2 r=m-+1 te_’[Z?

Finally, by the normalization conditions (4.9) one can easily show that the coefficient of this
monomial in (4.91) is equal to (4.90).

Case 2: j € T.. In this case the fourth term of (B.10) does not contribute to the monomial (4.89)
in b, 41 for the same reason as in the proof of case 2 of Lemma 8.

The analysis of the first and second terms of (B.10) is also completely analogous to the one in
the proof of case 2 of Lemma 8. The main differences are that here we use Lemma 7 together with
Lemma 4 there and item (1) of Proposition 11 instead of item (2) of Proposition 11 there.

In more detail, for the second term of (B.10) by Lemma 7 the factor ¢y, does not contain wu
with s € Il, so it must contribute the coefficient u;, which is equal to c . Hence, the index x
appearing in the second term of (B.10) must be in Il, and hence it must be equal to 1. So, the

total contribution of the second term of (B.10) to the coefficient of the monomial (4.89) in by, pis
equal to

k
Z ((1)? = (atn;_y+1)%) Z c?’fc%w =0, (4.92)

1=2 wEIil

because ci,, = 0 by item (2) of Proposition 11. So, the second term of (B.10) does not contribute
to the monomial (4.89) in by, ¢.

Now let us analyze the first term of (B.10): First, the index w appearing there must be equal to
j from (4.89). Second, as in (B.13),

1(a55) Z Z L pdrate + Z hy(c (4.93)

r=1z=1 r=1

In the second term of (4.86) we are interested in r = 1, but in this case, by Lemma 4, C’Zl =
and therefore the second term of (4.85) does not contribute to (4.89).
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By similar reasoning, using now also Lemma 7, the index r in the first term of (4.85) can be
taken from [1 : m]\I{. Hence, the coefficient of u? which is of interest to us in the first term of (4.93)
for the monomial (4.89) is equal to

m

Y dsh=0, (4.94)

r=mi+1
because cl, = 0 by item (1) of Proposition 11 again. Consequently, the first term of (B.10) does
not contribute to the monomial (4.89) in by, ¢.

So, in the case at hand the monomial (4.81) may appear in (B.10) only in the third term, i.e.,
in (4.87). Finally, by the normalization conditions (4.9) one can easily show that the coefficient of
this monomial in (4.87) is equal to (4.90). O

From condition (4.80) and Lemma 9 it follows that

cj, =0, leZf,jel:n\(Zj UT}). (4.95)
In other words,
ad(X1)(D?) c D3. (4.96)
Lemma 10. The following inclusion holds:
ad(X,)(D?) c D}, Vye€I]. (4.97)

Proof. Take y,l € [2: dy + 1]. Using the normalization conditions (4.8) and the Jacobi identity, we
have

(4.8)

[va Xm-i—l—l] = [va [le Xl“ = [[Xy’ Xl]’ Xl] (4 98)
4.8 '
+ 10, 1y X' (= Xy, X+ (X0, 1, X
Hence, using (4.96),
[Xanm—l-l—l] - [XlaXm-l—y—l] = [X17 [Xanl]] € a‘d(Xl)(D%) C D%? (499)
which implies
& it = Oomayr =00y 1€ [2:di +1],5 € [1:n]\(Z] UTY). (4.100)
Combining (4.88) and (4.100), we get
& o1 = Qg1 =0,y l€2:di+1],5 € [1:n]\(Z} UTD). (4.101)
In other words, taking into account (4.96), we get
ad(X,)(D3) Cc D3, VYye[l:dy+1]. (4.102)
Furthermore, when y € [dy + 2 :m;] and [ € [1 : d;], the Jacobi identity yields
[(Xy, Xint] = [ Xy, [ X1, Xiga]] = [Xy, Xa], X ] + [ X0, [Xy, Xiga]]
(4.103)
) 5, (4102)
C ad(X;11)(D7) +ad(X1)(D7) < (Dy),
which implies (4.97). O

Finally, observe that (4.97) implies (D1)3(q) = (D1)%(q). This completes the proof of Proposi-
tion 9.
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4.6. Completing the Proof of Proposition 10

Without loss of generality, it is enough to prove that D? + D2 is involutive. Moreover, for this,
by Proposition 9, it is enough to show that

(X, X;l € DY+ D3, (r,j) € (I} xT3) U (T} x Ty). (4.104)
Without loss of generality (swapping the indices), it is enough to show it for (r, ;) € (Z x Z3). For
this, using the normalization conditions (4.8) and the Jacobi identity, we get

10, X7 2 X0 X, X = X0 X)X ] + (X0 (X, X (4.105)

Since 1 and r — m + 1 belong to Z{ and j € Zy, by the decomposition of the Tanaka symbol (3.8)
and Lemma 5 it follows that

[X1,Xj] € D1+ D2, [X;—m41,X;] € D1+ Ds. (4.106)
Consequently, using Lemma 5, from the right hand-side of (4.105) and (4.106) it follows that
(X, X;] € D} + Dy C D} + D3,
which completes the proof of Proposition 10.

4.7. Completing the Proof of Theorem 3 by Rotating the Frames on D;’s

By Proposition 9, we have that the distributions Df, i € [1: k] are involutive. Moreover, by

Proposition 10 the distributions DZ-2 @ Djz, i,7 € [1: k] are involutive as well. The latter implies

that for every subset J C [1 : k] the distribution
Ag =& D} (4.107)
ieJ
is involutive. Let F7(q) be the integral submanifolds of the distirbution A7 passing through the
point q.
By constructions, for any i € [1: k] and point ¢ € M , the manifold f{i}(q) is transversal to
Fii:e)\iy (@) By the transversality and the inverse function theorem, for any go € M there exists a
neighborhood U of g such that, for any ¢ € U and g2 € U, the leaf F;1(q1) intersects with the

leaf F1.1)\{i}(g2) at exactly one point. Then the following projection map w0 U — Fiy(qo) is well
defined:

7°(q) = Friy (q0) N Frup iy (@) (4.108)

for any ¢ € U. Note that the map 7° is a diffeomorphism between F;(q) N U and F;(qo) NU. As a
consequence, for any r € I{, there exists a unique vector field X, on I/ such that

X, is a section of D? and

: | (4.109)
dri(X,(q)) = Xr(7°(¢)), where r € I;.

Lemma 11. X, is a section of D; for every r € 7}

Proof. From the decomposition of the Tanaka symbol (3.8) and the involutivity of distributions
A7 it follows that that for any ¢ € [1 : k] and any section V' of the distribution @ D;
Jell:k\{d}
[V, Di © Appy i) € Di © Apg (4} (4.110)

which implies that the local flow e*V', generated by the vector field V, consists of local symmetries
of the distribution D; & A[lk}\{z}v i.e.,

(). (Di @ A[1:/&]\{1’}) = D; & A\ {i}- (4.111)
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By construction, for any section V' of the distribution @ D; (and even for any section V' of

JEl:RN\{i}
the distribution Ay 31) , we have
7P oV =7, (4.112)
This, together with (4.111) and the fact that
ker(dmi®)(q) = Apap a3 (9); (4.113)
implies that
dr? (D;(e" q0)) = Di(qo)- (4.114)

Consequently, by the definition of X, with r € T¢ given by (4.109), we get
X, (e"'q0) € Di(e" qo). (4.115)
Finally, by the Rashevskii—Chow theorem, the point ¢y can be connected with any point of

FApap (go) NU by a finite concatenation of integral curves tangent to the distribution @ D;

FeL:R\{i}
and so we can apply relations (4.113) and (4.115) a finite number of times (with corners of the
concatenation instead of qp) to get the conclusion of the lemma. (]

Lemma 12. If i # j € [1: k], then for every r € I} and lEI]1 the vector fields X, and X
commute,

(X, X)] =0, VreZIlleIi#]j (4.116)

Proof. As before, let i € [L: k] and V' be a section of the distribution A4\ ¢;3- Then, using the
standard properties of Lie derivatives and (4.112), one gets

(LY. K )(0) = ). (). X ()

(a.112) d d - (4.117)
iy qQ\ v tV _ q0 _
= E(@ )« Xr(e" (q)) — = EXT(% (q)) =0,

where (7°), denotes the pushforward of the map 7°. Then, by (4.113), the above calculations

show that
[V, X,«] S A[lk}\{z}y re Iz-l, V' is a section of A[lk}\{z} (4.118)

Using (4.118), first for V = X such that [ € I} and j # ¢, then switching the roles of i and j, and
finally using the distribution Ay jy, we get

(X, Xi] € Ay N App iy N Apjy =0, Vr eI 1 €TI],i#j, (4.119)
i.e., the vector fields X, and X; commute. (|

Our final goal is to show the following

Lemma 13. The frame (X1,...,Xm) defined by (4.109) is g1 -orthonormal.

Proof. By Lemma 11, the collection {Xr}rel—_l is a local frame of D;, hence for every ¢ € U there

exists a m; X m; matrix T;(q) = (t',(q)) 71 € GL(m;), making the transition from the originally

r,s€

chosen local frame (X;);er1 of D; to (Xi);eqi, i.e.,

X, =Y X, i€[l:k,reI. (4.120)

The lemma will be proved if we show that T; € SO(m;) for every i € [1: k.
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First, from the commutativity relation (4.116) by direct computations it follows that the entries
of the transition matrix-valued function 7T; satisfy the following system of partial equations 2:

Xi(th) ==Y cth,, VrseI}lel:m\I}. (4.121)
vEIil

Now, using (4.121), we have

X Z tf“stfus = Z (Xl(tis)tfus + tile(tfus))
s€T} sE€T} (4.122)
(4.121) o . .
=7 =20 D (bt + tintis) = = D (e + )it =0,
s€L} vel} s,vel}

where the second expression of the chain of equalities in the second line of (4.122) is obtained
by swapping indices s and v in the second term of the first expression of the chain of equalities
in the second line of (4.122), and the last equality in (4.122) follows from items (1) and (2) of
Proposition 11. Therefore, ) sz} ti t! _is constant on each piece of a leaf of Frk\{iy lying in U.

rsTws
Besides, by (4.109),
X,(q) = Xo(q), VreTl,qe Fplep)nU,
so by gi-orthonormality of {X,},c71 this implies that

Z £ ()t (@) = Opwy, Vr,w €T} g€ Fiiy(q) NU,
s€T}

and hence, by (4.122),

Z t;s(q)tzus(q) = 57"107 \V/T', w € Iilv q S U
sGIil

This proves the gj-orthonormality of {X,},cz1. O

We complete the proof of the main theorem, Theorem 3, by noticing that, if gi denotes the
sub-Riemannian metric on the distribution D; on the leaf F;(qp) defined by the condition that
{X;}, ez is orthogonal in this metric, then

k
(U,Dly, g1lv) = 51 (E(QO) N U, Dil 7, (qo)v> gli|Fi(qo)ﬂU)-
APPENDIX A. PROOF OF PROPOSITION 1

Assume by contradiction that m is not ad-surjective. Let m := dim m_; and d := dim m_5. We
start with consideration for general d. Assume that

r:= max rank(adX). (A.1)
Xem_q

Then from the non-ad-surjectivity assumption we have r < d. Take X7 such that

rank(adX;) = 7. (A.2)
Then the rank-nullity theorem implies that
dim ker(adX;) =m —r. (A.3)
Obviously, X; € ker(adX7). Let us complete it to the basis (X,...,X,,) of m_; such that
ker(adX1) = span{ X1, X;19,..., X} (A.4)
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Let

Y, = [X1, X)L €17 (A.5)
By constructions, Y7, ...,Y, are linearly independent, and
Im(adX1) = Im(ad X1 |span{xs,....x,,1}) = span{¥1,..., V. }. (A.6)
Since m is step 2 and fundamental, there exists i < j € [2,m] such that

[Xi, X;] ¢ Im(adX7). (A.7)

Set
Yo = X, X5l (A.8)

Lemma 14. The index j (and therefore also i) in (A.7) does not exceed r + 1.

Proof. Assume by contradiction that j > r + 2. From maximality of r in (A.1), (A.2), and (A.6) it
follows that for sufficiently small ¢

rank(ad(X1 + tXi) |span{Xa,... X, 1}) =T (A.9)
and the spaces Im(ad(X1 + tX;)|span{x2,...,.x,,,}) are sufficiently closed to Im(adX;) so that
Vi1 & Im(ad(X1 + tX3) [span{xa,... X, 1 1)- (A.10)
On the other hand, from (A.4) and (A.8) it follows that
(X1 +tX;, Xj] = tYoi, (A.11)
which implies that rank(ad(X; +t¢X;)) > r for sufficiently small ¢ 0. This contradicts the
maximality of 7 in (A.1) and completes the proof of the lemma. (]

In the proof of the previous lemma, based on (A.4) and (A.6) we actually have shown that

[ker(adX1),m_;] C Im(adX). (A.12)
After permuting indices we can assume that (i,j) = (2, 3), i.e., that
[XQ,Xg] ¢ Im(aXm) (Al?))
Now, given X and X from m_1, set
Ly 5 =ker(adX) N ker(ad X). (A.14)
Let
k:= min dimL, . A.15
X7X€m_1 XX ( )

By genericity of (A.2), (A.13) and (A.15) we can choose X, X5, and X3, maybe after a small
perturbation, such that (A.2), (A.13), and

dim (ker(adX1) Nker(adXy)) = k (A.16)

hold simultaneously.

Now, by item 1 of Proposition 1 d < 3. Therefore, either r = 1 or » = 2. Consider these two cases
separately.

Case 1: r = 1. By (A.4)
ker(adX;) = span{ X1, X3,..., X} (A.17)
and by this and (A.12)
[Xi, X;] € Im(adXy), Vie[2:m],je€[3,m] (A.18)
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or, equivalently, from the fundamentality of m,
m_y = Im(adX;), (A.19)

so in fact d = r (= 1) and this case is done.
Case 2: r = 2. By the previous constructions,

[X17X2] = Yla [X27X3] = Y:?n (A20)
where
Y3 ¢ Im(adX1), (A.21)

as a particular case of (A.10) for » = 2. Then from (A.20) and (A.21) by maximality of r =2
in (A.1),

Im(adX5) = span{Y7, Y3}. (A.22)
From this, (A.6), and (A.12) it follows that
(X2, X;] € Im(adX7) NIm(adXs) = span{Y1}, Vi€ [4:m]. (A.23)

Since [X7, Xo| =Y for any i € [4 : m] one can replace X; by

X; =X; mod span{X;} (A.24)
such that [Xs, X;] =0, i.e.,

ker(adXs) = span{ Xy, X4, ..., Xm}.
This, together with (A.4) and (A.24), implies that
Lx, x, =span{Xy,..., X, }.
Therefore, by (A.16),
k=m~—3. (A.25)

The following lemma will give a contradiction with item 3 of the assumptions of Proposition 1 and
therefore will complete the proof of it in the case of r = 2:

Lemma 15. The space Lx x, is the same for all X € m_q for which dim Lx x, = m — 3, and so

the space Lx x, lies in the center of m 6),

Proof. Assume by contradiction that there exist X and X3 such that dim Ly, x, =m —3,7= 2,3
but

Lx, x, # Lx;.x,- (A.26)

Obviously, X7, Xs and X3 are linearly independent. By openness of condition (A.26) we can always
assume that

ad X7 (spanXs) # ad X (spanX3). (A.27)
We claim that
LX27X3 = LX2,X1 N LXg,Xl- (A28)

Before proving (A.28), note that, if it holds, then by (A.26) it will follow that dim L x,mx, < m — 3,
which will contradict the minimality of k =m — 3 in (A.15).

It remains to prove (A.28). First, it is clear that

3
Lx, x, NLx, x, = ﬂ ker(adX;) C Lx, x;. (A.29)
=1

5 The latter conclusion follows from the fact that the set of such X is generic in m_j.
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On the other hand, from the dimension assumptions it follows that
ker(adX;) = span{X;} & Lx, x,, =2,3. (A.30)
So if v € Lx, x,, then
v = asXomod ker(adX;) = a3 X3 mod ker(adXy). (A.31)
Note that (A.27) means that X5 and X3 are linearly independent modulo ker(ad X7 ). Hence, (A.31)
implies that ag = a3 =0, i.e., v € ker(adX;). This implies that v € Lx, x, N Lx, x,, i.€.,
Lx, x; C Lx, x; N Lx, x,-

This and inclusion (A.29) complete the proof of (A.28) and therefore that of Lemma 15. O

Finally, note that in the case of dimm_o = 4, even if assumptions 2 and 3 hold, Proposition 1
is wrong. Here is a counterexample:

Example 2. Let m = m_; & m_y be the step 2 graded Lie algebra such that
m_; =span{Xy,..., X5}

A.32
m_y = span{Y7,..., Yy} ( )

so that, up to skew-symmetricity, the following brackets of the chosen basis are the only nonzero
ones:

[XlaXi] = )/;_1, Vi € [2 : 4],

(X2, X3] = Yy, [ X2, X5] = BYs3, (A.33)

(X3, X5] = 6Y3, [X4.X5] = AY3,
where (3, 4, A are nonzero constants. Note that span{Xi, X3, X3,Y7,Y2,Ys} is a subalgebra of m
isomorphic to the truncated step 2 free Lie algebras with three generators and span{Xy, X5, Y3}
is an ideal of m isomorphic to the 3-dimensional Heisenberg algebra. Thus, m is a semidirect sum

of the truncated step 2 free Lie algebras with three generators and the 3-dimensional Heisenberg
algebra.

It can be checked by straightforward computations that here r defined by (A.1) is equal to
3 < d =4 and that m_; meets the center trivially, i.e., it is indeed a counterexample.

Indeed, if X € m_q,
5
x =YX, (A.34)
=1

then the map adX has the following matrix with respect to the bases (Xi,...,X5) and Y,...,Y))
of m_; and m_s:

—Cy —Cs —Cy 0
4 0 —BC5 C3

adX = 0 o)) 5Cs Cy | - (A.35)
0 0 C1 — \Cs 0

0 0 BCy+6C3+MCy 0

It is easy to check that the maximal rank of this matrix (as a function of C’s) is equal to 3, which
implies that r = 3. Also, this matrix is not equal to zero if (C1,...,C5) # 0, which means that m_;
meets the center trivially.
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Finally, note that m is not decomposable. Assume the converse, i. e., that m = m! @ m? for some
nonzero fundamental graded Lie algebra m! and m?. Without loss of generality assume that

dim m!; > dim m?,. (A.36)

Since m_1 meets the center trivially, it is impossible that dim m? ; = 1. Hence by (A.36) and the fact
that dimm_; = 5, we have that dim m?; = 2 and the algebra m_; is nothing but the 3-dimensional
Heisenberg algebra. Therefore, for every nonzero X € m? |, the rank of adX is equal to 1. However,
it is straightforward to show that, if the rank of the matrix (A.35) is not greater than 1, then
(C1,...,C5) =0, which leads to a contradiction. So m is indecomposable.

An alternative, more conceptual, way to prove indecomposability of m is to observe that,
otherwise, each component in its decomposition will have —2 degree part of dimension not greater
than 3 (but not equal to 0) and by Proposition 1 each component is ad-surjective. Then by Remark 2,
m is ad-surjective, which is not the case.

APPENDIX B. PROOF OF SUBLEMMA 1

Let us derive an expression for by, ¢ with f € [1:m4]. For the proof of Sublemma 1 we need
only the case f =1, but the cases of more general f are needed in Section 4.5, in particular, in
Lemma 9. First, by column operations (4.18)

k €;
bm+f = b? - Z(anz—l-‘rl)z Z a?7m+tum+t7 (B].)
=1 t=e;_1
where by (3.21) and (3.22)

a?,m—i-j h qf7m+] Z qfrdrm+j, (B.Z)
k r=m+1

b2 = ]_7:1 (b}‘) - Z anz 1+1 Z Z qQrGrwUw, (B?))
=1 r=m-+1 wGI}

and g;; and b}c are as in (3.17) and (4.14), respectively. Note that from the decomposition of the
Tanaka symbol (3.8) it follows that

Gur =0, Yw € I}, r € T2 with i # v. (B.4)
Substituting (B.4) into (B.2), we get
m-4diq
1(qfmat) + Z QfrQrmsts t€[1:di]
a?ﬁert =\ m+td: rem (B.5)
Z qfrdrm+t tel:n—ml\[1:d].
r=m+1

Moreover, (B.4) implies that (B.3) can be rewritten as follows:

k m+d1
b2 = hl(b}c) — Z Qn,;_ 1+1 Z Z dfrQroUy- (B.6)
1=1 r=m+1yeT!

By (B.1), (B.5), and (B.6), we have
m-+di

k
bm+f - hl bf Z ani,l—i-l)z Z Z qfrQrwly
i=1

r=m-+1 el
R (B.7)
k e;

2 2
- Z(ani,ﬁ-l) Z AfmttUmt-

i=1 t=e;_1+1
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Using (4.14) and (4.15), we get

m+d1
h (bf) Z QfTuT+Z al anz 1+1 ) Z q fwUw
r=m-+1 weT!
m+d1 m+dy k
Z hl er Uy +a1 Z erhl ur +Z anz 1+1 ) Z hl(wa)uw
r=m+1 r=m+1 1=2 71
wen (B.8)
m-+di m+di n
+ Z al anz 1+1 )Z wahl(uw) = O‘% Z hl(er)Ur + Oé% Z ZQfTQTwum
wGIil r=m-+1 r=m+1z=1
k n
+ Z O‘m 1+1)2) ( Z (hl(wa)uw + Zwawaum))-
=2 wgzil z=1

Substituting (B.5) and (B.8) into (B.7), and taking into account (B.5) again, we get the following
cancellations:

m-+di m+d; n

by = od Y i+t >3 apdru

r=m+1 r=m+1w=1

+ Zk: ((01)* = (omy_141)?) ( Z <El(wa)uw + z”: qquwxux))
i—2

weT} =1

i m+d1 d (B.9)

- Z a”z 1+1 Z Z qfrdrwlyw — L m+t)um+t

1 r=m+1 wEI} t:l

€; m-+di

k
- Z(am—ﬁ-l)Q Z Z qfrdrm+tUm+t-

=1 t=e;—_1+1r=m+1
k

Applying the relation [1 : n] = U T} UZ? to the sum in the second term of (B.9), we get
i=1

((@1)? = (an,_14+1)?) ( > (HI(wa)uw + Zn: wawaum)

wET} =1

Bm-i—f ==

M-

||
N

(2

m-4di m-+di (BlO)

+ Z Z ququuw+ Z qurqrtut).

r=m+1yweT! r=m+1¢e7?

From now on let f =1. Since by (3.17) all ¢;, depend only on w;’s with i € [1:m], from
expression (B.10) the variable u; with j € Z? may appear only in the following terms of (B.10):

k
Z a”z 1+1)2) Z (ﬁl(q1w)uw + q1wajuj)- (B]_l)
=2 we_’[il

Moreover, g,,; = 0 for w € [1 : m]\Z{ and j € Z? by (B.4), so the variable u; with j € Z? may appear
only in the following terms of (B.10):

k
Z al a”z 1+1 ) Z Hl(‘]lw)uw (B.12)
=2

wEIil
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or, more precisely, in terms hi(q1y) with w € [1: m]\Z}, i € [2: k]. Let us analyze these terms.
Using (3.17) and (4.15), we get

I (quuw) zm:( i (ur) + B (e)u )

=1 (B.13)

n

m
ZZ rlQrwum +Zh1 7«1

r=1

The second term in (B.13) does not depend on u; with j € Z?, while to get this u; in the first term
the index x must be equal to j. So, the terms containing u; in i_il(qlw) are

m
uj Zc}f’lqrj. (B.14)
=1
Recall that '

{c;ul =0, ifreZ} well:m\I} (B.15)

¢j =0, ifrefl: m)\Z;.

Here the first line comes from (4.24) and the second line comes from (B.4). So, plugging (B.15)
into (B.14), we get that u; does not appear in by, 1 and the proof of Sublemma 1 is completed.

FUNDING

This work was partly supported by NSF grant DMS 2105528 and Simons Foundation Collabo-
ration Grant for Mathematicians 524213.

CONFLICT OF INTEREST
The authors declare that they have no conflicts of interest.

REFERENCES

1. Agrachev, A., Barilari, D., and Boscain, U., A Comprehensive Introduction to Sub-Riemannian Geom-
etry: From the Hamiltonian Viewpoint, Cambridge Stud. Adv. Math., vol. 181, Cambridge: Cambridge
Univ. Press, 2020.

2. Agrachev, A.A. and Sachkov, Yu.L., Control Theory from the Geometric Viewpoint, Encyclopaedia
Math. Sci., vol. 87, Berlin: Springer, 2004.

3. Alekseevsky, D., Shortest and Straightest Geodesics in Sub-Riemannian Geometry, J. Geom. Phys.,
2020, vol. 155, 103713, 22 pp.

4. de Rham, G., Sur la réductibilité d’un espace de Riemann, Comment. Math. Helv., 1952, vol. 26, no. 1,
pp. 328-344.

5. KEisenhart, L. P., Symmetric Tensors of the Second Order Whose First Covariant Derivatives Are Zero,
Trans. Amer. Math. Soc., 1923, vol. 25, no. 2, pp. 297-306.

6. Jean, F., Maslovskaya, S., and Zelenko, 1., On Projective and Affine Equivalence of Sub-Riemannian
Metrics, Geom. Dedicata, 2019, vol. 203, pp. 279-319.

7. Kaplan, A., Fundamental Solutions for a Class of Hypoelliptic PDE Generated by Composition
of Quadratic Forms, Trans. Amer. Math. Soc., 1980, vol. 258, no. 1, pp. 147-153.

8. Morimoto, T., Cartan Connection Associated with a Subriemannian Structure, Differential Geom. Appl.,
2008, vol. 26, no. 1, pp. 75-78.

9. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., and Mishchenko, E.F., The Mathematical
Theory of Optimal Processes, L. W. Neustadt (Ed.), New York: Wiley, 1962.

10. Tanaka, N., On Differential Systems, Graded Lie Algebras and Pseudo-Groups, J. Math. Kyoto. Univ.,
1970, vol. 10, no. 1, pp. 1-82.

11. Zelenko, I., On the Geodesic Equivalence of Riemannian Metrics and Sub-Riemannian Metrics on Dis-
tributions of Corank 1, J. Math. Sci. (N.Y.), 2006, vol. 135, no. 4, pp. 3168-3194; see also: Sovrem. Mat.
Prilozh., No. 21, Moscow: VINITI, 2004, pp. 79-105.

12. Zelenko, 1., On Tanaka’s Prolongation Procedure for Filtered Structures of Constant Type, SIGMA
Symmetry Integrability Geom. Methods Appl., 2009, vol. 5, Paper 094, 21 pp.

Publisher’s note. Pleiades Publishing remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

REGULAR AND CHAOTIC DYNAMICS Vol. 29 No.2 2024



