Mei and Liu AAPPS Bulletin (2025) 35:4
https://doi.org/10.1007/543673-025-00145-x

ORIGINAL ARTICLE

Magnetic-resonance-induced non-linear

AAPPS Bulletin

Open Access

=

Check for
updates

current response in magnetic Weyl semimetals

Ruobing Mei' and Chao-Xing Liu™

Abstract

In this work, we propose a geometric non-linear current response induced by magnetic resonance in magnetic Weyl
semimetals. This phenomenon is in analog to the quantized circular photogalvanic effect (de Juan et al, Nat. Com-
mun. 8:15995, 2017) previously proposed for Weyl semimetal phases of chiral crystals. However, the non-linear current
response in our case can occur in magnetic Weyl semimetals where time-reversal symmetry, instead of inversion
symmetry, is broken. The occurrence of this phenomenon relies on the special coupling between Weyl electrons

and magnetic fluctuations induced by magnetic resonance. To further support our analytical solution, we perform
numerical studies on a model Hamiltonian describing the Weyl semimetal phase in a topological insulator system

with ferromagnetism.

1 Introduction

Topological and geometric aspects of electronic Bloch
wavefunctions in the Brillouin zone (BZ), including the
Berry curvature [1-3] and quantum metric [3-6], play
essential roles in our understanding of physical responses
in crystalline materials. For example, the Hall conduc-
tivity of a 2D crystalline insulator can be related to the
integral of the momentum-space Berry curvature for
the Bloch wavefunctions over the entire BZ, which is
identified as a topological index called the “Chern num-
ber” in the formula first derived by Thouless, Kohmoto,
Nightingale, and den Nijs [7]. The Berry curvature inte-
gral of the occupied states, which is not quantized, also
provides an intrinsic mechanism for the anomalous
Hall effect in a variety of ferromagnetic metals. More
recently, physical phenomena induced by non-linear
responses have also been connected to band topology or
geometry. For example, the Berry curvature dipole and
quantum metric dipole are theoretically proposed to be
the origin of the non-linear Hall effect in non-magnetic
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or anti-ferromagnetic materials, which preserve either
time-reversal symmetry (T) or the combined f’f"—sym—
metry where P is inversion [8—13]. This geometric origin
of non-linear Hall effect has been experimentally dem-
onstrated in a variety of material compounds [14-25].
Quantized topological non-linear response due to chiral
charges of Weyl nodes has also been theoretically pro-
posed for the circular photogalvanic effect (CPGE) in
Weyl semimetals [26—28]. Experimental observation of
CPGE has been reported in chiral multifold semimetals
RhSi and CoSi and its connection to topological chiral
charges has been discussed [29-31].

The CPGE is a second-order optical response, in which
the current switches its direction when the circularly
polarized incident light changes its polarization [27-
34]. In Ref. [27], de Juan et al. proposed that the CPGE
can be quantized in the Weyl semimetal phase of chiral
crystals and this quantization originates from the topo-
logical chiral charge of Weyl nodes. Because the Weyl
nodes must appear in pairs with opposite chiral charges
in crystals, the CPGE contributions from the Weyl nodes
with opposite chiral charges will cancel each other, gen-
erally leading to the vanishing CPGE (Fig. 1a). To over-
come this obstruction, it was theoretically proposed
that when two Weyl nodes with opposite chiral charges
sit at different energies and the Fermi energy is close to
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Fig. 1 a Schematic of the energy dispersion for a two-band Weyl semimetal that preserves mirror symmetry and breaks time-reversal symmetry.
The left and right Weyl nodes have opposite C and sit at the same energy. The current response of topological CPGE will cancel out between these
two Weyl nodes due to the opposite chiral charges, but the magnetic-resonance-induced non-linear current proposed in this work will remain. b
Band structure of a chiral Weyl semimetal where the two Weyl nodes are at different energies. The topological CPGE can exist due to Pauli blocking

one Weyl node but far away from the other Weyl node
(Fig. 1b), optical inter-band transitions can only occur
for the Weyl fermion close to the Fermi energy but not
for the other due to Pauli blocking [27]. This scenario
can occur in the Weyl semimetal phase of chiral crys-
tals, in which the inversion and all the mirror symmetries
are broken, so that no symmetry can connect the Weyl
nodes with opposite chiral charges, and thus they can
appear at different energies. We note that time-reversal
symmetry can only relate two Weyl nodes with the same
chiral charge. However, experimental confirmation of
quantized CPGE is still lacking, and it was suggested that
additional contributions from remote bands, rather than
the two bands that form Weyl fermions, can have a sig-
nificant contribution to the CPGE, which can be much
larger than the quantized contribution in realistic materi-
als [35]. Furthermore, it was also suggested that interac-
tions and disorders can destroy the quantization of CPGE
in chiral Weyl semimetals [36, 37].

In this work, we propose an alternative approach to
overcome this obstruction in magnetic Weyl semimet-
als, in which time-reversal symmetry is broken but inver-
sion symmetry is preserved. The current response from
the second order (or any even order) of electric fields
(E?) necessarily requires inversion symmetry breaking,
which directly follows from the fact that both current
and electric field are odd under inversion. Following this
argument, the CPGE contributions from different Weyl
nodes in centrosymmetric magnetic Weyl semimet-
als will cancel each other so that we expect a vanishing
CPGE for the second-order response (Fig. 1a). The key
idea in our approach is to replace one electric field E with
magnetization M, which is even under inversion. There-
fore, the second-order current response with respect to
one magnetization M and one electric field E is allowed
to exist in centrosymmetric magnetic Weyl semimet-
als from the symmetry view. Microscopically, to under-
stand how magnetization dynamics affects the inter-band
transition of Weyl fermions, we introduce the concept of

“pseudo-gauge field" in magnetic Weyl semimetals and
show that magnetic fluctuations (or spin wave) can play
the role of a pseudo-gauge field[38—40]. Here the pseudo-
gauge field refers to the perturbation that behaves in a
similar manner as a gauge field coupled to the Weyl fer-
mions in the low-energy sector of the system. Unlike the
usual electromagnetic field, this gauge coupling depends
on the chirality of Weyl fermions and has opposite
signs when the Weyl fermion chirality reverses. In Sec-
tion 3, we will study the non-linear current response in
magnetic Weyl semimetals due to the interplay between
electromagnetic fields and the magnetic-resonance (MR)
induced pseudo-gauge field, in analogy to the CPGE
purely from the electromagnetic fields. Strikingly, we
find that two Weyl nodes with opposite chiral charges
contribute with the same sign to the MR-induced non-
linear current, in sharp contrast to the opposite sign
contributions of the normal CPGE. This difference origi-
nates from the chirality-dependent gauge coupling form
of the pseudo-gauge field. In Section 4, we will demon-
strate that the magnetic fluctuation or spin wave, which
can be driven via ferromagnetic resonance, serves as the
pseudo-gauge field in magnetic Weyl semimetals. In Sec-
tion 5, we implemented numerical studies of the mag-
netic-resonance-induced nonlinear current response in
a magnetic Weyl semimetal model that was previously
adopted to describe magnetically doped topological insu-
lators, in order to justify our analytical solutions.

2 Model Hamiltonian

We start from a four-band model that describe a topo-
logical insulator system with ferromagnetism in Ref. [41],
which can capture the Weyl semimetal phase when mag-
netization term dominates over the non-magnetic band
gap. The model Hamiltonian reads

H = Hy+ Hj,
Hy = ME)t, + L1k, Ty + Ly (kyor — kx0y) Ty + moy,
Hy =v()- 01,

(1)
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where  M(k) = Mo + M1k2 + Mo (k2 + k2), Moa,2,L1,2
are material dependent parameters, and m describes
the out-of-plane magnetization and can induce the
Weyl semimetal phase when m > My after neglecting
the quadratic terms in M (k). Here we also include the
H; term that represents the magnetic fluctuation, which
preserves the inversion symmetry 7, and breaks the time-
reversal io,K (K is the complex conjugate operator), and
assume v(£) has temporal dependence. In Ref. [41], addi-
tional terms with the form p(¢) - o can exist for magnetic
fluctuations. However, these terms will only slightly mod-
ify the form of the pseudo-gauge field discussed below
and does not affect the final result. Thus, we drop these
additional terms and only focus on the v(¢) terms in this
work. Hj is treated as a perturbation below. Next we will
show that when the model Hamiltonian is in the mag-
netic Weyl semimetal phase for m > My and projected
to the subspace of two low-energy Weyl fermions, the
magnetic fluctuation in Hj acts like a chiral gauge field
which couples oppositely to the Weyl fermions with left
and right chiralities [41].

The eigen-energy of the Hamiltonian Hy in Eq. (1) can
be solved analytically as

2
€1y = z\/Lg(k,% + k}) + <\/M2 + L2k2 + ,ulml) ,
(2)
where 4, 1 = £, and we denote the eigenstates as |4, u).
When ky = k, = 0, the eigen-energies of the two middle

bands are . __ /veipeem and o - e gze —mw

assuming m > 0. Thus, the gap between the two states
|—, =) and |+, —) can be closed at M?2 —|—L%kz2 = m? if
m > |M|. By neglecting the quadratic term M;k? in
M(k), namely M(k) = My, we can find two gap closing
points at k = (0,0, £Kp) with Ko = \/m? — M2 /L;.

At the gap closing point ko = (0,0, Kp), the Hamilto-
nian can be simplified as

Ho(ko) = Mot, + L1Koty + moy, (3)

and the eigenstates are solved as

0 Mo —m
= | ° = | TR
VNZ | My—m VN 0
il Ko 0
(4)
0 Mo+ m
1 0 1 iL1 Ko
SRR, ol ISYAFI S
iL1 Ky 0

where Ni = (Mo £ m)? —I—L%Kg are the normalization
factors. The effective Hamiltonian around ko up to the
first order in 8k is written as
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H' = L18k;ty + Ly(8kyox — 8ky0y)Tx +v - 07,.  (5)

We then project the effective Hamiltonian H’ into
the subspace of the basis |-, —) and |+, —) by applying
the second-order perturbation

1 1

1
Hoy = mlH' Iy + 7 > tmlH'|1) (1|1} x| ~ o= (6

I#m,n

By keeping 8k up to the first order and v up to the
second order, we can then write down the low-energy
effective Hamiltonian for the two gap closing points at
(0,0, Kp) and (0,0, —Kjp) as

LK
x)tfx + <L25kyl’z + 71m0 vy>ay

1 M3
+ by (ZL%KOSI(ZTZ - vz2 + m—g(uz + vy2 + v;))az (7)

L1 K
Heyy = (L25kxfz e

= hv/a . (Bk T, + %a),

where ¢ are Pauli matrices in the spin basis, 7, is in
the basis of two Weyl points, ny, =1, sk = sk, s, UKo sy
and a = (ay,ay,a;) with , _ Bk, g, = Mk, AN
ar = (o2 + 202 402 402 We may introduce the electro-
magnetic field by the Peierls substitution §k — 6k + A
with the vector potential A. By comparing the coupling
form of A with a, we find that the a field, which results
from the magnetic fluctuation v, couples oppositely to
the Weyl nodes at the two gap closing points in a gauge
coupling form, and thus we conclude the « field acts like
a chiral gauge field [41]. Below we will use the terminol-
ogy, either chiral gauge field or pseudo-gauge field, to
refer to the a field.

Due to the presence of magnetic ordering, time-
reversal symmetry is broken in magnetic Weyl semi-
metals, and the minimal model of Weyl semimetals
with two Weyl nodes can be realized by the model
Hamiltonian in Eq. (1), as shown by the numerical sim-
ulations of the energy bands for Eq. (1) in Fig. 2a. On
the other hand, if only inversion symmetry is broken,
the total number of Weyl nodes in the system must be a
multiple of four, as time-reversal symmetry transforms
a Weyl node at k to another Weyl node at —k with the
same chirality and all the chiral charges for the whole
Weyl semimetals must cancel [42].

3 Magnetic-resonance-induced current response
for Weyl fermions

We next consider the non-linear response for the left-

handed and right-handed Weyl fermions described by

the Hamiltonian based on the effective Hamiltonian Eq.

(7) which is rewritten as
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Fig. 2 a Energy dispersion of the four-band model along k; at ky = k, = 0 and the enlarged area around the two Weyl nodes. b The MR-induced
non-linear current component 77, as a function of hw. The quantized value is 2i 8o, which can be achieved for hw < 0.01eV.The parameters are
chosenas My = 0.18 eV, My = 0.342eVA%, M, = 18.25eVA?, L1 = 1.33eVA, [, = 2.82eVA, and m = 0.2 eV (parameters from Ref. [41])

H; = hvfa . (k+ %A+ %a),

Hp = —hvso - (k + %A — %a),

(8)

where o is Pauli matrices, A is the electromagnetic field,
and a is the chiral gauge field minimally coupled to
the left-handed and right-handed Weyl fermions [41].
We further rewrite the above Hamiltonian as

H=Hoy+A - Jp+a-Jj,

9
Hr =Hpo+A-Jrp—a-Jg, ©)

where Hpo = —Hgo = hvfo -k and J; = —Jp = evso.
Let us first focus on the left-handed Weyl fermion Hj.
Following the density matrix formalism in the velocity
gauge described in Appendix 2, we rewrite the Hamilto-
nian into the second-quantization form as

A=Y / dkelpalan + / dkal i [A@®) - Thp +ar©) - T5.],
(10)
where sﬁk is the eigenvalue of Ho and a,x and &Lk are

the annihilation and creation operators. The Bloch
equation of the density matrix pu,(t), defined by

Pumk (&) = (@' 1 (£)auk (2)), is then

doum(®) i i
= g () — Z [A®) TEpwm &) — A@) - TEy o ()]
i nm t
5 2 (@O T ®) = AL O) T )] = %()
(11)

where 7 is the relaxation time and ¢%,, = ¢L — ¢£ We can

expand the density matrix in order of the perturbation of
dynamic fields A and a. The zeroth order of the density
matrix is given by p,(,(zy), = fuSum where f, is the Fermi fac-
tor of band n. At the first order of A and a, we obtain

(%@ + @} @) U0,

h(d)l,nm —w)

(1)

PD(@) = fum (12)

)

where we define fu, =f, —fmn AP(t) = AP(w)e™ i,
a? @) = af(a))e_i‘”‘, and @1,m = €k, /h — i/t. Here the
Einstein summation rule has been assumed. At the sec-
ond order of A and a, the diagonal component of density
matrix can be derived as

Frn DU Siam U)o U)o

A(@1,mn — wp) (@1m — wp) |

(13)
where Wy = wg + wy, Ag = Ab(wﬁ), and
(aL)g = (aL)b(a)ﬁ). Here we only consider the diagonal
term in the second order of density matrix p®. This is
because we only consider two bands that form the Weyl
points here, and the off-diagonal component of p®
is zero. It should be noted that if the third bands are
involved, the off-diagonal component of p® can exist
and a three-band contribution can be important for the
CPGE [35]. Moreover, we only keep the terms involving
both A and a;, as the other terms quadratic in A or a;
vanish between the left-handed and right-handed Weyl
fermions due to their opposite chiral charges (see Appen-
dix 1). The corresponding intraband current is derived as

1
2) b b
P (@%) = Trox Em (Aﬂ(aL); + (aL)ﬁA;)

o =eY [vpone
n v

e 3 B s, + )

(14)
where 2 — (22}, is the matrix element of the velocity
operator and a¢, = — v is the velocity shift. We then
use Ab(w) = Eb(w)/ivs ab(w) = Ew)/io With the pseudo-elec-
tric field E, and Uk, = ‘et b with the Berry connec-
tion A, = (n|idg|m). We symmetrize all the indices,
and take the time derivative of the imaginary part (see

Appendix 1) to obtain
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djg ()
dt

(15)

= by (05 0p, 0y VELES 0% 4 7L, (w5 0y, wp) ELEC ™05,

where

ik (ws; wp,wy) =

irre 8
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4 Landau-Lifshitz-Gilbert equation
for ferromagnetic resonance
To see how the magnetic fluctuation can induce a pseudo-

(16)

X [3(wmn - wﬂ) — 8(wmn + CU/S) - S(wmn - wy) + 8 (wmn + wy)]:

with the Berry curvature of the left-handed Weyl fermion
Qp)lbe, = i(Ab, A, — Ac AL ). For wp=—w, =0
and oy = 0, we have

e (0; 0, —) =

”Te Z/ Vlmf”m(QL)mn‘s(wmn — ). (17)

We rewrite the above equations as (see Appendix 1)
ji = thu) [E@ x E'@) + E@) x E@)|, (18)

where E(w) = iwa can be regarded as the pseudo-elec-
tric field, and the MR-induced current response trace for
the left-handed Weyl fermion is

BL(w) = i 7{615 Q; =ifoCL,

2h2 (19

where S is a closed surface in the momentum space,
Bo = we3/k?, and C; = % $dS -2, =1 is nothing but
the Chern number (equivalently the chiral charge of the
Weyl node). For the right-handed Weyl fermion with
Cr = —Cp, we repeat the above derivation to obtain
jr = Jjr. Thus, the total non-linear response current is

j =i+ = 2ithoCL[E(@) x E' (@) + E(@) x E* (@) (20)

The current Eq. (20) is the main result of this work,
from which we demonstrate that a non-zero total dc-
current can be induced by the interplay between an
electromagnetic field and a chiral gauge field at the
non-linear order for two Weyl nodes with opposite
chiral charges, in contrast to the regular CPGE as dis-
cussed in Appendix 1 (also see Ref. [27]). Furthermore,
the symmetry properties of each component in Eq. (20)
are summarized in Table 1. Unlike the physical elec-
tric field E, the pseudo-electric field E is even under
inversion. Therefore, this current response is allowed
in centrosymmetric systems, i.e., when the inversion
symmetry is preserved. From Eq. (7), we can see that
the chiral gauge field 4 depends on the time-dependent
field v(¢) that describes magnetic fluctuations and thus
we study the magnetic dynamics in magnetic topologi-
cal insulators below.

electric field, we solve the Landau-Lifshitz-Gilbert (LLG)
equation for ferromagnetic resonance in this section. Simi-
lar to Ref. [38], the LLG equation reads

aM M aM )

=~ _ %

i Yo Bet —n—— g (21)
where M = (M, My, M,) is the magnetization. The in-

plane magnetization acts as a pseudo-gauge field in terms
of v = %gM(—My,Mx,O), with the exchange coupling
coefficient gas [38]. Therefore, the pseudo-electric field
induced by the ferromagnetic resonance is

10v  gu

E:—f—z
c dt

aM,  dM,

eve dt ' dt

,0). (22)

The LLG equation can be rewritten as

d—M— M x |B M x am
dt = Yo eff — 17 Yo eff r]dt

(23)
~ —yoM X Bog — nygM x (M x Beg),

where Beg =B — My — A% &z, B is the applied mag-

netic field, M; = M|, K is the anisotropy coefficient,
My = (NxMy, NyM,y, N,M,) is the demagnetizing field
with Ny, N, =0 and N, =1 as we consider a thin film
perpendicular to the z direction, yp = g—ys is the mag-
neto-mechanical ratio with Landé factor g, and  is Gil-

bert damping coefficient [38, 43, 44]. Let us define the

dimensionless damping constant o = yonM;, y = 11‘;2,
and the LLG equation is written as

amM ya

— = —yYM X Beg — —M X (M X Beg).

dr Y eff M, ( off) (24)

Table 1 Symmetry properties of current j, relaxation time z,
electric field £, and pseudo-electric field £ (+ for even and — for
odd)

Inversion - + - +
Time-reversal - - + +
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Since dM;/dt =0, only the direction n = M/M; is
time-dependent with

dn
i —yn X Beg — yan x (n x Beg). (25)
We  assume the in-plane  magnetic  field
and magnetization are  very  small, ie.

ng| ~ |ny| ~ |Bx/M| ~ |By/M;| < 1, and at the first

order of these quantities, we have
ya ynz\ ([ By
—yn; yo By )’

0y +aw on, My \
—wn, 0; +aw ny ]
(26)

where & = yn;Beg, and n; = M;/Ms = sgn(M;).
We then consider a general in-plane magnetic field
B(t) = Bye'® (a, b, 0) where a, b are two complex num-
bers and describe the polarization of magnetic field
components of a microwave. By performing the Laplace
transformation in Appendix 4, we keep the leading order
O(a~1)in Egs. (101) and (102) to get

ny(t) =

B,
070 [(a1m + brenz) cos(wot) + (are — bimnz) sin(wot)],
20{(1}0

(27)
ny () = f::}‘; — agenz) cos(wot) + (bre + aimnz) sin(wod)],
where the ferromagnetic resonance frequency is
wo = |&| = yBef,, (28)

by taking the leading order O(a~!) in w, (Eq. (104)), and
Re and Im denote the real and imaginary parts of 2 and b,

respectively. Therefore, from Eq. (22), the pseudo-electric
field reads

- M, M
E, = M alvy &M = Eo(b — iany)e' ™",
evy dt evy
- am M ~ 1
Ey=SME MOy Eola+ ibny)e ™,
evy dt evy

(29)
where Ey = gmBo/(2even). Thus, an in-plane magnetic
field B(t) = Boe!™*(a,b,0) can induce a pseudo-electric
field

E(t) = Epe!®t (b —

iany, —a — ibny, 0), (30)

where n, = sgn(M;). Combining Eq. (30) with Eq. (20)
for the non-linear current response and considering an
incident light with E(¢) = Ege'®*(c, d,0), we find

j = 2itfoCLEoEy [(—a* + ib*n;)c — (b* + ia*ny)d —

(—a — ibny)c* + (b —
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Because the MR-induced non-linear current
response is generated by the combination of an elec-
tromagnetic field and a pseudo-electric field, the
incident light can be linearly polarized, instead of
circularly polarized which is required for the regu-
lar CPGE. For example, we can choose an incident
light with E(¢) = Epe?(1,0,0) and a magnetic field
B(¢) = Boei0(0,1,0) to induce a pseudo-electric field
E(¢) = Ege'®0t(1,—i,0). Thus, using Eq. (31), the MR-
induced nonlinear current is j= —4Tﬁ0CLE0EOez
assuming n, = 1. It should be noted that although
the topological invariant C; appears in this current
response, the pseudo-electric field Eg depends on mate-
rial parameters, not just the fundamental constants,
and thus we regard this non-linear current response to
be geometric rather than topological.

5 Magnetic-resonance-induced non-linear current

response in a microscopic model
The above analytical derivation reveals the non-lin-
ear current response induced by MR, in analogy to the
regular CPGE. In this section, we will further study the
non-linear current response directly from numerical
calculations of the Hamiltonian Eq. (1). We emphasize
that the purpose of this section is to verify the analyti-
cal solutions of the nonlinear current response in the low
frequency regime for a more realistic Weyl semimetal
model in a certain limit. However, the parameters cho-
sen for the calculations of this model are not realistic, so
our calculations cannot be directly applied to the realistic
material systems. A comment on the additional contribu-
tion to the non-linear current response from the remote
bands will be provided at the end of this section.

As shown in Appendix 3, the MR-induced non-linear
current in the four-band model Eq. (1) can be derived as

Ja = Thape(0; @, —®)Ep (@) EF (@) + Tilaes (0; —w, 0)Ep(@)ES (),
(32)
with

Nape (0; ©, —0) = lﬁOZ/

Ab T¢
Mg(sm” — hw),
(33)
where By = we?/h?, A, is the non-Abelian Berry con-
nection of the unperturbed Hamiltonian Hy, I' = o1,

and E(w) = iliwv/e is the pseudo-electric field induced
by the magnetic fluctuation v, which comes from the

Qa&nm)fum

iany)d ]ez 31)

= —4r/30CLE0EOIm[(—a* +ib*ny)c — (b* + ia*nz)d} es.
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ferromagnetic resonance by solving the LLG equation in
Section 4.

At low energy, the four-band Hamiltonian can be pro-
jected to the effective Hamiltonian describing two Weyl
points, and the magnetic fluctuation v appears in the
form of the chiral gauge field a (see Section 2). In this
approximation, we can rewrite E(w) as iva following the
definition of Egs. (18) and (33) becomes

hv, re
lﬁoi Z/ 7(du5nm)fnm nm P8 (emn — hw),
Enm

(34)
where the pseudo-gauge field a in terms of v is defined in
Section 2. Furthermore, Eq. (32) can be recovered to Eq.
(20) derived from the effective model for the two Weyl fer-
mions by performing projection to the subspace of the two
low-energy bands. This indicates that at the low-energy
range, the MR-induced non-linear current trace of this
microscopic model should have a quantized value of 2i .

As the magnetization in our model is in the z direction,
only an in-plane pseudo-electric field can be induced by
the ferromagnetic resonance [38]. We assume the inci-
dent light propagates in the z direction and has in-plane
electromagnetic fields, so the indices b, ¢ can only be x or
y, and b # c as the electric fields are along perpendicular
directions in CPGE. Furthermore, the four-band model
has mirror M, symmetry which imposes constraints
Nxxy = Nayx = Tlywy = flyyx = 0, and the in-plane rota-
tional symmetry which imposes #j,xy = —1j,yx. Therefore,
in the following calculations, we focus on the component
Nzxy given by

Nzxy = ifo ——— \/7 Z / (z&nm)fm
(35)
where we have used a, = Zﬁlﬁo vyand g, — /2 — a2z, from

flabe (0; @, —w)

nm rg””"

3(emn — hw),

Section 2 to derive this result.

Figure 2a shows the energy dispersion of the four-band
model along k;, at k, =k, = 0, in which four bands are
labelled by the index n = 1,...,4 from low to high ener-
gies. Two Weyl nodes with opposite charges at oppo-
site k, are formed by two bands # = 2 and 3 around the
energy ¢ = 0. We numerically calculate 7}, as a function
of hw, as shown in Fig. 2b. When hw is smaller than 0.01
eV (green shaded area), 7j.xy is very close to the quantized
value 2iBy, suggesting that the microscopic model can be
simplified as an effective model of two Weyl fermions at
the low energy range. At around hiw ~ 0.01 €V, 7,y starts
to decrease as the effective model of two Weyl fermions
is no longer applicable, and thus 7,y deviates from quan-
tization. Another reason for the rapid decrease in 7).y, is
that the transitions around the Weyl nodes become only
partially activated as hw exceeds the energy difference
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between the middle two bands at k, = 0 (Ae ~ 0.04 eV).
Eventually, 7., becomes a constant for fw > 0.06 eV.
Therefore, our numerical result confirms that the MR-
induced non-linear current trace between two bands of
Weyl nodes can be quantized at the low energy range,
where the microscopic model recovers to the effective
model of two Weyl fermions, as shown in Section 2. We
emphasize that the quantization of #j,y, does not mean
that the current j is quantized, as the pseudo-electric
field in the response Eq. (32), unlike physical electric field
E, is not an externally controlled parameter and depends
on specific material parameters.

In our calculation, we have only considered two-band
transitions (2 — 3, where 2, 3 label two bands around
¢ = 0 for two Weyl nodes) and have not included three-
band virtual transitions (2 — [ — 3 where [ = 1,4 labels
the third bands for the three-band contributions to the
non-linear current response). It is known that the three-
band contribution can play an important role for the
CPGE when the third band [ is close to the two bands
that form Weyl nodes [35], and thus destroys the quanti-
zation of CPGE. Similar physics can also occur for the
MR-induced non-linear current response here. The ratio
between the three-band and two-band contributions can
contain the energy separation ratio ~ % [35], where
n,m = 2,3 and [ = 1,4. This ratio decays as the energy
separation between the third band and two Weyl
bands increases. For the chosen model parameters, a typ-
ical energy separation between two bands of Weyl nodes
is around 0.01 ~ 0.02eV, below which the linear disper-
sion of Weyl fermions remains valid. This energy scale is
one order smaller than the energy separation between
the third band and these two Weyl bands, which is
around 0.2 eV. As long as the other bands are far away
enough from the two Weyl bands, we expect that the
contribution from the three-band transition provides
only a small correction.

6 Conclusion and discussion

In conclusion, we demonstrate that a non-linear current
response with an electric field and a MR-induced pseudo-
electric field can exist in magnetic Weyl semimetals
with two Weyl nodes with opposite charges, in contrast
to the regular CPGE. The pseudo-electric field can be
induced by the magnetic fluctuations from ferromagnetic
resonance, which acts like a chiral gauge field that cou-
ples oppositely to the lefthanded and righthanded Weyl
nodes. Therefore, the realization of MR-induced non-lin-
ear current does not require a chiral Weyl semimetal in
which the two Weyl nodes are located at different ener-
gies. Experimentally, we can consider the electric and
magnetic components of an electromagnetic wave acting
on magnetic Weyl semimetals. We expect that the direct
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coupling between the magnetic field component of elec-
tromagnetic wave and electron spin is negligible. The role
of the oscillating magnetic field here is to induce a fer-
romagnetic resonance, a physical phenomenon that has
been well observed in experiments. Once the magnetiza-
tion procession is excited in magnetic Weyl semimetals,
it is the exchange coupling between magnetization and
electron spin, rather than the Zeeman coupling of mag-
netic fields, to induce the current response. From Eq.
(31), this magnetic-resonance-induced current has the
magnitude of 47EyEy, where Eo = gmBoyoMs/(2evra)
is the strength of the pseudo-electric field. With typi-
cal values of parameters ‘gMMS‘ = 0.1 meV, By =10
G, % =176 x 10" C/kg, vy =6.5x10° m/s, and
la| = 107> ~ 1072 [38], we estimate the magnitude of Eo
to be around 1 ~ 1000 V/m. Taking a sample thickness of
10 nm, a width of 100 um, and a typical relaxation time
in Weyl semimetals T ~ 1 ps [27], the induced current
reaches 1 ~ 10% nA, which is measurable in experiments.
Since any current response at the second-order purely
from physical electric fields (E? order) will vanish due to
the inversion symmetry, this current response from one
magnetization and one electric field (EM order) becomes
the dominant contribution in centrosymmetric materials.

Appendix 1: Derivation of CPGE in length gauge

In this section, we derive the expression for CPGE cur-
rent in the length gauge, in which the dipole interaction
is treated as [45—47]

He(t) = /dxlﬁ*(x)[Ho +ex - E()]Y (%), (36)
where x is the position operator and we define
Hi(¢) = ex - E(t). Hy is the unperturbed single-particle
Hamiltonian with the eigen-equation

Ho(K)Yrux (%) = enrc ¥k (%),

where g,k is the eigen-energy, ¥,k () = e"Fu, (%) is the
Bloch wavefunction, and the field operators are expanded
as

(37)
ikx

P =3 [ dv @i
) " (38)
v'(x) = Z/d’“ﬁ:k(x)&;k'

where 4, and &Lk are the annihilation and creation oper-
ators, and the orthogonality of the Bloch states as well as
the anticommutation relation read
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(kW) = / AxY g )Yy (%) = Sumd (k — k'),
(39)

{tnkr @y } = S h = K. (40)
Next, we solve the equation of motion of the density

operator [48]

(0)

00um (L) o _i _ Prm (&) — Pum
rymmi h[H(t),p(t)]nm E—

(41)

where p,S(,’,Z = fubum is the initial density operator with
the Fermi factor f, of band #, and the latter term is the
phenomenological term with the relaxation time t which
describes the scattering processes of electrons [48]. We
expand the density operator in powers of E as

o) =pQ + oV + @)+, (42)
and the equation of motion for the i-th order is then
(i) . . (i)
S0t ]t ], S (a3

The matrix element of the position operator x is [46,
47, 49]

(kI k') = 0k + A8k = K) + Ay (1 = 88k = K,
(44)

where A, = (n|idx|m) is the Berry connection. We
define the covariant derivative as follows [46]

Dk = 8umdk — iAums (45)
so for an operator Oy, (k), the commutator with Hj is

(Hy (1), O()), 1y = €E@)[%, O(K)),, = i€E (&) [Dys, OK)] . (46)

with the summation over index b, and

Dy O], = DO ) = i[ A2, 00|

nm

(47)

where 9, = 9/0k?. At the first order, we write
Eb(@t) =E§e”‘”f‘t with summation over the frequency
index B, and the equation of motion reads

apr(tlw)!(t) i 1)
= —— |Ho, t
ot n[ 0oV 0)]

1
.10
m T1

P (£) (48)

nm T1

= =5 mPim(®) + - Ege” " 04,0

where &, = &, — &, with &, being the eigen-energy
of the unperturbed Hamiltonian Hp, and we replace
Dy» with DP. By writing pum(t) = pame@mt with

1, um = Opm — i/71a0d @y = ey /R, we obtain
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ol e o
= Ebei@p=01mt [Db, 'O(O)Lm
b —i(wp—@Lm)t [yb (O (49)
L eEﬂe i(wp—@1,nm) [D ,,O( )]nm
nm —

ih(d)l,nm - wﬁ)

Thus, the first-order term of the density operator is

e[D?, p©]
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@
@ &> Asim

t)=— EjECe™™t, (54
Py () Ip—— (54)

wy —i/ty) P

where wy = wg + w, and

b (0
o= [ 1222 -
nm o1 — wp

Pom(®) = Ty — @ _mf /Tl)Ebeiiwﬁ ’ (50) \X/e then separate the second-order density operator
o A pnm(t) in Eq. (54) into the diagonal (mtraband) ,o,,,, )
where and off-diagonal (interband) (1 — Snm)pnm(t) parts [47].
The intraband contribution reads
b 0 . b
(D202 = 0ufSm = toun A (51) 25
(2) — 7mEbEC —iwxt (56)
lonn( ) - 2 . ﬁ ye ’
At the second order, we have h*(wx +i/12)
where
b 0
A(z) _ C’ |:~D ;,()( )}
nn @1 — wp .
0 b (0 b (0
_ [D,p()] o c [D’p()]m _[D"O()}nm c (57)
- aC lz Anm ~ ~ ‘Amn
wg + i/t P W1,mn — WP Wl,nm — W
_ abaafﬂ _ Z fnmAfnnAitm _leVlA;l'JlmAinn
wpg + i/t O1,mn — wpg O1,0m — wg
2 Do _ i ; ) The corresponding current is
“Hop?®)] - [m@,p®] -
at h nm h nm (9] - e @) pb pe —iwst
(52) Jintra (£) = _m Z/ rmAVmEﬂEVe >
By writing E°(¢) = E;e_i‘”yt, ,oﬁ,%,i(t) = ﬁ%ﬁ,e‘idz'"mt Z / (fnmA’Zm,AZm 7fmnAﬁmAim> ELEseiont
~ Zw K R S——— Ol — ©, v
with @9, = Wy — i/ T2, We get T Rox o L 08 L 08
_ e AﬁmfnmAfnn-Aflm ¢ —iwgt
a2 ’ y o (53) = Hos %;/k <75,meﬁ >E§sz :
_ EC —1l wy—wzm,,, |:DC t :|
ot FL V ) nm (58)

We then use the expression for p (t) in Eq. (50) and

integrate out ¢ to obtain

b
A Asim

where A% and we take 79 — oo and
okfn = 0. We then symmetrize the indices b8 < cy,
k < —k,and n < mto get

4 _ 4,4
= Vun me

3 b c
. € 'AmVlAnm
s ®) = 5 %;/k Bl < 2 i

W1,mn — WB

eg c c
= 4}12(1)2 Z/k Aﬁmf”’"(A}:nnAnm - Amn'AZm) (5)
nm

e b b
= M Z /,,< Af,mfnm (AmnAitm - Afnn"Anm)

1 1

(Z)l,mn — Wy

)EgE; e~lost

1 1

1,mn — WB

- >E§E§e’ia’zt

O1mn — wy

1

1
X <~ + = — = -
W1,mn — W W1,mn + 0B W1,mn — Wy

@1,mn + wy

)ngj e st
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By assuming 1/7; is very small, i.e. 71 — oo, we can
apply the following identity

1 1

Wyn — wp — i/T1 Wy — OB

+ i 8 (Wmn — wg),

(60)
where P denotes a Cauchy principle value. The imaginary
part of the current is called the injection current or the
circular photocurrent [47], which reads

@1,mn — wpg

. . ine® b b
]ﬁljection(t) = [intra®im = M Z /k Afum (A A — A A
nm
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effect”. Furthermore, the current switches direction when
the polarization changes from lefthanded to righthanded.
The CPGE trace B(w) reads

el d®k "
B(w) = Tr[Bap(w)] = v %,,:/ W(aagnm)fnmlenma(gmn — hw)

e 7{
= 52 Z dSum - Rum,
2h? p

X [8(wmn — wp) — 8(mn + @p) — 8(@mn — wy) + 8(@Wmn + wy) | EFES e >,

We then take the time derivative of the current

d]a ti (t) . .
—J%§1—=—mzxmmamm ©2)

b .
= r/abc(a)z; a)ﬂ,a)y)EﬂE;e lth,

where
P2
Nabe (03 0p, @) = 7% ) /k AT b
X [8(0mn — @) — 8(@mn + @p) — 8(@mn — @) + 8(@mn + @))].
(63)
If we consider a  monochromatic field
E(t) = Ee + E(—w)e, the injection current with vy =0 is
d Jinjection (£)
injection
)T = 204 (0; —w, W) EX (0)E (—w),  (64)
with
. ime’ P e
Nabe (0; —w, w) = _W gmj A Anmfnmgmng(wmn — w). (65)

The same result can be also derived from the velocity
gauge, as shown in Appendix 2. We can rewrite Eq. (64)
as [27, 34]

Jsection = TBap(@)[E(@) x E* ()17, (66)
with
3 d?’k
Bap(@) = % Z/ W(aﬂsnm)fnmRzma(smn — hw), (67)

where 7 is the lifetime and Ry, = (A X Aum). We
can see that this current can be generated by a circu-
larly polarized light, but not a linearly polarized light, as
E x E* requires the electric fields to be along perpen-
dicular directions, thus the name “circular photogalvanic

where S, is a closed surface in the momentum space.
For a two-fold Weyl node with band index n = 1,2 and
Fermi energy across at the Weyl node, we use the relation
Q= izm#n R, [34], and Eq. (68) becomes

63
= ifoC,

(69)

where C = ﬁ §8-2 is the Chern number and
Bo = me3/h?. Therefore, the CPGE trace f(w) is quan-
tized for a Weyl node as proportional to its associated
topological charge, and the CPGE current can be written
as

j = itBoC[E(w) x E*(w)]. (70)

For a two-band Weyl semimetal with mirror sym-
metry, there are two Weyl nodes with opposite topo-
logical charges C; =1 and Cp = —1 sitting at the
same energy (Fig. 1a). When the Fermi energy is at the
Weyl node, the CPGE trace for the two Weyl nodes are
iBoCr and iBoCr. The CPGE currents from the left and
right Weyl nodes are j; = itBoC[E(w) x E*(w)] and
jr = —itBoC[E(w) X E*(w)], so the total CPGE cur-
rent vanishes. If we consider a chiral Weyl semimetal in
which the inversion and all mirror symmetries are bro-
ken (Fig. 1b), the left and right Weyl nodes are located
at different energies ¢; and g (measured from the Fermi
energy Er), respectively. Then in the frequency window
2ler| < hw < 2|er], the transition near the left Weyl node
is forbidden due to Pauli blocking, and thus, the only
contribution to the CPGE current comes from the right
Weyl node j, = —itfoC[E(w) X E*(w)] [27]. Therefore,
the quantized CPGE can be realized under such condi-
tions. The CPGE has recently been observed in chiral
Weyl semimetals RhSi [29, 31] and CoSi [30].
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Appendix 2: Derivation of CPGE in velocity gauge
In this section, we derive the CPGE in the velocity gauge
[46, 49, 50]. The dipole interaction is written as

Hy (k + %A(t)) ~ Ho(k) +A(¢) - J = Ho(k) + Hy,

(71)
e HHO

where J = 75;% is the current operator. Using the
expressions in Appendix 1, we obtain the second-quan-
tized Hamiltonian

Hy = / dxyr (%) Hor (x)

= Z/dkdk dxw k(x)unke 'K Wn/k/(x)&n/k/

nn'

:Z/dkgnk&:,k&nkv
n

(72)
= / dx ! @A®) T @)
=Z/dkdk’£z2kén'k’ /dxdqe"(’k“”k/"”u,ﬁk[x‘l(q,L‘)'l]un'k’(x)
nn' (73)

= Z/dkdk’&;k&nrk/ /dqa(—k+q+k')(unk|A(q, 6T )
nn' h
= /dkdk’&:lk&n,kf (k| Ak = K, t) - J |ty ).
We assume the photon momentum is zero g ~ 0, i.e.

k — k' ~ 0, as the momentum of light g is much smaller
than that of electrons k, so the Hamiltonian is as follows

H = Z/dksnk;l;k&nk + Z/dk&jqk&n’kA(t) Tk
n nn'

(74)
where [,k = (uni|J|tt,rk). The Heisenberg equations of
motion for the creation and annihilation operators are

0k - _‘lga }
e h ok
( Enklnk +ZA(t) Tkt k)
dal, i (75)
at _75 ’“”"}

= ; snkank+ZA<t> lnnkank>

The density matrix is pymx = (&Ink&nk), so the optical
Bloch equation for the density matrix writes
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0Pum (t) _ _i
ot h

S P (®) = 1 D LAD) T (©) = AC) - i (0]

_ P (£)
sl
(76)
Next we expand the density operator in owers of E as
in Eq. (42) and the zeroth-order term is pnm = fubum- At
the first order,

Boim, ®_ i © © pfui;l ()
- — g PO = ;[A(t) TuupCh (&) = A®) - Ty P Wt)} -
= LoDty - if Ab@yb, — Pin(®)
g Em A (®) = Jehn A O]y = S
(77)
Let p0) = piye@mt with @1, = €um/h —i/71, and
Ab(t) = [ 4 4b(wp)e—ient, we then obtain
~(1) )
8p;(qm l /dwﬁ b b Lo~
= —— _— A% (w el(wl,nm_wﬂ)t,
ot B 2 D@8
. G — )t
P / dop . abipyp E
= 2w T i ot — )
(78)
so the first-order density operator is
Pim (@) = / dtpip (D)
ei(w—wlg)t

—— | —finA at————
h / 2 S (@8 i(@1,mm — wg)
= —— _— A _—
Yl L e wp)
_ fnmAb(w)]ylZm
Md1,mm — ) ’
(79)
At the second order, the diagonal part (intraband) of
the density operator reads

o5 (1)

ot

(2)
-- Z [AO Ty — A0 Tsiho] - 22 (80)

Let p(%l) —t/rzﬁ%)’

3[9(2)
Fra :WZA%)[J;,,,p‘“(n S P (D1
_772 dwgdw, A @) pD (@p) — I, oD (@) le~ @ +er+ilmt
h ) (@2m)? v Umn B nm B ’
- dwsd e—i@prwy+i/T)t
P = Z / on )JA%wa,‘Mp“)(mm TP (@ ﬁ>17mw}g o T

(81)
Thus, the second-order intraband density operator
writes
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P = [ et

dogdw,
= Z/ (2 )QVA ( V)Umnp(l)(wﬂ)

(2)?
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P (@p)]

(wg + vy — )
h(wp + wy + i/12)

_ dogdwy, . ¢ ) _
- o /m)ij / AOBADy e (w0 D (@5) — T 0D (5)18(@p + @) — o).

We then use the expression for ,0 ) and Ab = Ab (wp),
A}, = A%(wy), and wy = wg + w, to get

fVIWllr?m]rCnn
R(@1m — 0p) |

(83)
with the summation over indices 8 and y implied. The
corresponding current is as follows

ST
h(@1,mn — ©p)

1
V) — ZAbAL
o %) = e i) Py

Jontra(®) = EZ / A
_ % Z/kvz” ﬁﬂ”lrbrlnlﬁm

O1,mn — 0B
= 2,

— Vi is the velocity shift. We replace
= %6, AL, and

Ab AS e—iw);t
By

wy +i/7

ST

O1nm — Wp

(84)

Sl g ¢ i,

D1y — 0p

where AY  =v2,
AP(w) with EP(w)/iw [49] and J?_
obtain

e3 i
i t) =
]mtra( ) hzwz ;/k

AmeVImAfnnqum ”mEﬂEl’ 71(:));1?
@1 —wp  Rlogo,

(85)

We then take the imaginary part of the current using
the identity Eq. (60) and symmetrize all the indices to
get

. ine® ' b . b %m /biE _
Jim @) = Sy nzm/k Afifm (A Ay — A:nn'Anm)Wﬂw:e ozt
X [8(&mn — wp) — 8(wmn + ©p) — 8(@mn — wy) + 8(@mn + ®y)].
(86)
The time derivative of the above current reads
i (©) _ » . EomERES Y i
mt shZ ;/ A% fum (AL AC — A A”m) ﬁzw,swy izt
X [8(@mn — @p) = 8(@mn + 0p) — 8(@mn — Wy) + §(@mn + @) (87)
= Nape (3 wp, ) EJES e,
For a monochromatic field with wg = —w, = ® and
ws, = 0, we have
7-[@3 a b c c b
Nae (0 @, —0) = 2 Z | o Ay Ay = Ay A @ = 0)
(88)

me
=—om Z / A frm 2,8 (@pn — @),

which recovers Eq. (64), which is the result in the length
gauge.

Appendix 3: Derivation of MR-induced nonlinear
current for the four-band model

Here we drive the MR-induced nonlinear current for the
four-band model Eq. (1). Following the same procedure
in Appendix 2, we find the second-quantized Hamilto-
nian as follows

=3 / dkesitynk + D / k@ [A®) T +9(®) - Tkl (89)

where ¢, is the eigenvalue of Hy, J is the current opera-
tor, and I' = o' 7,. We then obtain the first-order and sec-
ond-order intraband density operator

Ab(w)]?, + VP ()Tl
h(d)l,nm - a))

py%%( ) :fnm

b c
® _ Sonnd i Ui _ oy T
P (@%) = M: ; BVy [r(wmm —wp) @1 — wp)
- (91)
T A R v P
B | (@1, mn — wp) h(wl,nm—wﬁ)
The current reads
() = Z  Alfon /17 re, Abye 4 T8 Je v acmiost
J r2 mmﬂfﬂ)ﬂ Ui A8 Vy + Dol Vi
_ e2 Z/ NS fum /y’f,nrﬁm EbEC 4 ann rmebEc emiost
IBoy £ Ji @1 — 0p | wpoy, BT g, ETY
(92)

where Eg = ihwg vg /e is the pseudo-electric field. Next
we take the imaginary part and the time derivative of the

current, and for wg = —w, = w, we have
dje(t - -
]TE) = flabe (0 0, — ) Ey(@) Ec(—0) + g (0 —0, ) Ep (@)Ec(—w),  (93)
with
2 - b e
Tabe (05 0, ) = 75 Z / Aimﬂml’”';%uwm —w)
(94)

ine? re
= Z / s Oaum fom ™ 8 LI (6 g — Ti0),

where E(w) is defined as ihwv /e.
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Appendix 4: Derivation

of the Landau-Lifshitz-Gilbert Equation

for ferromagnetic resonance

Following Eq. (26) in Section 4, we perform the Laplace
transformation as

71i(s) = / dte "' n;(t),
o (95)

Bi(s) = / dte ' B;(¢).
0

Equation (26) then becomes

() 1,:(0) B (s)
w0 ()= (o) = (50 o0

where

st+aw an o yn
Go(s) = < —n, S+C§5)>’ G = (—);/nz 7;/;)
97)
We consider a general in-plane magnetic field
B(t) = Boe!® (a, b,0) where a, b are two complex num-
bers and describe the polarization of magnetic field com-
ponents of a microwave. The transformed field reads

~ By a a*
By (s) = ( + ),

2 \s—iw s+iw

B ( Lo ”
P T o \s—iw | s+in)

We then perform the inverse Laplace transformation
on Eq. (96) and obtain

(98)

v v 1
0 [aet Gy (i) + a”e 1 Gy (i) | G ( . )

Hy _ B
ny 2

(99)
+ % [bei! Gy i) + be 1 Gy (—ie) | Gy ( (1) )

where

wny

s_—i— oo ) - (100)

The solutions to the above equation are

| |
i = (s e

(s +ad)?+ a2\ on

Boy

0= 3 pw)

[41(@) cos(@t) + A2 (@) sin(wt)]

A1) = (@ + D@ = D)@+ )@ + D +io((@ - aa+ b - bn,)|
— digwi [(a — &) @? + 16+ io((@+a)a + (b + b*)m}

Ap(@) = (@ + 1)@ — o) [i(a — &)@ + 16— w(a+a)a+ (b + b*)nz)}

— 2idwd [i(a +a*) (@ + 1o+ w((@ —a)a+ (b* — b)nz)}.
(101)

and
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Boy
2D(w)

ny(t) = [A3(w) cos(wt) + Ag () sin(wt)]

43(©) = (@2 + D = D) [(b+ )@ + D+ io((b = b)a + @ — an,)|
— Jiewd [(b — )@ + Do + i (b + b — (@ + a*)nz)}

Aa@) = (@ + D3* =) [ib = 5@ + D — (b +b)a — @+ a")ny)]

— 2w [i(b + )@ + i + (5" — b + (@~ a")n)],
(102)

where
D(w) = (@ + 120" + * 4 2(e® — 1)@*w?.  (103)

We find the resonance frequency satisfying D(w,) =0
to be

|l

(104)

\/\/(oz2 +1)2(4a? +1) — (@2 +1)2
w, =

o2
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