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Abstract 

In this work, we propose a geometric non-linear current response induced by magnetic resonance in magnetic Weyl 
semimetals. This phenomenon is in analog to the quantized circular photogalvanic effect (de Juan et al., Nat. Com‑
mun. 8:15995, 2017) previously proposed for Weyl semimetal phases of chiral crystals. However, the non-linear current 
response in our case can occur in magnetic Weyl semimetals where time-reversal symmetry, instead of inversion 
symmetry, is broken. The occurrence of this phenomenon relies on the special coupling between Weyl electrons 
and magnetic fluctuations induced by magnetic resonance. To further support our analytical solution, we perform 
numerical studies on a model Hamiltonian describing the Weyl semimetal phase in a topological insulator system 
with ferromagnetism.

1  Introduction
Topological and geometric aspects of electronic Bloch 
wavefunctions in the Brillouin zone (BZ), including the 
Berry curvature [1–3] and quantum metric [3–6], play 
essential roles in our understanding of physical responses 
in crystalline materials. For example, the Hall conduc-
tivity of a 2D crystalline insulator can be related to the 
integral of the momentum-space Berry curvature for 
the Bloch wavefunctions over the entire BZ, which is 
identified as a topological index called the “Chern num-
ber” in the formula first derived by Thouless, Kohmoto, 
Nightingale, and den Nijs [7]. The Berry curvature inte-
gral of the occupied states, which is not quantized, also 
provides an intrinsic mechanism for the anomalous 
Hall effect in a variety of ferromagnetic metals. More 
recently, physical phenomena induced by non-linear 
responses have also been connected to band topology or 
geometry. For example, the Berry curvature dipole and 
quantum metric dipole are theoretically proposed to be 
the origin of the non-linear Hall effect in non-magnetic 

or anti-ferromagnetic materials, which preserve either 
time-reversal symmetry ( ̂T  ) or the combined P̂T̂-sym-
metry where P̂ is inversion [8–13]. This geometric origin 
of non-linear Hall effect has been experimentally dem-
onstrated in a variety of material compounds [14–25]. 
Quantized topological non-linear response due to chiral 
charges of Weyl nodes has also been theoretically pro-
posed for the circular photogalvanic effect (CPGE) in 
Weyl semimetals [26–28]. Experimental observation of 
CPGE has been reported in chiral multifold semimetals 
RhSi and CoSi and its connection to topological chiral 
charges has been discussed [29–31].

The CPGE is a second-order optical response, in which 
the current switches its direction when the circularly 
polarized incident light changes its polarization [27–
34]. In Ref. [27], de Juan et al. proposed that the CPGE 
can be quantized in the Weyl semimetal phase of chiral 
crystals and this quantization originates from the topo-
logical chiral charge of Weyl nodes. Because the Weyl 
nodes must appear in pairs with opposite chiral charges 
in crystals, the CPGE contributions from the Weyl nodes 
with opposite chiral charges will cancel each other, gen-
erally leading to the vanishing CPGE (Fig. 1a). To over-
come this obstruction, it was theoretically proposed 
that when two Weyl nodes with opposite chiral charges 
sit at different energies and the Fermi energy is close to 
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one Weyl node but far away from the other Weyl node 
(Fig.  1b), optical inter-band transitions can only occur 
for the Weyl fermion close to the Fermi energy but not 
for  the other due to Pauli blocking [27]. This scenario 
can occur in the Weyl semimetal phase of chiral crys-
tals, in which the inversion and all the mirror symmetries 
are broken, so that no symmetry can connect the Weyl 
nodes with opposite chiral charges, and thus they can 
appear at different energies. We note that time-reversal 
symmetry can only relate two Weyl nodes with the same 
chiral charge. However, experimental confirmation of 
quantized CPGE is still lacking, and it was suggested that 
additional contributions from remote bands, rather than 
the two bands that form Weyl fermions, can have a sig-
nificant contribution to the CPGE, which can be much 
larger than the quantized contribution in realistic materi-
als [35]. Furthermore, it was also suggested that interac-
tions and disorders can destroy the quantization of CPGE 
in chiral Weyl semimetals [36, 37].

In this work, we propose an alternative approach to 
overcome this obstruction in magnetic Weyl semimet-
als, in which time-reversal symmetry is broken but inver-
sion symmetry is preserved. The current response from 
the second order (or any even  order) of electric fields 
( E2 ) necessarily requires inversion symmetry breaking, 
which directly follows from the fact that both current 
and electric field are odd under inversion. Following this 
argument, the CPGE contributions from different Weyl 
nodes in centrosymmetric magnetic Weyl semimet-
als will cancel each other so that we expect a vanishing 
CPGE for the second-order response (Fig.  1a). The key 
idea in our approach is to replace one electric field E with 
magnetization M, which is even under inversion. There-
fore, the second-order current response with respect to 
one magnetization M and one electric field E is allowed 
to exist in centrosymmetric magnetic Weyl semimet-
als from the symmetry view. Microscopically, to under-
stand how magnetization dynamics affects the inter-band 
transition of Weyl fermions, we introduce the concept of 

“pseudo-gauge field" in magnetic Weyl semimetals and 
show that magnetic fluctuations (or spin wave) can play 
the role of a pseudo-gauge field[38–40]. Here the pseudo-
gauge field refers to the perturbation that behaves in a 
similar manner as a gauge field coupled to the Weyl fer-
mions in the low-energy sector of the system. Unlike the 
usual electromagnetic field, this gauge coupling depends 
on the chirality of Weyl fermions and has opposite 
signs when the Weyl fermion chirality reverses. In Sec-
tion 3, we will study the non-linear current response in 
magnetic Weyl semimetals due to the interplay between 
electromagnetic fields and the magnetic-resonance (MR) 
induced pseudo-gauge field, in analogy to the CPGE 
purely from the electromagnetic fields. Strikingly, we 
find  that two Weyl nodes with opposite chiral charges 
contribute  with the same sign to the MR-induced non-
linear current, in sharp contrast to the opposite sign 
contributions of the normal CPGE. This difference origi-
nates from the chirality-dependent gauge coupling form 
of the pseudo-gauge field. In Section  4, we will demon-
strate that the magnetic fluctuation or spin wave, which 
can be driven via ferromagnetic resonance, serves as the 
pseudo-gauge field in magnetic Weyl semimetals. In Sec-
tion  5, we implemented numerical studies of the mag-
netic-resonance-induced nonlinear current response in 
a magnetic Weyl semimetal model that was previously 
adopted to describe magnetically doped topological insu-
lators, in order to justify our analytical solutions.

2 � Model Hamiltonian
We start from a four-band model that describe a topo-
logical insulator system with ferromagnetism in Ref. [41], 
which can capture the Weyl semimetal phase when mag-
netization term dominates over the non-magnetic band 
gap. The model Hamiltonian reads

(1)

H = H0 +H1,

H0 = M(k)τz + L1kzτy + L2(kyσx − kxσy)τx +mσz ,

H1 = ν(t) · σ τz ,

Fig. 1  a Schematic of the energy dispersion for a two-band Weyl semimetal that preserves mirror symmetry and breaks time-reversal symmetry. 
The left and right Weyl nodes have opposite C and sit at the same energy. The current response of topological CPGE will cancel out between these 
two Weyl nodes due to the opposite chiral charges, but the magnetic-resonance-induced non-linear current proposed in this work will remain. b 
Band structure of a chiral Weyl semimetal where the two Weyl nodes are at different energies. The topological CPGE can exist due to Pauli blocking
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where M(k) = M0 +M1k
2
z +M2(k

2
x + k2y ) , M0,1,2, L1,2 

are material dependent parameters, and m describes 
the out-of-plane magnetization and can induce the 
Weyl semimetal phase when m > M0 after neglecting 
the quadratic terms in M(k) . Here we also include the 
H1 term that represents the magnetic fluctuation, which 
preserves the inversion symmetry τz and breaks the time-
reversal iσyK  (K is the complex conjugate operator), and 
assume ν(t) has temporal dependence. In Ref. [41], addi-
tional terms with the form µ(t) · σ can exist for magnetic 
fluctuations. However, these terms will only slightly mod-
ify the form of the pseudo-gauge field discussed below 
and does not affect the final result. Thus, we drop these 
additional terms and only focus on the ν(t) terms in this 
work. H1 is treated as a perturbation below. Next we will 
show that when the model Hamiltonian is in the mag-
netic Weyl semimetal phase for m > M0 and projected 
to the subspace of two low-energy Weyl fermions, the 
magnetic fluctuation in H1 acts like a chiral gauge field 
which couples oppositely to the Weyl fermions with left 
and right chiralities [41].

The eigen-energy of the Hamiltonian H0 in Eq. (1) can 
be solved analytically as

where �,µ = ± , and we denote the eigenstates as |�,µ� . 
When kx = ky = 0 , the eigen-energies of the two middle 
bands are ε−,− = −

√

M2 + L
2
1
k2z +m and ε+,− =

√

M2 + L
2
1
k2z −m , 

assuming m > 0 . Thus, the gap between the two states 
|−,−� and |+,−� can be closed at M2 + L21k

2
z = m2 if 

m > |M| . By neglecting the quadratic term M1k
2
z  in 

M(k) , namely M(k) = M0 , we can find two gap closing 
points at k = (0, 0,±K0) with K0 = m2 −M2

0/L1.
At the gap closing point k0 = (0, 0,K0) , the Hamilto-

nian can be simplified as

and the eigenstates are solved as

where N± = (M0 ±m)2 + L21K
2
0  are the normalization 

factors. The effective Hamiltonian around k0 up to the 
first order in δk is written as

(2)

ε�µ = �

√

L22

(

k2x + k2y

)

+
(

√

M2 + L21k
2
z + µ|m|

)2

,

(3)H0(k0) = M0τz + L1K0τy +mσz ,
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,

We then project the effective Hamiltonian H ′ into 
the subspace of the basis |−,−� and |+,−� by applying 
the second-order perturbation

By keeping δk up to the first order and ν up to the 
second order, we can then write down the low-energy 
effective Hamiltonian for the two gap closing points at 
(0, 0,K0) and (0, 0,−K0) as

where σ are Pauli matrices in the spin basis, τz is in 
the basis of two Weyl points, �vf = L2 , δk = (δkx , δky ,

L2
1
K0

L2m
δkz) , 

and a = (ax, ay, az) with ax =
�L1K0

eL2m
νx , ay =

�L1K0

eL2m
νy , and 

az = �

2eL2m
(−ν2z + M

2
0

m2 (ν
2
x + ν2y + ν2z ))

 . We may introduce the electro-
magnetic field by the Peierls substitution δk → δk + e

�
A 

with the vector potential A . By comparing the coupling 
form of A with a , we find that the a field, which results 
from the magnetic fluctuation ν , couples oppositely to 
the Weyl nodes at the two gap closing points in a gauge 
coupling form, and thus we conclude the a field acts like 
a chiral gauge field [41]. Below we will use the terminol-
ogy, either chiral gauge field or pseudo-gauge field, to 
refer to the a field.

Due to the presence of magnetic ordering, time-
reversal symmetry is broken in magnetic Weyl semi-
metals, and the minimal model of Weyl semimetals 
with two Weyl nodes can be realized by the model 
Hamiltonian in Eq. (1), as shown by the numerical sim-
ulations of the energy bands for Eq. (1) in Fig.  2a. On 
the other hand, if only inversion symmetry is broken, 
the total number of Weyl nodes in the system must be a 
multiple of four, as time-reversal symmetry transforms 
a Weyl node at k to another Weyl node at −k with the 
same chirality and all the chiral charges for the whole 
Weyl semimetals must cancel [42].

3 � Magnetic‑resonance‑induced current response 
for Weyl fermions

We next consider the non-linear response for the left-
handed and right-handed Weyl fermions described by 
the Hamiltonian based on the effective Hamiltonian Eq. 
(7) which is rewritten as

(5)H ′ = L1δkzτy + L2(δkyσx − δkxσy)τx + ν · σ τz .

(6)Hmn = �m|H ′|n� +
∑

l �=m,n

1

2
�m|H ′∣

∣l
〉〈

l
∣

∣H
′ |n� ×

[

1

εm − εl
+ 1

εn − εl

]

.

(7)

Heff =
(

L2δkxτz +
L1K0

m
νx

)

σx +
(

L2δkyτz +
L1K0

m
νy

)

σy

+ 1

2m

(

2L21K0δkzτz − ν2z + M2
0

m2
(ν2x + ν2y + ν2z )

)

σz

= �vf σ ·
(

δk τz +
e

�
a

)

,
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where σ is Pauli matrices, A is the electromagnetic field, 
and a is the chiral gauge field minimally coupled to 
the left-handed and right-handed Weyl fermions [41]. 
We further rewrite the above Hamiltonian as

where HL0 = −HR0 = �vf σ · k and JL = −JR = evf σ . 
Let us first focus on the left-handed Weyl fermion HL . 
Following the density matrix formalism in the velocity 
gauge described in Appendix 2, we rewrite the Hamilto-
nian into the second-quantization form as

where εLnk is the eigenvalue of HL0 and ânk and â†nk are 
the annihilation and creation operators. The Bloch 
equation of the density matrix ρnm(t) , defined by 
ρnm,k(t) = �â†mk(t)ânk(t)� , is then

where τ is the relaxation time and εLnm = εLn − εLm . We can 
expand the density matrix in order of the perturbation of 
dynamic fields A and a . The zeroth order of the density 
matrix is given by ρ(0)

nm = fnδnm where fn is the Fermi fac-
tor of band n. At the first order of A and a , we obtain

(8)
HL = �vf σ ·

(

k + e

�
A+ e

�
a
)

,

HR = −�vf σ ·
(

k + e

�
A− e

�
a
)

,

(9)
HL = HL0 + A · JL + a · JL,
HR = HR0 + A · JR − a · JR,

(10)

ĤL =
∑

n

∫

dkεL
nk
â
†
nk
ânk +

∑

nn′

∫

dkâ
†
nk
ân′k

[

A(t) · JL
nn′k + aL(t) · JLnn′k

]

,

(11)

∂ρnm(t)

∂t
= − i

�
εLnmρnm(t)−

i

�

∑

n′

[

A(t) · JL
n′nρn′m(t)− A(t) · JL

mn′ρnn′ (t)
]

− i

�

∑

n′

[

aL(t) · JLn′nρn′m(t)− aL(t) · JLmn′ρnn′ (t)
]

− ρnm(t)

τ
,

where we define fnm = fn − fm , Ab(t) = Ab(ω)e−iωt , 
abL(t) = abL(ω)e

−iωt , and ω̃1,nm = εLnm/�− i/τ . Here the 
Einstein summation rule has been assumed. At the sec-
ond order of A and a , the diagonal component of density 
matrix can be derived as

where ω� = ωβ + ωγ , Ab
β = Ab(ωβ) , and 

(aL)
b
β = (aL)

b(ωβ) . Here we only consider the diagonal 
term in the second order of density matrix ρ(2) . This is 
because we only consider two bands that form the Weyl 
points here, and the off-diagonal component of ρ(2) 
is zero. It should be noted that if the third bands are 
involved, the off-diagonal component of ρ(2) can exist 
and a three-band contribution can be important for the 
CPGE [35]. Moreover, we only keep the terms involving 
both A and aL , as the other terms quadratic in A or aL 
vanish between the left-handed and right-handed Weyl 
fermions due to their opposite chiral charges (see Appen-
dix 1). The corresponding intraband current is derived as

where vanm = �n| ∂H
∂ka

|m� is the matrix element of the velocity 
operator and �a

nm = v
a
nn − v

a
mm

 is the velocity shift. We then 
use A

b(ω) = E
b(ω)/iω , a

b
L
(ω) = ˜E

b(ω)/iω with the pseudo-elec-
tric field Ẽ , and (JL)bnm =

ie

�
εLnmA

b
nm

 with the Berry connec-
tion Anm = �n|i∂k |m� . We symmetrize all the indices, 
and take the time derivative of the imaginary part (see 
Appendix 1) to obtain

(12)ρ(1)
nm(ω) = fnm

(

Ab(ω)+ abL(ω)
)

(JL)
b
mn

�(ω̃1,nm − ω)
,

(13)

ρ(2)
nn (ω�) =

1

�ω�

∑

m

(

A
b
β (aL)

c
γ + (aL)

b
βA

c
γ

)

[

fmn(JL)
b
mn(JL)

c
nm

�(ω̃1,mn − ωβ)
− fnm(JL)

b
nm(JL)

c
mn

�(ω̃1,nm − ωβ)

]

,

(14)

j̃aL(t) = e
∑

n

∫

k
vannρ

(2)
nn (ω�)e

−iω� t

= e

�2ω�

∑

nm

∫

k

�a
nmfmn(JL)

b
mn(JL)

c
nm

ω̃1,mn − ωβ

(

Ab
β (aL)

c
γ + (aL)

b
βA

c
γ

)

e−iω� t
,

Fig. 2  a Energy dispersion of the four-band model along kz at kx = ky = 0 and the enlarged area around the two Weyl nodes. b The MR-induced 
non-linear current component η̃zxy as a function of �ω . The quantized value is 2iβ0 , which can be achieved for �ω < 0.01 eV. The parameters are 
chosen as M0 = 0.18 eV, M1 = 0.342 eVÅ2 , M2 = 18.25 eVÅ2 , L1 = 1.33 eVÅ, L2 = 2.82 eVÅ, and m = 0.2 eV (parameters from Ref. [41])
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where

with the Berry curvature of the left-handed Weyl fermion 
(�L)

bc
mn = i(Ab

mnA
c
nm −Ac

mnA
b
nm) . For ωβ = −ωγ = ω 

and ω� = 0 , we have

We rewrite the above equations as (see Appendix 1)

where Ẽ(ω) = iωa can be regarded as the pseudo-elec-
tric field, and the MR-induced current response trace for 
the left-handed Weyl fermion is

where S is a closed surface in the momentum space, 
β0 = πe3/h2 , and CL = 1

2π

∮

dS ·�L = 1 is nothing but 
the Chern number (equivalently the chiral charge of the 
Weyl node). For the right-handed Weyl fermion with 
CR = −CL , we repeat the above derivation to obtain 
j̃R = j̃L . Thus, the total non-linear response current is

The current Eq. (20) is the main result of this work, 
from which we demonstrate that a non-zero total dc-
current can be induced by the interplay between an 
electromagnetic field and a chiral gauge field at the 
non-linear order for two Weyl nodes with opposite 
chiral charges, in contrast to the regular CPGE as dis-
cussed in Appendix 1 (also see Ref. [27]). Furthermore, 
the symmetry properties of each component in Eq. (20) 
are summarized in Table  1. Unlike the physical elec-
tric field E, the pseudo-electric field Ẽ is even under 
inversion. Therefore, this current response is allowed 
in centrosymmetric systems, i.e., when the inversion 
symmetry is preserved. From Eq. (7), we can see that 
the chiral gauge field a depends on the time-dependent 
field ν(t) that describes magnetic fluctuations and thus 
we study the magnetic dynamics in magnetic topologi-
cal insulators below.

(15)dj̃aL(t)

dt
= η̃Labc(ω� ;ωβ ,ωγ )E

b
β Ẽ

c
γ e

−iω� t + η̃Labc(ω� ;ωγ ,ωβ)Ẽ
b
βE

c
γ e

−iω� t
,

(16)
η̃Labc(ω�;ωβ ,ωγ ) = − iπe3

8�2
∑

nm

∫

k
�a

nmfnm(�L)
bc
mn

ε2nm

�2ωβωγ

×
[

δ(ωmn − ωβ)− δ(ωmn + ωβ)− δ(ωmn − ωγ )+ δ(ωmn + ωγ )
]

,

(17)η̃L
abc

(0;ω,−ω) = − iπe3

2�2

∑

nm

∫

k

�a
nmfnm(�L)

bc
mnδ(ωmn − ω).

(18)j̃L = τ β̃L(ω)

[

E(ω)× Ẽ
∗
(ω)+ Ẽ(ω)× E∗(ω)

]

,

(19)β̃L(ω) = i
e3

2h2

∮

dS ·�L = iβ0CL,

(20)j̃ = j̃L + j̃R = 2iτβ0CL

[

E(ω)× Ẽ
∗
(ω)+ Ẽ(ω)× E∗(ω)

]

.

4 � Landau‑Lifshitz‑Gilbert equation 
for ferromagnetic resonance

To see how the magnetic fluctuation can induce a pseudo-

electric field, we solve the Landau-Lifshitz-Gilbert (LLG) 
equation for ferromagnetic resonance in this section. Simi-
lar to Ref. [38], the LLG equation reads

where M = (Mx,My,Mz) is the magnetization. The in-
plane magnetization acts as a pseudo-gauge field in terms 
of ν = c

evf
gM(−My,Mx, 0) , with the exchange coupling 

coefficient gM [38]. Therefore, the pseudo-electric field 
induced by the ferromagnetic resonance is

The LLG equation can be rewritten as

where Beff = B −MN − KMz

M2
s
êz , B is the applied mag-

netic field, Ms = |M| , K is the anisotropy coefficient, 
MN = (NxMx,NyMy,NzMz) is the demagnetizing field 
with Nx,Ny = 0 and Nz = 1 as we consider a thin film 
perpendicular to the z direction, γ0 = ge

2me
 is the mag-

neto-mechanical ratio with Landé factor g, and η is Gil-
bert damping coefficient [38, 43, 44]. Let us define the 
dimensionless damping constant α = γ0ηMs , γ = γ0

1+α2
 , 

and the LLG equation is written as

(21)
dM

dt
= −γ0M ×

(

Beff − η
dM

dt

)

,

(22)Ẽ = −1

c

∂ν

∂t
= gM

evf
(
dMy

dt
,−dMx

dt
, 0).

(23)
dM

dt
= −γ0M ×

[

Beff − η

(

−γ0M ×
(

Beff − η
dM

dt

))]

≈ −γ0M × Beff − ηγ 2
0 M × (M × Beff),

(24)
dM

dt
= −γM × Beff −

γα

Ms
M × (M × Beff).

Table 1  Symmetry properties of current ˜j  , relaxation time τ , 
electric field E, and pseudo-electric field ˜E ( + for even and − for 
odd)

˜j τ E ˜E

Inversion − + − +

Time-reversal − − + +
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Since dMs/dt = 0 , only the direction n = M/Ms is 
time-dependent with

We assume the in-plane magnetic field 
and magnetization are very small, i.e. 
|nx| ∼

∣

∣ny
∣

∣ ∼ |Bx/Ms| ∼
∣

∣By/Ms

∣

∣ ≪ 1 , and at the first 
order of these quantities, we have

where ω̃ = γnzBeff,z and nz = Mz/Ms = sgn(Mz) . 
We then consider a general in-plane magnetic field 
B(t) = B0e

iωt(a, b, 0) where a, b are two complex num-
bers and describe the polarization of magnetic field 
components of a microwave. By performing the Laplace 
transformation in Appendix 4, we keep the leading order 
O(α−1) in Eqs. (101) and (102) to get

where the ferromagnetic resonance frequency is

by taking the leading order O(α−1) in ωr (Eq. (104)), and 
Re and Im denote the real and imaginary parts of a and b, 
respectively. Therefore, from Eq. (22), the pseudo-electric 
field reads

where Ẽ0 = gMB0/(2evf η) . Thus, an in-plane magnetic 
field B(t) = B0e

iω0t(a, b, 0) can induce a pseudo-electric 
field

where nz = sgn(Mz) . Combining Eq. (30) with Eq. (20) 
for the non-linear current response and considering an 
incident light with E(t) = E0e

iω0t(c, d, 0) , we find

(25)
dn

dt
= −γn× Beff − γαn× (n× Beff).

(26)

(

∂t + αω̃ ω̃nz
−ω̃nz ∂t + αω̃

)(

nx
ny

)

=
(

γα γnz
−γnz γα

)(

Bx

By

)

,

(27)
nx(t) =

B0γ0

2αω0
[(aIm + bRenz) cos(ω0t)+ (aRe − bImnz) sin(ω0t)],

ny(t) =
B0γ0

2αω0
[(bIm − aRenz) cos(ω0t)+ (bRe + aImnz) sin(ω0t)],

(28)ω0 = |ω̃| = γBeff,z

(29)

Ẽx =
gM

evf

dMy

dt
= gMMs

evf
ṅy = Ẽ0(b− ianz)e

iω0t ,

Ẽy = − gM

evf

dMx

dt
= −gMMs

evf
ṅx = −Ẽ0(a+ ibnz)e

iω0t ,

(30)Ẽ(t) = Ẽ0e
iω0t(b− ianz ,−a− ibnz , 0),

(31)
j̃ = 2iτβ0CLE0Ẽ0

[

(−a∗ + ib∗nz)c − (b∗ + ia∗nz)d − (−a− ibnz)c
∗ + (b− ianz)d

∗]êz

= −4τβ0CLE0Ẽ0Im
[

(−a∗ + ib∗nz)c − (b∗ + ia∗nz)d
]

êz .

Because the MR-induced non-linear current 
response is generated by the combination of an elec-
tromagnetic field and a pseudo-electric field, the 
incident light can be linearly polarized, instead of 
circularly polarized  which is required for the regu-
lar CPGE. For example, we can choose an incident 
light with E(t) = E0e

iω0t(1, 0, 0) and a magnetic field 
B(t) = B0e

iω0t(0, 1, 0) to induce a pseudo-electric field 
Ẽ(t) = Ẽ0e

iω0t(1,−i, 0) . Thus, using Eq. (31), the MR-
induced nonlinear current is j̃ = −4τβ0CLE0Ẽ0êz 
assuming nz = 1 . It should be noted that although 
the topological invariant CL appears in this current 
response, the pseudo-electric field Ẽ0 depends on mate-
rial parameters, not just the fundamental constants, 
and thus we regard this non-linear current response to 
be geometric rather than topological.

5 � Magnetic‑resonance‑induced non‑linear current 
response in a microscopic model

The above analytical derivation reveals the non-lin-
ear current response induced by MR, in analogy to the 
regular CPGE. In this section, we will further study the 
non-linear current response directly from numerical 
calculations of the Hamiltonian Eq. (1). We emphasize 
that the purpose of this section is to verify the analyti-
cal solutions of the nonlinear current response in the low 
frequency regime for a more realistic Weyl semimetal 
model in a  certain limit. However, the parameters cho-
sen for the calculations of this model are not realistic, so 
our calculations cannot be directly applied to the realistic 
material systems. A comment on the additional contribu-
tion to the non-linear current response from the remote 
bands will be provided at the end of this section.

As shown in Appendix 3, the MR-induced non-linear 
current in the four-band model Eq. (1) can be derived as

with

where β0 = πe3/h2 , Anm is the non-Abelian Berry con-
nection of the unperturbed Hamiltonian H0 , Ŵ = σ τz , 
and Ẽ(ω) = i�ων/e is the pseudo-electric field induced 
by the magnetic fluctuation ν , which comes from the 

(32)
j̃a = τ η̃abc(0;ω,−ω)Eb(ω)Ẽ

∗
c (ω)+ τ η̃acb(0;−ω,ω)Ẽb(ω)E

∗
c (ω),

(33)

η̃abc(0;ω,−ω) = iβ0
∑

nm

∫

d
3
k

2π
(∂aεnm)fnm

A
b
nmŴ

c
mn

εnm
δ(εmn − �ω),
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ferromagnetic resonance by solving the LLG equation in 
Section 4.

At low energy, the four-band Hamiltonian can be pro-
jected to the effective Hamiltonian describing two Weyl 
points, and the magnetic fluctuation ν appears in the 
form of the chiral gauge field a (see Section  2). In this 
approximation, we can rewrite Ẽ(ω) as iωa following the 
definition of Eqs. (18) and (33) becomes

where the pseudo-gauge field a in terms of ν is defined in 
Section 2. Furthermore, Eq. (32) can be recovered to Eq. 
(20) derived from the effective model for the two Weyl fer-
mions by performing projection to the subspace of the two 
low-energy bands. This indicates that at the low-energy 
range, the MR-induced non-linear current trace of this 
microscopic model should have a quantized value of 2iβ0.

As the magnetization in our model is in the z direction, 
only an in-plane pseudo-electric field can be induced by 
the ferromagnetic resonance [38]. We assume the inci-
dent light propagates in the z direction and has in-plane 
electromagnetic fields, so the indices b, c can only be x or 
y, and b  = c as the electric fields are along perpendicular 
directions in CPGE. Furthermore, the four-band model 
has mirror Mz symmetry which imposes constraints 
η̃xxy = η̃xyx = η̃yxy = η̃yyx = 0 , and the in-plane rota-
tional symmetry which imposes η̃zxy = −η̃zyx . Therefore, 
in the following calculations, we focus on the component 
η̃zxy given by

where we have used ay = �L1K0
eL2m

νy and K0 =
√

m2 −M
2
0
/L1

 from 
Section 2 to derive this result.

Figure 2a shows the energy dispersion of the four-band 
model along kz at kx = ky = 0 , in which four bands are 
labelled by the index n = 1, ..., 4 from low to high ener-
gies. Two Weyl nodes with opposite charges at oppo-
site kz are formed by two bands n = 2 and 3 around the 
energy ε = 0 . We numerically calculate η̃zxy as a function 
of �ω , as shown in Fig. 2b. When �ω is smaller than 0.01 
eV (green shaded area), η̃zxy is very close to the quantized 
value 2iβ0 , suggesting that the microscopic model can be 
simplified as an effective model of two Weyl fermions at 
the low energy range. At around �ω ∼ 0.01 eV, η̃zxy starts 
to decrease as the effective model of two Weyl fermions 
is no longer applicable, and thus η̃zxy deviates from quan-
tization. Another reason for the rapid decrease in η̃zxy is 
that the transitions around the Weyl nodes become only 
partially activated as �ω exceeds the energy difference 

(34)

η̃abc(0;ω,−ω) = iβ0
�νc

eac

∑

nm

∫

d
3
k

2π
(∂aεnm)fnm

Ab
nmŴ

c
mn

εnm
δ(εmn − �ω),

(35)

η̃zxy = iβ0
L2m

√

m2 −M2
0

∑

nm

∫

d3k

2π
(∂zεnm)fnm

Ax
nmŴ

y
mn

εnm
δ(εmn − �ω),

between the middle two bands at kz = 0 ( �ε ∼ 0.04 eV). 
Eventually, η̃zxy becomes a constant for �ω > 0.06 eV. 
Therefore, our numerical result confirms that the MR-
induced non-linear current trace between two bands of 
Weyl nodes can be quantized at the low energy range, 
where the microscopic model recovers to the effective 
model of two Weyl fermions, as shown in Section 2. We 
emphasize that the quantization of η̃zxy does not mean 
that the current j̃ is quantized, as the pseudo-electric 
field in the response Eq. (32), unlike physical electric field 
E, is not an externally controlled parameter and depends 
on specific material parameters.

In our calculation, we have only considered two-band 
transitions ( 2 → 3 , where 2,  3 label two bands around 
ε = 0 for two Weyl nodes) and have not included three-
band virtual transitions ( 2 → l → 3 where l = 1, 4 labels 
the third bands for the three-band contributions to the 
non-linear current response). It is known that the three-
band contribution can play an important role for the 
CPGE when the third band l is close to the two bands 
that form Weyl nodes [35], and thus destroys the quanti-
zation of CPGE. Similar physics can also occur for the 
MR-induced non-linear current response here. The ratio 
between the three-band and two-band contributions can 
contain the energy separation ratio ∼ εn−εm

εn−εl
 [35], where 

n,m = 2, 3 and l = 1, 4 . This ratio decays as the energy 
separation between the third band and two Weyl 
bands increases. For the chosen model parameters, a typ-
ical energy separation between two bands of Weyl nodes 
is around 0.01 ∼ 0.02eV  , below which the linear disper-
sion of Weyl fermions remains valid. This energy scale is 
one order smaller than the energy separation between 
the third band and these two Weyl bands, which is 
around 0.2  eV. As long as the other bands are far away 
enough from the two Weyl bands, we expect that  the 
contribution from the three-band transition provides 
only a small correction.

6 � Conclusion and discussion
In conclusion, we demonstrate that a non-linear current 
response with an electric field and a MR-induced pseudo-
electric field can exist in magnetic Weyl semimetals 
with two Weyl nodes with opposite charges, in contrast 
to the regular CPGE. The pseudo-electric field can be 
induced by the magnetic fluctuations from ferromagnetic 
resonance, which acts like a chiral gauge field that cou-
ples oppositely to the lefthanded and righthanded Weyl 
nodes. Therefore, the realization of MR-induced non-lin-
ear current does not require a chiral Weyl semimetal in 
which the two Weyl nodes are located at different ener-
gies. Experimentally, we can consider the electric and 
magnetic components of an electromagnetic wave acting 
on magnetic Weyl semimetals. We expect that the direct 
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coupling between the magnetic field component of elec-
tromagnetic wave and electron spin is negligible. The role 
of the oscillating magnetic field here is to induce a fer-
romagnetic resonance, a physical phenomenon that has 
been well observed in experiments. Once the magnetiza-
tion procession is excited in magnetic Weyl semimetals, 
it is the exchange coupling between magnetization and 
electron spin, rather than the Zeeman coupling of mag-
netic fields, to induce the current response. From Eq. 
(31), this magnetic-resonance-induced current has the 
magnitude of 4τE0Ẽ0 , where Ẽ0 = gMB0γ0Ms/(2evf α) 
is the strength of the pseudo-electric field. With typi-
cal values of parameters 

∣

∣gMMs

∣

∣ = 0.1 meV, B0 = 10 
G, γ0 = 1.76× 1011 C/kg, vf = 6.5× 105 m/s, and 
|α| = 10−5 ∼ 10−2 [38], we estimate the magnitude of Ẽ0 
to be around 1 ∼ 1000 V/m. Taking a sample thickness of 
10 nm, a width of 100 µ m, and a typical relaxation time 
in Weyl semimetals τ ∼ 1 ps [27], the induced current 
reaches 1 ∼ 103 nA, which is measurable in experiments. 
Since any current response at the second-order purely 
from physical electric fields ( E2 order) will vanish due to 
the inversion symmetry, this current response from one 
magnetization and one electric field (EM order) becomes 
the dominant contribution in centrosymmetric materials.

Appendix 1: Derivation of CPGE in length gauge
In this section, we derive the expression for CPGE cur-
rent in the length gauge, in which the dipole interaction 
is treated as [45–47]

where x is the position operator and we define 
H1(t) = ex · E(t) . H0 is the unperturbed single-particle 
Hamiltonian with the eigen-equation

where εnk is the eigen-energy, ψnk(x) = eikxunk(x) is the 
Bloch wavefunction, and the field operators are expanded 
as

where ânk and â†nk are the annihilation and creation oper-
ators, and the orthogonality of the Bloch states as well as 
the anticommutation relation read

(36)ĤE(t) =
∫

dxψ̃†(x)[H0 + ex · E(t)]ψ̃(x),

(37)H0(k)ψnk(x) = εnkψnk(x),

(38)

ψ̃(x) =
∑

n

∫

dkψnk(x)ânk ,

ψ̃†(x) =
∑

n

∫

dkψ∗
nk(x)â

†
nk ,

Next, we solve the equation of motion of the density 
operator [48]

where ρ(0)
nm = fnδnm is the initial density operator with 

the Fermi factor fn of band n, and the latter term is the 
phenomenological term with the relaxation time τ which 
describes the scattering processes of electrons [48]. We 
expand the density operator in powers of E as

and the equation of motion for the i-th order is then

The matrix element of the position operator x is [46, 
47, 49]

where Anm = �n|i∂k |m� is the Berry connection. We 
define the covariant derivative as follows [46]

so for an operator Onm(k) , the commutator with H1 is

with the summation over index b, and

where ∂b = ∂/∂kb . At the first order, we write 
Eb(t) = Eb

βe
−iωβ t with summation over the frequency 

index β , and the equation of motion reads

where εnm = εn − εm with εn being the eigen-energy 
of the unperturbed Hamiltonian H0 , and we replace 
Dkb with Db . By writing ρ(1)

nm(t) = p̃
(1)
nme

−iω̃1,nmt with 
ω̃1,nm = ωnm − i/τ1 and ωnm = εnm/� , we obtain

(39)

〈

ψnk |ψmk ′
〉

=
∫

dxψ∗
nk(x)ψmk ′(x) = δnmδ(k − k ′),

(40)
{

ânk , â
†
mk ′

}

= δnmδ(k − k ′).

(41)∂ρnm(t)

∂t
= − i

�
[H(t), ρ(t)]nm − ρnm(t)− ρ

(0)
nm

τ
,

(42)ρ(t) = ρ(0) + ρ(1)(t)+ ρ(2)(t)+ · · · ,

(43)∂ρ
(i)
nm(t)

∂t
= − i

�

[

H0, ρ
(i)(t)

]

nm

− i

�

[

H1(t), ρ
(i−1)(t)

]

nm

− ρ
(i)
nm(t)

τi
.

(44)
�nk|x

∣

∣mk
′〉 = (i∂k +Anm)δnmδ(k − k

′)+Anm(1− δnm)δ(k − k
′),

(45)Dnm,k = δnm∂k − iAnm,

(46)[H1(t),O(k)]nm = eE(t)[x,O(k)]nm = ieE
b(t)

[

D
kb
,O(k)

]

nm
,

(47)
[

Dkb ,O(k)
]

nm
= ∂bOnm(k)− i

[

A
b,O(k)

]

nm
,

(48)
∂ρ

(1)
nm(t)

∂t
= − i

�

[

H0, ρ
(1)(t)

]

nm

− i

�

[

H1(t), ρ
(0)

]

nm

− ρ
(1)
nm(t)

τ1

= − i

�
εnmρ

(1)
nm(t)+

e

�
E
b
β e

−iωβ t

[

D
b
, ρ(0)

]

nm

− ρ
(1)
nm(t)

τ1
,
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Thus, the first-order term of the density operator is

where

At the second order, we have

By writing Ec(t) = Ec
γ e

−iωγ t , ρ
(2)
nm(t) = p̃

(2)
nme

−iω̃2,nmt 
with ω̃2,nm = ωnm − i/τ2 , we get

We then use the expression for ρ(1)
nm(t) in Eq. (50) and 

integrate out t to obtain

(49)

∂ p̃
(1)
nm

∂t
= e

�
Eb
βe

−i(ωβ−ω̃1,nm)t
[

Db, ρ(0)
]

nm
,

p̃(1)nm =
eEb

βe
−i(ωβ−ω̃1,nm)t

[

Db, ρ(0)
]

nm

i�(ω̃1,nm − ωβ)
.

(50)ρ(1)
nm(t) =

e
[

Db, ρ(0)
]

nm

i�(ωnm − ωβ − i/τ1)
Eb
βe

−iωβ t ,

(51)
[

Db, ρ(0)
]

nm
= ∂bfnδnm − ifmnA

b
nm.

(52)

∂ρ
(2)
nm(t)

∂t
= − i

�

[

H0, ρ
(2)(t)

]

nm

− i

�

[

H1(t), ρ
(1)

]

nm

− ρ
(2)
nm(t)

τ2
.

(53)∂ p̃
(2)
nm

∂t
= e

�
Ec
γ e

−i(ωγ−ω̃2,nm)t
[

Dc, ρ(1)(t)
]

nm
.

where ω� = ωβ + ωγ and

We then separate the second-order density operator 
ρ
(2)
nm(t) in Eq. (54) into the diagonal (intraband) ρ(2)

nn (t) 
and off-diagonal (interband) (1− δnm)ρ

(2)
nm(t) parts [47]. 

The intraband contribution reads

where

The corresponding current is

where �a
nm = vann − vamm and we take τ2 → ∞ and 

∂k fn = 0 . We then symmetrize the indices bβ ↔ cγ , 
k ↔ −k , and n ↔ m to get

(54)ρ(2)
nm(t) = − e2�

(2)
nm

�2(ωnm − ω� − i/τ2)
Eb
βE

c
γ e

−iω� t ,

(55)�(2)
nm =

[

Dc,

[

Db, ρ(0)
]

ω̃1 − ωβ

]

nm

.

(56)ρ(2)
nn (t) =

e2�
(2)
nn

�2(ω� + i/τ2)
Eb
βE

c
γ e

−iω� t ,

(57)

�(2)
nn =

[

Dc,

[

Db, ρ(0)
]

ω̃1 − ωβ

]

nn

= −∂c

[

Db, ρ(0)
]

nn

ωβ + i/τ1
− i

∑

m

(

A
c
nm

[

Db, ρ(0)
]

mn

ω̃1,mn − ωβ

−
[

Db, ρ(0)
]

nm

ω̃1,nm − ωβ

A
c
mn

)

= − ∂b∂cfn

ωβ + i/τ1
−

∑

m

(

fnmA
b
mnA

c
nm

ω̃1,mn − ωβ

− fmnA
b
nmA

c
mn

ω̃1,nm − ωβ

)

.

(58)

jaintra(t) = − e3

�2ω�

∑

n

∫

k
vann�

(2)
nn E

b
βE

c
γ e

−iω� t

= e3

�2ω�

∑

nm

∫

k
vann

(

fnmA
b
mnA

c
nm

ω̃1,mn − ωβ

− fmnA
b
nmA

c
mn

ω̃1,nm − ωβ

)

Eb
βE

c
γ e

−iω� t

= e3

�2ω�

∑

nm

∫

k

(

�a
nmfnmA

b
mnA

c
nm

ω̃1,mn − ωβ

)

Eb
βE

c
γ e

−iω� t ,

(59)jaintra(t) =
e3

2�2ω�

∑

nm

∫

k
�a

nmfnm

(

A
b
mnA

c
nm

ω̃1,mn − ωβ

+ A
c
mnA

b
nm

ω̃1,mn − ωγ

)

Eb
βE

c
γ e

−iω� t

= e3

4�2ω�

∑

nm

∫

k
�a

nmfnm(A
b
mnA

c
nm −A

c
mnA

b
nm)

(

1

ω̃1,mn − ωβ

− 1

ω̃1,mn − ωγ

)

Eb
βE

c
γ e

−iω� t

= e3

8�2ω�

∑

nm

∫

k
�a

nmfnm(A
b
mnA

c
nm −A

c
mnA

b
nm)

×
(

1

ω̃1,mn − ωβ

+ 1

ω̃1,mn + ωβ

− 1

ω̃1,mn − ωγ

− 1

ω̃1,mn + ωγ

)

Eb
βE

c
γ e

−iω� t .
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By assuming 1/τ1 is very small, i.e. τ1 → ∞ , we can 
apply the following identity

where P denotes a Cauchy principle value. The imaginary 
part of the current is called the injection current or the 
circular photocurrent [47], which reads

We then take the time derivative of the current

where

If we consider a monochromatic field 
E(t) = E(ω)e−iωt + E(−ω)eiωt , the injection current with ω� = 0 is

with

The same result can be also derived from the velocity 
gauge, as shown in Appendix 2. We can rewrite Eq. (64) 
as [27, 34]

with

where τ is the lifetime and Rnm = (Anm ×Amn) . We 
can see that this current can be generated by a circu-
larly polarized light, but not a linearly polarized light, as 
E × E∗ requires the electric fields to be along perpen-
dicular directions, thus the name “circular photogalvanic 

(60)

1

ω̃1,mn − ωβ

= 1

ωmn − ωβ − i/τ1
= P

ωmn − ωβ

+ iπδ(ωmn − ωβ),

(61)jainjection(t) = [jaintra(t)]Im = iπe3

8�2ω�

∑

nm

∫

k
�a

nmfnm(A
b
mnA

c
nm −A

c
mnA

b
nm)

×
[

δ(ωmn − ωβ)− δ(ωmn + ωβ)− δ(ωmn − ωγ )+ δ(ωmn + ωγ )
]

Eb
βE

c
γ e

−iω� t .

(62)

d jainjection(t)

dt
= −iω� × [jaintra(t)]Im

= ηabc(ω�;ωβ ,ωγ )E
b
βE

c
γ e

−iω� t ,

(63)

ηabc(ω� ;ωβ ,ωγ ) = − iπe3

8�2

∑

nm

∫

k

�a
nmfnm�

bc
mn

×
[

δ(ωmn − ωβ)− δ(ωmn + ωβ)− δ(ωmn − ωγ )+ δ(ωmn + ωγ )
]

.

(64)
d jainjection(t)

dt
= 2ηabc(0;−ω,ω)Eb(ω)Ec(−ω),

(65)ηabc(0;−ω,ω) = − iπe3

2�2

∑

nm

∫

k

�a
nmfnm�

bc
mnδ(ωmn − ω).

(66)jainjection = τβab(ω)[E(ω)× E∗(ω)]b,

(67)βab(ω) =
πe3

�2

∑

nm

∫

d
3
k

(2π)3
(∂aεnm)fnmR

b
nmδ(εmn − �ω),

effect”. Furthermore, the current switches direction when 
the polarization changes from lefthanded to righthanded. 
The CPGE trace β(ω) reads

where Snm is a closed surface in the momentum space. 
For a two-fold Weyl node with band index n = 1, 2 and 
Fermi energy across at the Weyl node, we use the relation 
�nm = i

∑

m�=n Rnm [34], and Eq. (68) becomes

where C = 1
2π

∮

S ·� is the Chern number and 
β0 = πe3/h2 . Therefore, the CPGE trace β(ω) is quan-
tized for a Weyl node as proportional to its associated 
topological charge, and the CPGE current can be written 
as

For a two-band Weyl semimetal with mirror sym-
metry, there are two Weyl nodes with opposite topo-
logical charges CL = 1 and CR = −1 sitting at the 
same energy (Fig.  1a). When the Fermi energy is at the 
Weyl node, the CPGE trace for the two Weyl nodes are 
iβ0CL and iβ0CR . The CPGE currents from the left and 
right Weyl nodes are jL = iτβ0C[E(ω)× E∗(ω)] and 
jR = −iτβ0C[E(ω)× E∗(ω)] , so the total CPGE cur-
rent vanishes. If we consider a chiral Weyl semimetal in 
which the inversion and all mirror symmetries are bro-
ken (Fig.  1b), the left and right Weyl nodes are located 
at different energies εL and εR (measured from the Fermi 
energy Ef  ), respectively. Then in the frequency window 
2|εR| < �ω < 2|εL| , the transition near the left Weyl node 
is forbidden due to Pauli blocking, and thus, the only 
contribution to the CPGE current comes from the right 
Weyl node jR = −iτβ0C[E(ω)× E∗(ω)] [27]. Therefore, 
the quantized CPGE can be realized under such condi-
tions. The CPGE has recently been observed in chiral 
Weyl semimetals RhSi [29, 31] and CoSi [30].

(68)

β(ω) = Tr[βab(ω)] =
πe3

�2

∑

nm

∫

d
3
k

(2π)3
(∂aεnm)fnmR

a
nmδ(εmn − �ω)

= e
3

2h2

∑

nm

∮

dSnm · Rnm,

(69)
β(ω) = i

e3

2h2

∮

dS ·�1

= iβ0C ,

(70)j = iτβ0C
[

E(ω)× E∗(ω)
]

.
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Appendix 2: Derivation of CPGE in velocity gauge
In this section, we derive the CPGE in the velocity gauge 
[46, 49, 50]. The dipole interaction is written as

where J = e
�

∂H0
∂k

 is the current operator. Using the 
expressions in Appendix 1, we obtain the second-quan-
tized Hamiltonian

We assume the photon momentum is zero q ≈ 0 , i.e. 
k − k ′ ≈ 0 , as the momentum of light q is much smaller 
than that of electrons k , so the Hamiltonian is as follows

where Jnn′k = �unk |J |un′k� . The Heisenberg equations of 
motion for the creation and annihilation operators are

The density matrix is ρnm,k = �â†mk ânk� , so the optical 
Bloch equation for the density matrix writes

(71)
H0

(

k + e

�
A(t)

)

≈ H0(k)+ A(t) · J = H0(k)+H1,

(72)

Ĥ0 =
∫

dxψ̃†(x)H0ψ̃(x)

=
∑

nn′

∫

dkdk ′dxψ∗
nk(x)â

†
nkεn′k ′ψn′k ′(x)ân′k ′

=
∑

n

∫

dkεnk â
†
nk ânk ,

(73)

Ĥ1 =
∫

dxψ̃†(x)A(t) · J ψ̃(x)

=
∑

nn′

∫

dkdk ′â†
nk ân′k ′

∫

dxdqei(−k+q+k ′)x
u
∗
nk [A(q, t) · J ]un′k ′ (x)

=
∑

nn′

∫

dkdk ′â†
nk ân′k ′

∫

dqδ(−k + q + k ′)�unk |A(q, t) · J
∣

∣un′k ′
〉

=
∑

nn′

∫

dkdk ′â†
nk ân′k ′ �unk |A(k − k ′ , t) · J

∣

∣un′k ′
〉

.

(74)

Ĥ =
∑

n

∫

dkεnk â
†
nk ânk +

∑

nn′

∫

dkâ†nk ân′kA(t) · Jnn′k ,

(75)

∂ânk

∂t
= − i

�

[

Ĥ , ânk

]

= i

�

(

εnk ânk +
∑

n′
A(t) · Jnn′k ân′k

)

,

∂â†
nk

∂t
= − i

�

[

Ĥ , â
†
nk

]

= − i

�

(

εnk â
†
nk

+
∑

n′
A(t) · Jn′nk â†n′k

)

.

Next we expand the density operator in powers of E as 
in Eq. (42) and the zeroth-order term is ρ(0)

nm = fnδnm . At 
the first order,

Let ρ
(1)
nm(t) = p̃

(1)
nme

−iω̃1,nmt with ω̃1,nm = εnm/�− i/τ1 , and 
A
b(t) =

∫ dωβ

2π
A
b(ωβ )e

−iωβ t , we then obtain

so the first-order density operator is

At the second order, the diagonal part (intraband) of 
the density operator reads

Let ρ(2)
nn = e−t/τ2 p̃

(2)
nn,

Thus, the second-order intraband density operator 
writes

(76)

∂ρnm(t)

∂t
= − i

�
εnmρnm(t)−

i

�

∑

n′
[A(t) · Jn′nρn′m(t)− A(t) · Jmn′ρnn′ (t)]

− ρnm(t)

τ
.

(77)

∂ρ
(1)
nm(t)

∂t
= − i

�
εnmρ

(1)
nm(t)−

i

�

∑

n′

[

A(t) · Jn′nρ(0)
n′m(t)− A(t) · Jmn′ρ

(0)
nn′ (t)

]

− ρ
(1)
nm(t)

τ1

= − i

�
εnmρ

(1)
nm(t)−

i

�
fmnA

b(t)J bmn −
ρ
(1)
nm(t)

τ1
.

(78)

∂ p̃
(1)
nm

∂t
= − i

�

∫

dωβ

2π
fmnA

b(ωβ)J
b
mne

i(ω̃1,nm−ωβ)t ,

p̃(1)nm = − i

�

∫

dωβ

2π
fmnA

b(ωβ)J
b
mn

ei(ω̃1,nm−ωβ)t

i(ω̃1,nm − ωβ)
,

(79)

ρ(1)
nm(ω) =

∫

dtρ(1)
nm(t)e

iωt

= − i

�

∫

dωβ

2π
fmnA

b(ωβ)J
b
mn

∫

dt
ei(ω−ωβ)t

i(ω̃1,nm − ωβ)

= − i

�

∫

dωβ

2π
fmnA

b(ωβ)J
b
mn

δ(ω − ωβ)

i(ω̃1,nm − ωβ)

= fnmA
b(ω)J bmn

�(ω̃1,nm − ω)
.

(80)∂ρ
(2)
nn (t)

∂t
= − i

�

∑

m

[

A(t) · Jmnρ
(1)
mn(t)− A(t) · Jnmρ(1)

nm(t)

]

− ρ
(2)
nn (t)

τ2
.

(81)

∂ p̃
(2)
nn

∂t
= − i

�

∑

m

Ac(t)[J cmnρ
(1)
mn(t)− J cnmρ

(1)
nm(t)]et/τ2

= − i

�

∑

m

∫

dωβdωγ

(2π)2
Ac(ωγ )[J cmnρ

(1)
mn(ωβ )− J cnmρ

(1)
nm(ωβ )]e−i(ωβ+ωγ +i/τ2)t ,

p̃(2)nn =
∑

m

∫

dωβdωγ

(2π)2
Ac(ωγ )[J cmnρ

(1)
mn(ωβ )− J cnmρ

(1)
nm(ωβ )]

e−i(ωβ+ωγ +i/τ2)t

�(ωβ + ωγ + i/τ2)
.
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We then use the expression for ρ(1)
nm and Ab

β = Ab(ωβ) , 
Ac
γ = Ac(ωγ ) , and ω� = ωβ + ωγ to get

with the summation over indices β and γ implied. The 
corresponding current is as follows

where �a
nm = vann − vamm is the velocity shift. We replace 

Ab(ω) with Eb(ω)/iω [49] and J bnm = ie
�
εnmA

b
nm and 

obtain

We then take the imaginary part of the current using 
the identity Eq. (60) and symmetrize all the indices to 
get

The time derivative of the above current reads

For a monochromatic field with ωβ = −ωγ = ω and 
ω� = 0 , we have

which recovers Eq. (64), which is the result in the length 
gauge.

(82)

ρ(2)
nn (ω) =

∫

dtp̃(2)nn e
i(ω+i/τ2)t

=
∑

m

∫

dωβdωγ

(2π)2
Ac(ωγ )[J cmnρ

(1)
mn(ωβ)− J cnmρ

(1)
nm(ωβ)]

δ(ωβ + ωγ − ω)

�(ωβ + ωγ + i/τ2)

= 1

�(ω + i/τ2)

∑

m

∫

dωβdωγ

(2π)2
Ac(ωγ )[J cmnρ

(1)
mn(ωβ)− J cnmρ

(1)
nm(ωβ)]δ(ωβ + ωγ − ω).

(83)

ρ(2)
nn (ω�) =

1

�(ω� + i/τ2)

∑

m

A
b
βA

c
γ

[

fmnJ
b
mnJ

c
nm

�(ω̃1,mn − ωβ)
− fnmJ

b
nmJ

c
mn

�(ω̃1,nm − ωβ)

]

,

(84)

jaintra(t) = e
∑

n

∫

k
vannρ

(2)
nn (ω�)e

−iω� t

= e

�2

∑

nm

∫

k
vann

[

fmnJ
b
mnJ

c
nm

ω̃1,mn − ωβ

− fnmJ
b
nmJ

c
mn

ω̃1,nm − ωβ

]

Ab
βA

c
γ e

−iω� t

ω� + i/τ2

= e

�2ω�

∑

nm

∫

k

�a
nmfmnJ

b
mnJ

c
nm

ω̃1,mn − ωβ

Ab
βA

c
γ e

−iω� t ,

(85)jaintra(t) =
e3

�2ω�

∑

nm

∫

k

�a
nmfnmA

b
mnA

c
nm

ω̃1,mn − ωβ

ε2nmE
b
βE

c
γ

�2ωβωγ

e−iω� t .

(86)

jaIm(t) =
iπe3

8�2ω�

∑

nm

∫

k
�a

nmfnm(A
b
mnA

c
nm −A

c
mnA

b
nm)

ε2nmE
b
βE

c
γ

�2ωβωγ

e−iω� t

×
[

δ(ωmn − ωβ)− δ(ωmn + ωβ)− δ(ωmn − ωγ )+ δ(ωmn + ωγ )
]

.

(87)

dja
Im
(t)

dt
= πe3

8�2

∑

nm

∫

k
�a

nmfnm(A
b
mnA

c
nm −A

c
mnA

b
nm)

ε2nmE
b
βE

c
γ

�2ωβωγ

e−iω� t

×
[

δ(ωmn − ωβ)− δ(ωmn + ωβ)− δ(ωmn − ωγ )+ δ(ωmn + ωγ )
]

= ηabc(ω� ;ωβ ,ωγ )E
b
βE

c
γ e

−iω� t
.

(88)
ηabc(0;ω,−ω) = πe3

2�2

∑

nm

∫

k

�a
nmfnm(A

b
mnA

c
nm −A

c
mnA

b
nm)δ(ωmn − ω)

= − iπe3

2�2

∑

nm

∫

k

�a
nmfnm�

bc
mnδ(ωmn − ω),

Appendix 3: Derivation of MR‑induced nonlinear 
current for the four‑band model
Here we drive the MR-induced nonlinear current for the 
four-band model Eq. (1). Following the same procedure 
in Appendix 2, we find the second-quantized Hamilto-
nian as follows

where εnk is the eigenvalue of H0 , J  is the current opera-
tor, and Ŵ = σ τz . We then obtain the first-order and sec-
ond-order intraband density operator

The current reads

where Ẽb
β = i�ωβν

b
β/e is the pseudo-electric field. Next 

we take the imaginary part and the time derivative of the 
current, and for ωβ = −ωγ = ω , we have

with

where Ẽ(ω) is defined as i�ων/e.

(89)Ĥ =
∑

n

∫

dkεnk â
†
nk
ânk +

∑

nn′

∫

dkâ
†
nk
ân′k [A(t) · Jnn′k + ν(t) · Ŵnn′k ],

(90)ρ(1)
nm(ω) = fnm

Ab(ω)J bmn + νb(ω)Ŵb
mn

�(ω̃1,nm − ω)
,

(91)
ρ(2)
nn (ω�) =

1

�ω�

∑

m

A
b
βν

c
γ

[

fmnJ
b
mnŴ

c
nm

�(ω̃1,mn − ωβ)
− fnmJ

b
nmŴ

c
mn

�(ω̃1,nm − ωβ)

]

+ νbβA
c
γ

[

fmnŴ
b
mnJ

c
nm

�(ω̃1,mn − ωβ)
− fnmŴ

b
nmJ

c
mn

�(ω̃1,nm − ωβ)

]

.

(92)

j̃a(t) = e

�2ω�

∑

nm

∫

k

�a
nmfmn

ω̃1,mn − ωβ

[

J bmnŴ
c
nmA

b
βν

c
γ + Ŵb

mnJ
c
nmν

b
βA

c
γ

]

e−iω� t

= e2

�3ω�

∑

nm

∫

k

�a
nmfnm

ω̃1,mn − ωβ

[

J bmnŴ
c
nm

ωβωγ

Eb
β Ẽ

c
γ + Ŵb

mnJ
c
nm

ωβωγ

Ẽb
βE

c
γ

]

e−iω� t
,

(93)dj̃a(t)

dt
= η̃abc(0;ω,−ω)Eb(ω)Ẽc(−ω)+ η̃acb(0;−ω,ω)Ẽb(ω)Ec(−ω),

(94)
η̃abc(0;ω,−ω) = πe2

�3

∑

nm

∫

k

�a
nmfnm

J
b
mnŴ

c
nm

ω2
δ(ωmn − ω)

= iπe3

�2

∑

nm

∫

d
3
k

(2π)3
(∂aεnm)fnm

A
b
nmŴ

c
mn

εnm
δ(εmn − �ω),
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Appendix 4: Derivation 
of the Landau‑Lifshitz‑Gilbert Equation 
for ferromagnetic resonance
Following Eq. (26) in Section 4, we perform the Laplace 
transformation as

Equation (26) then becomes

where

We consider a general in-plane magnetic field 
B(t) = B0e

iωt(a, b, 0) where a, b are two complex num-
bers and describe the polarization of magnetic field com-
ponents of a microwave. The transformed field reads

We then perform the inverse Laplace transformation 
on Eq. (96) and obtain

where

The solutions to the above equation are

and

(95)
ñi(s) =

∫ ∞

0
dte−stni(t),

B̃i(s) =
∫ ∞

0
dte−stBi(t).

(96)G0(s)

(

ñx(s)
tny(s)

)

−
(

nx(0)
ny(0)

)

= G1

(

B̃x(s)

B̃y(s)

)

,

(97)

G0(s) =
(

s + αω̃ ω̃nz
−ω̃nz s + αω̃

)

, G1 =
(

γα γnz
−γnz γα

)

.

(98)
B̃x(s) =

B0

2

(

a

s − iω
+ a∗

s + iω

)

,

B̃y(s) =
B0

2

(

b

s − iω
+ b∗

s + iω

)

.

(99)





nx

ny



 = B0

2

�

aeiωtG−1
0

(iω)+ a∗e−iωtG−1
0

(−iω)
�

G1





1

0





+ B0

2

�

beiωtG−1
0

(iω)+ b∗e−iωtG−1
0

(−iω)
�

G1





0

1



,

(100)G−1
0 (s) = 1

(s + αω̃)2 + ω̃2

(

s + αω̃ −ω̃nz
ω̃nz s + αω̃

)

.

(101)

nx(t) =
B0γ

2D(ω)
[A1(ω) cos(ωt)+ A2(ω) sin(ωt)]

A1(ω) = ((α2 + 1)ω̃2 − ω2)

[

(a+ a
∗)(α2 + 1)ω̃ + iω((a− a

∗)α + (b− b
∗)nz)

]

− 2iαωω̃

[

(a− a
∗)(α2 + 1)ω̃ + iω((a+ a

∗)α + (b+ b
∗)nz)

]

A2(ω) = ((α2 + 1)ω̃2 − ω2)

[

i(a− a
∗)(α2 + 1)ω̃ − ω((a+ a

∗)α + (b+ b
∗)nz)

]

− 2iαωω̃

[

i(a+ a
∗)(α2 + 1)ω̃ + ω((a∗ − a)α + (b∗ − b)nz)

]

,

where

We find the resonance frequency satisfying D(ωr) = 0 
to be
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