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Land use/land cover (LULC) is one of the most impactful global change phenomenon. As a result, considerable
effort has been devoted to creating large-scale LULC products from remote sensing data, enabling the scientific
community to use these products for a wide range of downstream applications. Unfortunately, uncertainty
associated with these products is seldom quantified because most approaches are too computationally intensive.
Furthermore, uncertainty maps developed for large regions might fail to perform adequately at the spatial scale
in which they will be used and might need to be customized to suit the specific applications of end-users.

In this study, we describe the class-conditional conformal statistics method, an approach that quantifies un-
certainty more uniformly for each class but that requires more calibration data than the conventional conformal
method. Using the class-conditional method, we show that it is possible to create customized local uncertainty
maps using local calibration data without requiring remote sensing and modeling work and that these local
uncertainty maps outperform uncertainty maps calibrated based on global data. We use empirical data from
Brazil (i.e., Dynamic World LULC product and Mapbiomas validation data) to demonstrate this methodology. The
analysis of these data reveals substantial heterogeneity in observations of the same LULC class between Brazilian
states, an indication that national-level data are not representative of the focal state, thus explaining why un-
certainty maps calibrated using focal state-level data outperform maps calibrated using national-level data.
Importantly, we develop straight-forward approaches to determine the spatial extent over which calibration data
are still representative of the area of interest, ensuring that these data can be used to reliably quantify uncer-
tainty. We illustrate the class-conformal methodology by creating uncertainty maps for a selected number of sites
in Brazil. Finally, we show how these uncertainty maps can yield valuable insights for LULC map producers.

Our methodology paves the way for users to generate customized local uncertainty maps that are likely to be
better than uncertainty maps calibrated based on global data while at the same time being more relevant for the
specific applications of these users. A tutorial is provided to show how this methodology can be implemented
without requiring remote sensing and modeling expertise to generate uncertainty maps.

1. Introduction Stehman and Foody 2019). An integral part in the production of these
LULC maps is the assessment of their accuracy/quality based on inde-
pendent reference data, often in the form of error/confusion matrices

and the associated user and producer accuracies (Foody 2002, 2012;

Land-use/land-cover (LULC) change is a pervasive phenomenon
across the world and is the main driver of biodiversity and ecosystems

integrity loss (Diaz et al. 2019; Tilman et al. 2017). As a result, regional,
national, and global LULC maps have become increasingly important
inputs for a wide range of downstream environmental science and
ecological applications (Canibe et al. 2022; Jain 2020; Lyons et al. 2018;
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Khatami et al. 2017; Stehman and Foody 2019). These accuracy metrics
are useful to characterize the overall quality of the LULC map but un-
fortunately they fail to reveal how accuracy varies in space (Brown et al.
2009; Foody 2002; Stehman and Foody 2019). The spatial distribution
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of accuracy is important because a LULC map might have great overall
accuracy but low accuracy over the area of interest of a given map user.

Instead of mapping accuracy, multiple studies have focused on
mapping uncertainty based on the class probabilities that are outputted
by classification algorithms. One problem with class probabilities is that
these probabilities, when generated by common classification algo-
rithms (e.g., random forest and deep learning models), can be poorly
calibrated (i.e., the estimated probabilities overestimate the likelihood
that those class labels are actually correct) (Guo et al. 2017; Mukhoti
et al. 2020; Niculescu-Mizil and Caruana 2005). Indeed, a classifier may
be very certain (i.e., outputting a class probability close to 1 for a given
class) despite being wrong and thus having low accuracy (Stehman and
Foody 2019). Sampling uncertainty is another type of uncertainty and
refers to the variability in predictions that arise due to the use of
different datasets to train and tune the hyperparameters of the classifi-
cation model. Sampling uncertainty is often quantified by bootstrapping
the data used to train the model (Cheng et al. 2021; Hsiao and Cheng
2016; Lyons et al. 2018; Weber and Langille 2007) but we note that, in
the case of stochastic model fitting algorithms, the uncertainty quanti-
fied by bootstrapping will include both sampling uncertainty and the
variability inherent to these model fitting algorithms. Unfortunately,
bootstrapping is often too computationally intensive to be implemented
for large-scale LULC maps.

Conformal statistics has recently been proposed as a powerful
approach to quantify uncertainty in LULC maps because it is simple to
implement, it is not computationally intensive, and it works with any
algorithm that outputs class probabilities (Valle et al. 2023). Indeed, the
only required assumption is that observations are exchangeable (or the
slightly stricter assumption that the observations are independent and
identically distributed), a common assumption across the great majority
of the machine learning methods (Shafer and Vovk 2008). Importantly,
this approach to uncertainty combines class probabilities with infor-
mation regarding the true LULC classes, thus combining elements of
accuracy assessment and more standard uncertainty analysis based on
class probabilities.

In this article, we investigate if conformal statistics can be used as an
approach to create local uncertainty maps that outperform uncertainty
maps calibrate with global data without requiring additional remote
sensing and modeling work. By requiring less technical expertise and
time, such an approach can allow the creation of local uncertainty maps
by end-users, potentially leading to more reliable results and to
customized uncertainty maps that are better tailored to the specific
needs of each application. We start by describing the conformal statistics
approach adopted in this article and how it can be used to generate
uncertainty maps using local calibration data. Then, we use empirical
data from Brazil (i.e., Dynamic World [DW] LULC product and Map-
biomas validation data) to demonstrate the benefits of this conformal
approach. Finally, we illustrate the resulting uncertainty maps for a
selected number of sites in Brazil and show how these uncertainty maps
can also generate valuable insights for LULC map producers. We end this
article by discussing remaining challenges and future research
directions.

2. Methodology

2.1. Quantifying uncertainty using the class-conditional conformal
approach

As introduced by Valle et al. (2023) in the context of LULC classifi-
cation, conformal statistics is focused on generating predictive sets with
a desired coverage C. A predictive set is a collection of LULC classes for a
given pixel. For example, if there are four LULC classes in the landscape
(e.g., “forest”, “water”, “urban”, and “agriculture”), the predictive set for
a given pixel may consist of only a subset of these LULC classes (e.g.,
“forest” and “agriculture”). We refer to the frequency with which these
predictive sets contain the true classes as empirical coverage. As a result,
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if the desired coverage C is equal to 95 %, then valid predictive sets
should have empirical coverage close to 95 % (i.e., predictive sets should
contain the true classes 95 % of the times for new pixels). In other words,
the generated predictive sets need to satisfy the following relationship:

P(Yni1 €Tniac) >C (€)]

where p() stands for probability,Y,.; is the class label for a new pixel,
and I'n41 ¢ is the corresponding predictive set with coverage C. The size
of the predictive sets can be used as a measure of LULC classification
uncertainty. For example, a predictive set that contains only one class
label (e.g., “forest™) indicates smaller classification uncertainty than a
predictive set that contains multiple class labels (e.g., “forest”, “agri-
culture”, and “water””). However, note that predictive sets can also be
empty, a situation that represents substantial classification uncertainty
as none of the LULC class labels are probable. Importantly, conformal
statistics does not rely on asymptotics, makes no assumption about the
data generating mechanism (except that data are exchangeable), and
focuses on uncertainty in class predictions rather than sampling
uncertainty.

An undesirable feature of the conformal approach described in Valle
et al. (2023) (onwards simply conventional conformal approach),
however, is that the generated predictive sets might overcover certain
classes while undercovering other classes. For example, if the desired
coverage C is set to 95 %, it is possible that the empirical coverage of the
predictive sets is higher for forested pixels and lower for agriculture
pixels even if it is close to 95 % across all observations. For example, it
could be that the predictive sets for forested pixels always contain the
forest class label, resulting in empirical coverage of 100 % (i.e., over-
coverage relative to the target C = 95 %). On the other hand, if the
predictive sets for agriculture pixels only contain the agriculture class
label half the time, then empirical coverage would be only 50 % (under-
coverage relative to the target C = 95 %). The conformal approach
would ideally avoid this problem by ensuring that the empirical
coverage is at least C for each LULC class. This requirement can be
described as:

p(Yn+1 S 1—‘nJrl,C‘YnJrl = k) Z C (2)

where k is the class label. Eq. (2) states that for all pixels of class k, the
corresponding predictive sets should contain class k with probability
equal to or greater than C.

In this article, we introduce the -class-conditional (or label-
conditional) conformal approach, a method first proposed by Vovk
(2012) that satisfies the requirement that the generated predictive sets
have empirical coverage equal to or greater than C for each class.
Because both the conventional and the class-conditional conformal ap-
proaches are split-conformal approaches, we start by describing the
general procedure for split-conformal approaches. We then describe
how local uncertainty maps can be created without additional remote
sensing and modeling work to finally describe how the implementation
of the class-conditional approach differs from that of the conventional
conformal approach.

As illustrated in Fig. 1, the first step in the split-conformal approach
consists of dividing the ground-truth data into a training dataset and a
calibration dataset and the second step consists of fitting the classifica-
tion model to the training data. Then, in the third step, this classification
model is used to predict the probability of each LULC class for the
calibration data and the remaining pixels in the study area. In the fourth
step, the LULC probabilities and the true LULC for the observations in
the calibration dataset are used to determine the criterion that will
enable the generation of predictive sets with the desired coverage C.
Finally, in the fifth step, LULC probabilities calculated by the classifi-
cation model in step 3 and the criterion derived in step 4 are used to
create predictive sets for all pixels in the study area.

For the purposes of our goal of creating local uncertainty maps
without modeling and remote sensing work, we assume that steps one
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Fig. 1. General steps (numbered 1 through 5) for the split-conformal approach used to generate predictive sets and quantify uncertainty in LULC classification.

through three (see Fig. 1) have already been done. In other words, we
assume that a classification model has already been fitted by large-scale
LULC map producers and that maps containing the probability associ-
ated with LULC class k for each pixel i (py) are available for the study
region (e.g., as in Google’s Dynamic World (DW) product; Brown et al.
2022; Venter et al. 2022). We further assume that we have local and
independent ground-truth data in which the true LULC class is known
for a set of pixels in the study region. This dataset will be used as the
calibration dataset. Based on these two inputs (i.e., maps with the
probabilities of each LULC class and a local calibration dataset), we
show below how the class-conditional conformal approach can be used
to create local uncertainty maps without requiring remote sensing and
modeling work.

Let the score s; be the class probability associated with the true class
yive (ie., s = i)\i;yime) for each pixel i in this calibration dataset. For

Table 1

Example of the calculation of the scores for hypothetical observations in the
calibration dataset. Cells with bold numbers correspond to the probabilities
associated with the true classes.

Observations  True Class probabilities Py Scores Scores Scores
class - sifor s; for s; for
yiue 2 3 class 1 class 2 class 3

1 1 0.80 0.10 0.10 0.80

2 1 0.75 015 010 0.75

3 2 0.00 0.85 0.15 0.85

4 2 0.05 0.95 0.00 0.95

5 3 0.10 0.60 0.30 0.30

6 1 0.25 0.60 0.15 0.25

Calculated quantiles (go1x) 0.40 0.80 0.10

example, as illustrated in the first line of Table 1, say that the class
probabilities for pixel i are equal to 0.8, 0.1, and 0.1 for LULC classes 1,
2, and 3, respectively. If this pixel is known to belong to LULC class 1,
then the corresponding score will be the probability associated with
LULC class 1 (i.e., s; = 0.8). Therefore, assuming that the local cali-
bration dataset contains n observations, we can calculate the score for
each observation in this dataset (i.e., s1,--,s,) as exemplified in Table 1.
The main difference between the class-conditional and the conventional
conformal approaches is that, in the class-conditional conformal
approach, the criterion used to generate predictive sets (step 4 in Fig. 1)
is a quantile for each LULC class k, q1_cy, instead of a single quantile
over all LULC classes, §;_c. For example, for the class-conditional
conformal approach, if the desired coverage C is set to 90 %, then we
need to calculate the 10 % quantile for the scores associated with each
class. In Table 1, we assume that the quantiles calculated based on the
subset of scores for each class are equal to 0.4, 0.8, and 0.1 for classes 1,
2, and 3, respectively (i.e., §o11 = 0.4,Go12 = 0.8,go13 = 0.1).

To create uncertainty maps, we need to generate predictive sets for
each pixel in the image (step 5 in Fig. 1). We generate the predictive set
for pixel i by including class k in the predictive set if the probability for
this class is greater than g;_cx(i.e., if Px > G1_cx). In other words,
q1_ck is a probability threshold because it determines if class k has
probability high enough to be included in the predictive set. For
example, applying the calculated quantile for class 1 given in the last
line of Table 1, we find that class 1 is part of the predictive set for pixels
1, 4, and 8 (Table 2). On the other hand, when using the quantile for
class 2 given in Table 1, we find that class 2 is only part of the predictive
set for pixel 7 (Table 2). This information can be summarized by
determining the size of each predictive set. For example, Table 2 reveals
that some pixels in our uncertainty map have just a single class in their
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Table 2

Example of generating 90 % predictive sets for different pixels in the study re-
gion. We assume that the quantiles for classes 1, 2, and 3 were calculated to be
Jo11 = 0.4, go12 = 0.8, and Go13 = 0.1, respectively, based on the local
calibration data. Cells with bold numbers correspond to outcomes that satisfy
the inequality py > qo.1k-

Pixel  Class probabilities Py 90 % Size of 90 %
Predictive Predictive sets
1 2 3
N " " sets
(@oa1 = (Go12 = (Goas =
0.4) 0.8) 0.1)
1 0.85 0.04 0.11 {1,3} 2
2 0.25 0.25 0.50 {3} 1
3 0.10 0.10 0.80 {3} 1
4 0.75 0.00 0.25 {1,3} 2
5 0.20 0.60 0.20 {3} 1
6 0.20 0.75 0.05 { 0
7 0.15 0.9 0.05 {2} 1
8 0.50 0.45 0.05 {1} 1

predictive sets (e.g., pixels 2, 3, 5, 7, and 8), indicating low classification
uncertainty. On the other hand, some pixels have 2 classes in their
predictive sets (e.g., pixels 1 and 4), indicating larger classification
uncertainty, and one pixel has an empty predictive set (i.e., pixel 6),
indicating substantial uncertainty.

How does one determine the amount of calibration data that is
required? The following expression, derived by Marques (2023), de-

. o . s ~(nC .
scribes the distribution of empirical coverage C(n ) as a function of the
desired coverage C and size of the calibration dataset n:

gno Beta([C(n+ 1)1, [(1 = C)(n+1)]) 3)

In this expression, the symbols [ ] and | | represent the ceiling and
floor functions and Beta() refers to the Beta distribution. This expression
reveals that empirical coverage is, on average, approximately equal to
the desired coverage C (i.e., the mean of the beta distribution is

~(n,C) .

E{C ] = % ~ C). Furthermore, the variance of the
s . . ~(n,C)
empirical coverage is given by Var[C ] =

[Cn+1)][(1-C)(nt1)] ., C1-C)

revealing that, as

(IC+ D1+ (A-C)(n+1)] P ([C+1)]+[1-C)(nt1)|+1)  (+2)?
expected, it decreases as the size of the calibration data n increases. Eq.
(3) is useful because it enables one to calculate the required calibration
data sample size n once the desired coverage C and the range of

acceptable values of 6("'C) have been defined. This calculation is

straight-forward to implement in any software that has functions to
evaluate the cumulative density function (CDF) of a beta distribution (e.
g., R; R Core Team 2020). For example, if we want empirical coverage to
be on average equal to 95 % and to be between 93 % and 97 % with
probability of 0.99, then the number of observations n in the calibration
dataset has to be equal to, or greater than, 785 pixels.

Note that, in the class conditional method, the class-specific quantile
for LULC class k is calculated based on the pixels in the calibration data
that belong to class k (e.g., see Table 1). On the other hand, the con-
ventional conformal approach calculates a single quantile based on all
the calibration data. This is an important distinction because it reveals
that the overall amount of calibration data required by the class con-
ditional method is much larger than that required for the conventional
conformal approach. For example, based on our results derived from Eq.
(3), we would need 785 pixels for each LULC class k if we were using the
class-conditional conformal approach whereas we would only need 785
pixels overall if we were using the conventional conformal approach. To
help readers implement the class-conditional conformal methodology,
we created an R tutorial that provides all the relevant code and explains
each of the steps required to run this procedure and to calculate the
required amount of calibration data (Appendix 2).
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2.2. Empirical data

The creation of uncertainty maps without requiring remote sensing
or modeling work is based on two main inputs: a) LULC class proba-
bilities for all pixels in the area of interest; and b) independent ground-
truth data to be used as calibration data. We rely on the 2018 LULC
product provided by Google’s Dynamic World (DW) product (Brown
et al. 2022; Venter et al. 2022) because it is one of the few large-scale
LULC maps that provide class-specific probabilities. In relation to
ground-truth data, we rely on the data used by Mapbiomas to validate
their annual LULC classification products for Brazil (freely available at
https://mapbiomas.org/pontos-de-validacao). These data were created
by visually inspecting satellite imagery for each year between 1985 and
2018. Pixels were selected for inspection based on stratified random
sampling and each pixel was evaluated by 3 independent analysts
(Souza et al. 2020). For our purposes, we only used pixels from 2018 for
which the 3 analysts agreed on the LULC class (representing about 71 %
of the original data) to avoid introducing additional uncertainty asso-
ciated with inconsistent reference class labels.

One of the challenges associated with using the DW product together
with the Mapbiomas dataset consists of the fact that these products rely
on different LULC classification schemes. To harmonize the LULC classes
in these products, we performed an exploratory analysis in which we
assessed the DW probabilities for the different Mapbiomas classes. This
revealed that the DW classes “water”, “built”, “crops”, “trees” and
“grass”, consistently had high probabilities in areas classified as “water”,
“urban”, “temporary crop”, “forest”, and “pasture”+’cropland”,
respectively, in the Mapbiomas map, indicating good agreement. On the
other hand, the Mapbiomas classes “savanna”, “perennial crop”,
“wetland” did not match well with any single DW class or combination
of DW classes. As a result, these Mapbiomas classes were lumped into a
single “other” class. Similarly, the DW probabilities associated with the
“shrub_and_scrub”, “flooded_vegetation”, “snow_and_ice”, and ‘“bare”
were summed and became the probability associated with the “other”
class. A more detailed description of this LULC class harmonization
process is provided in Appendix 1. Finally, we restricted our analyses to
the Brazilian states that have at least 2,000 observations in the ground-
truth Mapbiomas data.

We illustrate how a close examination of high uncertainty pixels can
generate novel insights for LULC map producers by overlaying these
pixels with a high spatial-resolution (i.e., 5 x 5 m pixels) image from the
microsatellite VENuS (a product of the partnership between the Israel
Space Agency and the CNES (French Space Agency). This image was
collected in 2018 (the same year as the LULC data) from a region north
of Manaus (the capital city of Amazonas state in Brazil). More infor-
mation about this satellite and how to access its images are available at
the Theia Land Data Centre (https://www.theia-land.
fr/en/product/venus/#toc0).

2.3. Comparison of the class-conditional vs. conventional conformal
approaches using state-level empirical data

The goal of this analysis is to determine if the class-conditional
conformal approach can indeed generate predictive sets that have the
desired coverage for each class, thus resulting in more uniform uncer-
tainty quantification when compared to the conventional conformal
approach. We randomly sampled 1,000 observations as calibration data
and 500 additional observations as validation data for each state. Based
on this calibration data, we used both conformal approaches to create
predictive sets for the observations in the validation dataset. This
allowed us to compare the empirical coverage of the predictive sets
generated by the conventional vs. class-conditional conformal ap-
proaches. Note that there is no overlap between the validation and
calibration datasets and that both of these datasets arise from the same
focal state.

To ensure that our results are robust, for each state we perform 50
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simulations, where different calibration and validation datasets were
drawn in each simulation. Finally, we set C to 90 % and we only
calculate empirical coverage for LULC classes that had at least 20 ob-
servations in the validation dataset. Requiring at least 20 observation
per class is important to generate robust empirical coverage results,
avoiding coverage from fluctuating considerably due to small sample
sizes.

2.4. Comparison of uncertainty maps calibrated using state-level vs.
national-level data and the class-conditional approach

The goal of this analysis is to determine if, and by how much, un-
certainty maps calibrated using local data are better than maps created
using global data. For the purposes of this analysis, we assume that local
data consist of state-level data, mimicking the situation where a state
agency collects these data to be able to create a customized state-level
uncertainty map. On the other hand, we assume that global uncer-
tainty maps are created using data from across Brazil, mimicking the
situation in which a map producer (e.g., Mapbiomas) creates a national
uncertainty map that is subsequently used by the state agency.

We follow a very similar methodology to the one described in section
2.3 but we only rely on the class-conditional conformal approach. The
state-level calibration data consisted of 1,000 randomly sampled ob-
servations from the focal Brazilian state whereas the national calibration
dataset had 10x more observations, consisting of 10,000 observations
randomly sampled from across Brazil. The validation data consisted of
500 additional randomly selected observations for the focal state. We
used these calibration datasets to create predictive sets for the validation
observations. Note that there is no overlap between the validation and
calibration datasets. Furthermore, to ensure that our results are robust,
for each state we performed 50 simulations, where different calibration
and validation datasets are drawn in each simulation, and we set C to 90
%. Finally, we only calculate empirical coverage for the LULC classes
that had at least 20 observations in the validation dataset to ensure that
the empirical coverage results are robust.

2.5. Determining the spatial extent over which calibration data are still
representative of the area of interest

It is important to note that we define local calibration data as data
from locations close to the study site (i.e., it does not necessarily mean
just data from within the study site). Determining how close these data
need to be from the location of interest will depend on how the
exchangeability assumption is impacted by spatial extent. In other
words, how small does the spatial extent have to be for the observations
to still be representative of the area for which predictions are desired?
Assuming that calibration data are available for a much larger area than
just the study region, we can answer this question by creating buffer
areas of different sizes around the study region to then determine how
empirical coverage for validation observations changes as spatial extent
is increased. As spatial extent is increased around the study region, the
amount of available calibration data increases, decreasing the theoret-
ical variance in empirical coverage (Marques 2023), but data are likely
to be less representative for the study region (potentially resulting in
“biased” predictive sets; sets that have mean empirical coverage
different from the desired level). Understanding this “bias-variance”
tradeoff is critical to determining the ideal spatial extent of the cali-
bration data.

We illustrate the role of spatial extent on empirical coverage by
selecting the state of Mato Grosso do Sul (MS) as our area of interest.
More specifically, we assess how well the class conformal approach
works when based on calibration data gathered from increasingly larger
regions. To create these regions, we gather calibration data over
increasingly larger buffer areas around the MS state (i.e., buffer distance
was increased from 0 to 2400 km in 400 km increments). To quantify
empirical coverage, we create a validation dataset with observations
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that were not part of the calibration data. The validation data contained
50 randomly selected observations of each LULC class within the area of
interest. Finally, we performed this analysis 100 times, each time
randomly selecting different sets of calibration and validation data. We
set the target coverage to 90 % (i.e., C = 90 %). All of our analyses and
figures were done in R (R Core Team 2020).

3. Results

3.1. Comparison of the class-conditional vs. conventional conformal
approaches using state-level empirical data

Recall that we compare the class-conditional conformal approach to
the conventional conformal approach using data from each state. This
comparison reveals that the conventional conformal approach generates
predictive sets that have the desired overall empirical coverage but this
approach often under or over covers certain LULC classes (red boxes in
Fig. 2). On the other hand, we find that the class-conditional conformal
approach ensures more uniform performance of the generated predictive
sets, yielding overall and per class empirical coverage close to 90 %
(black boxes in Fig. 2).

3.2. Comparison of uncertainty maps calibrated using state-level and
national-level data and the class-conditional approach

In this section, we compare the uncertainty maps calibrated using
state-level and national-level data. We find that the proposed approach
to quantify uncertainty using state-level data worked well. More spe-
cifically, the 90 % predictive sets created using state-level data generally
encompassed the true class for the validation observations 90 % of the
time for each class and state (black boxes in Fig. 3). These results were
consistent across all 8 Brazilian states selected for analysis (i.e., the
states with at least 2,000 MapBiomas observations). On the other hand,
uncertainty maps calibrated based on national-level data did not
perform as well, with occasional over or under coverage, regardless if
empirical coverage was assessed for each class or across all classes (red
boxes in Fig. 3). These results confirm that uncertainty maps created
using local calibration data (i.e., state-level data) can result in improved
uncertainty quantification when compared to uncertainty maps created
using global calibration data (i.e., national-level data).

Although it is intuitive that uncertainty maps calibrated with local
data will generate better results than uncertainty maps calibrated to
global data, it is critical to quantify how much better the uncertainty
analysis based on local data is because this will determine if it is
worthwhile to create a local uncertainty map or if one should rely on
readily available uncertainty maps calibrated with global data. Indeed,
while for some states empirical coverage results were not substantially
worse (e.g., Mato Grosso state in Fig. 3), for other states (e.g., Minas
Gerais and Bahia) the performance of the predictive sets deteriorated
substantially. Critically, the uncertainty map calibrated using the
national-level data often resulted in worse uncertainty quantification
despite relying on a dataset that was 10x larger than the state-level data.

3.3. Why are the results worse for the uncertainty map calibrated with
national-level data when compared to the map calibrated with state-level
data?

Recall that the threshold probabilities q;_cx are used to determine
which LULC classes belong to the predictive set. We set C to 90 % and
find that there is considerable variability between states regarding the
threshold probabilities for each LULC class (Fig. 4). For example, the
threshold for the “built” class is equal to 0.69 for Amazonas (AM) but is
equal to 0.05 for MatoGrosso do Sul (MS). These results suggest that the
“built” class is well predicted in Amazonas because 90 % of the areas
identified by MapBiomas as belonging to this class tend to have a high
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Fig. 2. Uncertainty quantification based on the class-conditional conformal approach (black boxes) avoids under or over-covering specific classes, differently from
the conventional conformal approach (red boxes). Each panel shows the results for a distinct Brazilian state. Empirical coverage results are based on 50 validation
datasets per state and we only report results for land use/land cover (LULC) classes that had at least 20 observations in the validation dataset. Horizontal dashed line
shows the desired coverage level (C = 90 %) whereas the vertical dashed line separates the class-specific empirical coverage from the overall empirical coverage

results. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

DW “built” probability (>0.69). On the other hand, 90 % of the areas
identified to be “built” by MapBiomas in MatoGrosso do Sul have a
relatively low DW “built” probability (>0.05). The fact that the same
LULC class is assigned very different threshold probabilities depending
on the state suggests that there is considerable variability between states
that is unaccounted for by the DW algorithm.

Notice that, had we used a global dataset to quantify uncertainty, we
would have a single threshold probability for each LULC class, ignoring
the inherent heterogeneity between states shown in Fig. 4. In short, the
reason that national-level calibration data result in predictive sets with
worse performance is because these data are often not representative of
the focal state regardless of the number of observations, violating the
exchangeability assumption underlying the conformal approach. The
violation of this assumption ultimately results in a deterioration of the
empirical coverage results of the generated predictive sets.

Given these results, a natural follow-up question is how small does
the spatial extent have to be for the observations to still be representa-
tive of the area for which predictions are desired? We illustrate how this
question can be answered by assuming that the area of interest is the
state of Mato Grosso do Sul (MS) and performing a validation exercise to
determine how empirical coverage changes as calibration data are
collected over increasingly larger buffer areas around the area of
interest.

As the spatial extent is increased, the size of the calibration dataset
increases and the theoretical variance of the empirical coverage

decreases. For example, if C = 90 % and sample size of the calibration
data increases from 10, to 100, to 1000, the theoretical variance of the
empirical coverage (determined by Eq. (3) decreases from 0.0075, to
0.0009, to 0.0001, respectively. However, empirical coverage results
can often be increasingly different from the target coverage level as we
include calibration data from locations that are farther and farther away
from the area of interest, as illustrated in Fig. 5. Importantly, the
maximum spatial extent for the calibration data to still be representative
of the area of interest varies according to LULC class. For example,
empirical coverage for trees tend to deteriorate if calibration data are
gathered from regions farther than 400 km from the study region
(Fig. 5¢). On the other hand, empirical coverage levels for grass starts to
differ from the desired coverage of 90 % only if calibration data arise
from areas farther than 1,200 km (Fig. 5b).

Note that the variability in Fig. 5 does not decrease substantially with
sample size as expected based on the theoretical variance derived from
Eq. (3). The reason for this is because Eq. (3) provides the theoretical
distribution of empirical coverage when conformal statistics is used on
new training and calibration datasets with exchangeable observations.
In contrast, the results displayed in Fig. 5 are based on calibration and
validation data that are repeatedly sampled from the same original
dataset and some of these data are clearly not exchangeable (as evi-
denced in Fig. 5 by empirical coverage being substantially different from
the desired coverage).
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Fig. 4. Threshold probabilities §;_cx for each state and LULC class, where C
was set to 90%. Note that there is no information for crops in Amazonas state
(AM) because there was no ground-truth data in this state for this particular
LULC class. The state acronyms RS, RO, PA, MT, MS, MG, BA, and AM stand for
Rio Grande do Sul, Rondonia, Para, Mato Grosso, Mato Grosso do Sul, Minas
Gerais, Bahia, and Amazonas, respectively.

3.4. Illustration of the class-conditional conformal results

Based on the 90 % predictive sets created for the Mapbiomas dataset,
we find that empty predictive sets were generally rare, always being less
than 5 % of the observations for any given state and LULC class. After
removing these empty sets, our results show that the LULC class which
consistently had the largest predictive sets across all states was “crops”,
suggesting that this is the most uncertain LULC class (Table 3).
Furthermore, the predictive sets for “crop” pixels often included “grass”
and “other”, indicating that it is often hard to distinguish between these
LULC classes. These results agree with the very low threshold proba-
bilities for “crops” and “grass” shown in Fig. 4, which suggest that these
classes are hard to classify. Finally, the LULC class with smallest pre-
dictive sets on average was “trees” followed by “built”.

To illustrate the uncertainty maps generated by the class-conditional
conformal approach, we selected areas in three different states (Rio
Grande do Sul [RS], Amazonas [AM], and Mato Grosso [MT]) and show
both the DW LULC classification map (Fig. 6a-c) and the corresponding
uncertainty maps (Fig. 6d-1). Left to right panels in Fig. 6 show a
gradient of increasing overall classification uncertainty. Interestingly,
we find that the uncertainty maps can be relatively different from the
classification maps because uncertainty depends on the individual class
probabilities at each pixel. As a result, there can be considerable spatial
heterogeneity in the amount of uncertainty within areas that seem very
homogeneous based on the DW LULC product. For example, there are
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Table 3

Mean size of the 90% predictive sets for each LULC class and each state based on
the Mapbiomas dataset. Empty predictive sets were excluded from this

large blocks of forest in Rio Grande do Sul (RS) and Mato Gross (MT) that
seem homogeneous in the LULC map (Fig. 6a and 6c) but that none-
theless have varying levels of uncertainty (Fig. 6d and 6f). Similar to the
results in Singh et al. (2024), these uncertainty maps reveal that areas

calculation. . . .

with higher uncertainty tend to be those at the edge of LULC classes. For
State built €rops 8rass other trees water example, there is greater uncertainty at the edge of the areas classified as
AM 1.40 NA 1.91 2.05 1.57 2.17 “built” and “water” in MT (Fig. 6f). This is likely due to the fact that it is
BA 2.00 274 252 251 2.09 1.94 challenging to classify transition regions such as areas with some
MG 2.03 274 2.24 222 201 209 egetation but also exposed soil (e eri-urban areas) and areas with
MS 1.75 2.58 2.21 1.80 1.53 173 veg Xp 8> P w
MT 2.99 274 2.91 1.75 1.85 1.96 trees and water (e.g., varzea ecosystems).
PA 1.57 2.61 2.37 1.94 1.85 2.16 We can also compare uncertainty maps calibrated with national-level
RO 1.80 2.79 2.36 1.77 1.33 1.89 data (Fig. 6d-f) with uncertainty maps based on state-level data (Fig. 6g-
RS 111 1.92 1.41 1.50 1.05 1.07 : : : :

i). This comparison reveals that uncertainty maps based on state-level
Average 1.74 2.59 2.15 1.94 1.66 1.88

data can sometimes be substantially different from uncertainty maps

based on national-level data (e.g., Fig. 6d,e vs. Fig. 6g,h). Importantly, if
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Fig. 6. LULC classification maps from Dynamic World (DW) (panels a-c) together with the corresponding uncertainty maps generated using the class-conditional
conformal approach and C = 90 % (d-1). Each panel shows a selected area within a state (RS, AM, and MT stand for Rio Grande do Sul, Amazonas, and Mato
Grosso states, respectively). Predictive sets with a single LULC class indicate low uncertainty whereas predictive sets with increasing number of classes indicate
increasing uncertainty. Note that empty predictive sets are also indicative of high uncertainty. Uncertainty maps were calibrated using both national-level data
(panels d-f) and state-level data (state data) (panels g-1). The customized local uncertainty maps (panels j-1) illustrate how combining the grass and crops LULC classes
in the predictive sets can result in a substantial reduction in uncertainty. Note that, because there was no calibration data on crops for AM, we set the threshold

probability for this class to 1 (i.e., no predictive set contained the “crops” class).

the end-user of the uncertainty map is not worried about distinguishing
between crops and grass, the user can further customize their uncer-
tainty map so that pixels with predictive sets that contain these two
LULC classes are not deemed to have greater uncertainty than pixels that
only contain one of these LULC classes. This customization can lead to a
substantial reduction in uncertainty (Fig. 6g,i vs. Fig. 6j,1) because these
two LULC classes are often found together in predictive sets. The
resulting customized uncertainty map is useful in highlighting only the
pixels that have more discrepant LULC classes.

Finally, we illustrate below how quantifying uncertainty using our

methodology can also be useful for map producers. Fig. 7a shows the
location of pixels with high uncertainty (i.e., pixels with empty predic-
tive sets; yellow circles) over a background high spatial-resolution (5 x 5
m pixel) true color composite image from the VENuS microsatellite for
an area that is predominantly forested in Amazonas state. One of the
striking features of Fig. 7a is that several of the pixels with empty pre-
dictive sets are systematically arranged along two lines from north to
south. A close-up look (Fig. 7c) reveals that these lines occur over large
blocks of forest. While these areas are correctly classified as belonging to
the “trees” class in the DW map (data not shown), the corresponding
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map depicting the “trees” class probabilities clearly show lower values in
the same north to south line patterns (Fig. 7d). We hypothesize that
there might be artifacts in the underlying remote sensing data used to
create the DW LULC map (or artifacts introduced during the processing
of these images), ultimately resulting in the DW classifier algorithm
predicting uncharacteristically low “trees” class probabilities (i.e.,

10

values below the threshold probability of 0.72 for the class “trees” in
Amazonas state; see Fig. 4 for threshold probability values).

Pixels with empty predictive sets also spatially coincide with part of
the rural road network (Fig. 7b). We believe the main reason for this is
because DW does not contain a road class and the road’s spectral
signature does not match with any other DW class. As a consequence,
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our conformal approach indicates that none of the DW LULC class
probabilities are high enough to justify including the corresponding
LULC class label to the predictive set, ultimately resulting in empty
predictive sets. These results suggest that the inclusion of a rural road
class to the DW LULC product may be beneficial to improve its overall
quality.

4. Discussion

In this article, we have described a modified conformal approach
that ensures more uniform per class uncertainty quantification but that
requires more calibration data when compared to the conventional
conformal approach. Using this method, we have demonstrated how
customized local uncertainty maps can be created without requiring
remote sensing and modeling work. This is possible because steps 1 to 3
of the conformal approach (illustrated in Fig. 1) can be skipped if class
probabilities from a LULC map are readily available and if local cali-
bration data are available. Critically, by relying on local data, we show
that these customized local uncertainty maps can have better perfor-
mance than uncertainty maps calibrated using global data. Finally, we
show the importance of ensuring that local calibration data are repre-
sentative of the study region and demonstrate an approach to determine
if the spatial extent used to collect the local calibration data is
appropriate.

To enable the creation of local uncertainty maps, it will be critical
that large-scale LULC map producers (e.g., annual national LULC maps
produced by Mapbiomas (mapbiomas.org; Souza et al. 2020) and global
LULC maps produced by Buchhorn et al. (2020) and Potapov et al.
(2022)) make available the LULC class probabilities generated by their
classification algorithms (Singh et al. 2024). Another requirement for
the proposed approach is the availability of considerable amount of
high-quality local data. Collecting such a large dataset on the field can
be daunting but other potential sources of local data also exist. For
example, LULC map producers themselves might make their validation
data available (e.g., the MapBiomas validation dataset), allowing users
to just subset data for their area of interest. These local data can also be
derived from visual interpretation of high-resolution satellite or un-
manned aerial vehicle (UAV) imagery, data sources that are becoming
increasingly more common. Alternatively, crowdsourcing can be
another way to obtain abundant local LULC data (Hadi et al. 2022).
Regardless of the source, local calibration data need to be representative
of the landscape of interest to ensure accurate uncertainty quantifica-
tion. Importantly, because local data should include observations that
reflect the inherent variability of each LULC class (e.g., oligotrophic and
eutrophic lakes; abandoned and well-maintained pastures), more
heterogenous LULC classes may require a greater number of observa-
tions. Finally, it is also important for these data to follow a similar
classification scheme as the adopted LULC product to avoid introducing
additional errors due to the need to harmonize different classification
schemes.

The amount of available calibration data is a key factor determining
which conformal approach to use. Although the class-conditional
approach tends to generate more uniform per class uncertainty quanti-
fication, empirical coverage for a given LULC class can vary substan-
tially if there are too few observations in the calibration data for that
specific LULC class. Importantly, in some cases certain LULC classes
might be important but relatively rare in the study area. In this situation,
calibration data from outside the study area might need to be collected.
However, as shown in this study, one has to be careful with the spatial
extent over which the calibration data are collected. If the spatial extent
is too large, the calibration data might cease to be representative of the
study area, potentially resulting in predictive sets with decreased per-
formance. If calibration data over a much larger region are readily
available (as in this study), then one approach to determine the appro-
priate spatial extent of the calibration data is to perform an analysis
similar to the one we used. For example, the user might have determined
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that 200 observations are required for calibration (based on Eq. (3) but
only 100 observations are available in the area of interest. In this case,
one could increase the spatial extent until 200 observations are available
and then check if the resulting predictive sets have approximately the
desired coverage. An important shortcoming of this approach is that it
might require too much data for the area of interest given that some of
these data will need to be set aside for validation purposes. If this is a
concern, one option is to revert back to the conventional conformal
approach, in which case only 50 observations (for example) within the
area of study would be required for validation purposes (instead of 50
observations per LULC class when using the class-conditional conformal
approach). Another option is to compare the threshold probabilities
q1_cx for the calibration data gathered over increasingly larger areas. In
this case, very different threshold values q;_cx would suggest that the
data from the area of interest are not exchangeable with those from the
buffer area. We illustrate these alternative approaches of determining
spatial extent in Appendix 3.

Local uncertainty maps can be used for several purposes. For
example, a user might decide that uncertainty is too high for their area of
interest and that a local LULC map will need to be created (or a different
LULC map be used) instead of relying on the global DW map. Critically,
this decision might be different from the decision taken based solely on
the global accuracy information provided by map producers. Further-
more, if deciding on creating a local LULC map, a user might want to
make sure that areas with high uncertainty are sampled because these
areas are harder to classify (e.g., because they are transition areas or
belong to a class that is not present in the current classification). For
example, we demonstrate that pixels with high uncertainty (i.e., empty
pixels) tend to spatially coincide with the road network in a region in the
Amazonas state (Fig. 7b), suggesting that the inclusion of a “rural road”
LULC class would be important. In addition, when attempting to un-
derstand how LULC influences different ecological and environmental
processes (e.g., wildlife movement and occupancy, water pollution,
deforestation and wildfire risk), users of uncertainty maps may discard
observations associated with pixels for which LULC is too uncertain, this
way ensuring a more robust analysis. On the other hand, when modeling
the drivers of LULC change, users can test the robustness of their analysis
by exploring the effect of different assumptions regarding how pixels
with greater uncertainty are handled. Finally, local uncertainty maps
allow the reporting of the minimum and maximum area that a given
LULC class may cover, thus explicitly acknowledging uncertainty in
LULC classification results. This is likely to be particularly important for
professionals that have to assess temporal trends in LULC within the
areas that they manage (e.g., protected areas or river basins).

Our results also show how uncertainty maps can help improve the
generation of large-scale LULC maps. More specifically, uncertainty
maps can identify LULC classes that are not well represented in the
current LULC classification scheme (e.g., rural roads) and can help
identify potential artifacts in the data or algorithms used to create these
LULC maps (e.g., Fig. 7). In addition, despite the focus on local uncer-
tainty maps, the proposed methodology can also enhance large-scale
uncertainty maps. More specifically, similar to the increasingly com-
mon approach of using separate models to make predictions for different
regions when creating large-scale biomass maps (e.g., Duncanson et al.
2022), one can systematically divide the region of interest into smaller
subregions and quantify uncertainty for each of these subregions just
using local data, where “local” is defined based on the approach that we
have described to characterize the “bias-variance” tradeoff. This
approach to generating large-scale uncertainty maps is likely to yield a
much better characterization of uncertainty when compared to using
conformal approaches that rely on global probability thresholds. Having
said that, we note that an important limitation of this study is that both
conventional and class-conditional conformal approaches described
here assume data are independent, an assumption that is unlikely to hold
due to spatial correlation. Recent research has focused on extending
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these conformal approaches to accommodate for spatial and/or tem-
poral dependencies by assuming local exchangeability instead of relying
on the assumption that all observations are exchangeable (e.g., Barber
et al. 2023; Mao et al. 2022). These newer methodologies will likely be
critical to further improve uncertainty quantification in LULC maps.

Because the creation of LULC maps is not trivial, requiring consid-
erable remote sensing and modeling expertise, there has been a trend of
large-scale (regional, national, and global) LULC products being sys-
tematically produced by specialized groups and organizations, freeing
map users to focus on a wide range of downstream applications. While
these large-scale products may capture well overall LULC patterns, they
might have important shortcomings when used for specific locations.
For this reason, accurately quantifying the uncertainty associated with
these products at the scale in which these products will be used is
paramount. The benefit of creating customized local uncertainty maps is
that, as we have shown, it can often improve the quantification of un-
certainty. Furthermore, the creation of local uncertainty maps by users
opens the opportunity of these maps being customized to their needs.
Ultimately, the approach described in this article paves the way for users
to generate local customized uncertainty maps that are likely to be much
more relevant for their specific uses without requiring extensive remote
sensing and modeling skills.
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