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A B S T R A C T

Land use/land cover (LULC) is one of the most impactful global change phenomenon. As a result, considerable 
effort has been devoted to creating large-scale LULC products from remote sensing data, enabling the scientific 
community to use these products for a wide range of downstream applications. Unfortunately, uncertainty 
associated with these products is seldom quantified because most approaches are too computationally intensive. 
Furthermore, uncertainty maps developed for large regions might fail to perform adequately at the spatial scale 
in which they will be used and might need to be customized to suit the specific applications of end-users.

In this study, we describe the class-conditional conformal statistics method, an approach that quantifies un-
certainty more uniformly for each class but that requires more calibration data than the conventional conformal 
method. Using the class-conditional method, we show that it is possible to create customized local uncertainty 
maps using local calibration data without requiring remote sensing and modeling work and that these local 
uncertainty maps outperform uncertainty maps calibrated based on global data. We use empirical data from 
Brazil (i.e., Dynamic World LULC product and Mapbiomas validation data) to demonstrate this methodology. The 
analysis of these data reveals substantial heterogeneity in observations of the same LULC class between Brazilian 
states, an indication that national-level data are not representative of the focal state, thus explaining why un-
certainty maps calibrated using focal state-level data outperform maps calibrated using national-level data. 
Importantly, we develop straight-forward approaches to determine the spatial extent over which calibration data 
are still representative of the area of interest, ensuring that these data can be used to reliably quantify uncer-
tainty. We illustrate the class-conformal methodology by creating uncertainty maps for a selected number of sites 
in Brazil. Finally, we show how these uncertainty maps can yield valuable insights for LULC map producers.

Our methodology paves the way for users to generate customized local uncertainty maps that are likely to be 
better than uncertainty maps calibrated based on global data while at the same time being more relevant for the 
specific applications of these users. A tutorial is provided to show how this methodology can be implemented 
without requiring remote sensing and modeling expertise to generate uncertainty maps.

1. Introduction

Land-use/land-cover (LULC) change is a pervasive phenomenon 
across the world and is the main driver of biodiversity and ecosystems 
integrity loss (Díaz et al. 2019; Tilman et al. 2017). As a result, regional, 
national, and global LULC maps have become increasingly important 
inputs for a wide range of downstream environmental science and 
ecological applications (Canibe et al. 2022; Jain 2020; Lyons et al. 2018; 

Stehman and Foody 2019). An integral part in the production of these 
LULC maps is the assessment of their accuracy/quality based on inde-
pendent reference data, often in the form of error/confusion matrices 
and the associated user and producer accuracies (Foody 2002, 2012; 
Khatami et al. 2017; Stehman and Foody 2019). These accuracy metrics 
are useful to characterize the overall quality of the LULC map but un-
fortunately they fail to reveal how accuracy varies in space (Brown et al. 
2009; Foody 2002; Stehman and Foody 2019). The spatial distribution 
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of accuracy is important because a LULC map might have great overall 
accuracy but low accuracy over the area of interest of a given map user.

Instead of mapping accuracy, multiple studies have focused on 
mapping uncertainty based on the class probabilities that are outputted 
by classification algorithms. One problem with class probabilities is that 
these probabilities, when generated by common classification algo-
rithms (e.g., random forest and deep learning models), can be poorly 
calibrated (i.e., the estimated probabilities overestimate the likelihood 
that those class labels are actually correct) (Guo et al. 2017; Mukhoti 
et al. 2020; Niculescu-Mizil and Caruana 2005). Indeed, a classifier may 
be very certain (i.e., outputting a class probability close to 1 for a given 
class) despite being wrong and thus having low accuracy (Stehman and 
Foody 2019). Sampling uncertainty is another type of uncertainty and 
refers to the variability in predictions that arise due to the use of 
different datasets to train and tune the hyperparameters of the classifi-
cation model. Sampling uncertainty is often quantified by bootstrapping 
the data used to train the model (Cheng et al. 2021; Hsiao and Cheng 
2016; Lyons et al. 2018; Weber and Langille 2007) but we note that, in 
the case of stochastic model fitting algorithms, the uncertainty quanti-
fied by bootstrapping will include both sampling uncertainty and the 
variability inherent to these model fitting algorithms. Unfortunately, 
bootstrapping is often too computationally intensive to be implemented 
for large-scale LULC maps.

Conformal statistics has recently been proposed as a powerful 
approach to quantify uncertainty in LULC maps because it is simple to 
implement, it is not computationally intensive, and it works with any 
algorithm that outputs class probabilities (Valle et al. 2023). Indeed, the 
only required assumption is that observations are exchangeable (or the 
slightly stricter assumption that the observations are independent and 
identically distributed), a common assumption across the great majority 
of the machine learning methods (Shafer and Vovk 2008). Importantly, 
this approach to uncertainty combines class probabilities with infor-
mation regarding the true LULC classes, thus combining elements of 
accuracy assessment and more standard uncertainty analysis based on 
class probabilities.

In this article, we investigate if conformal statistics can be used as an 
approach to create local uncertainty maps that outperform uncertainty 
maps calibrate with global data without requiring additional remote 
sensing and modeling work. By requiring less technical expertise and 
time, such an approach can allow the creation of local uncertainty maps 
by end-users, potentially leading to more reliable results and to 
customized uncertainty maps that are better tailored to the specific 
needs of each application. We start by describing the conformal statistics 
approach adopted in this article and how it can be used to generate 
uncertainty maps using local calibration data. Then, we use empirical 
data from Brazil (i.e., Dynamic World [DW] LULC product and Map-
biomas validation data) to demonstrate the benefits of this conformal 
approach. Finally, we illustrate the resulting uncertainty maps for a 
selected number of sites in Brazil and show how these uncertainty maps 
can also generate valuable insights for LULC map producers. We end this 
article by discussing remaining challenges and future research 
directions.

2. Methodology

2.1. Quantifying uncertainty using the class-conditional conformal 
approach

As introduced by Valle et al. (2023) in the context of LULC classifi-
cation, conformal statistics is focused on generating predictive sets with 
a desired coverage C. A predictive set is a collection of LULC classes for a 
given pixel. For example, if there are four LULC classes in the landscape 
(e.g., “forest”, “water”, “urban”, and “agriculture”), the predictive set for 
a given pixel may consist of only a subset of these LULC classes (e.g., 
“forest” and “agriculture”). We refer to the frequency with which these 
predictive sets contain the true classes as empirical coverage. As a result, 

if the desired coverage C is equal to 95 %, then valid predictive sets 
should have empirical coverage close to 95 % (i.e., predictive sets should 
contain the true classes 95 % of the times for new pixels). In other words, 
the generated predictive sets need to satisfy the following relationship: 

p)Yn→1 ↑ Γn→1ωC
[
↓ C (1) 

where p() stands for probability,Yn→1 is the class label for a new pixel, 
and Γn→1ωC is the corresponding predictive set with coverage C. The size 
of the predictive sets can be used as a measure of LULC classification 
uncertainty. For example, a predictive set that contains only one class 
label (e.g., “forest”) indicates smaller classification uncertainty than a 
predictive set that contains multiple class labels (e.g., “forest”, “agri-
culture”, and “water”). However, note that predictive sets can also be 
empty, a situation that represents substantial classification uncertainty 
as none of the LULC class labels are probable. Importantly, conformal 
statistics does not rely on asymptotics, makes no assumption about the 
data generating mechanism (except that data are exchangeable), and 
focuses on uncertainty in class predictions rather than sampling 
uncertainty.

An undesirable feature of the conformal approach described in Valle 
et al. (2023) (onwards simply conventional conformal approach), 
however, is that the generated predictive sets might overcover certain 
classes while undercovering other classes. For example, if the desired 
coverage C is set to 95 %, it is possible that the empirical coverage of the 
predictive sets is higher for forested pixels and lower for agriculture 
pixels even if it is close to 95 % across all observations. For example, it 
could be that the predictive sets for forested pixels always contain the 
forest class label, resulting in empirical coverage of 100 % (i.e., over- 
coverage relative to the target C ↔ 95 %). On the other hand, if the 
predictive sets for agriculture pixels only contain the agriculture class 
label half the time, then empirical coverage would be only 50 % (under- 
coverage relative to the target C ↔ 95 %). The conformal approach 
would ideally avoid this problem by ensuring that the empirical 
coverage is at least C for each LULC class. This requirement can be 
described as: 

p)Yn→1 ↑ Γn→1ωC↗Yn→1 ↔ k[ ↓ C (2) 

where k is the class label. Eq. (2) states that for all pixels of class k, the 
corresponding predictive sets should contain class k with probability 
equal to or greater than C.

In this article, we introduce the class-conditional (or label- 
conditional) conformal approach, a method first proposed by Vovk 
(2012) that satisfies the requirement that the generated predictive sets 
have empirical coverage equal to or greater than C for each class. 
Because both the conventional and the class-conditional conformal ap-
proaches are split-conformal approaches, we start by describing the 
general procedure for split-conformal approaches. We then describe 
how local uncertainty maps can be created without additional remote 
sensing and modeling work to finally describe how the implementation 
of the class-conditional approach differs from that of the conventional 
conformal approach.

As illustrated in Fig. 1, the first step in the split-conformal approach 
consists of dividing the ground-truth data into a training dataset and a 
calibration dataset and the second step consists of fitting the classifica-
tion model to the training data. Then, in the third step, this classification 
model is used to predict the probability of each LULC class for the 
calibration data and the remaining pixels in the study area. In the fourth 
step, the LULC probabilities and the true LULC for the observations in 
the calibration dataset are used to determine the criterion that will 
enable the generation of predictive sets with the desired coverage C. 
Finally, in the fifth step, LULC probabilities calculated by the classifi-
cation model in step 3 and the criterion derived in step 4 are used to 
create predictive sets for all pixels in the study area.

For the purposes of our goal of creating local uncertainty maps 
without modeling and remote sensing work, we assume that steps one 
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through three (see Fig. 1) have already been done. In other words, we 
assume that a classification model has already been fitted by large-scale 
LULC map producers and that maps containing the probability associ-
ated with LULC class k for each pixel i (]pik) are available for the study 
region (e.g., as in Google’s Dynamic World (DW) product; Brown et al. 
2022; Venter et al. 2022). We further assume that we have local and 
independent ground-truth data in which the true LULC class is known 
for a set of pixels in the study region. This dataset will be used as the 
calibration dataset. Based on these two inputs (i.e., maps with the 
probabilities of each LULC class and a local calibration dataset), we 
show below how the class-conditional conformal approach can be used 
to create local uncertainty maps without requiring remote sensing and 
modeling work.

Let the score si be the class probability associated with the true class 
ytrue

i (i.e., si ↔ ]piωytrue
i

) for each pixel i in this calibration dataset. For 

example, as illustrated in the first line of Table 1, say that the class 
probabilities for pixel i are equal to 0.8, 0.1, and 0.1 for LULC classes 1, 
2, and 3, respectively. If this pixel is known to belong to LULC class 1, 
then the corresponding score will be the probability associated with 
LULC class 1 (i.e., si ↔ 0ε8). Therefore, assuming that the local cali-
bration dataset contains n observations, we can calculate the score for 
each observation in this dataset (i.e., s1ω⋯ωsn) as exemplified in Table 1. 
The main difference between the class-conditional and the conventional 
conformal approaches is that, in the class-conditional conformal 
approach, the criterion used to generate predictive sets (step 4 in Fig. 1) 
is a quantile for each LULC class k, ]q1↘Cωk, instead of a single quantile 
over all LULC classes, ]q1↘C. For example, for the class-conditional 
conformal approach, if the desired coverage C is set to 90 %, then we 
need to calculate the 10 % quantile for the scores associated with each 
class. In Table 1, we assume that the quantiles calculated based on the 
subset of scores for each class are equal to 0.4, 0.8, and 0.1 for classes 1, 
2, and 3, respectively (i.e., ]q0ε1ω1 ↔ 0ε4ω ]q0ε1ω2 ↔ 0ε8ω ]q0ε1ω3 ↔ 0ε1).

To create uncertainty maps, we need to generate predictive sets for 
each pixel in the image (step 5 in Fig. 1). We generate the predictive set 
for pixel i by including class k in the predictive set if the probability for 
this class is greater than ]q1↘Cωk(i.e., if ]pik ϑ ]q1↘Cωk). In other words, 
]q1↘Cωk is a probability threshold because it determines if class k has 
probability high enough to be included in the predictive set. For 
example, applying the calculated quantile for class 1 given in the last 
line of Table 1, we find that class 1 is part of the predictive set for pixels 
1, 4, and 8 (Table 2). On the other hand, when using the quantile for 
class 2 given in Table 1, we find that class 2 is only part of the predictive 
set for pixel 7 (Table 2). This information can be summarized by 
determining the size of each predictive set. For example, Table 2 reveals 
that some pixels in our uncertainty map have just a single class in their 

Fig. 1. General steps (numbered 1 through 5) for the split-conformal approach used to generate predictive sets and quantify uncertainty in LULC classification.

Table 1 
Example of the calculation of the scores for hypothetical observations in the 
calibration dataset. Cells with bold numbers correspond to the probabilities 
associated with the true classes.

Observations True 
class 
ytrue

i

Class probabilities ]pik Scores 
si for 
class 1

Scores 
si for 
class 2

Scores 
si for 
class 31 2 3

1 1 0.80 0.10 0.10 0.80 ​ ​
2 1 0.75 0.15 0.10 0.75 ​ ​
3 2 0.00 0.85 0.15 ​ 0.85 ​
4 2 0.05 0.95 0.00 ​ 0.95 ​
5 3 0.10 0.60 0.30 ​ ​ 0.30
6 1 0.25 0.60 0.15 0.25 ​ ​
… … … … … … … …
Calculated quantiles (]q0ε1ωk) 0.40 0.80 0.10
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predictive sets (e.g., pixels 2, 3, 5, 7, and 8), indicating low classification 
uncertainty. On the other hand, some pixels have 2 classes in their 
predictive sets (e.g., pixels 1 and 4), indicating larger classification 
uncertainty, and one pixel has an empty predictive set (i.e., pixel 6), 
indicating substantial uncertainty.

How does one determine the amount of calibration data that is 
required? The following expression, derived by Marques (2023), de-

scribes the distribution of empirical coverage ]C≃nωC⇐
as a function of the 

desired coverage C and size of the calibration dataset n: 

]C≃nωC⇐
⇒ Beta≃⌈C≃n → 1⇐⌉ω ⌊≃1 ↘ C⇐≃n → 1⇐⌋ ⇐ (3) 

In this expression, the symbols ⌈ ⌉ and ⌊ ⌋ represent the ceiling and 
floor functions and Beta() refers to the Beta distribution. This expression 
reveals that empirical coverage is, on average, approximately equal to 
the desired coverage C (i.e., the mean of the beta distribution is 

E
⌊
]C≃nωC⇐ ⌋

↔ ⌈C≃n→1⇐⌉
⌈C≃n→1⇐⌉→⌊≃1↘C⇐≃n→1⇐⌋ ⇑ C). Furthermore, the variance of the 

empirical coverage is given by Var
⌊
]C≃nωC⇐ ⌋

↔
⌈C≃n→1⇐⌉⌊≃1↘C⇐≃n→1⇐⌋

≃⌈C≃n→1⇐⌉→⌊≃1↘C⇐≃n→1⇐⌋ ⇐2≃⌈C≃n→1⇐⌉→⌊≃1↘C⇐≃n→1⇐⌋→1⇐
⇑ C≃1↘C⇐

≃n→2⇐ , revealing that, as 

expected, it decreases as the size of the calibration data n increases. Eq. 
(3) is useful because it enables one to calculate the required calibration 
data sample size n once the desired coverage C and the range of 

acceptable values of ]C≃nωC⇐
have been defined. This calculation is 

straight-forward to implement in any software that has functions to 
evaluate the cumulative density function (CDF) of a beta distribution (e. 
g., R; R Core Team 2020). For example, if we want empirical coverage to 
be on average equal to 95 % and to be between 93 % and 97 % with 
probability of 0ε99, then the number of observations n in the calibration 
dataset has to be equal to, or greater than, 785 pixels.

Note that, in the class conditional method, the class-specific quantile 
for LULC class k is calculated based on the pixels in the calibration data 
that belong to class k (e.g., see Table 1). On the other hand, the con-
ventional conformal approach calculates a single quantile based on all 
the calibration data. This is an important distinction because it reveals 
that the overall amount of calibration data required by the class con-
ditional method is much larger than that required for the conventional 
conformal approach. For example, based on our results derived from Eq. 
(3), we would need 785 pixels for each LULC class k if we were using the 
class-conditional conformal approach whereas we would only need 785 
pixels overall if we were using the conventional conformal approach. To 
help readers implement the class-conditional conformal methodology, 
we created an R tutorial that provides all the relevant code and explains 
each of the steps required to run this procedure and to calculate the 
required amount of calibration data (Appendix 2).

2.2. Empirical data

The creation of uncertainty maps without requiring remote sensing 
or modeling work is based on two main inputs: a) LULC class proba-
bilities for all pixels in the area of interest; and b) independent ground- 
truth data to be used as calibration data. We rely on the 2018 LULC 
product provided by Google’s Dynamic World (DW) product (Brown 
et al. 2022; Venter et al. 2022) because it is one of the few large-scale 
LULC maps that provide class-specific probabilities. In relation to 
ground-truth data, we rely on the data used by Mapbiomas to validate 
their annual LULC classification products for Brazil (freely available at 
https://mapbiomas.org/pontos-de-validacao). These data were created 
by visually inspecting satellite imagery for each year between 1985 and 
2018. Pixels were selected for inspection based on stratified random 
sampling and each pixel was evaluated by 3 independent analysts 
(Souza et al. 2020). For our purposes, we only used pixels from 2018 for 
which the 3 analysts agreed on the LULC class (representing about 71 % 
of the original data) to avoid introducing additional uncertainty asso-
ciated with inconsistent reference class labels.

One of the challenges associated with using the DW product together 
with the Mapbiomas dataset consists of the fact that these products rely 
on different LULC classification schemes. To harmonize the LULC classes 
in these products, we performed an exploratory analysis in which we 
assessed the DW probabilities for the different Mapbiomas classes. This 
revealed that the DW classes “water”, “built”, “crops”, “trees” and 
“grass”, consistently had high probabilities in areas classified as “water”, 
“urban”, “temporary crop”, “forest”, and “pasture”→”cropland”, 
respectively, in the Mapbiomas map, indicating good agreement. On the 
other hand, the Mapbiomas classes “savanna”, “perennial crop”, 
“wetland” did not match well with any single DW class or combination 
of DW classes. As a result, these Mapbiomas classes were lumped into a 
single “other” class. Similarly, the DW probabilities associated with the 
“shrub_and_scrub”, “flooded_vegetation”, “snow_and_ice”, and “bare” 
were summed and became the probability associated with the “other” 
class. A more detailed description of this LULC class harmonization 
process is provided in Appendix 1. Finally, we restricted our analyses to 
the Brazilian states that have at least 2,000 observations in the ground- 
truth Mapbiomas data.

We illustrate how a close examination of high uncertainty pixels can 
generate novel insights for LULC map producers by overlaying these 
pixels with a high spatial-resolution (i.e., 5 x 5 m pixels) image from the 
microsatellite VENμS (a product of the partnership between the Israel 
Space Agency and the CNES (French Space Agency). This image was 
collected in 2018 (the same year as the LULC data) from a region north 
of Manaus (the capital city of Amazonas state in Brazil). More infor-
mation about this satellite and how to access its images are available at 
the Theia Land Data Centre (https://www.theia-land. 
fr/en/product/venus/#toc0).

2.3. Comparison of the class-conditional vs. conventional conformal 
approaches using state-level empirical data

The goal of this analysis is to determine if the class-conditional 
conformal approach can indeed generate predictive sets that have the 
desired coverage for each class, thus resulting in more uniform uncer-
tainty quantification when compared to the conventional conformal 
approach. We randomly sampled 1,000 observations as calibration data 
and 500 additional observations as validation data for each state. Based 
on this calibration data, we used both conformal approaches to create 
predictive sets for the observations in the validation dataset. This 
allowed us to compare the empirical coverage of the predictive sets 
generated by the conventional vs. class-conditional conformal ap-
proaches. Note that there is no overlap between the validation and 
calibration datasets and that both of these datasets arise from the same 
focal state.

To ensure that our results are robust, for each state we perform 50 

Table 2 
Example of generating 90 % predictive sets for different pixels in the study re-
gion. We assume that the quantiles for classes 1, 2, and 3 were calculated to be 
]q0ε1ω1 ↔ 0ε4, ]q0ε1ω2 ↔ 0ε8, and ]q0ε1ω3 ↔ 0ε1, respectively, based on the local 
calibration data. Cells with bold numbers correspond to outcomes that satisfy 
the inequality ]pik ↓ ]q0ε1ωk.

Pixel Class probabilities ]pik 90 % 
Predictive 
sets

Size of 90 % 
Predictive sets

1 
(]q0ε1ω1 ↔
0ε4)

2 
(]q0ε1ω2 ↔
0ε8)

3 
(]q0ε1ω3 ↔
0ε1)

1 0.85 0.04 0.11 {1,3} 2
2 0.25 0.25 0.50 {3} 1
3 0.10 0.10 0.80 {3} 1
4 0.75 0.00 0.25 {1,3} 2
5 0.20 0.60 0.20 {3} 1
6 0.20 0.75 0.05 {} 0
7 0.15 0.9 0.05 {2} 1
8 0.50 0.45 0.05 {1} 1
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simulations, where different calibration and validation datasets were 
drawn in each simulation. Finally, we set C to 90 % and we only 
calculate empirical coverage for LULC classes that had at least 20 ob-
servations in the validation dataset. Requiring at least 20 observation 
per class is important to generate robust empirical coverage results, 
avoiding coverage from fluctuating considerably due to small sample 
sizes.

2.4. Comparison of uncertainty maps calibrated using state-level vs. 
national-level data and the class-conditional approach

The goal of this analysis is to determine if, and by how much, un-
certainty maps calibrated using local data are better than maps created 
using global data. For the purposes of this analysis, we assume that local 
data consist of state-level data, mimicking the situation where a state 
agency collects these data to be able to create a customized state-level 
uncertainty map. On the other hand, we assume that global uncer-
tainty maps are created using data from across Brazil, mimicking the 
situation in which a map producer (e.g., Mapbiomas) creates a national 
uncertainty map that is subsequently used by the state agency.

We follow a very similar methodology to the one described in section 
2.3 but we only rely on the class-conditional conformal approach. The 
state-level calibration data consisted of 1,000 randomly sampled ob-
servations from the focal Brazilian state whereas the national calibration 
dataset had 10x more observations, consisting of 10,000 observations 
randomly sampled from across Brazil. The validation data consisted of 
500 additional randomly selected observations for the focal state. We 
used these calibration datasets to create predictive sets for the validation 
observations. Note that there is no overlap between the validation and 
calibration datasets. Furthermore, to ensure that our results are robust, 
for each state we performed 50 simulations, where different calibration 
and validation datasets are drawn in each simulation, and we set C to 90 
%. Finally, we only calculate empirical coverage for the LULC classes 
that had at least 20 observations in the validation dataset to ensure that 
the empirical coverage results are robust.

2.5. Determining the spatial extent over which calibration data are still 
representative of the area of interest

It is important to note that we define local calibration data as data 
from locations close to the study site (i.e., it does not necessarily mean 
just data from within the study site). Determining how close these data 
need to be from the location of interest will depend on how the 
exchangeability assumption is impacted by spatial extent. In other 
words, how small does the spatial extent have to be for the observations 
to still be representative of the area for which predictions are desired? 
Assuming that calibration data are available for a much larger area than 
just the study region, we can answer this question by creating buffer 
areas of different sizes around the study region to then determine how 
empirical coverage for validation observations changes as spatial extent 
is increased. As spatial extent is increased around the study region, the 
amount of available calibration data increases, decreasing the theoret-
ical variance in empirical coverage (Marques 2023), but data are likely 
to be less representative for the study region (potentially resulting in 
“biased” predictive sets; sets that have mean empirical coverage 
different from the desired level). Understanding this “bias-variance” 
tradeoff is critical to determining the ideal spatial extent of the cali-
bration data.

We illustrate the role of spatial extent on empirical coverage by 
selecting the state of Mato Grosso do Sul (MS) as our area of interest. 
More specifically, we assess how well the class conformal approach 
works when based on calibration data gathered from increasingly larger 
regions. To create these regions, we gather calibration data over 
increasingly larger buffer areas around the MS state (i.e., buffer distance 
was increased from 0 to 2400 km in 400 km increments). To quantify 
empirical coverage, we create a validation dataset with observations 

that were not part of the calibration data. The validation data contained 
50 randomly selected observations of each LULC class within the area of 
interest. Finally, we performed this analysis 100 times, each time 
randomly selecting different sets of calibration and validation data. We 
set the target coverage to 90 % (i.e., C ↔ 90 %). All of our analyses and 
figures were done in R (R Core Team 2020).

3. Results

3.1. Comparison of the class-conditional vs. conventional conformal 
approaches using state-level empirical data

Recall that we compare the class-conditional conformal approach to 
the conventional conformal approach using data from each state. This 
comparison reveals that the conventional conformal approach generates 
predictive sets that have the desired overall empirical coverage but this 
approach often under or over covers certain LULC classes (red boxes in 
Fig. 2). On the other hand, we find that the class-conditional conformal 
approach ensures more uniform performance of the generated predictive 
sets, yielding overall and per class empirical coverage close to 90 % 
(black boxes in Fig. 2).

3.2. Comparison of uncertainty maps calibrated using state-level and 
national-level data and the class-conditional approach

In this section, we compare the uncertainty maps calibrated using 
state-level and national-level data. We find that the proposed approach 
to quantify uncertainty using state-level data worked well. More spe-
cifically, the 90 % predictive sets created using state-level data generally 
encompassed the true class for the validation observations 90 % of the 
time for each class and state (black boxes in Fig. 3). These results were 
consistent across all 8 Brazilian states selected for analysis (i.e., the 
states with at least 2,000 MapBiomas observations). On the other hand, 
uncertainty maps calibrated based on national-level data did not 
perform as well, with occasional over or under coverage, regardless if 
empirical coverage was assessed for each class or across all classes (red 
boxes in Fig. 3). These results confirm that uncertainty maps created 
using local calibration data (i.e., state-level data) can result in improved 
uncertainty quantification when compared to uncertainty maps created 
using global calibration data (i.e., national-level data).

Although it is intuitive that uncertainty maps calibrated with local 
data will generate better results than uncertainty maps calibrated to 
global data, it is critical to quantify how much better the uncertainty 
analysis based on local data is because this will determine if it is 
worthwhile to create a local uncertainty map or if one should rely on 
readily available uncertainty maps calibrated with global data. Indeed, 
while for some states empirical coverage results were not substantially 
worse (e.g., Mato Grosso state in Fig. 3), for other states (e.g., Minas 
Gerais and Bahia) the performance of the predictive sets deteriorated 
substantially. Critically, the uncertainty map calibrated using the 
national-level data often resulted in worse uncertainty quantification 
despite relying on a dataset that was 10x larger than the state-level data.

3.3. Why are the results worse for the uncertainty map calibrated with 
national-level data when compared to the map calibrated with state-level 
data?

Recall that the threshold probabilities ]q1↘Cωk are used to determine 
which LULC classes belong to the predictive set. We set C to 90 % and 
find that there is considerable variability between states regarding the 
threshold probabilities for each LULC class (Fig. 4). For example, the 
threshold for the “built” class is equal to 0.69 for Amazonas (AM) but is 
equal to 0.05 for MatoGrosso do Sul (MS). These results suggest that the 
“built” class is well predicted in Amazonas because 90 % of the areas 
identified by MapBiomas as belonging to this class tend to have a high 
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DW “built” probability (ϑ0.69). On the other hand, 90 % of the areas 
identified to be “built” by MapBiomas in MatoGrosso do Sul have a 
relatively low DW “built” probability (ϑ0.05). The fact that the same 
LULC class is assigned very different threshold probabilities depending 
on the state suggests that there is considerable variability between states 
that is unaccounted for by the DW algorithm.

Notice that, had we used a global dataset to quantify uncertainty, we 
would have a single threshold probability for each LULC class, ignoring 
the inherent heterogeneity between states shown in Fig. 4. In short, the 
reason that national-level calibration data result in predictive sets with 
worse performance is because these data are often not representative of 
the focal state regardless of the number of observations, violating the 
exchangeability assumption underlying the conformal approach. The 
violation of this assumption ultimately results in a deterioration of the 
empirical coverage results of the generated predictive sets.

Given these results, a natural follow-up question is how small does 
the spatial extent have to be for the observations to still be representa-
tive of the area for which predictions are desired? We illustrate how this 
question can be answered by assuming that the area of interest is the 
state of Mato Grosso do Sul (MS) and performing a validation exercise to 
determine how empirical coverage changes as calibration data are 
collected over increasingly larger buffer areas around the area of 
interest.

As the spatial extent is increased, the size of the calibration dataset 
increases and the theoretical variance of the empirical coverage 

decreases. For example, if C ↔ 90 % and sample size of the calibration 
data increases from 10, to 100, to 1000, the theoretical variance of the 
empirical coverage (determined by Eq. (3) decreases from 0.0075, to 
0.0009, to 0.0001, respectively. However, empirical coverage results 
can often be increasingly different from the target coverage level as we 
include calibration data from locations that are farther and farther away 
from the area of interest, as illustrated in Fig. 5. Importantly, the 
maximum spatial extent for the calibration data to still be representative 
of the area of interest varies according to LULC class. For example, 
empirical coverage for trees tend to deteriorate if calibration data are 
gathered from regions farther than 400 km from the study region 
(Fig. 5c). On the other hand, empirical coverage levels for grass starts to 
differ from the desired coverage of 90 % only if calibration data arise 
from areas farther than 1,200 km (Fig. 5b).

Note that the variability in Fig. 5 does not decrease substantially with 
sample size as expected based on the theoretical variance derived from 
Eq. (3). The reason for this is because Eq. (3) provides the theoretical 
distribution of empirical coverage when conformal statistics is used on 
new training and calibration datasets with exchangeable observations. 
In contrast, the results displayed in Fig. 5 are based on calibration and 
validation data that are repeatedly sampled from the same original 
dataset and some of these data are clearly not exchangeable (as evi-
denced in Fig. 5 by empirical coverage being substantially different from 
the desired coverage).

Fig. 2. Uncertainty quantification based on the class-conditional conformal approach (black boxes) avoids under or over-covering specific classes, differently from 
the conventional conformal approach (red boxes). Each panel shows the results for a distinct Brazilian state. Empirical coverage results are based on 50 validation 
datasets per state and we only report results for land use/land cover (LULC) classes that had at least 20 observations in the validation dataset. Horizontal dashed line 
shows the desired coverage level (C ↔ 90 %) whereas the vertical dashed line separates the class-specific empirical coverage from the overall empirical coverage 
results. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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3.4. Illustration of the class-conditional conformal results

Based on the 90 % predictive sets created for the Mapbiomas dataset, 
we find that empty predictive sets were generally rare, always being less 
than 5 % of the observations for any given state and LULC class. After 
removing these empty sets, our results show that the LULC class which 
consistently had the largest predictive sets across all states was “crops”, 
suggesting that this is the most uncertain LULC class (Table 3). 
Furthermore, the predictive sets for “crop” pixels often included “grass” 
and “other”, indicating that it is often hard to distinguish between these 
LULC classes. These results agree with the very low threshold proba-
bilities for “crops” and “grass” shown in Fig. 4, which suggest that these 
classes are hard to classify. Finally, the LULC class with smallest pre-
dictive sets on average was “trees” followed by “built”.

To illustrate the uncertainty maps generated by the class-conditional 
conformal approach, we selected areas in three different states (Rio 
Grande do Sul [RS], Amazonas [AM], and Mato Grosso [MT]) and show 
both the DW LULC classification map (Fig. 6a-c) and the corresponding 
uncertainty maps (Fig. 6d-l). Left to right panels in Fig. 6 show a 
gradient of increasing overall classification uncertainty. Interestingly, 
we find that the uncertainty maps can be relatively different from the 
classification maps because uncertainty depends on the individual class 
probabilities at each pixel. As a result, there can be considerable spatial 
heterogeneity in the amount of uncertainty within areas that seem very 
homogeneous based on the DW LULC product. For example, there are 

Fig. 3. Uncertainty maps calibrated using state-level data (black boxes) outperform uncertainty maps calibrated using national-level data (red boxes). Each panel 
shows the results for a given focal state. Empirical coverage results are based on 50 validation datasets per state and we only report results for LULC classes that had 
at least 20 observations in the validation dataset. Horizontal dashed line shows the desired coverage level (C ↔ 90 %) whereas the vertical dashed line separates the 
class-specific from the overall empirical coverage results. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.)

Fig. 4. Threshold probabilities ]q1↘Cωk for each state and LULC class, where C 
was set to 90%. Note that there is no information for crops in Amazonas state 
(AM) because there was no ground-truth data in this state for this particular 
LULC class. The state acronyms RS, RO, PA, MT, MS, MG, BA, and AM stand for 
Rio Grande do Sul, Rondonia, Para, Mato Grosso, Mato Grosso do Sul, Minas 
Gerais, Bahia, and Amazonas, respectively.
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large blocks of forest in Rio Grande do Sul (RS) and Mato Gross (MT) that 
seem homogeneous in the LULC map (Fig. 6a and 6c) but that none-
theless have varying levels of uncertainty (Fig. 6d and 6f). Similar to the 
results in Singh et al. (2024), these uncertainty maps reveal that areas 
with higher uncertainty tend to be those at the edge of LULC classes. For 
example, there is greater uncertainty at the edge of the areas classified as 
“built” and “water” in MT (Fig. 6f). This is likely due to the fact that it is 
challenging to classify transition regions such as areas with some 
vegetation but also exposed soil (e.g., peri-urban areas) and areas with 
trees and water (e.g., varzea ecosystems).

We can also compare uncertainty maps calibrated with national-level 
data (Fig. 6d-f) with uncertainty maps based on state-level data (Fig. 6g- 
i). This comparison reveals that uncertainty maps based on state-level 
data can sometimes be substantially different from uncertainty maps 
based on national-level data (e.g., Fig. 6d,e vs. Fig. 6g,h). Importantly, if 

Fig. 5. Empirical coverage results for each LULC class for increasingly larger calibration datasets gathered over increasingly larger regions (defined based on the 
buffer distance used to create these regions) around the area of interest (i.e., the state of Mato Grosso do Sul [MS]). These results are based on 50 validation ob-
servations per LULC class in MS. Note that the “built” class was not included here and some combinations of buffer distance and size of calibration data are missing 
because there were not enough observations in the Mapbiomas dataset. Numbers at the bottom of each panel refer to the sample size of the calibration data.

Table 3 
Mean size of the 90% predictive sets for each LULC class and each state based on 
the Mapbiomas dataset. Empty predictive sets were excluded from this 
calculation.

State built crops grass other trees water

AM 1.40 NA 1.91 2.05 1.57 2.17
BA 2.00 2.74 2.52 2.51 2.09 1.94
MG 2.03 2.74 2.24 2.22 2.01 2.09
MS 1.75 2.58 2.21 1.80 1.53 1.73
MT 2.29 2.74 2.21 1.75 1.85 1.96
PA 1.57 2.61 2.37 1.94 1.85 2.16
RO 1.80 2.79 2.36 1.77 1.33 1.89
RS 1.11 1.92 1.41 1.50 1.05 1.07
Average 1.74 2.59 2.15 1.94 1.66 1.88
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the end-user of the uncertainty map is not worried about distinguishing 
between crops and grass, the user can further customize their uncer-
tainty map so that pixels with predictive sets that contain these two 
LULC classes are not deemed to have greater uncertainty than pixels that 
only contain one of these LULC classes. This customization can lead to a 
substantial reduction in uncertainty (Fig. 6g,i vs. Fig. 6j,l) because these 
two LULC classes are often found together in predictive sets. The 
resulting customized uncertainty map is useful in highlighting only the 
pixels that have more discrepant LULC classes.

Finally, we illustrate below how quantifying uncertainty using our 

methodology can also be useful for map producers. Fig. 7a shows the 
location of pixels with high uncertainty (i.e., pixels with empty predic-
tive sets; yellow circles) over a background high spatial-resolution (5 x 5 
m pixel) true color composite image from the VENμS microsatellite for 
an area that is predominantly forested in Amazonas state. One of the 
striking features of Fig. 7a is that several of the pixels with empty pre-
dictive sets are systematically arranged along two lines from north to 
south. A close-up look (Fig. 7c) reveals that these lines occur over large 
blocks of forest. While these areas are correctly classified as belonging to 
the “trees” class in the DW map (data not shown), the corresponding 

Fig. 6. LULC classification maps from Dynamic World (DW) (panels a-c) together with the corresponding uncertainty maps generated using the class-conditional 
conformal approach and C ↔ 90 % (d-l). Each panel shows a selected area within a state (RS, AM, and MT stand for Rio Grande do Sul, Amazonas, and Mato 
Grosso states, respectively). Predictive sets with a single LULC class indicate low uncertainty whereas predictive sets with increasing number of classes indicate 
increasing uncertainty. Note that empty predictive sets are also indicative of high uncertainty. Uncertainty maps were calibrated using both national-level data 
(panels d-f) and state-level data (state data) (panels g-l). The customized local uncertainty maps (panels j-l) illustrate how combining the grass and crops LULC classes 
in the predictive sets can result in a substantial reduction in uncertainty. Note that, because there was no calibration data on crops for AM, we set the threshold 
probability for this class to 1 (i.e., no predictive set contained the “crops” class).
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map depicting the “trees” class probabilities clearly show lower values in 
the same north to south line patterns (Fig. 7d). We hypothesize that 
there might be artifacts in the underlying remote sensing data used to 
create the DW LULC map (or artifacts introduced during the processing 
of these images), ultimately resulting in the DW classifier algorithm 
predicting uncharacteristically low “trees” class probabilities (i.e., 

values below the threshold probability of 0.72 for the class “trees” in 
Amazonas state; see Fig. 4 for threshold probability values).

Pixels with empty predictive sets also spatially coincide with part of 
the rural road network (Fig. 7b). We believe the main reason for this is 
because DW does not contain a road class and the road’s spectral 
signature does not match with any other DW class. As a consequence, 

Fig. 7. Pixels with high uncertainty (i.e., pixels with empty predictive set; yellow circles) reveal important features for map producers. Panel a shows two north to 
south lines of high uncertainty pixels across a true color composite image from the VENμS microsatellite. Panel c shows a subregion, illustrating how these lines with 
high uncertainty pixels occur in largely forested landscapes. The corresponding “trees” class probabilities for this subregion is depicted in panel d. Panel b shows 
another subregion in which high uncertainty pixel tend to spatially coincide with the road network. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.)
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our conformal approach indicates that none of the DW LULC class 
probabilities are high enough to justify including the corresponding 
LULC class label to the predictive set, ultimately resulting in empty 
predictive sets. These results suggest that the inclusion of a rural road 
class to the DW LULC product may be beneficial to improve its overall 
quality.

4. Discussion

In this article, we have described a modified conformal approach 
that ensures more uniform per class uncertainty quantification but that 
requires more calibration data when compared to the conventional 
conformal approach. Using this method, we have demonstrated how 
customized local uncertainty maps can be created without requiring 
remote sensing and modeling work. This is possible because steps 1 to 3 
of the conformal approach (illustrated in Fig. 1) can be skipped if class 
probabilities from a LULC map are readily available and if local cali-
bration data are available. Critically, by relying on local data, we show 
that these customized local uncertainty maps can have better perfor-
mance than uncertainty maps calibrated using global data. Finally, we 
show the importance of ensuring that local calibration data are repre-
sentative of the study region and demonstrate an approach to determine 
if the spatial extent used to collect the local calibration data is 
appropriate.

To enable the creation of local uncertainty maps, it will be critical 
that large-scale LULC map producers (e.g., annual national LULC maps 
produced by Mapbiomas (mapbiomas.org; Souza et al. 2020) and global 
LULC maps produced by Buchhorn et al. (2020) and Potapov et al. 
(2022)) make available the LULC class probabilities generated by their 
classification algorithms (Singh et al. 2024). Another requirement for 
the proposed approach is the availability of considerable amount of 
high-quality local data. Collecting such a large dataset on the field can 
be daunting but other potential sources of local data also exist. For 
example, LULC map producers themselves might make their validation 
data available (e.g., the MapBiomas validation dataset), allowing users 
to just subset data for their area of interest. These local data can also be 
derived from visual interpretation of high-resolution satellite or un-
manned aerial vehicle (UAV) imagery, data sources that are becoming 
increasingly more common. Alternatively, crowdsourcing can be 
another way to obtain abundant local LULC data (Hadi et al. 2022). 
Regardless of the source, local calibration data need to be representative 
of the landscape of interest to ensure accurate uncertainty quantifica-
tion. Importantly, because local data should include observations that 
reflect the inherent variability of each LULC class (e.g., oligotrophic and 
eutrophic lakes; abandoned and well-maintained pastures), more 
heterogenous LULC classes may require a greater number of observa-
tions. Finally, it is also important for these data to follow a similar 
classification scheme as the adopted LULC product to avoid introducing 
additional errors due to the need to harmonize different classification 
schemes.

The amount of available calibration data is a key factor determining 
which conformal approach to use. Although the class-conditional 
approach tends to generate more uniform per class uncertainty quanti-
fication, empirical coverage for a given LULC class can vary substan-
tially if there are too few observations in the calibration data for that 
specific LULC class. Importantly, in some cases certain LULC classes 
might be important but relatively rare in the study area. In this situation, 
calibration data from outside the study area might need to be collected. 
However, as shown in this study, one has to be careful with the spatial 
extent over which the calibration data are collected. If the spatial extent 
is too large, the calibration data might cease to be representative of the 
study area, potentially resulting in predictive sets with decreased per-
formance. If calibration data over a much larger region are readily 
available (as in this study), then one approach to determine the appro-
priate spatial extent of the calibration data is to perform an analysis 
similar to the one we used. For example, the user might have determined 

that 200 observations are required for calibration (based on Eq. (3) but 
only 100 observations are available in the area of interest. In this case, 
one could increase the spatial extent until 200 observations are available 
and then check if the resulting predictive sets have approximately the 
desired coverage. An important shortcoming of this approach is that it 
might require too much data for the area of interest given that some of 
these data will need to be set aside for validation purposes. If this is a 
concern, one option is to revert back to the conventional conformal 
approach, in which case only 50 observations (for example) within the 
area of study would be required for validation purposes (instead of 50 
observations per LULC class when using the class-conditional conformal 
approach). Another option is to compare the threshold probabilities 
]q1↘Cωk for the calibration data gathered over increasingly larger areas. In 
this case, very different threshold values ]q1↘Cωk would suggest that the 
data from the area of interest are not exchangeable with those from the 
buffer area. We illustrate these alternative approaches of determining 
spatial extent in Appendix 3.

Local uncertainty maps can be used for several purposes. For 
example, a user might decide that uncertainty is too high for their area of 
interest and that a local LULC map will need to be created (or a different 
LULC map be used) instead of relying on the global DW map. Critically, 
this decision might be different from the decision taken based solely on 
the global accuracy information provided by map producers. Further-
more, if deciding on creating a local LULC map, a user might want to 
make sure that areas with high uncertainty are sampled because these 
areas are harder to classify (e.g., because they are transition areas or 
belong to a class that is not present in the current classification). For 
example, we demonstrate that pixels with high uncertainty (i.e., empty 
pixels) tend to spatially coincide with the road network in a region in the 
Amazonas state (Fig. 7b), suggesting that the inclusion of a “rural road” 
LULC class would be important. In addition, when attempting to un-
derstand how LULC influences different ecological and environmental 
processes (e.g., wildlife movement and occupancy, water pollution, 
deforestation and wildfire risk), users of uncertainty maps may discard 
observations associated with pixels for which LULC is too uncertain, this 
way ensuring a more robust analysis. On the other hand, when modeling 
the drivers of LULC change, users can test the robustness of their analysis 
by exploring the effect of different assumptions regarding how pixels 
with greater uncertainty are handled. Finally, local uncertainty maps 
allow the reporting of the minimum and maximum area that a given 
LULC class may cover, thus explicitly acknowledging uncertainty in 
LULC classification results. This is likely to be particularly important for 
professionals that have to assess temporal trends in LULC within the 
areas that they manage (e.g., protected areas or river basins).

Our results also show how uncertainty maps can help improve the 
generation of large-scale LULC maps. More specifically, uncertainty 
maps can identify LULC classes that are not well represented in the 
current LULC classification scheme (e.g., rural roads) and can help 
identify potential artifacts in the data or algorithms used to create these 
LULC maps (e.g., Fig. 7). In addition, despite the focus on local uncer-
tainty maps, the proposed methodology can also enhance large-scale 
uncertainty maps. More specifically, similar to the increasingly com-
mon approach of using separate models to make predictions for different 
regions when creating large-scale biomass maps (e.g., Duncanson et al. 
2022), one can systematically divide the region of interest into smaller 
subregions and quantify uncertainty for each of these subregions just 
using local data, where “local” is defined based on the approach that we 
have described to characterize the “bias-variance” tradeoff. This 
approach to generating large-scale uncertainty maps is likely to yield a 
much better characterization of uncertainty when compared to using 
conformal approaches that rely on global probability thresholds. Having 
said that, we note that an important limitation of this study is that both 
conventional and class-conditional conformal approaches described 
here assume data are independent, an assumption that is unlikely to hold 
due to spatial correlation. Recent research has focused on extending 
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these conformal approaches to accommodate for spatial and/or tem-
poral dependencies by assuming local exchangeability instead of relying 
on the assumption that all observations are exchangeable (e.g., Barber 
et al. 2023; Mao et al. 2022). These newer methodologies will likely be 
critical to further improve uncertainty quantification in LULC maps.

Because the creation of LULC maps is not trivial, requiring consid-
erable remote sensing and modeling expertise, there has been a trend of 
large-scale (regional, national, and global) LULC products being sys-
tematically produced by specialized groups and organizations, freeing 
map users to focus on a wide range of downstream applications. While 
these large-scale products may capture well overall LULC patterns, they 
might have important shortcomings when used for specific locations. 
For this reason, accurately quantifying the uncertainty associated with 
these products at the scale in which these products will be used is 
paramount. The benefit of creating customized local uncertainty maps is 
that, as we have shown, it can often improve the quantification of un-
certainty. Furthermore, the creation of local uncertainty maps by users 
opens the opportunity of these maps being customized to their needs. 
Ultimately, the approach described in this article paves the way for users 
to generate local customized uncertainty maps that are likely to be much 
more relevant for their specific uses without requiring extensive remote 
sensing and modeling skills.
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