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Abstract

Proportion variables, also known as compositional data, are very common in
ecology. Unfortunately, few scientists are aware of how compositional data,
when used as covariates, can adversely impact statistical analysis. We describe
here how proportion covariates result in multicollinearity and parameter
identifiability problems. Using simulated data on bird species richness as a
function of land use, we show how these problems manifest when fitting a
wide range of models in R, both in a frequentist and Bayesian framework. In
particular, we show that similar models can often generate substantially differ-
ent parameter estimates, leading to very different conclusions. Dropping a
covariate or the intercept from the model can solve the multicollinearity and
parameter identifiability problems. Unfortunately, these solutions do not fix
the inherent challenges associated with interpreting parameter estimates. To
this end, we propose focusing the interpretation on the difference of slope
parameters to avoid the inherent unidentifiability of individual parameters.
We also propose conditional plots with two x-axes and marginal plots as visu-
alization techniques that can help users better interpret their modeling results.
We illustrate these problems and proposed solutions using empirical data from
the North American Breeding Bird Survey. The practical and straightforward
approaches suggested in this article will help the fitting of linear models and

interpretation of its results when some of the covariates are proportions.

KEYWORDS
compositional covariates, conditional plot, inference, linear model, marginal plot,
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plants (e.g., Poorter et al.,, 2012), the proportion of
wildlife behaviors throughout the day or the year

Proportion variables (also known as compositional vari-
ables) abound in the biological sciences. Examples of
these variables include species composition (e.g., Gloor
et al., 2017), soil mineral composition (e.g., Czechowski
et al., 2022), the fraction of biomass in different parts of

(e.g., Cullen et al., 2022, 2023), and the proportion of land
use/land cover (LULC) surrounding the location in
which observations were made (e.g., Fink et al., 2020).
These compositional variables are often used as
covariates (also known as independent, explanatory, or
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predictor variables) when attempting to understand dif-
ferent types of phenomena. For example, LULC change
is the major driver of biodiversity decline and ecosystem
integrity loss throughout the world (Diaz et al., 2019;
Tilman et al., 2017) and, as a result, there has been con-
siderable interest in understanding how the surrounding
LULC influences a wide range of phenomena, such as
animal behavior (e.g., Gallo et al., 2022; Giroux et al.,
2023; Noonan et al, 2022; Paviolo et al., 2018;
Zeller et al.,, 2016), occurrence/abundance of species
(e.g., Canibe et al., 2022; Fink et al., 2020; Miller et al.,
2019; Valle et al., 2022), water quality and pollutant
concentration (Hoek et al.,, 2008; Piffer et al., 2021),
perception of environmental problems (Suchy et al.,
2023), and disease incidence (e.g., Machado et al., 2023;
Valle & Tucker Lima, 2014).

Although considerable work has focused on how to
analyze compositional data as the response variable
(Aitchison, 1981; Douma & Weedon, 2019; Gloor et al.,
2017; Greenacre, 2021; Jackson, 1997), there has been less
attention on how compositional data, when used as
covariates, can adversely impact statistical analysis.
Critically, while scientists are typically aware of the impact
that multicollinear covariates can have on regression
models, as this is a topic that is often covered in introduc-
tory courses and textbooks in statistics (Agresti, 2002;
James et al., 2013; McElreath, 2020), it is not widely recog-
nized that variables that have sum constraints are inher-
ently multicollinear. Variables with sum constraints are
variables whose sum is always equal to a given quantity.
Proportions are one type of variable that is sum-constrained
(i.e., they sum to one) but other types of sum-constrained
variables also exist. For example, if a buffer area is created
around each sampling point and the area under each
LULC category is calculated, the sum of these areas will
always be equal to the overall buffer area. Similarly, if the
number of hours in a day that is devoted to mutually exclu-
sive behaviors is tracked, then these variables will also be
sum-constrained because they sum to 24 h.

Our goal with this article is to raise awareness of the
problems that occur when proportion covariates (as an
example of sum-constrained covariates) are included in
regression models and to discuss some straightforward
solutions to these problems. In particular, we show how
substantially different conclusions can be reached if one
is not careful with how to interpret parameter estimates
associated with these proportion covariates and how to
visualize the corresponding relationships. We start by
explaining why variables with sum constraints are inher-
ently multicollinear and how this is detrimental to
statistical analysis. Subsequently, we describe how this
problem manifests itself when fitting a wide range of
models, both in a frequentist and Bayesian framework.

Then, we describe some solutions to overcome the esti-
mation and interpretation problems that result from
using proportions as covariates. Finally, we illustrate the
issues related to parameter estimation when using pro-
portional covariates and the proposed solutions by
modeling how the richness of native birds is influenced
by LULC in the United States using Breeding Bird Survey
data. In this article, all analyses and figures were
created in R (R Core Team, 2020) and the corresponding
code is available at https://doi.org/10.6084/m9.figshare.
25024478.v1 (Valle et al., 2024).

MULTICOLLINEARITY AND
PARAMETER IDENTIFIABILITY

It can be intuitive that a negative correlation arises from
variables that always sum to a given constant (i.e., an
increase in one variable has to necessarily decrease one
or more of the other variables to ensure that the sum
remains constant) (Aitchison, 1981; Chayes, 1960;
Greenacre, 2021; Jackson, 1997). However, it is not neces-
sarily obvious that these variables will always result in a
multicollinearity problem that is severe enough to pre-
clude the estimation of some of the parameters in linear
models and that will require careful interpretation of the
modeling results. The goal of this section is to clarify why
such a severe multicollinearity problem arises.

Multicollinearity arises when one covariate can be
expressed as a linear combination of the other covariates.
Let the j-th covariate for the i-th observation be denoted
by x; (i=1, ..., n and j=1, ..., p). By definition, variables
that are sum-constrained can be written as:

p
E xij = K,
Jj=1

where K is a constant. In the case of proportions, K is
equal to 1. As a result, multicollinearity arises because
any given covariate x;, can be written as a linear combi-
nation of the remaining covariates:

p
Xy =K— E Xij,

J#J

where j #j indicates that the sum is performed over all
Jj except for j.

A set of parameters is deemed to be jointly
unidentifiable when the likelihood does not change
with changes in parameter values. In other words, multiple
sets of parameters are equally likely. This identifiability
problem is a direct result of multicollinearity and is impor-
tant because the interpretation of statistical modeling
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results fundamentally depends on these parameter values
(e.g., Is there a statistically discernible relationship between
the response and a focal predictor variable? Is this relation-
ship positive or negative?). Here we show how
identifiability problems will inevitably occur when propor-
tions are included in regression models.

To help explain how sum-constrained variables
(e.g., proportions) impact parameter estimation, we will
focus in this section on an example in which we want to
understand how the surrounding landscape characteris-
tics (e.g., area of forest and agricultural land) influence
the species richness of birds. More specifically, we assess
the species richness of birds (denoted as R) using point
sampling and we calculate the area covered by forests
and agriculture within a circular buffer around each sam-
pling location (denoted as Af,; and A,gi, respectively).
Assuming that forests and agriculture correspond to all
the LULC classes in the surrounding landscape, then the
sum of their areas will be equal to the buffer area
and the proportion of forests and agriculture (denoted as
Dior = ﬁ";‘am and p,g :ﬁ‘i‘lagﬂ, respectively) will sum
to one. In a standard multiple regression, we
assume that:

E[R] =Po + BrPror + ﬁzpagri’ (1)

where f, is the intercept and p; and f, are the slope
parameters.
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FIGURE 1

Parameter unidentifiability arises because the
likelihood remains the same if we increase the slope
parameters by a factor A while simultaneously decreasing
the intercept by the same amount, as shown in
Equation (2):

E[R} (BO - A) + (Bl + A)pfor + (ﬁz + A)pagri

)
(BO - A) +A (pfor +pagri> + Blpfor + szagri

Because py, + Pogri = 1, We can write this expression as:

E[R] =P+ ( —-A+ A) + B1Dsor + szagri’

which is equal to our original Equation (1) despite the
fact that the slope parameters were increased and the
intercept was decreased by A.

To provide a geometric intuition for this problem,
we display simulated data in Figure 1. Notice that all
the data lie in a single “data” plane (gray surface) because
Pir and p,,; have to sum to one (Figure 1A).
Furthermore, each distinct parameter set {B,,B;,0,}
defines a distinct plane. For example, the blue surface
in Figure 1B arises by setting the slope of p,,; to zero and
estimating the remaining parameters. Conversely, the red
surface in Figure 1B arises by setting the intercept to zero
and estimating all the other parameters. As a result, the
parameter identifiability problem described above means
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Panel (A) displays the distribution of the simulated data. Notice that all observations fall in the gray surface (i.e., “data”

plane) because of the condition pg,, + p,g; = 1. Panel (B) shows an example of two different planes that go through the mean of the data.

These planes were created by setting the slope of p,; to zero (blue surface) or the intercept to zero (red surface) and estimating the

remaining parameters.
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that multiple planes are able to go through the mean of
the data equally well.

It is important to emphasize that we restricted this
example to two proportion covariates to enable the visu-
alization of the estimated planes in Figure 1 but multicol-
linearity and identifiability problems will be present even
if more than two proportion covariates are used, as exem-
plified below.

NUMERICAL EXAMPLE TO
ILLUSTRATE THE PROBLEMS
WHEN USING PROPORTION
COVARIATES

The goal of this section is to illustrate how the multicol-
linearity and identifiability problem described above will
impact a wide range of linear models (e.g., standard lin-
ear models [LM], generalized linear models [GLM], gen-
eralized linear mixed models [GLMM], and generalized
additive models [GAM]) using a numerical example. We
simulate a dataset with 1000 observations for which bird
species richness was a function of the proportion of
forest, agriculture, and wetlands (Dgors Pagris aNd Pyers
respectively). More specifically, we rely on a Poisson
regression model:

R~ POiSSOIl( exP(Bo + Blpfor + B2pagri + B3pwet))’

where f,,f;, p, and B; were set to 3, —1, 0, and 0.5,
respectively. We draw the pg,, p,gi, and p., covariates
from a Dirichlet(1) distribution. The Dirichlet distribu-
tion is a multivariate distribution that is used to model
nonnegative positive numbers that sum to one
(e.g., probabilities or proportions). When the parameters
of this distribution are all equal to 1, then it is equivalent
to a uniform distribution within the area restricted by the
sum-to-one constraint (i.e., the simplex). This dataset can
be modeled in a straightforward fashion using a GLM but
another common approach is to log-transform the
response variable (assuming none of the response vari-
ables is equal to 0) and use a LM. We also include a
region identifier in our dataset because this variable
allows us to include region-specific random effect inter-
cepts as part of a GLMM. Finally, we include spatial coor-
dinates x and y (randomly generated from independent
uniform distributions) because these variables allow us to
use bivariate splines within GAMs to accommodate for
potential spatial correlation (e.g., Toh et al., 2021). Both
the region identifier and the spatial coordinates were
unrelated to the response variable.

A standard procedure before fitting any model is to
check for multicollinearity problems by calculating the

TABLE 1
covariates in the simulated data.

Estimated correlation matrix for the continuous

Covariates Dsor Pagii Puet x y
DPror 1 -051  —051  —002  —0.01
Pagri —0.51 1 —0.48 0.02  —0.05
Duet —0.51  —048 1 0 0.06
x —0.02 0.02 0 1 —0.02
y —0.01 —0.05 0.06 —0.02 1

correlation between all continuous covariates (e.g., Feng
et al., 2019). The resulting correlation matrix shown in
Table 1 reveals that none of the pairwise correlations are
particularly high, incorrectly suggesting that multicol-
linearity is not a problem. Despite the widespread use of
pairwise correlations to assess multicollinearity, this
problem can be better diagnosed using other approaches,
such as through the use of the variance inflation factor
(VIF) (James et al., 2013). However, in extreme situations
with perfect multicollinearity, in which one covariate is
exactly equal to a linear combination of a subset of the
other covariates, VIF cannot be calculated. The inability
to calculate VIF is a telltale sign of perfect multicol-
linearity and this is precisely the case for our numerical
example.

We fit multiple models in R to this simulated dataset.
More specifically, we fit a standard LM using the “Im”
function in base R in which the response variable was log
species richness. We also fit a GLM (“glm” function in
base R) and a GLMM with region-specific random inter-
cepts (function “glmer” in the R package Ime4; Bates
et al., 2015). Finally, we fit a GAM with a bivariate spline
for the spatial coordinates using the function “gam” in
the R package mgcv (Wood, 2017). All of these models
were fitted in a frequentist framework. Our last model
consisted of a GLM, fit in a Bayesian framework using
JAGS (Plummer, 2003). The LM assumes a Gaussian like-
lihood whereas the GLMs, GLMM, and GAM relied on a
Poisson likelihood.

Our results show that, even though no model selec-
tion was performed, the p,. covariate is automatically
dropped (i.e., removed from the model by the algorithm
without any input from the user) in models 1, 2, and
3 and the corresponding slope parameters are set to miss-
ing (Table 2). Conversely, the slope of p;,, (and its stan-
dard error) is set to zero for GAM and is almost zero for
the Bayesian model, having an effect that is similar to
dropping py,, (instead of p.) from the model. These
results are surprising because the only covariate with a
slope of zero was p,q; in our simulation and, as a result,
one would expect that p,,; would be the dropped covari-
ate, not p,. Or ps,. Importantly, the order in which the
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TABLE 2 Parameter estimates (and standard errors) based on different models fit to the same simulated dataset.

Function Estimated parameters
Model (package/software) Type of model (standard error) Shifted parameters®
1 Im (base R) Gaussian linear model ﬁo =3.47(0.03) Bo=3.47—0.47=3.00
(response variable is log(R)) EI — —155(0.04) B,— —1.55+047— —1.08
By = —0.44(0.04) B, = —0.44+0.47=0.03
B =NA (NA) f;=0+40.47=0.47
2 glm (base R) Poisson regression model (GLM) AO =3.48(0.02) B, =3.48—0.48=3.00
B, = —1.49(0.04) pr=—149+048=—1.01
B\z = —0.43(0.03) B,= —0.43+0.48=0.05
B;=NA (NA) B3 =0+0.48=0.48
3 glmer (Ime4) Poisson regression mixed model ﬁo =3.48(0.02) Bo=3.48—0.48=3.00
E;}i;\gxigéilzsreglon-speaflc B, = —1.49(0.04) B— —149+048 = —1.01
B, = —0.43(0.03) B, = —0.43+0.48=0.05
B =NA (NA) f;=040.48=0.48
4 gam (mgcv) Generalized additive model (GAM) with AO =1.99(0.03) By =1.99+1.01=3.00
Iz(l)\;z:dl:l;ztzhnes for spatial ﬁl —0(0) B,—0—1.01= —1.01
B, =1.06(0.04) B, =1.06—1.01=0.05
63 =1.49(0.04) f;=1.49—1.01=0.48
5 jags (JAGS) Poisson regression model (GLM) Bo =2.07(1.63) Bo=2.074+0.93=3.00

B, = —0.08(1.63) B; = —0.08—0.93= —1.01

B, =0.99 (1.63) B, =0.99—0.93=0.06

By=1.41(1.63) B;=1.41—0.93=0.48

Note: We highlight in bold the parameters that were either set to zero or were removed from the model (denoted by NA). All models were fitted in R.

“The parameter values used to simulate data were f, =3,8, = —1,p, =0,p; =0.5.

covariates are specified in R impacts which covariate ulti-
mately gets dropped in models 1 through 4. These results
reveal the arbitrariness regarding which covariates are
dropped from the model. Importantly, these discrepant
parameter estimates can lead to substantially different
inferences (e.g., the proportion of agriculture is found
to be negatively associated with species richness for
models 1-3 but positively associated with species richness
for models 4 and 5). Unfortunately, few functions
provide warnings to alert the user that changes have
been automatically implemented to ensure parameter
identifiability, highlighting the importance of raising
awareness regarding these issues. For example, among
the five different functions used in Table 2, only “glmer”
issued a warning. Despite different parameter estimates,
we note that all models estimate the true parameters well
By=3,py=—1,B,=0,p;=0.5) once the intercept and
the slopes are appropriately shifted by the corresponding
constant A as described in Equation (2) (see column
“shifted parameters” in Table 2). Unfortunately, we can

only deduce the constant A for a given model because we
know the true parameter values used to simulate the data
but this constant is not estimable with real data.

Importantly, for the Bayesian model, the standard
errors for the slope parameters are very large, resulting in
very wide 95% credible intervals and no covariate being
statistically discernible from zero (Table 2). This is a
direct result of the model having unidentifiable parame-
ters. Furthermore, although our Markov Chain Monte
Carlo (MCMC) algorithm converged in this case, our
experience has been that more complicated Bayesian
models can often fail to converge if they have
unidentifiable parameters.

We emphasize that predictions of the mean will be very
similar for these different models as long as these predic-
tions are made within the data plane (i.e., the gray surface
in Figure 1). In other words, in our example, predictions
will be the same if pry + Pogri + Pye =1 but will differ if
Pror + Dagri + Pwet 7 1. This can be easily shown by calcu-

lating the mean €Xp (BO + ﬁlpfor + ﬁ2pagri + B3pwet) USing
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the parameter coefficients given in Table 2 and selecting
values fOr ey, Pagri and py, that either satisfy or do not
satisfy the sum constraint. A consequence of different
models having similar predictions is that model selection
procedures (e.g., using information criteria such as
Akaike Information Criterion [AIC] or Bayesian
Information Criterion [BIC]) can lead to misleading
results when applied to regression models with propor-
tion covariates. For example, by repeatedly simulating
the data as described above and evaluating models with
all possible combinations of pry, Pygri, and py., both AIC
and BIC selected models with p,,,; approximately 85% of
the times despite the fact that this covariate has a slope of
zero in the simulated data (Appendix S1). When
performing model selection with more covariates, a bet-
ter approach would be to add or drop the whole set of
compositional covariates instead of adding or dropping
individual compositional terms.

SOLVING THE
MULTICOLLINEARITY AND
PARAMETER IDENTIFIABILITY
PROBLEMS

The most common approach to avoid these multicol-
linearity and identifiability problems is to drop one of the
covariates; this is often automatically done in statistical
software (e.g., see Table 2). While this approach solves
the identifiability problem, an important limitation is
that there are no guidelines for which variable should be
dropped and different software may drop different vari-
ables (see Table 2). Furthermore, even if one proportion
variable is dropped, multicollinearity problems can still
persist if the sum of the remaining proportion covariates
is still approximately constant. For example, dropping
Dwer Will avoid exact multicollinearity. However, if wet-
lands are relatively rare in the landscape, then p,,, will
be small and dropping them will not avoid the (approxi-
mate) collinearity between py,, and p,,; given that their
sum is still close to 1.

A Dbetter solution to the multicollinearity and
identifiability problem might be to drop the intercept
instead of removing one of the covariates. This solution
avoids the subjectivity associated with deciding which
covariate to drop. Some might argue that this is an overly
drastic solution because it forces the mean to be a partic-
ular value (0, 0.5, or 1, depending on the link function)
when all covariates are zero, irrespective of the data.
However, in cases where part of the covariates are pro-
portions that sum to one, selecting a zero intercept is less
controversial because it is impossible for all covariates to
be zero given the sum constraint. Constraining the

intercept to be zero leads to consistency among models.
For example, when we fit the different models described
in Table 2 without an intercept, we find that all of them
yield approximately the same parameter estimates
(Appendix S2). Also, different from the results in Table 2,
the Bayesian model does not have very large standard
errors once the intercept is removed, a strong indication
that the parameter identifiability problem has been
solved. Finally, in simulation studies in which the true
parameter values are known, the original parameter
values can be recovered using the estimated parameters
and by setting A to — 3, in Equation (2).

Other approaches focused on transforming the com-
positional data also exist. For example, there is a rich his-
tory associated with log-ratio transformations of
compositional data (see early proposals in Aitchison,
1981, 1982, 1984). Unfortunately, interpreting the slope
parameters when proportion covariates are log-ratio
transformed can be very challenging, a problem that is
compounded when the denominators in these ratios are
not the same for the different variables (Coenders &
Pawlowsky-Glahn, 2020). Furthermore, if some of the
compositional data are equal to 0, then some of these
ratios might be undefined because of a zero denominator.
For both of these reasons, we refrain from further explor-
ing transformations of the compositional data.

ADDRESSING INTERPRETATION
USING DIFFERENCES IN SLOPES
AND CONDITIONAL AND
MARGINAL PLOTS

A fundamental issue associated with both solutions to
the multicollinearity and identifiability —problems
discussed above (i.e., dropping a covariate or dropping
the intercept) is that, even if the compositional data are
not transformed, interpretation of the estimated parame-
ters is still not straightforward. Some might even argue
that it does not make sense to include proportions as
explanatory variables in a regression model because this
invalidates the usual interpretation of the slope parame-
ters (i.e., a change in the mean of the response variable
due to a one-unit increase in the corresponding covariate
while all remaining covariates are held constant). When
sum constraints are present, it is impossible to hold all
other variables constant while changing a single variable.
For instance, we cannot increase pg, while holding p,
and p., constant. However, we believe that the removal
of all proportion covariates from regression models is an
overly restrictive solution given that there are numerous
examples of other regression models for which this inter-
pretation of slope parameters also does not hold
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(e.g., when regression models include quadratic terms,
interaction terms, or splines). In these cases, modelers
often resort to graphical approaches to understand the
estimated relationship between the response variable and
each covariate.

Dropping a covariate is similar to what regression
models typically do when factor covariates are used. In this
situation, one of the levels of the factor variable is omitted
and serves as the baseline against which all the other levels
are compared. However, in the case of proportions, one
has to interpret results carefully because the left-out vari-
able will implicitly change once the other proportion
covariates remaining in the model change. For example, if
Duwet 1S dropped (as in model 2 in Table 2), then p, should
be interpreted as the change of the mean (on the log
scale) as py,,. increases while all the other covariates are
kept constant and p,,, decreases. In other words, an
increase of a proportion covariate (while keeping the
other proportion covariates constant) necessarily has to
come at the expense of decreasing the left-out proportion
covariate. This concern is particularly relevant when
standard model selection procedures are adopted because
it is easy to overlook the proportion covariate that was
excluded.

We propose three approaches to improve the interpre-
tation of model results: (1) focusing on the difference in
slope parameters; (2) displaying conditional plots with
two horizontal axes; and (3) using marginal plots to dis-
play model results. In relation to (1), we propose that the
focus should be on the interpretation of the difference in
slope parameters because, as shown by Equation (2),
while the individual parameters are not identifiable, the
difference in parameters is identifiable. In other words, if
the estimated parameters are shifted by A (i.e., Bz =p;+A
and BjA: ﬁL + A), then we can still reliably estimate p; — p;
with f; —p; without having to worry about A as this
quantity disappears from the expression. But how do we
interpret the difference in slope parameters? The quantity
Bz —Ej can be interpreted as how much the response vari-
able changes as we increase x; by one unit while decreas-
ing x; by one unit. Finally, notice that this approach also
works for models that include an intercept and for which
one of the compositional covariates was dropped as long
as we assume that the slope of the dropped-out covariate
is equal to 0.

We also propose the display of conditional relation-
ships using graphs that contain two x-axes to make
explicit which two proportion covariates are simulta-
neously changing. More specifically, one x-axis should
depict the values of the focal proportion covariate while
the other x-axis should show the value of the proportion
covariate that was left out. This graphical approach is
also useful if the intercept is dropped but, in this case,

one must explicitly decide which other proportion
covariate decreases as the focal proportion covariate
increases. We call these figures conditional graphs
because they display the estimated relationship between
a focal proportion covariate (and the other proportion
variable that co-varies with it) and the response variable
while fixing the other proportion covariates to zero. An
example of this type of graph is provided in our case
study.

Another approach for depicting the relationship
between the response variable and a focal proportion
covariate is to use what we call marginal plots. Marginal
plots show predictions for a wide range of values of the
proportion covariates, instead of fixing the remaining
proportion covariates to zero. More specifically, we gen-
erate random samples of the proportion covariates while
ensuring that pg, +Pugi +Pwee=1 (€.g., using the
Dirichlet distribution) and then make predictions based
on these covariate values. Importantly, this graph does
not depend on which covariate was dropped (or if the
intercept was dropped) because it relies on model predic-
tions within the area defined by pg, + Dagri +Pwet =1-
Note that, while we rely on “flat” Dirichlet distributions
(i.e., a Dirichlet(1)) to create these compositional
covariates, other options are also possible (e.g., using
Dirichlet distributions with parameters based on the
means of each compositional covariate in the dataset).
We illustrate both the conditional and marginal plots in
our case study. We have included an R tutorial to show
how both the conditional and marginal plots can be cre-
ated using either base R or ggplot (Appendix S3).

CASE STUDY USING THE BREEDING
BIRD SURVEY DATA

We illustrate the issues related to parameter estimation
when using proportional covariates and the proposed
solutions with a case study relating the richness of native
birds to LULC variables in the United States. To this end,
we used a database derived from the North American
Breeding Bird Survey (BBS; Pardieck et al., 2017) for
2010-2014 in the United States (Knowles & Flather, 2021)
and the LULC map of 2013 provided by the US National
Land Cover Database (NLCD; Dewitz & USGS, 2021). The
BBS is a continental-scale bird monitoring program in
which trained volunteers conduct annual point count sur-
veys on established roadside routes. Routes are approxi-
mately 39.4 km long and point counts are carried out every
0.8 km within a time interval of 3 min. The processed BBS
database we used provides richness estimates for different
groups of bird species and the BBS routes centroids
(Knowles & Flather, 2021). We filtered the estimates of
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native bird richness for 2013 and selected data with both
richness estimates and route centroids (N = 2237). For
each route, we calculated the proportion of each LULC
class (excluding unclassified pixels) within a 20-km radius
buffer around the route centroid. For this, we grouped the
NLDC LULC classes into six variables: (1) Crop/Pasture,
(2) Developed, (3) Forest, (4) Open habitat, (5) Water bod-
ies/Snow, and (6) Wetland. No correlation between the
LULC variables was greater than 0.5 in absolute value.

We modeled the relationship between bird richness
and LULC classes using four different GLMs with a nega-
tive binomial distribution for the response variable: (1) a
model with an intercept and all the six LULC covariates;
(2) a model similar to model (1) but without the Wetland
class; (3) a model similar to model (1) but without the
Open habitat class; and (4) a model similar to model
(1) but without the intercept. Note that we relied on a neg-
ative binomial regression model, instead of the Poisson
regression model used for the simulated data, to account
for the potential overdispersion of bird richness. Models
were fit in a Bayesian framework using JAGS (Plummer,
2003), accessed from R with the package jagsUI (Kellner,
2024). For each model, we ran three parallel MCMC chains
consisting of 1000 iterations in the adaptive phase, followed
by 12,000 iterations, from which the first 4000 were
excluded (burn-in). We used vague priors on all parame-
ters. Parameter estimates (mean and 95% credibility inter-
vals) and predictions were calculated using the 24,000
resulting samples of the posterior distributions. Algorithm
convergence was assessed using trace plots and the R-hat
statistic (i.e., values of R-hat <1.1 were used as an indicator
of MCMC convergence).

As expected, our MCMC algorithm did not converge
for model 1, a sign that parameters are not identifiable in
this model, whereas the remaining models converged
successfully. Interestingly, models 2-4 yielded very
different parameter estimates (Table 3), with important
implications for the conclusions that are drawn from
these results. For example, when Wetland is left out

(i.e., model 2), the parameter associated with Developed
is estimated to be negative, suggesting that species
richness decreases with the proportion of the surround-
ing area that is developed. However, when Open
habitat is left out (i.e., model 3) or when the intercept is
removed (i.e., model 4), we reach the opposite
conclusion (i.e., species richness increases with the
proportion of the surrounding area that is developed).
Despite these discrepant parameter estimates, it is
important to note that the difference between parameter
estimates is consistent, a useful feature when attempting
to reconcile these contrasting results. For example,
these three models revealed that we expect that average
species richness will increase by approximately 43%
(.e., W: exp(0.1 —(—0.26)) =1.43) as we
€XP{ By + Baevelopea < 1

move from an area that is 100% developed to an area that
is 100% forested.

Recall that we propose conditional plots with two
x-axes to make explicit which covariate was removed or
is being co-varied together with the focus variable. We
illustrate these plots by depicting the estimated relation-
ships between species richness and each LULC covariate
for the two models with a left-out covariate (models
2 and 3). Despite the very contrasting relationships
depicted in Figure 2, they are not as puzzling if one real-
izes that different baseline variables (i.e., the variable that
was excluded) were used and, as a result, predictions for
very different types of landscapes are being made.
For example, Figure 2B shows that the average bird rich-
ness diminishes in a landscape where developed areas
increase and wetlands decrease while Figure 2F shows
that average richness increases slightly when developed
areas increase and open habitats decrease.

We can also use marginal plots to interpret model
results. Recall that marginal plots show the relationship
between species richness and a particular focal covariate
while allowing the other covariates to take on different
values, subject to the constraint that all proportion

TABLE 3 Slope estimates (and 95% credible intervals [CI]) for three different models relating bird species richness to land-use/

land-cover (LULC) covariates.

Parameters Model 2 (no wetland)
Crop —0.16 (—0.26; —0.06)
Developed —0.26 (—0.46; —0.07)
Forest 0.10 (—0.01; 0.20)
Open —0.44 (—0.53; —0.34)
Water 0.03 (—0.17; 0.23)
Wetland

Model 3 (no open habitat)

Model 4 (no intercept)
0.27 (0.22; 0.33)
0.17 (0.01; 0.34)
0.53 (0.48; 0.58)

4.18 (4.14; 4.22)
4.07 (3.91; 4.24)
4.44 (4.40; 4.47)
3.90 (3.87; 3.93)
4.36 (4.21; 4.52)
4.35 (4.26; 4.44)

0.46 (0.30; 0.62)
0.44 (0.35; 0.54)

Note: We do not report the results for model 1 because this model did not converge. Parameter estimates were judged to be significant if their corresponding

95% CI did not include zero. Significant parameters are emphasized in bold.
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FIGURE 2 Conditional predicted relationships between native bird richness and land-use/land-cover classes from the Breeding Bird

Survey of 2013 in the United States. Left panels (A-D) are based on the model without the Wetland variable (model 2) while right panels
(E-H) are based on the model without the Open habitat variable (model 3). The lower and upper lines depict the 95% credible interval while
the center line represents the median. Significant positive and negative relationships are shown in blue and red, respectively, whereas

nonsignificant results are shown in gray.
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FIGURE 3 Marginal plots with the predicted relationship between the mean richness of native birds and land-use/land-cover classes

from the Breeding Bird Survey of 2013 in the United States. Each point represents a model prediction based on coefficient estimates and a

given set of values for the predictor variables. The red lines represent the global log-linear tendency.

covariates sum to one. Importantly, the predictions
depicted in these plots are the same regardless of the
model that is used to create the predictions. These plots
show that, as the proportion of open habitat increases,
there tends to be a decline in species richness, whereas as
the proportion of forest increases there tends to be an
increase in species richness (Figure 3). Conversely, there
is considerably more variability regarding how species
richness is influenced by the other LULC variables.
Notice that marginal plots typically have a triangular
shape, with a substantial scatter on the left of the plot
(i.e., when the focal proportion covariate is equal to 0)
and no scatter at all on the right of the plot (i.e., when
the focal covariate is equal to 1). The reason for this
shape is that, when the focal proportion covariate is
equal to zero, there is substantial variability in predic-
tions because the other proportion covariates can take on
a wide range of values. Conversely, when the focal covar-
iate is equal to 1 (i.e., 100% of a given LULC class), there
is no variability in predictions associated with the value
of the remaining proportion covariates (i.e., they are all
equal to 0).

CONCLUSION

The use of sum-constrained variables is ubiquitous across
multiple fields, including ecology and environmental sci-
ences. In this article we describe how the use of these

variables as covariates within regression models can have
adverse effects on inference, a problem that many are
unaware of. We show how this problem can be identified
and discuss common solutions to this problem.
Importantly, while these solutions solve the parameter
identifiability problem, the interpretation of model
results is still challenging even without applying compo-
sitional data transformations (e.g., log-ratio transforma-
tions; Aitchison, 1981, 1982, 1984; Coenders &
Pawlowsky-Glahn, 2020). We propose to improve the
interpretation of model results by focusing on the differ-
ence in slope parameters as well as visualizing results
using conditional and marginal plots. By applying the
proposed solutions to both simulated data and a case
study, we have demonstrated that failing to properly
acknowledge this problem can result in misleading con-
clusions. Finally, we have also described how extra care
is needed when performing model selection (i.e., the
whole set of compositional covariates should be added or
dropped instead of adding or dropping individual compo-
sitional terms) and creating predictions (i.e., predictions
for compositional covariate combinations that do not
sum to one should be avoided) in the presence of compo-
sitional covariates.

It is important to note that we have purposefully
focused on relatively simple regression models with few
covariates to best illustrate and provide intuition for the
identifiability and multicollinearity problems associated
with using proportion covariates. However, statistical
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models are often substantially more complicated. For
example, categorical covariates and/or random effects
can be added to the model, splines can be included to
allow for nonlinear relationships for the proportion
covariates, and interaction terms can be included involv-
ing proportion covariates and other covariates that are
not sum-constrained. In these more complex models, the
identifiability issues discussed here remain important
but additional restrictions might be needed to avoid
parameter identifiability problems. For example, if addi-
tional categorical variables are included in a model with
compositional covariates but without an intercept, it
will be critical to exclude the first level of each of these
categorical variables from the model to ensure
identifiability. Likewise, some of the proposed solutions
to improve interpretability might be more challenging
to implement if splines or interaction terms are included
in the model.

Despite the challenges described above, we believe
that the practical and straightforward approaches pro-
posed here will be of wide use for fitting GLMs and for
the proper interpretation of its results when some
covariates are compositional or are sum-constrained.
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