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STRONG BLOCKING SETS AND MINIMAL CODES FROM

EXPANDER GRAPHS

NOGA ALON, ANURAG BISHNOI, SHAGNIK DAS, AND ALESSANDRO NERI

Abstract. A strong blocking set in a finite projective space is a set of points
that intersects each hyperplane in a spanning set. We provide a new graph
theoretic construction of such sets: combining constant-degree expanders with
asymptotically good codes, we explicitly construct strong blocking sets in the
(k−1)-dimensional projective space over Fq that have size at most cqk for some
universal constant c. Since strong blocking sets have recently been shown to
be equivalent to minimal linear codes, our construction gives the first explicit
construction of Fq-linear minimal codes of length n and dimension k, for every
prime power q, for which n ≤ cqk. This solves one of the main open problems
on minimal codes.

1. Introduction

A blocking set in a finite projective or affine space is a set of points that intersects
every hyperplane. The study of these objects is a classic topic in finite geometry [15,
17], with many applications in coding theory, combinatorics and computer science.
One can strengthen this notion to that of a strong blocking set by requiring that
the intersection with every hyperplane is not just nonempty, but forms a spanning
set for that hyperplane. For example, in a projective plane, the set of all points on
a single line is a blocking set, while the set of all points on three non-concurrent
lines is a strong blocking set. This special kind of blocking set has also appeared
in the literature under the names of generating sets [27, 32] and cutting blocking
sets [1, 12, 16], but in this paper we follow the nomenclature of [24, 31].

Strong blocking sets have recently been shown to be in one-to-one correspon-
dence with minimal codes [1, 48], a notion from coding theory. A linear code is
simply a vector subspace of Fn

q . A codeword in a linear code is called minimal
if its support does not contain the support of any other codeword apart from its
scalar multiples. Minimal codewords in a linear code have been studied for their
applications in decoding algorithms [34] and cryptography [18, 41]. Determining
the set of minimal codewords in a linear code is a difficult task that has only been
achieved for a few families of linear codes, and this has led to the study of minimal
codes, where every non-zero codeword is minimal (see, for example, [18]). Recently,
minimal codes have also been linked to perfect hash families, and in particular the
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trifference problem [14], which have important applications in computer science
(see for example [54] and the references therein).

The main problem is to construct minimal codes of a given dimension k of the
shortest possible length n. It is known that any strong blocking set in the (k − 1)-
dimensional projective space obtained from F

k
q , denoted by PG(k−1, q), must have

size at least (q+1)(k−1) [3]. Using the aforementioned connection, this implies that
any minimal code of length n and dimension k over Fq must satisfy n ≥ (q+1)(k−1).
Therefore, we would like to construct minimal codes of length close to this lower
bound. Providing additional motivation for this problem is the fact that minimal
codes whose length n is at most linear in k (for a fixed q) give rise to asymptotically
good error-correcting codes [1]. While it is easy to show the existence of such short
minimal codes using the probabilistic method, it is a challenging and central open
problem to give good explicit constructions [21]. Many constructions of minimal
codes have appeared in the last few years [1,10,21,25,27], but their lengths remain
considerably larger than the theoretical lower bound.

Over the binary field, minimal codes are equivalent to linear intersecting
codes [19, 22], which are codes with the property that the supports of any two
non-zero codewords have non-empty intersection, but over larger fields it is a more
restrictive notion than intersecting codes [21]. By this equivalence, we already have
an explicit construction of minimal codes for q = 2 with n a linear function of
k [22, Theorem 2.3]. Bartoli and Borello [11, Corollary 3.3] recently gave an ex-
plicit construction of strong blocking sets with size linear in the dimension, for any
fixed q ≥ 3, but the dependency on q in their construction is not linear: they proved
that for every prime power q, there exists an infinite sequence of dimensions k for
which they give an explicit construction of a strong blocking set in the projective
space PG(k − 1, q) of length roughly q4k/4. The same construction appears in
an earlier work of Cohen, Mesnager and Randriam [20], and the main idea is to
concatenate algebraic geometric codes with the simplex code. The argument used
in [11] also has the limitation that it can at best give an explicit construction of
size approximately q2k.

In this paper, we provide a novel graph-theoretic construction combining lin-
ear codes with graphs to produce minimal codes. By using explicit constructions of
asymptotically good linear codes and constant-degree expander graphs, we then ob-
tain, for some absolute constant c, the first explicit construction of strong blocking
sets of size cqk in the projective space PG(k−1, q), and thus also of a k-dimensional
minimal code over Fq of length at most cqk. More precisely, we show that for fixed
q there is a polynomial time algorithm that for given k′ can find a strong blocking
set in PG(k−1, q) for some k ≥ k′ of size at most cqk. By optimising the constant,
we can show that our construction improves the previous best explicit constructions
for every fixed q ≥ 7.

There is a rich history of using expander graphs in the construction of asymp-
totically good linear codes [5,46,49], and we extend this line of research by showing
that they can also be used to construct minimal codes. Central to our construction
is the notion of vertex integrity of a graph, which measures how many vertices need
to be removed from a graph to break it into small components (see Section 3 for a
precise definition and references), and we prove a new lower bound on this param-
eter for d-regular graphs in terms of their eigenvalues. This in particular implies
that the vertex integrity of constant-degree n-vertex expanders is linear in n.
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Finite geometry has often been used to give extremal, or near extremal, con-
structions of graphs with respect to some property (for example, in Turán and
Ramsey problems). We show that the other direction can also be fruitful, as in
our construction we use extremal graphs to pick a subset of lines whose union has
desirable intersection properties with hyperplanes in a finite projective space. This
novel construction has also been used to give explicit constructions of certain affine
blocking sets [14], and we expect that it will lead to many new results in finite
geometry.

1.1. Outline. In Section 2, we give the necessary background on codes, blocking
sets and expander graphs. We introduce the integrity of a graph in Section 3, and
prove our lower bound for regular graphs. In Section 4, we describe our new explicit
construction, proving the main result of this paper. In Section 5, we optimize the
size of our construction by using algebraic-geometric codes, almost Ramanujan
graphs, and field reduction. Finally, in Section 6, we summarize our results and
highlight some possible directions for further research.

2. Preliminaries

In this section we recall some basic notions and preliminary results from cod-
ing theory, with a focus on minimal linear codes and on how they can be viewed
geometrically. We also recall the notion of expander graphs and some explicit con-
structions. For the rest of this paper, we shall assume that q is a prime power.

2.1. Error-correcting codes and minimal codes. Let us fix Fq to be the finite
field with q elements and let n ∈ N.

Definition 2.1. The (Hamming) support of a vector v ∈ F
n
q is the set

σ(v) := {i : vi �= 0} ⊆ [n].

The (Hamming) weight of v is

wt(v) := |σ(v)|.

The Hamming weight induces a distance on F
n
q , given by d(u, v) := wt(u − v).

This is known as the Hamming distance and it is fundamental in the theory of
error-correcting codes.

Definition 2.2. An [n, k, d]q code C is a k-dimensional subspace of Fn
q , and

d := min{wt(v) : v ∈ C \ {0}}
is called the minimum distance of C. The elements of C are called codewords.
Moreover, a generator matrix for C is a matrix G ∈ F

k×n
q such that

C = {uG : u ∈ F
k
q};

that is, the rows of G span C.

Definition 2.3. Let {ni}i≥1 be an increasing sequence of lengths and suppose
that there exist sequences {ki}i≥1 and {di}i≥1 such that for all i ≥ 1 there is
an [ni, ki, di]q code Ci. Then the sequence {Ci}i≥1 is called an (R, δ)q-family of
codes, where the rate of this family is defined as

R := lim inf
i→∞

ki
ni

,
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and the relative distance is defined as

δ := lim inf
i→∞

di
ni

.

One of the central problems on error-correcting codes is to understand the trade-
off between the rate and the relative distance of codes. A family of codes for which
R > 0 and δ > 0 is known as an asymptotically good code. An easy probablistic
argument shows the existence of such codes for every δ ∈ [0, 1 − 1/q) and R =
1−Hq(δ), where

Hq(x) := x logq(q − 1)− x logq(x)− (1− x) logq(1− x),

is the q-ary entropy function, defined on the domain 0 ≤ x ≤ 1−1/q. This is known
as the Gilbert-Varshamov bound. The first explicit construction of asymptotically
good codes was given by Justesen [36] (in the binary case; see [30, Section 10.3.1] for
the generalisation to all finite fields), who showed that for every 0 < R < 1/2, there
is an explicit family of codes with rate R and relative distance δ ≥ (1−2R)H−1

q

(
1
2

)
.

Note that for any prime power q, H−1
q

(
1
2

)
≥ H−1

2

(
1
2

)
> 0.11, and thus there are

absolute constants R, δ > 0, not depending on q, for which we have an explicit
construction of a family of codes with rate R and relative distance δ. Improving
the values of the rate R and the relative distance δ for which there is an explicit
construction, and reducing the computational complexity of these constructions,
has been an active area of research in coding theory since the 1970s (see for example
[5, 47, 51]). One of the most significant developments in the area was the use of
modular curves to show that, for q ≥ 49, there are explicit constructions of linear
codes over Fq that are even better than the probabilistic ones (see [23,50] for some
recent surveys on these constructions).

In this paper, we study a special class of codes called minimal (linear) codes.
These are codes with interesting features from a combinatorial point of view.

Definition 2.4. Let C be an [n, k, d]q code. A nonzero codeword v ∈ C is said to
be minimal (in C) if σ(v) is minimal with respect to the inclusion in the set

σ(C) := {σ(c) : u ∈ C \ {0}}.

The code C is a minimal linear code if all its nonzero codewords are minimal.

Minimal codewords were first studied by Hwang for decoding purposes [34].
Later, they were analyzed by Massey in connection with secret sharing schemes
[41]. Since then, minimal codewords and minimal codes attracted renewed interest
within the coding theory community (see for example [1,6,10,21]). These concepts
were further studied from a combinatorial point of view, since they correspond to
circuits in the matroid associated to the dual code [26]. Recently, minimal codes
have also been linked to linear trifferent codes [14], which are a special case of
perfect hash families [54].

2.2. Projective systems and strong blocking sets. In this section we briefly
describe the geometric dual approach to coding theory, where linear codes can be
identified with sets of points in a suitable projective space. For k > 1, the finite
projective space of dimension k − 1 over the finite field Fq is defined as

PG(k − 1, q) :=
(
F
k
q \ {0}

)
/ ∼,
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where u ∼ v if and only if u = λv for some non-zero λ ∈ Fq (in some circles the
same object will be denoted by P

k−1(Fq)). The equivalence class that a non-zero
vector v belongs to is denoted by [v]. The 1-dimensional, 2-dimensional, . . . , (k−1)-
dimensional vector subspaces of Fk

q correspond to the points, lines, . . . , hyperplanes
of PG(k − 1, q). We denote the span of a subset S of points in a projective space
by 〈S〉 and the dimension dim(〈S〉) is one less than the vector space dimension of
the corresponding vector subspace. For example, the span of two distinct points
P,Q in a projective space, which we will also denote by 〈P,Q〉, is a 1-dimensional
projective subspace that we refer to as the line joining P and Q.

Definition 2.5. A projective [n, k, d]q system is a (multi)set of n points, M ⊆
PG(k − 1, q), such that 〈M〉 = PG(k − 1, q) and

d = n−max{|H ∩M| : H is a hyperplane}.

The term projective system and the notation used come from the correspondence
with linear codes. Indeed, a projective [n, k, d]q system is simply a dual interpre-
tation of a nondegenerate [n, k, d]q code. More precisely, an [n, k, d]q code C is
nondegenerate if there is no identically zero coordinate in C. In other words, C
is not contained in any principal hyperplane Hi := {v ∈ F

n
q : vi = 0}.

The aforementioned correspondence – up to equivalence – comes from putting
representatives of the points of the projective system as columns of a k×n matrix,
and considering the code generated by (the rows of) this matrix. Vice versa, given a
generator matrix of a nondegenerate code, we can obtain the associated projective
system by taking the columns of such a matrix as a multiset of points in PG(k−1, q).
There is more work required to make this correspondence well-defined, and we refer
the reader to [50, Theorem 1.1.6] for a formal treatment of the correspondence.
Due to this correspondence, a sequence {Mi}i∈N of projective systems is called an
(R, δ)q-family of projective systems if the corresponding family of codes is an
(R, δ)q-family of codes.

We now define the main finite geometric object studied in this paper.

Definition 2.6. A set M ⊆ PG(k − 1, q) is said to be a strong blocking set if

〈H ∩M〉 = H,

for every hyperplane H of PG(k − 1, q).

Remark 2.7. In the vector space notation, a strong blocking set in F
k
q is a collection

of 1-dimensional vector subspaces that intersects every (k − 1)-dimensional vector
subspace in a spanning set.

Theorem 2.8 (See [1], [48]). Let C be a nondegenerate [n, k, d]q code and let G =
(g1 | . . . | gn) ∈ F

k×n
q be any of its generator matrices. The following are equivalent:

(1) C is a minimal code;
(2) M = {[g1], . . . , [gn]} is a strong blocking set in PG(k − 1, q).

The main and most relevant problem – from both a coding theoretic and geomet-
ric point of view – is the construction of small strong blocking sets, or, equivalently,
of short minimal codes. The first step is to ask how small a strong blocking set can
be. Answers to this question are partial and given by the following results. The
first one is a general lower bound observed in [1], proved using the Combinatorial
Nullstellensatz (see [14, 31] for alternative proofs using the results from [17, 35]).
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Theorem 2.9. For any prime power q, every strong blocking set in PG(k − 1, q)
has size at least (q + 1)(k − 1).

Recently this lower bound has been improved by using Delsarte’s linear program-
ming bound in coding theory, which is also known as the MRRW bound.

Theorem 2.10 (See [14, Theorem 1.4], [45, Theorem 3.3]). For any prime power
q, there is a constant cq > 1 such that every strong blocking set in PG(k− 1, q) has
size at least (cq − o(1))(q + 1)(k − 1).

We also have the following existence result shown using the probabilistic method
that provides the best-known upper bounds.

Theorem 2.11 (See [42] for q = 2 and [2, 14] for q > 2). The size of the smallest
strong blocking set in PG(k − 1, q) is at most⎧⎨

⎩
2k−1

log2(4/3)
if q = 2,

(q + 1) 2k

logq(
q4

q3−q+1
)

otherwise.

This is an existence result that does not provide any explicit constructions. We
now recall some of the most relevant general explicit constructions of small strong
blocking sets that are known in the literature.

Rational normal tangents: Assume that q ≥ 2k − 3 and that char(Fq) > k.
Fancsali and Sziklai [27] showed that under these hypothesis, one can take any
distinct 2k − 3 points on a rational normal curve, and then take the union of the
tangent lines to this curve at those points. The resulting set is a strong blocking
set of size (2k−3)(q+1). In the same paper, they also showed how to get rid of the
hypothesis on the characteristic of the field, by using what they call the diverted
tangents method. However, the hypothesis on the field size must be kept, implying
that such a construction provides only finitely many strong blocking sets for a given
field size.
Tetrahedron: This construction is probably the most natural one. It is obtained
by selecting any k points in PG(k − 1, q) in general position, and then taking the
union of the lines spanned by every pair of these points. It works over every field,
but its size

(
k
2

)
(q− 1) + k is quadratic in k, while we know by Theorem 2.11 about

the existence of strong blocking sets whose size is linear in k. The tetrahedron
was first observed by Davydov, Giulietti, Marcugini and Pambianco [24] and then
rediscovered by several authors.
Line subspreads: This is a slight improvement on the size of the tetrahedron. It
works whenever k = 2t is even, and it consists of carefully choosing t2 points in
PG(t−1, q2), and then using the field reduction map to obtain t2 lines in PG(k−1, q)

whose union is a strong blocking set. This construction has size k2

4 (q + 1) and was
recently pointed out in [3].

All these constructions are obtained as unions of lines in the projective space.
This is mainly due to the fact that with such a structure it is easy to control their in-
tersections with subspaces. In particular, the main feature that these constructions
possess is the following property, which is stronger than being a strong blocking
set.

Definition 2.12. A set L of lines in a projective space satisfies the avoidance
property if there is no codimension-2 space meeting every line � ∈ L.
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The relation between these sets of lines and strong blocking sets is the following
observation of Fancsali and Sziklai [27, Theorem 11], whose proof we include for
the sake of convenience.

Theorem 2.13. If a set L of lines satisfies the avoidance property, then the point-
set B = ∪�∈L� is a strong blocking set.

Proof. Let L be a set of lines and let B = ∪�∈L�. Assume that B is not a strong
blocking set. Then there exists a hyperplane Π such that B ∩ Π does not span Π.
In particular, B ∩Π is contained in a hyperplane H of Π.

Since Π is a hyperplane, it meets every line of the projective space. Thus,
� ∩Π �= ∅ for all � ∈ L, but since � ⊆ B and B ∩ Π ⊆ H, it follows that � ∩H �= ∅.
That is, H is a codimension-2 subspace meeting every line of L, and so L does not
satisfy the avoidance property. �
Remark 2.14. As shown in [27, Lemma 13], any collection of lines that satisfy the
avoidance property must have size at least k− 1 + 
(k− 1)/2�, thus giving a lower
bound of roughly 1.5(q+1)(k−1) on the smallest possible size of a strong blocking
set that can be constructed using such a set of lines.

2.3. Expander graphs. In our construction, we will make use of explicit con-
structions of constant-degree expander graphs. Informally, the edges of expander
graphs are very well spread out, ensuring that there are many outgoing edges from
all vertex subsets that are not too large. We refer the reader to the survey [33] for
a formal definition and for various applications of expanders.

Expansion in graphs can be measured by their spectral properties. Given an
n-vertex graph G, we denote the eigenvalues of its adjacency matrix by λ1 ≥ λ2 ≥
· · · ≥ λn. These eigenvalues encode a lot of information about the graph; for
instance, if G is connected and d-regular, then λ1 = d and λ2 < d. A graph G is
called an (n, d, λ)-graph if it is a d-regular graph on n vertices with |λi| ≤ λ for all
i ≥ 2. Lemma 2.15 is one of the central tools for studying such graphs.

Lemma 2.15 (Expander-Mixing Lemma). Let G be an (n, d, λ)-graph and S, T be
two vertex-subsets of G. Denote by e(S, T ) the number of pairs (x, y) ∈ S×T such
that xy is an edge of G. Then∣∣∣∣e(S, T )− d|S||T |

n

∣∣∣∣ ≤ λ

√
|S||T |

(
1− |S|

n

)(
1− |T |

n

)
.

A proof of this lemma can be found in [52, Lemma 4.15]. Note that the error
term on the right-hand side is directly proportional to λ, and so it is natural to try
to make this parameter as small as possible. The Alon–Bopanna bound [44] limits
how far one can go, and motivates the definition of Ramanujan graphs, which are
the ultimate expanders.

Theorem 2.16 (Alon-Bopanna). Let G be an (n, d, λ)-graph. Then λ ≥ 2
√
d− 1−

o(1) as n → ∞.

Definition 2.17. Let G be a connected d-regular graph with the eigenvalues d =
λ1 ≥ λ2 ≥ . . . ≥ λn. If max{|λi| : |λi| < d} ≤ 2

√
d− 1, then G is said to be a

Ramanujan graph.

Lubotsky, Phillips and Sarnak [39] and Margulis [40] gave explicit constructions
of d-regular Ramanujan graphs for d = p+ 1, where p is prime. We denote by Hd
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the d-regular Ramanujan graph constructed by Lubotsky, Phillips and Sarnak. For
the convenience of the reader, we briefly describe this construction.

Fix a prime p ≡ 1 (mod 4). By Jacobi’s four square theorem, there exist exactly
p+ 1 integer solutions to the equation

(1) p = b21 + b22 + b23 + b24, b1 > 0, b2, b3, b4 ≡ 0 (mod 2).

Now, let r ≡ 1 (mod 4) be a distinct prime. To each solution of (1) we associate
the matrix

(2)

(
b1 + ib2 b3 + ib4
−b3 + ib4 b1 − ib2

)
∈ F

2×2
r ,

where i is a square root of −1 in Fr. If p is a quadratic residue modulo r, we define
Hp+1 to be the Cayley graph of PGL(2,Fr) with the p+ 1 generators given in (2),
which has r(r2 − 1) vertices. If p is not a quadratic residue modulo r, then we
define Hp+1 to be the Cayley graph of PSL(2,Fr) with the p+ 1 generators given

in (2), which has r(r2−1)
2 vertices.

It was shown in [39] that the graphs Hp+1 are Ramanujan graphs, and hence
λ2(Hp+1) ≤ 2

√
p. A few years later, this construction was adapted in [43] to pro-

duce (q+1)-regular graphs for prime powers q. However, both of these constructions
have the disadvantage that they only produce (n, d, λ)-graphs with very restricted
choices of n and d. If we slightly relax the requirement that λ ≤ 2

√
d− 1, we can

find explicit constructions for every degree d and every large enough n.

Theorem 2.18 (See [4, Theorem 1.3]). For every positive integer d, and every
ε > 0, there is an n0(d, ε) such that, for all n ≥ n0(d, ε) with nd even, there is an
explicit construction of an (n, d, λ)-graph Gε

n,d with λ ≤ 2
√
d− 1 + ε

3. Integrity of a graph

Crucial to our work is the following graph parameter, known as the (vertex)
integrity of a graph, which was originally introduced in late 1980s as a measure of
the robustness of a network under vertex deletion [7, 9].

Definition 3.1. Let G = (V,E) be a simple connected graph. For any subgraph
H, let κ(G) denote the largest size of a connected component in H. The integrity
of G is the integer

ι(G) := min
S⊆V

(|S|+ κ(G− S)) .

It is a challenging problem to determine the integrity of graphs precisely, or
even asymptotically (see [7] for an old survey and [8,13] for some recent bounds on
different families of graphs). We prove a new lower bound on the vertex integrity
of (n, d, λ)-graphs. First, we introduce another graph parameter and show that it
is closely related to the integrity of a graph.

Definition 3.2. For a graph G, let z(G) denote the largest integer z such that
there are two disjoint sets of vertices in G, each of size z, with no edge between
them.

Proposition 3.3. For every graph G = (V,E) on n vertices,

n− 2z(G) ≤ ι(G) ≤ n− z(G).
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Proof. For the upper bound, let A,B be two disjoint sets of size z with no edges
between them. Put S = V − (A ∪ B). Then any connected component in G − S
is either contained in A or in B, and thus has size at most z. Therefore ι(G) ≤
|S|+ z = (n− 2z) + z = n− z.

We now prove the lower bound. Let z = z(G) and let S be a subset of size
σ such that the maximum size of a connected component in G − S is κ, with
σ + κ = ι(G). Let C1, . . . , Ct be the connected components in G − S of sizes

κ = c1 ≥ · · · ≥ ct. Note that n − ι(G) =
∑t

i=2 ci, and thus it suffices to upper
bound this sum by 2z. Also note that there are no edges between Ci and Cj for
any i �= j. If c1 ≥ z + 1, then by the maximality of z the size of C2 ∪ · · · ∪ Ct

is at most z, and we are done. Therefore we have c1 ≤ z and, for the sake of
contradiction, we assume that

∑t
i=2 ci ≥ 2z+1. Let 2 ≤ s ≤ t be the largest index

s for which cs + · · ·+ ct ≥ z+1. Since cs ≤ c1, it follows that cs + · · ·+ ct ≤ z+ c1.
Therefore, c2 + · · ·+ cs−1 ≥ 2z+1− (z+ c1) = z+1− c1. Let X = C1 ∪ · · · ∪Cs−1

and Y = Cs ∪ · · · ∪ Ct. Then both X and Y have size at least z + 1, which is a
contradiction since they do not have any edges between them. �

Corollary 3.4. For any (n, d, λ)-graph G, we have ι(G) ≥
(

d−λ
d+λ

)
n.

Proof. Let z(G) be as in Definition 3.2. For any two sets S, T of vertices with
e(S, T ) = 0 and |S| = |T | = z(G), Lemma 2.15 implies that

z(G) ≤ λn

d+ λ
.

Applying the lower bound ι(G) ≥ n − 2z(G) from Proposition 3.3 gives ι(G) ≥
n− 2 λ

d+λn = d−λ
d+λn. �

Remark 3.5. A lower bound on the integrity of cubic graphs was proved in [53,
Theorem 8]. The argument there, along with Cheeger’s inequality [33, Theorem
2.4], can be used to prove the weaker bound of ι(G) ≥ nmin{1/2, (d−λ)/(3d−λ)}.
Remark 3.6. When applied to d-regular Ramanujan graphs, Corollary 3.4 yields a
lower bound of ι(G) =

(
1−O

(
d−1/2

))
n. In Appendix A, we show that the largest

possible integrity of n-vertex graphs with average degree at most d is in fact of the
form ι(G) =

(
1−Θ

(
d−1 log d

))
n.

4. Constructing Strong Blocking Sets from Graphs

In this section, we will provide a new general construction inspired by the tetra-
hedron (see Section 2). We will use the data from a projective [n, k, d]q system
and a graph on n vertices in order to construct a set of lines with the avoidance
property, whose union, in light of Theorem 2.13, forms a strong blocking set.

Definition 4.1. Let M = {P1, . . . , Pn} be a set of n points in PG(k − 1, q) and
let G = (M, E) be a graph with vertex set equal to M. We define the set of lines

L(M, G) := {〈Pi, Pj〉 : PiPj ∈ E}
and the set of points

B(M, G) :=
⋃

�∈L(M,G)

�.

Remark 4.2. The size of B(M, G) is at most n + (q − 1)|E|, since there are |E|
lines, each of which contains at most q − 1 points not in M.
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The following result lies at the heart of our construction as it gives a sufficient
condition for the line-set L(M, G) to satisfy the avoidance property.

Proposition 4.3. Let M = {P1, . . . , Pn} be a set of points in PG(k− 1, q) and let
G = (M, E) be a graph whose set of vertices is M. If for every S ⊆ M there exists
a connected component C in G− S such that

〈S ∪ C〉 = PG(k − 1, q),

then the set L(M, G) = {〈Pi, Pj〉 : PiPj ∈ E} satisfies the avoidance property; that
is, no codimension-2 subspace of PG(k − 1, q) meets every line of L(M, G).

Proof. Say G satisfies the property and, for the sake of contradiction, let H be a
codimension-2 subspace that meets every line in L = L(M, G). Let S = H ∩ M
and let C be a connected component of G − S such that S and C together span
the whole space.

For every edge e = PiPj whose endpoints Pi, Pj lie in M \ S, there is a cor-
responding line �ij = 〈Pi, Pj〉 ∈ L, which by our assumption intersects H. Since
Pi, Pj �∈ H, there must be a unique point Qij ∈ �ij ∩H. Thus, writing Q for the
set {Qij : PiPj ∈ E,Pi, Pj /∈ S}, we have S ∪ Q ⊆ H.

Now observe that for an edge PiPj ∈ E with endpoints Pi, Pj /∈ S, if a subspace
contains both Pi and Qij , then it must also contain Pj , which lies on the line
spanned by Pi and Qij . Fixing some point Pr in the component C ⊆ M\ S, since
every point in C is connected by a path to Pr, the previous observation implies
that any subspace containing Q∪ {Pr} must contain all of C. Hence,

〈H ∪ {Pr}〉 ⊇ 〈S ∪Q ∪ {Pr}〉 ⊇ 〈S ∪ C〉 = PG(k − 1, q).

This is a contradiction, as H is a codimension-2 subspace, and thus 〈H ∪{Pr}〉 has
codimension at least 1. �

Proposition 4.3 provides a general method of constructing strong blocking sets
by combining a graph G with a set M of points in a projective space. However,
the construction requires nontrivial interplay between G and M and their local
properties, and it seems quite difficult to design them simultaneously. For this
reason, we will simplify the approach by assuming the worst-case global parameters.

Lemma 4.4. Let M be a projective [n, k, d]q system and let G = (M, E) be a graph
of integrity ι(G) ≥ n− d+ 1. Then L(M, G) satisfies the avoidance property, and
thus B(M, G) is a strong blocking set in PG(k−1, q) of size at most n+(q−1)|E|.

Proof. Let S be an arbitrary subset of M. Since ι(G) ≥ n − d + 1, there exists a
connected component C in G such that |S|+ |C| ≥ n− d+ 1. From the definition
of projective systems (see Section 2), it follows that every hyperplane meets M in
at most n − d points. Therefore, S ∪ C ⊆ M is not contained in any hyperplane
of PG(k − 1, q), thus implying 〈S ∪ C〉 = PG(k − 1, q). From Proposition 4.3, we
conclude that L(M, G) satisfies the avoidance property and thus, by Theorem 2.13,
B(M, G) is a strong blocking set. As per Remark 4.2, |B(M, G)| ≤ n + (q −
1)|E|. �

We now prove the main result of our paper by giving an explicit construction of
strong blocking sets in PG(k − 1, q) with size linear in qk.
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Theorem 4.5. There is an absolute constant c such that for every prime power q,
there exists an explicit construction of strong blocking sets of size at most cqki in
PG(ki − 1, q), for some infinite increasing sequence {ki}i∈N.

Proof. Let R be any constant satisfying 0 < R < 1/2 and let δ = 0.11(1−2R). Let
Mi be the projective [ni, ki, di]q systems given by the Justesen construction [30,36],
which exist for an infinite increasing sequence {ki}i∈N. Then limi→∞ ki/ni = R and
limi→∞ di/ni ≥ (1−2R)H−1

q (1/2) > δ. Therefore, there exists an i0, which we may
assume to be sufficiently large for all subsequent calculations, such that for all i ≥ i0,
we have di/ni ≥ δ and ki/ni ≥ R. Let {Gi}i≥i0 be an explicit family of (ni, d, λ)-
graphs, where d and λ are positive constants for which (d−λ)/(d+λ) ≥ 1−δ+1/ni0 .
From Theorem 2.18, it follows that such an explicit construction of graphs is always
possible. By Corollary 3.4, we have ι(Gi) ≥ (1− δ)ni + 1 ≥ ni − di + 1. Therefore,
by Lemma 4.4, B(Mi, Gi) is a strong blocking set in PG(ki − 1, q) of size at most

ni + (q − 1)
dni

2
<

d

2
qni ≤

d

2R
qki,

where in the first inequality we use d ≥ 3. This concludes the proof with c = d
2R . �

Remark 4.6. We can estimate the universal constant c obtained from this Justesen
construction. If one chooses δ = H−1

q (1/2)(1 − 2R) in the proof of Theorem 4.5,
then in order to make the machinery work, one needs

R <
1

2
− λ

(d+ λ)H−1
q (1/2)

.

Hence, the best upper bound on the size of a strong blocking set in PG(k1 − 1, q)
that one can get with this approach is approximately

d(d+ λ)H−1
q (1/2)

(d+ λ)H−1
q (1/2)− 2λ

qki.

Using Theorem 2.18, the upper bound becomes

d(d+ 2
√
d− 1)H−1

q (1/2)

(d+ 2
√
d− 1)H−1

q (1/2)− 4
√
d− 1

qki.

Observe that, for every q one has H−1
q (1/2) ≥ H−1

2 (1/2) > 0.11, and thus, by

optimizing d, one obtains a universal constant of c = 8277. Since H−1
q (1/2) is

increasing in q, we get better constants for large q, but as we have H−1
q (1/2) < 1/2,

even when q is large the best constant this yields is no less than 292.

5. Strong blocking sets from expander graphs and AG codes

Using the construction of Theorem 4.5, the best constant c that we get is quite
large; see Remark 4.6. However, we can reduce it substantially by replacing the
Justesen codes with some families of AG codes and – depending on the field – by
using field reduction. In this section we optimize the value of the constant c in our
construction for all values of q.

To this end, we use the asymptotically good Algebraic-Geometry (AG) codes,
explicit constructions of which can be found in [28, 29, 51]. In particular, for every
square prime power q and R, δ > 0 satisfyingR+δ ≤ 1−(

√
q−1)−1, we can construct

an (R, δ)q-family of [ni, ki, di]q codes for some increasing sequences {ni}i∈N, {ki}i∈N

and {di}i∈N.
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Definition 5.1. Given a square prime power q, for every R ∈ (0, 1− (
√
q − 1)−1),

set δ = 1−R− (
√
q− 1)−1. Given the (R, δ)q-family of [ni, ki, di]q codes described

above, we denote by {Ani,R}i∈N the associated (R, 1−R− (
√
q − 1)−1)q-family of

projective [ni, ki, di]q systems.

With this notation in place, we can now proceed to describe our improved con-
structions.

5.1. Fields of square order. We start with a simple result, obtained by combin-
ing Lemma 4.4 and Corollary 3.4 with the explicit construction of expander graphs
given by Theorem 2.18.

Theorem 5.2. Let d ≥ 3, let q > 4 be a square prime power such that (
√
q−1)−1 <

d−2
√
d−1

d+2
√
d−1

, and let ε > 0. Then there is an increasing sequence {ki}i∈N for which we

can explicitly construct strong blocking sets in PG(ki − 1, q) of size at most⎛
⎝ d(d+ 2

√
d− 1)(

√
q − 1)

2
(
d(
√
q − 2)− 2

√
q(d− 1)

) + ε

⎞
⎠ kiq.

Before we proceed with the proof, let us explore what this result implies about
that constant in the bound on the size of strong blocking sets in PG(k− 1, q) when
q is a square. For each such q, we can choose an optimal value for d to minimize
the bound. This amounts to finding the minimum values of the function

Fq(d) =
d(d+ 2

√
d− 1)(

√
q − 1)

2
(
d(
√
q − 2)− 2

√
q(d− 1)

) ,
where we can extend the domain to R>2. To simplify the calculations, we can
make the substitution y =

√
d− 1, and then find the local extrema by setting the

derivative equal to zero. This amounts to finding the zeros of the polynomial

ψq(y) =
√
q(y − 1)(y3 − 2y2 − y − 2)− 2(y2 + 1)2.

As q grows, the roots of this polynomial converge to those of (y−1)(y3−2y2−y−2),
and the unique root in our domain of interest (y > 1) is

y0 =
1

3

(
2 + (44− 3

√
177)

1
3 + (44 + 3

√
177)

1
3

)
.

Hence, for large values of q, Fq(d) will be minimized for

d ≈ d0 = 1 + y20 = 3 +
1

3
(459− 12

√
177)

1
3 +

1

3
(459 + 12

√
177)

1
3 ≈ 8.0701,

and so one should take d = 8 or 9. It is straightforward to verify that, for large
enough q, we have Fq(8) < Fq(9), and hence, as q tends to infinity, the optimal
constant this construction provides is

lim
q→∞

Fq(8) =
4

9
(23 + 8

√
7) ≈ 19.63,

a very significant saving compared to the construction from the previous section.
For smaller values of q, we can compute the optimal choice of d and the correspond-
ing constant, and these are given in Table 1.

Sufficiently motivated, we now prove the theorem.
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Table 1. For given ranges of square prime powers, this table pro-
vides the values of d that minimize the size of the strong blocking
sets obtained by Theorem 5.2, and upper bounds on the corre-
sponding sizes.

q argminFq(d) upper bound/k(q + 1)

9 d = 85 292.68
16 d = 37 104.60
25 d = 26 66.86
49 d = 18 43.91
64 d = 16 39.07
81 d = 15 35.83
121 d = 13 31.76
169 d = 12 29.31

256 ≤ q ≤ 361 d = 11 27.06
529 ≤ q ≤ 1024 d = 10 24.44
1369 ≤ q ≤ 11881 d = 9 22.46

q ≥ 12769 d = 8 20.52

Proof of Theorem 5.2. Let ε1 = ε1(d, q) > 0 be sufficiently small, and set λ =
2
√
d− 1+ε1. We have (

√
q−1)−1 < d−λ

d+λ −2ε1, and set R = d−λ
d+λ −ε1− (

√
q−1)−1

and δ = 1−R− (
√
q − 1)−1 = 1− d−λ

d+λ + ε1.

Let {Ani,R}i∈N be the (R, δ)q-family of projective [ni, ki, di]q systems from Def-
inition 5.1. Theorem 2.18 shows that there is some M for which we obtain an
explicit sequence {Gi}i>M of (ni, d, λ)-graphs. Corollary 3.4 gives

ι(Gni
) ≥ ni

d− λ

d+ λ
= ni (1− δ + ε1) .

Since limi→∞
di

ni
= δ, we have ι(Gni

) ≥ ni − di + 1 for sufficiently large i. Thus,

by Lemma 4.4, B(Ani,R, Gni
) is a strong blocking set in PG(ki − 1, q). Since Gni

has 1
2nid edges, we have

|B(Ani,R, Gni
)| ≤ ni + (q − 1)

nid

2
<

nid

2
q.

Now, since limi→∞
ki

ni
= R, we have ni ≤ ki

R−ε1
for sufficiently large i. Making

this substitution, and recalling our choice of R = d−λ
d+λ − ε1− (

√
q− 1)−1, our upper

bound becomes

nid

2
q ≤ d

2(R− ε1)
kiq =

d(d+ λ)(
√
q − 1)

2
(
(d− λ)(

√
q − 1)− (d+ λ)− 2ε1(d+ λ)(

√
q − 1)

)kiq.
If we choose ε1 to be sufficiently small, we obtain the upper bound

|B(Ani,R, Gni
)| ≤

(
d(d+ λ)(

√
q − 1)

2
(
(d− λ)(

√
q − 1)− (d+ λ)

) +
ε

2

)
kiq.
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Recalling that λ = 2
√
d− 1 + ε1, we have

d(d+ λ)(
√
q − 1)

2
(
(d− λ)(

√
q − 1)− (d+ λ)

) =
d(d+ 2

√
d− 1)(

√
q − 1) + ε1d(

√
q − 1)

2
(
d(
√
q − 2)− 2

√
q(d− 1)− ε1

√
q
) ,

and the result follows provided ε1 is suitably small. �
5.2. Fields of non-square order. Theorem 5.2 shows that replacing the Justesen
codes with AG codes in our construction can greatly reduce the size of the strong
blocking sets we obtain. However, the one drawback is that the construction is only
possible over quadratic fields. In this section we show how to use one final trick —
field reduction — to take a strong blocking set over Fq2 and build from it a strong
blocking set over Fq that is not much larger.

We first recall the field reduction map, which we denote by Fq,r. This map
uses the fact that points of PG(K − 1, qr) are 1-dimensional Fqr -subspaces of F

K
qr ,

which in turn can be viewed as r-dimensional Fq-subspaces of FrK
q . Hence, Fq,r

sends points of PG(K − 1, qr) to (r − 1)-spaces of PG(rK − 1, q); see [38] for a
survey on field reduction.

As shown in [3], the field reduction map also preserves some key properties
related to strong blocking sets. We begin with a definition.

Definition 5.3. Let L = {�1, �2, . . . , �t} be a collection of lines in PG(K − 1, q2).
We say a set of points Λ ⊆ PG(K − 1, q2) is viable for L if Λ = ∪t

i=1Λ
(i), where

each Λ(i) =
{
λ
(i)
1 , λ

(i)
2 , λ

(i)
3 , λ

(i)
4

}
⊆ �i is a set of four points that do not lie on a

common Fq-subline of �i.
Given a viable set Λ, we define the derived set to be the set

Fq,2(Λ) =
{
Fq,2(λ

(i)
j ) : i ∈ [t], j ∈ [4]

}
of lines in PG(2K − 1, q).

The following result, obtained by combining [3, Theorem 4.2] and [3, Proposition
4.5], allows us to turn strong blocking sets in PG(k − 1, q2) into strong blocking
sets in PG(2k− 1, q). This was also highlighted in [2], where viable sets are shown
to be outer strong blocking sets.

Theorem 5.4 (See [3]). Let L = {�1, . . . , �t} be a set of lines in PG(K − 1, q2)
whose union forms a strong blocking set. If Λ is a viable set for L, then the union
of the lines in the derived set Fq,2(Λ) is a strong blocking set in PG(2K − 1, q).

This field reduction process is especially effective when used on our strong block-
ing sets B(M, G) constructed from graphs, as the points of M belong to several
lines.

Lemma 5.5. Let M be an [n,K, d]q2 projective system and let G = (M, E) be a
graph. Then we can find a viable set Λ of size at most n + 2|E| for the associated
set of lines L(M, G) in PG(K − 1, q2).

Proof. Let us enumerate the edges of G as E = {e1, e2, . . . , em}. If ei = PaPb,
then the corresponding line �i ∈ L(M, G) is given by �i = 〈Pa, Pb〉. We then take

λ
(i)
1 = Pa and λ

(i)
2 = Pb, and let λ

(i)
3 = Q

(a,b)
3 be an arbitrary third point on �i.

Since any three points on an Fq2-line define a unique Fq-subline, we can then choose

a fourth point λ
(i)
4 = Q

(a,b)
4 that avoids this subline.
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Thus,

Λ =
m⋃
i=1

{
λ
(i)
1 , λ

(i)
2 , λ

(i)
3 , λ

(i)
4

}
= M∪

( ⋃
PaPb∈E

{
Q

(a,b)
3 , Q

(a,b)
4

})

is viable for L(M, G), and |Λ| ≤ n+ 2|E|. �

We can now apply Lemma 5.5 and Theorem 5.4 to the construction from Theo-
rem 5.2 in order to build small strong blocking sets even when q is not a square.

Theorem 5.6. Let d ≥ 3, let q > 2 be such that (q − 1)−1 < d−2
√
d−1

d+2
√
d−1

, and let

ε > 0. Then there is an increasing sequence {ki}i∈N for which we can explicitly
construct strong blocking sets in PG(ki − 1, q) of size at most(

(d+ 1)(d+ 2
√
d− 1)(q − 1)

2
(
d(q − 2)− 2q

√
d− 1

) + ε

)
ki(q + 1).

Proof. This proof follows the same lines as that of Theorem 5.2, and so we will
mainly highlight the changes. As before, we let ε1 = ε1(d, q) > 0 be sufficiently
small and set λ = 2

√
d− 1+ ε1. By assumption, (q− 1)−1 < d−λ

d+λ − 2ε1, and we set

R = d−λ
d+λ − ε1 − (q − 1)−1 and δ = 1−R− (q − 1)−1 = 1− d−λ

d+λ + ε1.

We then take {Ani,R}i∈N
to be an (R, δ)q2-family of projective [ni,Ki, di]q2 sys-

tems, and {Gi}i>M a sequence of (ni, d, λ)-graphs. As before, our choice of param-
eters ensures that for sufficiently large i, we have ι(Gni

) ≥ ni − di + 1. Applying
Lemma 4.4, we deduce that the set of lines L = L(Ani,R, G) has the avoidance
property in PG(K − 1, q2), and hence, by Theorem 2.13, the union B(Ani,R, G) of
those lines is a strong blocking set.

By Lemma 5.5, we can find a set Λ that is viable for L of size at most |Ani,R|+
2e(Gni

) = ni(d+ 1). Theorem 5.4 shows that the union of the lines in the derived
set Fq,2(Λ) is then a strong blocking set in PG(2Ki − 1, q). Since each line in
PG(2Ki − 1, q) has q + 1 points, this strong blocking set has size at most ni(d +
1)(q + 1). Since R = limi→∞

Ki

ni
, recalling our choices for the parameters R and λ

and setting ki = 2Ki then yields the claimed bound. �

As before, we can determine the optimal degree d to use by minimizing the
quantity

Rq(d) :=
(d+ 1)(d+ 2

√
d− 1)(q − 1)

2
(
d(q − 2)− 2q

√
d− 1

) .

It is again advisable to make the substitution d = 1 + y2, following which we find
the zeros of the derivative coincide with those of φq(y) = q(y − 1)(y3 − 2y2 − y −
4)− 2(y2 − y + 1)(y2 + y + 2). As q grows, the roots of φq converge to the roots of
(y− 1)(y3 − 2y2 − y− 4). This polynomial has a unique root y0 that is larger than
1, and this corresponds to

d0 = 1 + y20 = 3 + (31− 2
√
58)

1
3 + (31 + 2

√
58)

1
3 ≈ 9.0967.

Hence the asymptotically optimal degree must be either 9 or 10, and inspection
shows Rq(10) > Rq(9) → 5

49

(
113 + 72

√
2
)
≈ 21.92 as q → ∞.

For large q, then, Theorem 5.6 yields a larger strong blocking set than Theo-
rem 5.2. However, aside from the fact that Theorem 5.6 works over any field, not
just quadratic ones, it also outperforms Theorem 5.2 for small values of q. More
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Table 2. For given ranges of prime powers, this table provides
the degrees d that minimize the sizes of the strong blocking sets
constructed in Theorem 5.6, and upper bounds on their sizes.

q argminRq(d) upper bound/k(q + 1)

3 d = 85 296.12
4 d = 38 107.35
5 d = 27 69.41
7 d = 19 46.32
8 d = 17 41.45
9 d = 16 38.18
11 d = 14 34.08
13 d = 13 31.62

16 ≤ q ≤ 19 d = 12 29.36
23 ≤ q ≤ 32 d = 11 26.73
37 ≤ q ≤ 109 d = 10 24.75

q ≥ 113 d = 9 22.81

precise estimates are given in Table 2, and in comparison to Table 1, we find that
the field reduction can lead to significantly smaller constants when q is small.

6. Conclusion

In this paper, we describe a general machinery for constructing strong blocking
sets in finite projective spaces starting from a graph and a linear code. In particular,
taking explicit constructions of constant-degree expanders and asymptotically good
linear codes, we provide the first explicit construction of strong blocking sets in
PG(k− 1, q) whose size is linear in both k and q. As a consequence, as highlighted
in Theorem 4.5, this also provides an explicitly constructed family of asymptotically
good minimal codes over Fq of rate at least (cq)−1, for some absolute constant c.
These constructions are based on our new results on the vertex integrity of a graph.
Concretely, Corollary 3.4 bounds the vertex integrity of d-regular graphs from below
by a quantity only depending on their eigenvalues. Finally, in Section 5 we optimize
the constant c: we make use of almost Ramanujan graphs and asymptotically
good families of AG codes (Theorem 5.2), and combine this construction with the
field reduction on a viable set of points, obtaining a derived strong blocking set
(Theorem 5.6).

It must be noted that the strong blocking sets from Theorem 5.6 are themselves
the unions of lines in PG(k − 1, q), and if q is a square, we can again apply Theo-
rem 5.4 to derive strong blocking sets in PG(2k − 1,

√
q). We can then repeat this

process further until we reach a field of non-square order. Thus, we can start with a
strong blocking set over Fq2r , and then get a strong blocking set over Fq in r steps.
The calculations, which we omit, are essentially the same as those in the proof of
Theorem 5.6. The only exception is that since our intermediate blocking sets will
not be coming from graphs, we cannot apply Lemma 5.5 each time to produce very
economical viable sets. Instead, since we choose four points from each line to make
a viable set, we shall bound the number of lines in each iteration as being at most
four times larger than in the previous step. This allows us to derive an explicit
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Table 3. For given ranges of prime powers q, this table provides
the best upper bound on the size of the constructed strong blocking
sets in finite projective spaces over the finite field Fq, together
with an indication of which construction achieve this: Original
(Theorem 5.2), 1st derivation (Theorem 5.6) or rth derivation.

q Construction upper bound/k(q + 1)

2 3rd derivation 118
3 2nd derivation 77
4 2nd derivation 59
5 2nd derivation 54
7 1st derivation 47
8 1st derivation 42
9 1st derivation 39
11 1st derivation 35
13 1st derivation 32
16 1st derivation 30
17 1st derivation 29
19 1st derivation 28

23 ≤ q ≤ 25 1st derivation 27
27 ≤ q ≤ 32 1st derivation 26
37 ≤ q ≤ 49 1st derivation 25
53 ≤ q ≤ 109 1st derivation 24
113 ≤ q ≤ 1217 1st derivation 23
1223 ≤ q ≤ 12763 1st derivation 22

q ≥ 12769, q non-square 1st derivation 22
12769 ≤ q < 70603, q square original 21

q > 70603, q square original 20

construction of strong blocking sets in PG(ki − 1, q) of size at most

(
2r−1(d+ 1)(d+ 2

√
d− 1)(q2

r − 1)

d(q2r − 2)− 2q2r
√
d− 1

+ ε

)
ki(q + 1),

for some increasing sequence {ki}i∈N , provided that (q2
r − 1)−1 < d−2

√
d−1

d+2
√
d−1

.

Performing the optimization reveals that the third derivation (r = 3) minimizes
the size of the blocking sets for q = 2 and that the second derivation (r = 2)
is optimal for 3 ≤ q ≤ 5. For q ≥ 7, however, the strong blocking sets from
Theorems 5.2 and 5.6 are already so small — they are better than the previous best-
known constructions [11,20] — that repeated derivations offer no improvement. For
the convenience of the reader, we summarize in Table 3 the smallest strong blocking
sets we obtained using our constructions.

Our construction of strong blocking sets can be used to give explicit constructions
of affine blocking sets with respect to codimension-2 subspaces [14]. Motivated by
this problem, it will be interesting to explore a generalization of our construction to
r-uniform hypergraphs, which would lead to a construction of affine blocking sets
with respect to codimension-r subspaces.
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Appendix A. Tight bounds for integrity

In this appendix, we show that the maximum possible integrity of an n-vertex

graph of average degree d is
(
1−Θ

(
log d
d

))
n, complementing the bounds given in

Section 3.

Proposition A.1. Let d ≥ 2.

(i) If n ≥ 48d, the integrity of any n-vertex graph G of average degree at most
d satisfies

ι(G) ≤
(
1− log d

4d

)
n.

(ii) For all n ≥ d, there are n-vertex graphs G of average degree at most d with

ι(G) ≥
(
1− 4 log d

d

)
n.

Proof. For both parts, we shall appeal to Proposition 3.3, which asserts that n −
2z(G) ≤ ι(G) ≤ n − z(G), where z(G) is the largest z such that G contains two
disjoint sets of z vertices that have no edges between them.

For part (i), we need to show that z(G) ≥ n log d
4d for all such graphs G. This

follows from the Kövári–Sós–Turán Theorem [37], applied to the complement of G.
For the sake of completeness, though, we provide a simple probabilistic proof.

Let A be a random subset of V = V (G) obtained by selecting each vertex of G

independently with probability p = log d
2d . The size of A is then a binomial random

variable, and the Chernoff bound shows that |A| ≥ n log d
4d with probability at least

1− e−n log d/(16d), which is at least 1− 1
d3 .

We now define B to be the set of all vertices in V \A that have no neighbors in
A. Note that if a vertex v has degree dv, then P(v ∈ B) = (1− p)dv+1, as we need
that neither v nor any of its dv neighbors belong to A. Thus, the expected size of
B is

∑
v∈V (1− p)dv+1. Since (1− p)x is a convex function, and the average degree

is at most d, we have

E[|B|] =
∑
v∈V

(1− p)dv+1 ≥ n(1− p)d+1 = n

(
1− log d

2d

)d+1

.

Computation shows that this is at least 3n
4d1/2 . Since |B| cannot be larger than n,

we have

3n

4d1/2
≤ E[|B|] ≤ nP

(
|B| ≥ n

2d1/2

)
+

n

2d1/2
P

(
|B| ≤ n

2d1/2

)
≤ nP

(
|B| ≥ n

2d1/2

)
+

n

2d1/2
,

whence it follows that P
(
|B| ≥ n

2d1/2

)
≥ 1

4d1/2 > 1
d3 .

Hence, with positive probability, we have both |A| ≥ n log d
4d and |B| ≥ n

2d1/2 ≥
n log d
4d , and the existence of such a pair of sets shows z(G) ≥ n log d

4d , as required.
For part (ii), we need to show the existence of a graph G, of average degree at

most d, for which z(G) ≤ 2n log d
d . Note that we always have z(G) ≤ n

2 , and so this
is trivial if d ≤ 8.
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Now consider the random graph G
(
n, d

n

)
, where every edge is present indepen-

dently with probability p = d
n . The number of edges is a binomial random variable,

whose median is at most
⌈
d(n−1)

2

⌉
, and hence P

(
e(G) > dn

2

)
< 1

2 .

We can use a straightforward union bound to show that there are no large subsets
without any edges between them. Indeed, the expected number of pairs of sets of
z vertices such that all z2 cross-edges are missing is at most(

n

z

)2

(1− p)z
2 ≤

(ne
z

)2z

e−pz2

=

(
n2e2

z2epz

)z

.

Substituting our choice of z = 2n log d
d , this simplifies to

(
e2

4 log2 d

) 2n log d
d

. Since

d ≥ 8, this is at most 2−
2n log d

d , which is less than 1
2 .

Thus, with positive probability, G is such that e(G) ≤ dn
2 and z(G) ≤ 2n log d

d ,
as required. �

Remark A.2. We have dealt with graphs of bounded average degree for simplicity,
so that we could use the binomial random graph in part (ii). If one is primarily
interested in d-regular graphs, as we have been using in this paper, then the upper
bound in part (i) naturally still applies. For the lower bound in part (ii), one
must replace the binomial random graph with the random d-regular graph. At the
expense of more complicated calculations, a similar bound can be shown, provided
d is not too small.
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