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Abstract: Even though COVID-19 is no longer the primary focus of the global scientific community, its
high mutation rate (nearly 30 substitutions per year) poses a threat of a potential comeback. Effective
vaccines have been developed and administered to the population, ending the pandemic. Nonetheless,
reinfection by newly emerging subvariants, particularly the latest JN.1 strain, remains common. The
rapid mutation of this virus demands a fast response from the scientific community in case of an
emergency. While the immune escape of earlier variants was extensively investigated, one still needs
a comprehensive understanding of how specific mutations, especially in the newest subvariants,
influence the antigenic escape of the pathogen. Here, we tested comprehensive in silico approaches to
identify methods for fast and accurate prediction of antibody neutralization by various mutants. As a
benchmark, we modeled the complexes of the murine antibody 2B04, which neutralizes infection by
preventing the SARS-CoV-2 spike glycoprotein’s association with angiotensin-converting enzyme
(ACE2). Complexes with the wild-type, B.1.1.7 Alpha, and B.1.427/429 Epsilon SARS-CoV-2 variants
were used as positive controls, while complexes with the B.1.351 Beta, P.1 Gamma, B.1.617.2 Delta,
B.1.617.1 Kappa, BA.1 Omicron, and the newest JN.1 Omicron variants were used as decoys. Three
essentially different algorithms were employed: forced placement based on a template, followed by
two steps of extended molecular dynamics simulations; protein–protein docking utilizing PIPER
(an FFT-based method extended for use with pairwise interaction potentials); and the AlphaFold
3.0 model for complex structure prediction. Homology modeling was used to assess the 3D structure
of the newly emerged JN.1 Omicron subvariant, whose crystallographic structure is not yet available
in the Protein Database. After a careful comparison of these three approaches, we were able to
identify the pros and cons of each method. Protein–protein docking yielded two false-positive results,
while manual placement reinforced by molecular dynamics produced one false positive and one
false negative. In contrast, AlphaFold resulted in only one doubtful result and a higher overall
accuracy-to-time ratio. The reasons for inaccuracies and potential pitfalls of various approaches
are carefully explained. In addition to a comparative analysis of methods, some mechanisms of
immune escape are elucidated herein. This provides a critical foundation for improving the predictive
accuracy of vaccine efficacy against new viral subvariants, introducing accurate methodologies, and
pinpointing potential challenges.

Keywords: SARS-CoV-2; mutations; molecular dynamics; protein–protein docking; AlphaFold;
homology modeling; immune escape; benchmark

1. Introduction

Mutations in SARS-CoV-2, the virus that causes COVID-19, were a significant topic
of research and concern throughout the pandemic. These mutations can alter the virus’s
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features, including its transmissibility, virulence, and interaction with the human immune
system. Some mutations may increase the virus’s infectivity or transmissibility, while
others might decrease them [1,2]. Viral evolution has led to the emergence of variants of
concern, such as Delta and Omicron (since late November 2021) (Figure 1a), which raised
concerns about possible immunity evasion and increased transmissibility [3]. Occurred
mutations may impact the effectiveness of approved medications and vaccinations [4].
Thus, understanding their impact on viral properties is extremely important.û

 

Figure 1. Mutations in SARS-CoV-2 receptor-binding domain: (a) mutation progression ov

t

Figure 1. Mutations in SARS-CoV-2 receptor-binding domain: (a) mutation progression over time
(Figures are adapted from Nextstrain.org, used under a CC-BY-4.0 license; https://nextstrain.org/
ncov/gisaid/global/all-time (accessed on 1 May 2024)); (b) scheme of spike neutralization by 2B04
antibody; (c) list of mutations occurring in RBD of selected mutant structures.

Significant progress has been made in understanding SARS-CoV-2 mutant immune
escape using experimental methods. Classifications and structural analyses shed light on
the immune responses against SARS-CoV-2 [5], providing a blueprint for the design of
antibody cocktails as immunogens for vaccines. In [6], the spike glycoprotein’s N-terminal
domain was identified as a promising target for therapeutic monoclonal antibodies (mAbs)
against COVID-19. Specifically, the 4A8 mAb exhibited high neutralization potency against
authentic and pseudotyped SARS-CoV-2 without binding to its receptor-binding domain
(RBD). Eleven potent neutralizing antibodies against COVID-19 were identified in [7]. With
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a large number of experimental works concentrating on the Wild-Type (WT) RBD or selected
mutants [5–11], some works provide a more comprehensive picture for the comparison of
mutant immune escape [12–16]. The pseudovirus system makes deep mutational scanning
of the complete SARS-CoV-2 spike possible. In [17], the genotype–phenotype-linked
lentivirus pseudotyping method served as the basis for a mutational scanning platform to
produce libraries of the Omicron BA.1 and Delta spikes. Nonetheless, the high cost of these
assays makes evaluating a wide range of variants and strains experimentally challenging.
This results in significant knowledge gaps that require further, more exhaustive, and more
detailed investigation of the influence of mutations.

Computational methods allow for high-throughput analysis of big datasets, enabling
researchers to systematically evaluate how mutations affect antibody binding and neu-
tralization across various variants. Experimental studies alone may not capture the full
spectrum of antigenic changes associated with SARS-CoV-2 mutants. Based on structure-
and sequence-based analyses, computational approaches can predict the antigenic effects
of mutations, offering insights into how mutations change the immune system’s detection
of the virus. Molecular dynamic (MD) simulation and Molecular Mechanics/General
Born Surface Area (MM/GBSA) have been shown to be promising tools to explore the
effect of mutations on the binding affinity of monoclonal antibodies (mAbs) [18–23] and
human angiotensin-converting enzyme (ACE2) [19,24–27] against the receptor-binding
domain (RBD) region of the S protein. Various computational tools, such as AMBER (V 16,
V 18, and V 20), GROMACS (V 2022.5), NAMD (V 2.13 and V 2.14), and Desmond (V 3.0),
have been utilized. MD simulations are often enhanced by combining them with other
approaches, such as density functional calculation [8] or FoldX 5.0, as used in [28] to predict
escape mutations, focusing on the SARS-CoV-2 receptor-binding domain. Protein–protein
docking is another widely employed approach for examining the RBD’s protein–protein
interactions. This computational technique allows one to predict the binding pose and
interactions between proteins with high precision. Various servers and tools are utilized
to facilitate these studies. For instance, the ClusPro 2.0 server has been extensively used
to model RBD–ACE2 interactions, providing valuable insights into their binding mecha-
nisms [29,30]. Similarly, the HDOCK server supports a range of applications, including the
analysis of RBD–ACE2 interactions [31], RBD interactions with amyloidogenic proteins [32],
intraviral protein–protein interactions [33], and SARS-CoV-2 Orf7a/LFA-1 complexes [34].
The PatchDock and COVID-19 Docking Server were used for a drug discovery purpose,
targeting RBD/ACE2 interactions using potential peptide-based drugs [35]. HawkDock
was utilized in [36] to investigate the RBD–ACE2 interactions. As an alternative to physics-
based methods, machine learning (ML) techniques have gained popularity and are widely
implemented to study protein–protein interactions of SARS-CoV-2. These include an artifi-
cial intelligence-based framework, UniBind [37]; the Pipeline for the Extraction of Predicted
Protein–Protein Interactions (PEPPI) [38]; various classifiers [39–41]; and language mod-
els [42], among others. The recently introduced AlphaFold 3 model, which is available
for non-commercial use, demonstrates substantially high antibody–antigen prediction
accuracy [43].

This work aims to compare and evaluate existing approaches and tools for the rapid
and accurate assessment of antigen–antibody interactions, focusing on their potential
influence on immune escape. As a benchmark model, we used experimental results from a
study on SARS-CoV-2 neutralization by two murine antibodies targeting the RBD [13]. In
this work, murine antibody 2B04 was shown to neutralize the spike glycoprotein RBD of
specific variants by blocking its interactions with the host ACE2 receptor (Figure 1b). Errico
et al. [13] performed structural comparisons that showed that 2B04 targets a distinct epitope
in the RBD of the SARS-CoV-2 spike protein, overlapping significantly with the human
2–4 antibody. Both antibodies block ACE2 binding by targeting the RBM ridge, a key area
for viral neutralization. However, the 2–4 antibody is known only to bind the “down”
conformation of the RBD [44], while 2B04 bound both “up” and “down” conformations
in [13]. In addition, this binding mechanism is shared with several other antibodies, namely
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CB6, B38, CC12.1, CC12.3, C105, COVA2-04, CV30, COVA2-39, REGN-10933, BD23, and
P2B-2F6. This suggests that the computational insights gained from 2B04 can be applied to
study and predict the functions of other neutralizing antibodies targeting the RBD–ACE2
binding interface, providing a template for broader antibody research. The wild-type
(WT), Alpha, and Epsilon variants’ RBDs showed the highest affinity towards the antibody
and were, thus, selected as positive controls. Meanwhile, the RBDs of Beta, Gamma, and
Kappa exhibited immune escape and were chosen as decoys. Additionally, we investigated
Delta and Omicron BA.1 and the newest Omicron JN.1, for which experimental data were
unavailable at the time. The studied variants and mutations occurring in their RBDs are
illustrated in Figure 1c.

In this study, we aimed to explore three fundamentally different approaches to as-
sessing antigen–antibody interactions, each offering unique perspectives and advantages.
These methods—(1) forced placement based on a template with further MD simulation
utilizing Desmond, (2) protein–protein docking utilizing PIPER (both integrated into the
Schrödinger Software Package), and (3) AlphaFold 3.0 antibody–antigen complex structure
prediction—were chosen based on their proven accuracies in their respective categories
of methods. Forced placement followed by MD simulation provides a comprehensive
view of dynamic molecular interactions [45]. This approach is particularly advantageous
for studying how mutations impact the flexibility and stability of protein complexes over
time [46]. MD simulations allow us to observe real-time atomic movements, offering an
in-depth understanding of how structural changes can influence binding affinity [47,48].
Unlike more static computational methods, MD simulations capture the conformational
flexibility of proteins, which is crucial for identifying mutations that might lead to immune
escape. This level of detail is fundamental when dealing with complex interactions and
subtle structural changes. On the other hand, protein–protein docking offers a rapid and
efficient way to predict binding poses and interactions between proteins [29,49,50]. This
method is ideal for high-throughput analysis and initial screenings, as it quickly generates
potential interaction models between the receptor-binding domain (RBD) and antibodies.
While docking may not provide the same level of detail as MD simulations, it compensates
with its speed and lower computational demands. Furthermore, docking does not require
an accurate initial guess of the antigen geometry, which simplifies the process compared to
MD simulations and allows for effective screening of numerous mutants. Finally, the recent
advancements in AlphaFold, particularly with the introduction of AlphaFold 3.0, have sig-
nificantly enhanced the accuracy of predicting antibody–antigen complexes. AlphaFold’s
machine learning algorithm has demonstrated superior performance over traditional ho-
mology modeling in many cases [51,52]. AlphaFold’s advancements in the modeling of
complex interactions represent a valuable tool for understanding how new mutations may
affect antigen–antibody interactions, especially considering that it has not yet been tested
for SARS-CoV-2 RBD/antibody complex prediction.

Each method’s pros, cons, required application resources, and potential pitfalls are
discussed further.

2. Materials and Methods

Each variant was assigned a color for illustration purposes—wild type (black), Alpha
(green), Beta (cyan), Gamma (purple), Delta (orange), Epsilon (pink), Kappa (red), and
Omicron BA.1 (yellow), and Omicron JN.1 (grey)— which are maintained throughout this
manuscript (Figure 2). The structures of a SARS-CoV-2 wild type complexed with murine
antibody 2B04 (PDB ID: 7K9I) and RBDs of Alpha (B.1.1.7), Beta (B.1.351), Gamma (B.1.128),
Delta (B.1.617.2), Epsilon (B.1.429), Kappa (B.1.617.1), and Omicron BA.1 (B.1.1.529) were
retrieved from the Protein Databank (https://www.rcsb.org/ (accessed on 1 January 2024))
with PDB IDs 7EDJ, 7LYK, 7NXC, 7W9I, 7N8H, 7V87, and 7T9L, respectively. Each struc-
ture was prepared using the Schrödinger Software Package (Schrödinger Release 2024-1:
Schrödinger, LLC, New York, NY, USA, 2024). SARS-CoV-2 mutant spikes were trimmed
to contain only their RBDs. Chain A was used for each variant, except for the Gamma and
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Delta variants, where chain B and chain E were used as RBDs, respectively. Every target
protein was prepared using Protein Preparation Wizard. The bond orders were assigned,
and all hydrogen atoms were replaced. Protonation states were generated using Epik for
a pH of 7.4 ± 0.0 (physiological pH), the hydrogen bond network was optimized, and
restrained minimization of all atoms was carried out using OPLS4e force fields [53]. The
importance of glycosylation in studying the RBD interactions has been numerously re-
vealed. In [54], it was shown that deglycosylation reduces the interaction strength between
SARS-CoV-2 and SARS-CoV RBDs and ACE2 protein. Nonetheless, being reduced overall,
the dissociation constants maintained similar trends, with the SARS-CoV-2 RBD binding
stronger than that of its predecessor. Moreover, as shown in [13], the glycans on the RBD do
not contribute to the binding of 2B04. Thus, our work does not involve the use of glycans to
simplify mutant comparison models. The hydrophobic/hydrophilic surface was calculated
for the prepared WT RBD/2B04 complex.

 

t

Figure 2. Schematic representation of approaches used in this study.

The 3D structure of the newly emerged JN.1 subvariant of Omicron SARS-CoV-
2 RBD was unavailable in the Protein Databank at the time of the study. Thus, ho-
mology modeling was used to recreate it. We used the GISAID Nextstrain database
(https://nextstrain.org/ncov/gisaid/global/all-time (accessed on 1 January 2024)) to re-
trieve information regarding the mutations that occurred in RBD. For the majority of the
reported sequences, these mutations were G339H, K356T, S371F, S373P, S375F, T376A,
R403K, D405N, R408S, K417N, N440K, V445H, G446S, N450D, L452W, L455S, N460K,
S477N, T478K, N481K, E484K, F486P, Q498R, N501Y, and Y505H (Figure 1c). A model was
created using Schrödinger’s Homology Modeling module, with the original Omicron BA.1
(PDB ID: 7T9L) used as a template (Figure 3a). Secondary structure prediction was carried
out using the ClustalW alignment method, which works best for structures with high se-
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quential similarity [55]. The model was aligned and further built using a knowledge-based
method. A molecular dynamics simulation was performed to equilibrate the structure. The
system was prepared by adding six chlorine anions for neutralization and filled out using
the SPC water solvation model in the orthorhombic minimized periodic box. The OPLS4e
force field was used with Desmond’s [56] default eight-stage relaxation protocol, which
preceded the actual run. The model was subjected to 200 ns molecular dynamics simula-
tion for structure refinement, as suggested in our previous work [45]. RMSD and RMSF
plots were built to validate the quality of the created model. The most populated cluster
generated by the Desmond trajectory clustering method was used for further calculations.

 

Figure 3. MD simulation of the Omicron JN.1 RBD’s homology model: (a) scheme of a general
homology modeling approach and superposition of the 10 most populated clusters (colored ribbons)
after 200 ns MD simulation and reference Omicron BA.1 structured (black ribbons) with labeled
mutated residues; (b) RMSD plots; (c) RMSF plots; (d) secondary protein structure.
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For the forced alignment method, prepared mutants’ RBDs were aligned based on a
template WT RBD/2B04 complex (PDB ID: 7K9I), as shown in Figure 1b. The WT RBD
of this complex was substituted by mutant complexes to create the initial structures of
Alpha, Beta, Gamma, Delta, Epsilon, Kappa, Omicron BA.1, and Omicron JN.1 complexes.
Complexes were further subjected to short 100 ns MD simulations utilizing the Desmond
module with the same settings as described for equilibration of the homology model, except
the solvation box size was set to be buffered at 10 × 10 × 10 Å for all complexes. The
trajectory frame clustering method was used to determine the most populated structures
throughout the trajectory. These structures (equilibrated complexes) were placed in a
20 × 20 × 20 Å orthorhombic periodic buffer box and solvated with SPC water molecules.
The trajectory clustering method was used again to retrieve the final structures, which were
analyzed using the simulation interaction diagram and protein interaction analysis. For
each complex, the sum of formed hydrogen bonds (HBs), salt bridges, π-stacking, vdW
clashes, surface complementarity scores, and buried-solvent accessible surface area scores
(SASAs) was calculated. Energies were calculated using Prime.

Protein–protein docking was carried out using PIPER [57]. The antibody from the
prepared WT RBD/2B04 complex was extracted, and all mutants’ RBDs were docked into it
as antigens with a default of 70,000 antigen rotations to probe and a maximum of 30 poses
being refined and reported as outputs. This approach used five different settings: default
all-structure docking, docking with masked non-CDRs (complementarity-determining
regions), and docking with masked non-CDRs and set constraints. We analyzed the
geometry of the prepared WT RBD/2B04 complex to set the specific constraints. F486 was
identified as an essential residue of the RBD that fits into a tight hydrophobic pocket of
the antibody near its residue, Y34. The distance between these residues was set as a first
constraint to vary between 2 and 10 Å for the first case of docking with masked non-CDRs
and set constraints. A second constraint was added to the second docking case with masked
non-CDRs and set constraints. In addition to the F486/Y34 pair, we fixed the distance
between the antigen’s G446 and the antibody’s Q1 residues to vary between 2 and 10 Å.
Finally, the last setting used the same two constraints but with a more significant variation
of distances (between 2 and 20 Å) to allow more flexibility. All 30 poses for each complex
produced by protein–protein docking were analyzed by their PIPER pose energy, PIPER
pose score, and RMSD aligned on the prepared WT RBD/2B04 complex. The specific score
was calculated using Formula (1) to fit experimental data.

PPI Score =
pose number

number o f poses
× RMSD (1)

For poses with the smallest RMSD, protein interaction analysis was performed.
Finally, the third method used in this work was complex structure prediction utilizing

the AlphaFold Server (https://alphafoldserver.com/ (accessed on 20 June 2024)). [35] For
this approach, the sequences of the antibody and all RBDs were retrieved in FASTA format
and used as inputs for the complexes’ structure prediction. The following seeds were used
for the WT, Alpha, Beta, Gamma, Delta, Kappa, Epsilon, Omicron BA.1, and Omicron JN.1
RBD/antibody complexes: 1505197086, 759516498, 1264705315, 2105578610, 1939194179,
91611597, 1799657852, 476548122, and 2128069589, respectively. The predicted template
modeling (pTM) and the interface-predicted template modeling (ipTM) scores, which
measure the accuracy of the structure, were retrieved from this web server. Additional
scoring was performed using the ranking score, which incorporates pTM; ipTM; the fraction
of the prediction structure that is disordered (disorder), as measured by accessible surface
area; and the relative number of clashing atoms (has_clash) in a single number expressed
by the following equation:
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0.8 × ipTM + 0.2 × pTM + 0.5 × disorder 2 100 × has_clash (2)

The obtained structures were further exported and analyzed in the Maestro interface
to calculate their RMSDs aligned on the prepared WT RBD/2B04 complex.

3. Results
3.1. Homology Modeling

Structure-based computational approaches have certain pitfalls, as they require the
availability of a 3D structure. With the extensive mutation rate of SARS-CoV-2, only the
most concerning variants and mutant structures have been analyzed and deposited in the
Protein Databank. This creates a knowledge gap and limits structure-based investigations.
One often knows only the sequences of newly emerging variants for a significant amount
of time. In such cases, homology modeling is a valuable tool for structure prediction.
This study used the Omicron BA.1 RBD template structure (PDB ID: 7T9L) to create a
model of the newly emerged Omicron JN.1 mutant (Figure 3a). As shown in our previous
works [45,58], molecular dynamics (MD) simulation aids in further equilibration of the
built model. Analysis of the MD trajectory provides decent validation for a model built
using this approach. The root-mean-square deviation (RMSD) was analyzed for Cα, the
backbone, side chains, and all heavy atoms (Figure 3b), indicating no significant movement
throughout the 200 ns simulation time. The variance of deviations within the trajectory
did not exceed 1.5 Å, suggesting high structural stability. Similarly, the root-mean-square
fluctuation (RMSF) plot (Figure 3c) did not show significant fluctuations in the backbone
and Cα. Slightly higher fluctuations were noticed for side chains and heavy atoms in loop
areas, specifically between residue numbers 368–383, located far from the binding interface
of the spike’s RBD. Finally, the secondary structure was mainly maintained throughout the
trajectory, as shown in Figure 3d. After validation of the developed model, it was safe to
assume that it could be used for further investigations.

3.2. Forced Placement and MD Simulations

The first method tested here was forced placement based on an existing template of
wild-type SARS-CoV-2 complexed with murine antibody 2B04 (PDB ID: 7K9I). To create
preliminary models of the complexes, the wild-type RBD was substituted with that of each
mutant. Unoptimized structures would not provide any legitimate information on complex
stability. Thus, the preliminary complexes were subjected to a 100 ns molecular dynamics
simulation to refine protein–protein interactions in a realistic environment.

This trajectory’s RMSD and RMSF plots (Figure 4a,b) showed high stability for all
variants except Beta and Epsilon. While it was expected that the Beta RBD would have little
to no binding affinity towards the 2B04 antibody, the low stability of the Epsilon variant
was unexpected, given its reported high neutralizing power. Interestingly, not only did the
RBDs of these variants exhibit high fluctuations, but the antibody itself became less stable,
as seen in its RMSF (Figure 4c).

After clustering the obtained trajectories, we chose the most populated cluster for each
variant (Figure 4d, Supporting Table S1). However, to further elucidate the unexpected
trajectory of the Epsilon complex, an additional structure was extracted for further inves-
tigation. We attempted to select the complex that most closely resembled the template
wild-type RBD complex. For Epsilon, this was the fifth most populated cluster. Each
equilibrated complex was subjected to an additional 200 ns MD simulation, this time in
a twice as sizeable periodic box (to provide more space for a potential dissociation of a
complex). The results of this run are illustrated in Figure 5.
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Figure 4. Results of the preliminary 100 ns molecular dynamics simulations: (a) RMSD plots; (b) RBD
RMSF plot; (c) antibody RMSF plot (H and L stand for antibody subunits); (d) superposition of
the most populated clusters from the molecular dynamics trajectory (Epsilon* is the fifth most
populated cluster with the lowest RMSD). Average GPU time: 6H 282 5422; average total rate per
step: 375.36 ns/day; Linux-x86_64. Resources: Z8G4 2.4 GHz Intel Xeon Silver 4214R 12-Core 64GB
2933 MHz DDR4 ECC Registered RAM NVIDIA Quadro RTX A5000 1TB.

Interestingly, the Beta RBD–antibody complex showed a stable trajectory and low
overall fluctuations this time (Figure 5a–c), indicating that the previous 100 ns run followed
by clustering helped equilibrate the complex. Similarly, complexes of other mutants were
stable, with only a slight change in RMSD for the JN.1 complex after 160 ns of simulation
(Figure 5a). However, the second run did not resolve the instability in the case of the
Epsilon complex. Structures from both the first and fifth most populated clusters from
the equilibration run showed significant deviations and fluctuations for both the RBD and
the antibody. Clustering revealed that both trajectories resulted in complexes with low
similarity to the template structure (Supporting Table S2, Figure S1).
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Figure 5. Results of the 200 ns molecular dynamics simulations: (a) RMSD plots; (b) RBD RMSF
plot; (c) antibody RMSF plot (H and L stands for antibody subunits); (d) superposition of the most
populated clusters from the molecular dynamics trajectory (Epsilon* is a 200 ns simulation with
the initial structure derived from the fifth most populated cluster of the 100 ns preliminary MD
simulation). Average GPU time: 45H 192 1222; average total rate per step: 106.40 ns/day; Linux-
x86_64, Resources: Z8G4 2.4 GHz Intel Xeon Silver 4214R 12-Core 64GB 2933 MHz DDR4 ECC
Registered RAM NVIDIA Quadro RTX A5000 1TB.

Clustered complexes were extensively analyzed through protein interaction analysis
(Supporting Tables S3–S12), as summarized in Table 1. As expected, the highest number
of interactions was observed for the wild-type complex, forming ten hydrogen bonds and
π–π stacking between Y489 of the spike and Y100 of the antibody (Figure 6a). Critical
residues for hydrogen bonding included E484, N487, C488, and S494. Of these residues,
only E484 was mutable, while the other four were conserved throughout all mutants
studied here. Strong interactions were also observed for the Alpha complex, yielding
eight hydrogen bonds, one salt bridge, one instance of π–π stacking, and one van der
Waals (vdW) clash. The N487 residue was not crucial for the formation of the complex,
while the other residues that participated in the formation of the wild-type complex were
also present (Figure 6b). The Beta, Gamma, and Delta complexes had fewer interactions
than the first two complexes (Figure 6c–e). However, the difference was not as significant
as expected based on experimental data. An unexpectedly high number of interactions
was predicted for the Kappa variant’s complex, which formed eight hydrogen bonds, one
instance of π–π stacking, and one vdW clash (Figure 6f), similar to the Alpha variant’s
complex. Overall, the fewest interactions were observed in the trajectories of complexes of
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the Epsilon (Figure 6g,h) and Omicron mutants (Figure 6i,j) with antibodies. While these
results were expected for the Omicron spikes, the Epsilon results were predicted to be false
negatives, considering the available experimental data.

Interestingly, all complexes except for the first Epsilon complex (Figure 6g) showed
the S494 residue of RBD being conserved to form hydrogen bonds with the N31 residue of
the antibody.

Table 1. Protein interaction analysis of the final RBD/antibody complexes after 200 ns MD simulation
clustering.

Variant #HB
#Salt

Bridges
#p

Stacking
#vdW

Clashes

The Sum of
Surface

Complementarity

The Sum
of Buried

SASA

WT 10 0 1 0 10.44 9.625
Alpha 8 1 1 3 13.61 9.269
Beta 6 0 0 2 13.63 13.891

Gamma 7 0 1 1 10.75 7.83
Delta 7 0 2 0 8.19 7.71

Kappa 8 0 1 2 10.73 8.128
Epsilon 2 0 0 0 9.87 7.162

Epsilon * 4 0 1 0 9.03 7.335
Omicron BA.1 6 0 1 0 9.42 7.854
Omicron JN.1 4 0 0 2 8.32 7.971

* The most populated cluster of the 200 ns simulation, with the initial structure derived from the fifth most
populated cluster of the 100 ns preliminary MD simulation.

3.3. Protein–Protein Docking

The next tested approach was protein–protein docking, which was implemented in
Schrödinger’s PIPER module. Table 2 summarizes the results of testing five different
settings for WT antibody/antigen docking. The first setting (default algorithm) yielded a
relatively accurate prediction, with the most populated pose having an RMSD of 7.646 Å
compared to the prepared crystallographic complex. The remaining poses had RMSD
values ranging from 10 Å to 40 Å. Masking the non-CDR region (second setting) improved
the overall accuracy, resulting in RMSD variations not exceeding 34 Å. However, the most
populated cluster wasn’t the one with the lowest RMSD in this case. Pose 4 yielded the
most accurate result, with an RMSD of 3.63 Å compared to the crystallographic structure.

We expected the addition of constraints to reduce variations and improve accuracy.
A careful analysis of the geometry of the prepared WT RBD/2B04 complex was required
to set specific constraints. F486 was identified as an essential residue of the RBD that fits
into a tight hydrophobic pocket of the antibody near its Y34 residue. The distance between
these residues was chosen as the first constraint and set to vary between 2 and 10 Å for the
third setting. In the case of the fourth setting, an additional constraint was added. One
more pair of residues was restrained, with the distance between the antigen’s G446 and
the antibody’s Q1 residues fixed to vary between 2 and 10 Å. For the fifth and the last
setting, both constraints were used, with the distance increased to allow more flexibility,
ranging from 2 to 20 Å. Interestingly, restrained docking did not improve accuracy; the
lowest RMSD value of 6.091 Å was measured when two residues were restrained within
20 Å. This value was still more significant than the one for the masked non-CDR without
any constraints.

Based on the benchmark results (Table 2), protein–protein docking with the masked
non-CDR and no constraints was used for all further calculations. Similar to the results for
the WT RBD/antibody complex, protein–protein docking for most other variants produced
at least one pose closely resembling the template. However, it was never the most populated
pose. The pose numbers of the lowest RMSD structure, the PIPER pose energy and score,
and the pose RMSD were collected and analyzed (Figure 7a, Supporting Table S13). The
WT complex exhibited the lowest RMSD among mutants, followed by Gamma, Alpha,
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Beta, Epsilon, Delta, Kappa, Omicron BA.1, and Omicron JN.1, which has highest RMSD.
Although Gamma and Beta had significantly lower RMSD values, the poses exhibiting
these RMSDs were not the most favorable, ranked 18th and 23rd, respectively. It must be
noted that the docking energy and score can rarely be used for scoring. In our study, these
values did not correlate with the experimental data, and the only accurate method to rank
complexes was comparison of their RMSD values for specific poses. Figure 7b–j illustrate
the superposition of all 30 poses for each variant complex, with the lowest RMSD pose
marked at the bottom of each picture. Despite the high variance of poses for all complexes,
the docked poses for the positive controls, WT (Figure 7b), Alpha (Figure 7c), and Epsilon
(Figure 7h) often overlapped with the reference structure. In contrast, the docked poses of
decoys, such as the Kappa (Figure 7g), as well as Delta (Figure 7f), Omicron BA.1 (Figure 7i),
and Omicron JN.1 (Figure 7j) complexes, were significantly different from the reference.
However, the results for Beta and Gamma were not entirely conclusive, as they showed
relatively low RMSDs. Protein–protein interactions for the poses of each complex were
analyzed, as highlighted in Figure 7a. We hoped to find that, disregarding the low RMSDs,
Beta and Gamma RBD/antibody complexes would show fewer interactions. However, the
data (Table 3) brought even more inconclusiveness, showing WT and Kappa complexes
as the most favorable based on the number of formed interactions. None of these values
correlate significantly with experimentally known activities, leading us to rely on RMSD
scoring as the most convenient option.

Table 2. Results of protein–protein docking between the antibody and the WT RBD utilizing five
different settings.

Setting Default Masked non-CDR
Masked non-CDR + 1
Restrained Residue

(10 Å)

Masked non-CDR + 2
Restrained Residue

(10 Å)

Masked non-CDR + 2
Restrained Residue

(20 Å)

Cluster PIPER
Pose Score RMSD PIPER

Pose Score RMSD PIPER
Pose Score RMSD PIPER

Pose Score RMSD PIPER
Pose Score RMSD

Pose 1 2457.198 a 7.646 a
2293.516 27.978 2333.482 8.291 2284.895 13.655 2285.438 a 6.091 a

Pose 2 2293.516 27.978 2440.06 6.454 2340.992 41.611 2150.677 a 6.621 a
2327.952 7.772

Pose 3 2388.143 12.809 2359.293 24.632 2328.815 32.267 2150.317 8.407 2329.829 20.186
Pose 4 2266.848 25.264 2209.244 a 3.63 a

2375.115 16.898 2260.251 22.411 2185.388 16.432
Pose 5 2258.313 30.798 2349.946 29.871 2241.792 35.909 2242.231 12.895 2166.638 17.425
Pose 6 2387.458 31.574 2267.746 30.229 2297.668 21.997 254.547 11.938 282.759 18.215
Pose 7 2250.088 20.188 2406.003 30.684 2458.749 42.156 2145.266 25.732 2141.188 15.38
Pose 8 2250.482 33.641 2175.706 24.512 2256.155 13.457 296.679 8.31 214.671 16.466
Pose 9 2210.379 23.625 2371.484 14.758 2261.563 15.539 2113.486 22.374 2181.984 8.23
Pose 10 2401.988 30.996 2302.371 32.238 2276.454 30.954 2230.137 21.929
Pose 11 2207.697 26.078 2309.833 18.977 2190.658 a 7.616 a

295.969 25.936
Pose 12 2221.059 40.109 2222.226 30.54 2348.832 39.941 2222.186 30.122
Pose 13 2271.411 31.393 2206.757 23.489 2235.75 24.04 2218.579 26.757
Pose 14 2322.635 31.796 2219.762 27.718 2218.887 46.816 269.551 11.574
Pose 15 2142.35 21.944 2339.772 26.577 2161.378 24.409 233.784 21.102
Pose 16 2317.152 14.218 2250.482 33.641 2294.323 22.275 253.397 30.643
Pose 17 2219.762 27.718 2251.206 26.989 286.457 18.959 2134.117 14.686
Pose 18 2142.251 30.677 2212.289 30.442 2391.134 17.908 2172.463 29.637
Pose 19 2309.501 10.353 2247.819 30.659 2360.8 40.092 293.918 24.066
Pose 20 2335.719 30.454 2260.417 30.23 2225.572 41.739
Pose 21 2260.176 20.924 2263.305 24.746 2222.689 36.605
Pose 22 2226.819 13.679 2235.555 21.632 29.888 22.905
Pose 23 2223.198 23.523 2264.263 21.063 2291.837 24.137
Pose 24 2206.177 22.799 2366.239 11.69 2164.386 31.189
Pose 25 2169.366 33.549 2267.54 24.5
Pose 26 2215.471 23.003 2268.67 30.412
Pose 27 2173.55 20.441 2281.905 21.807
Pose 28 2187.569 28.539 2187.569 28.539
Pose 29 2231.283 28.295 2293.907 27.269
Pose 30 2195.066 32.712 2278.004 29.488

Wall time b 0H 212 3622 0H 222 4422 0H 212 1522 0H 052 5622 0H 442 4722

a Pose with the lowest RMSD relative to the reference crystallographic structure. b Number of processes 12;
Linux-x86_64; Resources: Z8G4 2.4 GHz Intel Xeon Silver 4214R 12-Core 64GB 2933 MHz DDR4 ECC Registered
RAM NVIDIA Quadro RTX A5000 1TB.
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Figure 6. Protein–protein interactions for the most populated clusters of a 200 ns MD simulation
of the RBD (residues colored in blue) complexed with the 2B04 (residues colored in red) antibody:
(a) WT; (b) Alpha; (c) Beta; (d) Gamma; (e) Delta; (f) Kappa; (g) Epsilon; (h) Epsilon* (with the initial
structure derived from the fifth most populated cluster of the 100 ns preliminary MD simulation);
(i) Omicron BA.1; (j) Omicron JN.1.
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Figure 7. Results of protein–protein docking: (a) pose numbers of the docked structures with the
corresponding lowest RMSD value, PIPER pose energy and score, and RMSD for each complex;
superposition of all 30 docked poses on the reference structure (colored in black) for (b) WT; (c) Alpha;
(d) Beta; (e) Gamma; (f) Delta; (g) Kappa; (h) Epsilon; (i) Omicron BA.1; (j) Omicron JN.1 (the color of
the pose with the lowest RMSD and its order are illustrated).

Table 3. Protein interaction analysis of the lowest RMSD-value poses from protein–protein docking.

Variant #HB
#Salt

Bridges
#p

Stacking
#vdW

Clashes
Surface

Complementarity
Buried
SASA

WT 6 0 0 23 8.92 8.491
Alpha 1 0 0 119 9.01 9.95
Beta 1 0 1 93 7.76 10.44

Gamma 2 0 1 74 7.18 9.297
Delta 0 0 0 76 7.31 10.365

Kappa 2 0 4 77 6.09 10.21
Epsilon 0 0 1 84 6.09 6.754

Omicron BA.1 1 0 0 66 10.71 12.984
Omicron JN.1 0 0 0 59 7.41 13.464

3.4. Sequence-Based Prediction with AlphaFold

Finally, we tested one more approach for scoring the stability of protein–protein
complexes. Since protein–protein docking scores did not correlate with experimental data
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and RMSD emerged as the sole determinant of complex stability, we applied AlphaFold to
predict the complex structure. The antibody and all RBD sequences were submitted to the
AlphaFold Server (Supporting Table S14). All predictions were completed within 2 min,
except for those for the Kappa and Omicron BA.1 complexes with an antibody, which were
done within 1 min. Position error maps are collected in Figure 8a–i. The highest prediction
confidence was observed for the WT, Alpha, and Epsilon RBD complexes with antibodies.
These models showed the highest values of ranking score, pTM, and ipTM, along with the
lowest RMSDs (Figure 8j). Conversely, the Beta, Gamma, and Omicron’s subvariant RBDs
exhibited the lowest structural confidence levels and ranking scores, with RMSD values
of 11 Å and above. The Kappa RBD complex showed the second highest deviation from
the reference structure with average confidence scores. Significantly, all findings correlated
well with experimental data, yielding the highest predictive ability. The superpositions of
all complexes aligned on the reference WT/2B04 structure are illustrated in Figure 8k.

t

 

Figure 8. Results of AlphaFold prediction: predicted aligned error (PAE) matrix (darker is more
confident) for complexes of (a) WT; (b) Alpha; (c) Beta; (d) Gamma; (e) Delta; (f) Kappa; (g) Epsilon;
(h) Omicron BA.1; (i) Omicron JN.1; (j) prediction scores and RMSDs compared to the reference
structure; (k) superposition of complex predictions based on the reference structure (colored in blue).



Curr. Issues Mol. Biol. 2024, 46 12565

4. Discussion

After testing these three methods, we identified the pros and cons of each. We retrieved
experimental data for immune escape from [13] to evaluate more accurate correlations
between the experimental data and predictions. The half-efficacy concentration (EC50)
values of neutralization for the WT, Alpha, Beta, Gamma, Kappa, and Epsilon viral strains
by 2B04 antibody (ng/mL) were converted into pEC50 (2log(EC50)) and calculated as
0.2218, 0.7959, 24.0000, 24.0000, 24.0000, and 20.0500, respectively.

For the forced placement, we did not notice any decent correlations with the exper-
imental data, as shown in Figure 9a. More/less accurate predictions could be made by
categorizing variants’ RBDs as those neutralized by antibodies and those escaping antibody
activity, followed by further qualitative assessment. Summing up the total number of inter-
actions (Table 1) might suggest that those with over ten interactions are neutralized, while
those with fewer than ten escape. However, this categorization showed a false-negative
result for the Epsilon RBD/antibody complex and a false-positive result for the Kappa
RBD/antibody complex. A molecular mechanics (MM/GBSA) approach can be imple-
mented to improve prediction accuracy to evaluate the binding free energy of complexes.
However, as this method requires accurate initial structures, it would improve the results
only slightly, considering that the most populated cluster of Epsilon is not fully bound and
that the Kappa cluster indicates a large number of interactions.

û

2 2 2 2

Figure 9. Correlation between predicted parameters with experimental data and general discussion:
(a) results of a forced placement approach; (b) hydrophobic/hydrophilic surface of an antibody
and the role of critical residues E484 and F486; (c) results of protein–protein docking; (d) results of
AlphFold prediction.

Furthermore, we attempted to explain the reason behind the unsuccessfully modeled
complexes. In the case of the Kappa variant of SARS-CoV-2, only two mutations occurred
within the RBD (L452R and E484Q). The E484 residue mutation is well studied and has
attracted interest due to its correlation with the variants of concern at the time, such
as the Beta and Gamma variants. This mutation has also been observed for various
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Omicron subvariants. The substitution of a negatively charged glutamic acid (E) with a
positively charged lysine (E484K) (as in the case of Beta, Gamma, and Omicron JN.1 in this
work) resulted in decreased binding affinities [59–62]. Similarly, the effect of this residue’s
substitution with neutral alanine (E484A) or glutamine (E484Q) resulted in enhanced
immune escape, with E484A being slightly better than E484Q [63]. The effect of the E484K
(Q, A) mutation on the neutralization of RBDs by antibodies was explained mainly through
electrostatic and hydrophobic interactions, as well as hydrogen bonding at the binding
interface of the RBD and different neutralizing antibodies [18].

Here, we propose a more in-depth explanation of the role of this mutation. When
analyzing the hydrophobic/hydrophilic surface of a 2B04 antibody (Figure 9b), the tight
hydrophobic pocket was identified in place of the interactions with the RBD’s F486 residue.
It is located near E484, a negatively charged residue that forms hydrogen bonds and salt
bridges with the antibody residues. Its substitution with the positively charged lysine (K)
hydrophobic alanine (A) results in the repulsion of the whole region; thus, F486 cannot enter
the hydrophobic pocket of the antibody. The formation of a salt bridge becomes impossible
when substituting with glutamine (Q), which has a polar acidic side chain. Nonetheless,
molecular dynamics simulation still shows the formation of strong hydrogen bonds due to a
high level of structural similarity of glutamic acid and glutamine (as was shown in this work
and the work of Gupta et al. [18]). When a forced placement method was used, the E484Q
mutation could only slightly decrease interaction power. Still, this mutation did not cause a
strong repulsion (as in the case of the Beta, Gamma, and Omicron subvariants’ complexes).
Thus, having the F486 residue forcedly placed inside the antibody’s hydrophobic pocket
provided an additional attraction to hold the complex together, resulting in a false-positive
result for Kappa. This hypothesis is also supported by other research on the influence of
mutations on antibody efficiency, which indicated E484A, E484G, E484K, and F486S as the
most important mutations for the reduced neutralization of the VSV-SARS-CoV-2 mutants
by the 2B04 antibody [15].

Contrary to MD simulation, protein docking required much less time and comput-
ing power. Nonetheless, the pitfall of this method was low structure similarity for the
highest-ranking pose. The manual assessment of all produced poses (or simple RMSD cal-
culation) was required to identify the most accurate and realistic binding pose. Considering
that the 2B04 antibody targets the RBD–ACE2 interface, if the resulting binding modes
show an antibody interacting with non-RBM regions, these complexes can be roughly
assumed to possess immune escape potential. In such cases, the RMSD value for binding
poses, using the crystallographic structure of the wild-type RBD-2B04 complex (PDB ID:
7K9I) as a reference, can serve as a rough indicator of a variant’s immune escape. This
approach is particularly useful when crystallographic data for other variants are unavail-
able. The PIPER pose energy and the PIPER pose score of neither the lowest- RMSD nor
highest-ranking poses showed any correlations with the experimental values (Figure 9c).
Slightly better correlations were noted for the RMSD (R2 = 0.2138) and the pose number
(R2 = 0.5186). The low correlation of the RMSD could be explained by the example of the
Gamma RBD/antibody complex. It showed a relatively low RMSD of 11.192 Å, but this
RMSD belonged to the pose ranked 23rd by population (Figure 7), while prior poses had
significantly higher RMSD values (Supporting Table S12). The less populated the pose is,
the less probable it is to exist. That gave us the idea to using Protein–Protein Interaction
(PPI) score calculated by Equation (1) provided in the Methods section. This score allowed
us to rank the strength of the RBD/antibody complexes quickly yet relatively accurately
(R2 = 0.6870) without requiring time-consuming averaging of all produced poses’ RMSDs
across their populations. This method predicts Delta and Omicron subvariants’ complexes
(plotted as orange crosses in Figure 9c) to have a significantly greater immune escape
capability than other variants. This prediction sounds legitimate, as the variants mentioned
above are known for their strong immune evasion capabilities relative to other antibodies.
With respect to the PPI score, except for the Alpha complex and the WT complex, which
were predicted to be too low, this approach did not show any clear outliers. Nonetheless,
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considering the complexes mentioned above as outliers and the low R2 value of this rela-
tionship, we concluded that this method is better for categorizing. Complexes with a score
above six do not interact strongly with the antibodies, while those with a score below six
can be neutralized by the antibodies.

Finally, the prediction of complex structures with AlphaFold showed surprisingly high
correlations with the experimental data (Figure 9d), with R2 values for ipTM, pTM, ranking
score, and RMSD equal to 0.9452, 0.9513, 0.9503, and 0.8889, respectively. The RMSD values
for the best-scoring structure predicted by AlphaFold were superior to those calculated by
PIPER protein–protein docking, with only one data point raising concern. The AlphaFold
server predicted a very low RMSD for the complex of the Delta variant (Figure 8j), which
was suspected to escape antibody neutralization. Nonetheless, the confidence in this
prediction was rather low, as illustrated in Figure 8e. At first, the unexpected correlation
with probability-related scores, such as ipTM and pTM, was suspicious. We hypothesized
that it could be related to the fact that available databases used by the AlphaFold Server
for model training include larger amounts of data for the earlier variants, which many
antibodies could easily neutralize. In contrast, the data for the newer variants exhibiting
immune escape were not as robust. This could cause a fake correlation based on the
pure availability of data rather than the influence of mutations. To test this hypothesis,
the non-existent sequence of the SARS-CoV-2 mutant’s RBD was constructed such that it
would exhibit five different mutations, all in the area outside of the RBD/antibody binding
interface. These random mutations included V362I, A363L, V367A, L368I, and A372L. The
modeled structure had low confidence in the areas near mutations. However, it maintained
very high/high confidence at the binding interface with ipTM = 0.84 and pTM = 0.87, the
same as the Epsilon complex and only slightly inferior to the Alpha complex. The high
confidence in predicting the non-existent variant, which did not feature mutations that
could facilitate immune escape, disproved the previous hypothesis and increased our trust
in this method. As the pTM values illustrated the highest correlation with the experimental
data, they were used to predict the neutralization efficiency of the antibodies against the
Delta variant and Omicron BA.1 and JN.1 subvariants, as plotted as orange crosses in
Figure 9d. This prediction suggest that the Omicron subvariants exhibited the highest
levels immune evasion, while Delta RBD was predicted to have achieve a medium level
of immune escape. Among the methods tested here, structure prediction with AlphaFold
was shown to be the least time- and resource-consuming and, simultaneously, the most
accurate for scoring the neutralizing power of antibodies.

The analysis of all methods provided greater insight into the factors contributing to
false-positive and false-negative predictions, with a particular focus on antibody complexes
with Epsilon and Kappa RBDs. The first model generated via forced placement (Figure 10a)
identified a single RBD residue, i.e., E484, interacting with the antibody and forming two
hydrogen bonds with residues G54 and Y100. The bond with G54 appeared reliable, as it
was consistent across both the second forced placement model and the AlphaFold-predicted
complex. Molecular dynamics (MD) simulations can be sensitive to the initial structural
guess, potentially trapping the system in a local energy minimum if the starting geometry
is inaccurate. This issue can be addressed by initiating simulations from a different starting
structure, as was done for the second model of the Epsilon RBD-2B04 complex built using
the forced placement (Figure 10b). Protein–protein docking also showed sensitivity to
the initial antibody structure. Similar to the first model of forced placement, it revealed
only one interaction between the antigen and antibody—a π–π interaction between F486
and W98 (Figure 10c). Despite the antigen’s flexibility, the antibody structure remained
rigid during docking, mirroring the geometry used in the forced placement method. This
rigidity likely contributed to inaccuracies. Thus, assuming that a wild-type RBD–antibody
complex is a suitable template for all variants is not always appropriate and can introduce
significant errors, particularly in PPD when a rigid antibody structure is used.
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û
Figure 10. Protein–protein interactions predicted by different approaches: (a) Epsilon-2B04 complex
as a result of a forced placement (model 1); (b) Epsilon-2B04 complex as a result of a forced placement
(model 2); (c) Epsilon-2B04 complex as a result a protein–protein docking; (d) Epsilon-2B04 complex
as a result of an AlphaFold prediction; (e) Kappa-2B04 complex as a result of a forced placement;
(f) Kappa-2B04 complex as the result of protein–protein docking.

These limitations did not restrict the predictive AlphaFold approach, rapidly pro-
ducing a complex similar to the refined forced placement (model 2) (Figure 10b). Both
approaches identified critical interactions, including an H bond between the RBD’s S494
and the antibody’s N31, π–π interactions involving the RBD’s F486 and the antibody’s W93,
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and the importance of RBD residue E484 and antibody residue Y101 (with slightly different
interactions observed in the two methods).

For the Kappa RBD, interactions with antibodies were overestimated using both forced
placement and PPD (Figure 10e,f). As mentioned earlier, the E484Q mutation introduced
significant repulsion, preventing F486 from fitting into the antibody’s hydrophobic pocket.
In the PPD model, F486 incorrectly entered this pocket, forming a π–π interaction with
Y34 and W98, while Q484’s side chain had to shift outward to avoid electrostatic repulsion
(Figure 10f). This alteration may explain the significant change in RBD orientation. Despite
the PPD results suggesting numerous interactions between Kappa’s RBD and the 2B04
antibody, the reduced interaction surface area indicates that such a complex would likely be
unstable in further MD simulations. AlphaFold predicted no interactions for this complex,
aligning well with the experimentally observed low affinity.

Another intriguing observation regarding AlphaFold 3.0 emerged in its prediction of
protein structures. Following the completion of this study, the Cryo-EM structure of the
SARS-CoV-2 Omicron JN.1 spike protein (PDB ID: 8Y5J) was released, enabling a direct
comparison between the homology model built here and crystallographic data. The homol-
ogy modeling approach used here was successfully applied in previous studies [48,50] to
predict the 3D structures of various SARS-CoV-2 variants, including Alpha, Beta, Gamma,
Delta, Epsilon, and Omicron subvariants, with RMSD values consistently below 2 Å when
aligned with reference crystallographic structures. As tested after the completion of all
calculations, for the Omicron JN.1 homology model, alignment with the corresponding
reference structure resulted in RMSD values of 3.7120 Å, 3.2412 Å, and 3.6317 Å for the
RBDs of chains A, B, and C, respectively. These deviations raise concerns about the model’s
accuracy, particularly in the context of protein–protein docking predictions, where such
discrepancies may have a significant impact, although their influence on molecular dy-
namics simulations is somewhat less pronounced. To explore an alternative, we employed
AlphaFold 3.0 to predict the structure of the Omicron JN.1 RBD. The resulting RMSD values
for the backbone ranged from 2.4720 Å to 2.6626 Å across five predicted clusters when
compared to reference chain A, from 2.9829 Å to 3.1695 Å for chain B, and from 2.2332 Å to
2.4172 Å for chain C. These values indicate that AlphaFold 3.0 outperforms conventional
homology modeling in predicting the RBD structure. However, further testing is necessary
to fully evaluate this observation, which lies beyond the scope of the present study.

5. Conclusions

This study comprehensively evaluated the efficacy of three computational approaches
used to study ligand–protein interactions—forced placement with molecular dynamics
simulations, protein–protein docking, and AlphaFold complex structure prediction—in
predicting 2B04 antibody neutralization of SARS-CoV-2 variants. Our comparative analysis
demonstrated distinct advantages and limitations of each approach, shedding light on their
predictive power and alignment with experimental immune escape data.

The forced placement method, while capable of providing insights into antibody–RBD
interactions, struggled with accurately predicting immune escape for complex variants
such as Epsilon and Kappa. This approach’s reliance on initial structure guesses led to
challenges in accurately capturing the dynamic nature of these interactions, resulting in a
limited description of the experimental immune escape data.

Despite requiring less computational time, protein docking was highly sensitive to
the initial antibody structure and suffered from rigid-body assumptions that introduced
inaccuracies. Although this method showed slightly better correlations when assessing
immune escape potential using RMSD and protein–protein interaction (PPI) Scores, it
lacked the robustness for comprehensive predictions.

In contrast, AlphaFold demonstrated higher accuracy and efficiency, showing a better
correlation with experimental neutralization data across tested variants. Moreover, Al-
phaFold’s proficiency in accurately predicting the RBD’s secondary structure for emerging
variants suggests significant promise for its application in future studies.
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Our findings underscore the importance of employing a multi-faceted computational
strategy to address the rapid mutation rate of SARS-CoV-2 and its implications for immune
escape. This knowledge is critical for improving the predictive accuracy of vaccine efficacy
against new and emerging viral subvariants, thereby aiding in the development of more
effective immunization strategies.
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