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A B S T R A C T

Forming processes are known for their intricacies in prediction and control due to the complex loading condi-
tions and material flow. This paper will first introduce the AI algorithms used or having potential to be used in
forming, and then investigate the state-of-the-art advances of AI-based technologies in forming processes
with four main pillars of process simulation, process design and optimization, in-situ process control, and
qualification and certification of forming processes and formed products. Future directions of AI in forming
for both academic research and industrial applications will be proposed to leverage digitalization and data
science to explore new solutions in forming processes.
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1. Introduction

The goal of metal forming is to create a metallic part with the
desired shape, dimensions, and properties to meet with multi-mode
functional requirements, such as lightweighting and structure stiff-
ness in automotive and aerospace applications, fitness in patient-spe-
cific biomedical devices, flexibility in electronics switches, toughness
in swords, etc. Meanwhile, the production volume of a metal formed
product can vary from one single piece to millions. Correspondingly,
metal forming has enormous degrees of freedom in process design
(temporal and spatial design of strain path, stress state and tempera-
ture history, to name a few), which makes metal forming an attrac-
tive and promising unit manufacturing process for many
applications. On the other hand, the difficulty in physically measuring
local material states, the existences of high tooling cost in mass pro-
duction applications or the combination of long forming time and
localized deformation zone in incremental metal forming for low pro-
duction volume applications, pose significant challenges for process
engineers and practitioners.

Analytical models involving first-order [253] and second-order
yield criteria [109,261], slab method [221], upper bound method [15]
up to late 1960s have been widely used to estimate forming forces to
assist process design. Finite element methods (FEM) have evolved
rapidly over half a century since then and nowadays enable the simu-
lation of almost all kinds of forming operations before tools are built
in mass production [9,172,260,271]. However, their applications in
process design and in predicting the resulting material behavior and
part performance in increment forming (IF) have been limited due to
the orders of long forming time in IF compared to that for mass pro-
duction. To some degree, the simulation challenges of IF processes
are similar to that for additive manufacturing (AM), in which defor-
mation or process physics mainly occurs in the scale of micrometer
to millimeter while the entire part can be in the meter scale, i.e., pos-
ing general challenges to full-scale high-fidelity simulations. Due to
the large number of layers and scan vectors per layer, full-scale pure
physics-based simulation of processes such as laser powder bed
fusion is far beyond reach [205]. However, since AM does not involve
any tooling and the full explosion of active working surface to cam-
eras (optical for imaging or photodiode for heat intensity) due to its
layer-by-layer operation nature that can easily generate 10x GB to
1 TB data for one production run, and since actual process executes
orders of magnitude faster than a high-fidelity simulation, a rich vari-
ety of data-driven machine learning methods have been developed
for AM [94,184].

In metal forming, in contrast, the majority of material states are
invisible from external sensors due to the employment of tool.
Research efforts have been made for developing sensors to measure
force and relevant material flow to support efforts of process moni-
toring and quality control [8]. Nevertheless, large data sets (particu-
larly local information) are difficult to generate in-situ. Unlike a
mathematical model is created first by a user and then examined in
the statistics approach, a model is created by the algorithm in artifi-
cial intelligence (AI) based on the data. This essential difference
makes AI both attractive and doubtful. Similar to the historical
moment in 1960s where FEM started to emerge and benefit the form-
ing community tremendously due to the increasing computational
power offered by the semiconductor industry, today, the questions
are what AI can do for the metal forming community and what
research and development that the metal forming community should
work on to leach the potential benefits and to avoid the unphysical
results of AI to improve efficiency, reduce costs, and ensure product
quality. These two critical questions will be addressed from the per-
spectives in the sections as illustrated in Fig. 1.
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Fig. 1. Schematic of key discussion topics in this paper.

Table 1
Summary of typical supervised ML algorithms.

Linear models Tree-based
methods

Artificial neural
networks (ANN)

Algorithms Linear Regression,
Logistic Regres-
sion, SVM

Decision Tree, Ran-
dom Forest, CART

FCNN, CNN, RNN, GNN

Input Data
Types

Numeric,
Categorical

Numeric,
Categorical

Numeric, Image, Text,
Audio, Video

Data Amount
Needed

Medium Medium Large

Training Speed Moderate Moderate Slow
Explainability Interpretable w/

Linear Kernel
Low to Moderate Complex

Typical
Applications

Classification,
Regression

Classification,
Regression

Image Recognition,
NLP, Time Series Pre-
diction, Sentiment
Analysis, Speech Rec-
ognition, etc.

562 J. Cao et al. / CIRP Annals - Manufacturing Technology 73 (2024) 561�587
1.1. AI algorithms (Section 2)

Since this paper is the first review article on AI in forming, various
AI algorithms that have been applied to (such as various neural net-
works structures) or have the great potential to be applied (such as
natural language processing (NLP)) to metal forming problems are
summarized. Key features and differentiations will be discussed to
provide readers with fundamental knowledge to participate in the
following discussions.

1.2. Process simulation (Section 3)

Process simulation is an essential tool in process design and opti-
mization and in understanding and the interpretation of measured
data. The effectiveness and usefulness of a process simulation
depends on its accuracy and speed. The state of the art in using AI in
process simulations, including models of plastic deformation, dam-
age, and forming limits will be surveyed and compared to ‘conven-
tional’ finite element simulation methods in terms of speed and
general applicability.

1.3. Process design (Section 4)

The essence of process design is an optimization problem, which
involves the design of forming tool, the design of blank geometry,
and the design of process parameters (deformation path, tempera-
ture profile, forming rate, etc.). Traditionally the design process
heavily depends on the experience of a designer or handbook. Pro-
cess simulations have been used in the forward analysis mode to pro-
vide information needed for the designer to make decisions. AI
algorithms used to analyze data from metal forming processes and
identify opportunities for improvement will be reviewed. It is also
possible to ‘invert’ process models by training algorithms that map
from output to input, which allows for fast process optimization.

1.4. Process control (Section 5)

One most widely, and probably the earliest, application of AI algo-
rithms in metal forming is for process control. The controllers built
on models established by neural networks will be reviewed. Further-
more, a fundamental distinction existed between approaches in sheet
metal forming, bulk metal forming and joining technology, which
will be elaborated in detail in this section.

1.5. Qualification and certification (Section 6)

The current practice and standard of qualification and certification
can significantly add to the manufacturing cost and prolong the
development of new products, particularly with new materials. For
AM, this is a major hurdle. For flexible incremental processes (e.g.,
open die forging), the similar challenge exists, such as how to
accurately know the local material properties and then effects to the
overall part quality. For mass production processes, as tool wears the
resulting part quality will be different. AI algorithms can be used for
quality control inspections and identify patterns that may indicate
problems with the mass production process so that predictive main-
tenance can be performed.

1.6. Future research and development (Section 7)

A hybrid physics-based and data-driven approach that links mate-
rial’s microstructure to processing condition and part performance
can be promising for many aspects discussed above. Additionally,
there have been tremendous tacit knowledge accumulated in our
metal forming community. Exploring NLP for metal forming will be
an interesting research direction. A total of ten (10) represented
directions are listed to encourage our metal forming community to
explore.

The goal of any manufacturing action is to increase its market
competitiveness, which can be measured by a number of metrices,
including quality (ultimately zero defects or first-time right), time-
to-delivery, minimum adverse environmental impact, cost, and social
impacts. These metrices are not the result of a single technical area,
but of multiple perspectives. Discussions will be woven into the fol-
lowing sections with the aim of providing systematic assessments on
the demonstrated advantages and challenges of using AI in metal
forming. Finally, to facilitate cross-referencing and to bring readers,
regardless of their familiarities with AI methods or forming pro-
cesses, to a common base, Table 4 summarizes the abbreviations
used in this paper.

2. Overview of AI algorithms used in metal forming

Artificial intelligence (AI) broadly refers to computer programs
that automate tasks associated with human thinking, such as percep-
tion, problem-solving, and planning [22]. Since the first application
of artificial intelligence in 1952, a checker program, AI (see [218,227]
for taxonomy) has transformed several industries, especially in the
fields of natural language processing, computer vision, and recom-
mendation systems. Much of these advances are owed to the drastic
progress in Machine Learning (ML), a subfield of AI, where computer
programs can learn directly from data. This paradigm is in contrast to
programs with explicitly coded rules and instructions [228]. ML
methods are commonly categorized into three classes based on the
type of data they work with: supervised, unsupervised, and rein-
forcement learning, working with labelled, unlabelled, and interac-
tive data, respectively. However, techniques such as semi-supervised,
self-supervised [86], and contrastive learning [197,280], as well as
the widespread adoption of supervised methods for reinforcement
learning problems, have blurred the distinction between the men-
tioned three classes. Three typical supervised ML algorithms are sum-
marized in Table 1 with their characteristics for comparison. Note
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that one metal forming process typically features multiple perspec-
tives that can benefit from ML, for example, classification for tool
design, regression for force prediction, image recognition for wear
detection, etc.

The workhorse behind ML is a set of statistical tools that allow
parametrized function approximation given observed data. Linear
models, such as Linear regression, logistic regression, and support
vector machines (SVMs) provide efficient solutions when dealing
with linear relationships. SVM can be also used to classify data into
different categories. However, their linear bias makes these methods
highly reliant on hand-crafted feature engineering and limits their
capability to capture unintuitive interactions in the data. Still, linear
models are good options when high-quality features are available,
data is limited, or when fast re-training time, inference time, and
high explainability are desired. Tree-based methods, such as Deci-
sion trees, Random Forest, and Classification and Regression Trees
(CART), provide prediction models based on explainable decision
trees. Decision trees allow to make predictions based on a series of
rules or conditions. Random forests or CART combine multiple deci-
sion trees to make more accurate predictions. They are particularly
powerful in applications with tabular databases with moderate com-
plexity. However, when dealing with large databases, non-tabular
information, and complex problems, artificial neural networks
(ANN) often outshine other ML methods. This is due to their compu-
tational scalability allowing the training of enormous networks (with
some recent models having hundreds of billions of trainable parame-
ters [34,241]) and configuration flexibility to work with all data types
(e.g., tabular, time-series, image, audio, video, graphs). Artificial neu-
ral networks are a type of machine learning algorithm that are
inspired by the structure and function of the human brain. Due to the
popularity of NNs, below details of NNs will be introduced.

Some of the most commonly used neural network types are
shown in Fig. 2. A fully connected neural network (FCNN) performs a
matrix multiplication of input data with trainable hidden state
parameters, followed by a nonlinear activation function. In theory,
even one layer of FCNN can approximate any function [111]; how-
ever, in practice several of such layers are stacked on top of each
other (i.e., the output of the one FCNN layer is fed as the input into
another layer) to capture nonlinearity in the data. FCNNs work with
fixed-size tabular data and are common building blocks of many neu-
ral network architectures.
Fig. 2. Schematics of popular neural networks including (A) fully connected neural
network, (B) convolution neural network, (C) recurrent neural network, (D) graph neu-
ral network, and (E) self-attention network.
A convolutional neural network (CNN) computes the dot product
of a kernel, e.g., a 3£ 3 grid of trainable parameters, with different
patches of the input data (often images) to create output patches. As
the result of this design, CNNs are translation-invariant—meaning
one kernel can detect a feature regardless of its position in the image.
Nonlinear activation function, pooling (i.e., combines values of neigh-
boring pixels), and stride (i.e., controls the sliding distance of kernels)
are other standard CNN components. CNNs have been the dominant
method in image, video, and sound processing due to their inductive
bias toward extracting local information at multiple scales. They can
potentially identify patterns and trends that may not be apparent to
humans.

Recurrent neural networks (RNN) are designed to process time-
series and sequential data. A RNN cell at a given time step receives
the input for that time step along with its own output (or history
state) from the previous time step and produces a new output. While
a naïve implementation of this idea leads to poor gradient propaga-
tion, several successful formulations are proposed to largely mitigate
this problem. For instance, Long-Short Term Memory (LSTM) [110]
replaces matrix multiplication and nonlinearity along the gradient
pass of adjacent RNN cells, with gated mechanisms that instead cre-
ate element-wise multiplication and addition operations along the
gradient pass and, hence, is less prone to vanishing or exploding gra-
dients.

Graph neural network (GNN) benefit from a unique capability to
process unstructured graph-based data [50,135]. While there are
many formulations proposed for GNNs, they often consist of three
components: (1) creating messages between adjacent graph nodes,
(2) aggregating the incoming messages for each node, and (3) updat-
ing the nodal (or elemental values) given the aggregated message,
where the computations in steps (1) and (3) are performed using
FCNNs or other neural network types. GNNs are particularly well-
suited for analyzing social networks, geometries, and chemical ele-
ments.

Self-Attention is a type of neural network [258] where an atten-
tion score is computed for each input-output pair and is used to
determine relevant parts of the input for each output prediction. Self-
Attention was originally developed to tackle the language-to-lan-
guage translation problem but quickly found its way as the state-of-
the-art approach in tasks across language modeling [34,52], vision
[60,120], and decision-making [40]. This is due to their versatility to
work with different types of data (e.g., sets, time-series, tabular),
capability to work with long sequences without forgetting inputs far
from the output, and massive parallelization capability that fits well
with modern deep learning hardware.

2.1. Deep learning

Deep learning is a subset of machine learning that uses neural net-
work exclusively, which became practical due to the birth of the GPU
hardware [140]. Using the backpropagation algorithm [217], modern
deep learning libraries (e.g., PyTorch [204], TensorFlow [1], JAX [30])
can efficiently compute gradients of a user-defined loss function with
respect to trainable parameters of any neural network type and mini-
mize the loss using variations of stochastic gradient descent optimi-
zation. Nowadays, several numerical and optimization practices are
standard elements of a neural network training process, including
regularization techniques to avoid overfitting (e.g., dropout, batch
normalization, layer normalization), learning rate scheduling to sta-
bilize the training, initialization methods and residual connections to
allow deeper networks, sampling methods to battle unbalanced data,
and specialized loss formulations for many downstream tasks. The
collection of these practices allows reliable training of enormous neu-
ral network systems.

The computational convenience and the merge of powerful mod-
ern deep learning libraries have sparked the usage of NNs in more
sophisticated ways that goes beyond just “curve fitting to data”. Sci-
entists have built higher level methods on top of the neural network
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building blocks (e.g., Fig. 2) to solve many engineering problems.
Physics-informed neural networks (PINNs) are specifically designed
to solve problems in which the solution is governed by physical laws
or constraints. In a PINN originally proposed in [212], the neural net-
work is trained to approximate the solution to a partial differential
equation (PDE) as a surrogate model that describes the physical sys-
tem of interest. The network is trained to satisfy the PDE constraints
at a set of points called the ’collocation points‘, which are chosen
based on the characteristics of the PDE and the desired accuracy of
the solution. One advantage of using a PINN to solve a PDE is
that it can handle problems with high-dimensional input spaces
and complex boundary conditions, which can be difficult to solve
using traditional numerical methods. Additionally, PINNs can be
trained using data from experiments or simulations, allowing
them to incorporate additional information about the physical
system into the solution. However, in pure physics-based simula-
tion tasks, PINNs are found to be not as efficient as traditional
methods like the finite element method [93]. Solution behaviours
such as sharp gradient or discontinuity are hard to approximate
with PINNs [63].

Generative adversarial networks (GANs) are deep learning algo-
rithms that can be used to generate new data that is similar to a train-
ing dataset. GANs consist of two neural networks, a generator and a
discriminator, that are trained together in a competitive process. The
generator network tries to generate synthetic data that is similar to
the training data, while the discriminator network tries to distinguish
between the synthetic data and the real training data. GANs have
been applied to problems related to metal forming and plastic defor-
mation. For example, GANs have been used to generate synthetic
data that can be used to train other machine learning algorithms for
tasks such as predicting the deformation behavior of materials under
different loading conditions. However, training GANs is known to be
hard due to mode collapse, instability, and sensitivity to hyperpara-
meters [225]. In the past three years, the family of denoising diffusion
probabilistic models (DDPMs) [53] have emerged as powerful gener-
ative AI methods that are replacing many of previous state-of-the-art
models such as GANs.

Finally, expert systems are a type of AI that are designed to
mimic the decision-making abilities of human experts in a particu-
lar domain. They consist of a knowledge base, which contains
information about the domain, and an inference engine, which
uses this knowledge to solve problems or make decisions. In metal
forming, expert systems have been used to optimize the process
parameters of metal forming processes, such as the temperature,
strain rate, and tool geometry. By using expert systems, it is possi-
ble to make more informed decisions about these parameters,
based on the knowledge and experience of human experts in the
field. A rising popular program, ChatGPT of OpenAI launched in
November of 2022, uses natural language processing and reinforce-
ment learning (RL) from human feedback to train the model
through three steps: collect demonstration data and train a super-
vised policy; collect comparison data and train a reward model;
and optimize a policy against the reward model using the rein-
forcement learning algorithm. Although its applications in metal
forming may be seen as far-fetched at this moment, the capabilities
of ChatGPT have been demonstrated as a powerful tool for com-
posing articles and software programs.

3. AI for simulating metal forming processes

Numerical simulations of metal forming processes have played an
essential role in shortening the development cycle from design to
production, i.e., about 48 months in early 1990s to 18�21 months in
2020s. Such simulations aim to predict material behavior and the
workpiece-tool interfacial behavior subject to external thermal and
mechanical loading histories, which has three essential elements, i.e.,
material constitutive behavior (stress and strain/strain-rate relation-
ship), failure prediction (e.g., necking and fracture, buckling, and tool
wear), and contact and friction modelling. The overall system needs
to satisfy the mechanical and thermal governing equations built
upon the quasi-static (or dynamic) equilibrium and the heat transfer
equations. Below the applications of AI in constitutive modelling
(Section 3.1), failure prediction (Section 3.2), and interface and sys-
tem modelling (Section 3.3) will be reviewed.

3.1. AI for constitutive modeling

Modern materials are integral parts of today’s technology and
advancing our understanding of them helps to produce better engi-
neering products. However, characterizing material behaviors under
complex loading conditions of forming processes has remained an
ongoing challenge. Despite decades of significant progress in simulat-
ing material models using computational plasticity, crystal plasticity,
and integrated computational materials engineering (ICME)
approaches, one still cannot accurately simulate or design materials
in many realistic large-scale high-volume manufacturing applica-
tions. For example, in computational plasticity, three-dimensional
inelastic phenomena are commonly reduced to a so-called “effective”
representation space, in which the material response is developed
using a combination of theoretical and phenomenological laws, such
as yield surface evolution [17] and associative or non-associative
flow rules [168]. While such formulation can lead to effective ways to
characterize material response, these assumptions can be too restric-
tive for predicting intricate behaviors of today’s advanced alloys,
such as anisotropy [18,108], ratcheting [36,196], distortional harden-
ing [16,72,78], and permanent softening [85]. Decade-long research
efforts have introduced sophisticated responses into material models
[149,174]; however, with them, the complexity of computational
material modeling grows substantially, leading to prohibitively
expensive models that take days or even weeks of computational
time.

As manufacturing is moving toward digitalization with large vol-
umes of in-situ and ex-situ sensing methods, new opportunities arise
to learn complex material behavior using advanced data-driven tech-
niques. As opposed to conventional physics-based material modeling
methods that are heavily based on analytical and phenomenological
material laws, data-driven material modeling methods offer a more
flexible formulation that can capture nuance behaviors of broader
ranges of materials. However, several challenges remained to be
addressed before data-driven material modeling can be used as a reli-
able tool in engineering practices.

� Most studies are solely dependent on computationally gener-
ated databases which themselves rely on conventional material
modeling and do not offer a solution to resolve the computa-
tional artifacts seen in conventional FEM (e.g., the artificial
wrinkling in ironing simulations). These factors can lead to
substantial inaccuracies, especially in forming applications
where critical characteristics such as formability and tear-off
might occur as the material undergoes large deformations.

� The flexibility of data-driven material modeling methods can
come at cost of a lack of instability and numerical guarantees
when integrated into part-scale analyses. Rigorous investiga-
tions into numerical properties of such solutions when inte-
grated into part-scale and multi-scale settings are vital to the
progress of this field. Explicit solvers are the standard approach
in many engineering applications, especially in sheet metal
forming, as they scale well to large problems and can handle
challenging contact behaviors. Therefore, the compatibility of
data-driven methods with explicit solvers is an important topic.

While the computational efficiency and accuracy of deep learning
models have been demonstrated for simplistic “toy examples” in the
literature, the capability of these models at the scale of practical
manufacturing parts is yet to be proven.

Here, a critical review of the current state of data-driven material
modeling methods is presented and categorized based on their fun-
damental properties, and the advantages and shortcomings of each
method are discussed. Existing methods in the literature are classi-
fied based on two criteria of computational paradigm (i.e., the



Fig. 3. Landscape of data-driven material modeling methods analysed in two dimen-
sions of computation paradigm (amount of hard-coded physics involved) and their
operating scale (micro-scale vs part-scale).
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amount of hard-coded insights versus learnable features in the
model) and the scale at which they operate (i.e., micro-scale or part-
scale). As depicted in Fig. 3, four major classes of data-driven material
modeling methods in the literature are observed which include: pure
deep learning methods, physics-embedded deep learning, macro-
scale regularized deep learning, and sparse optimization methods.
3.1.1. Deep learning
In recent years, pure data-driven material modeling was shown to

be a viable alternative to conventional modeling methods. While
many machine learning approaches can apply to this problem, deep
learning methods have been dominant in pushing the frontiers of
material modeling. This is because neural networks offer high expres-
siveness in capturing non-smooth and sharp transitions, relatively
robust ill-distributed data, perform well in high dimensional spaces,
and can be flexibly configured (e.g., to capture history-dependency).
In this class of methods, constitutive models and dynamic structural
equations are decoupled, and micro-scale or representative volume
element (RVE) scale constitutive model aims to find a mapping
between local deformations as the input and stresses (along with
other measures such as energy, damage, and failure) as the output. In
[182], Mozaffar et al. developed a deep learning RVE-scale approach
based on the recurrent neural network (RNN) to capture elasto-plas-
tic behaviors of materials with particle inclusions under arbitrary
loading conditions (see Fig. 4). It was shown that the data-driven
Fig. 4. Pure deep learning approach for RVE-scale material modeling predicts history-
dependent material response for materials with particle inclusions. The interaction of
macro-scale dynamic structural solver and micro-scale constitutive material model
(top), and the inputs and outputs of neural networks-based material model (bottom)
are depicted [182].
model can learn the stress-strain mapping accurately and implicitly
learn complex interdependencies between yield surface and harden-
ing, such as highly distortional hardening behavior, within 0.5% error.
Gorji et al. [88] expanded on this approach with a focus on the Bau-
schinger effect and stress overshooting for aluminum and steel
alloys.

Wu et al. [267] took a similar approach, i.e., supervised learn-
ing using conjugate stress-strain pairs, and presented a successful
implementation of a recurrent neural network-based material
model within the implicit solver of multiscale finite element sim-
ulation, which led to four orders of magnitude speed up in online
computational cost. In [272], yield surface evolution is predicted
using supervised data-driven modeling, which is later used to
solve the boundary value problem in elastoplastic constitutive
laws of materials with heterogeneous microstructures. Other
researchers have extended the application of the micro-scale
data-driven constitutive modeling using conjugate stress-strain
pairs to thermo-visco-plastic behavior of steel [4], visco-elastic
materials [38], multi-phase solids [87], and homogenization of
short fiber reinforced composites [31].

Liu et al. [160] deployed a neural networks-based constitutive
material model that was trained on top of micro-scale crystal plastic-
ity simulations into macro-scale models for 3D inelastic impact prob-
lems with an explicit user material subroutine (VUMAT)
implementation, though without capturing history-dependencies. Ali
et al. [7] trained a fully connected neural network (FCNN) model
using the data generated from a rate-dependent crystal plasticity
finite element simulation to predict the stress-strain and texture evo-
lution of AA6063-T6. The runtime comparison test showed that the
developed model saves more than 99.9% of the computational time
compared to the conventional crystal plastic model. Ibragimova et al.
[117] designed a framework where an ensemble of fully connected
neural networks (FCNN) were trained with a dataset of crystal plas-
ticity simulations to model the stress-strain relationship and texture
evolution for face-centered cubic (FCC) family crystals under a non-
monotonic strain path [98].

Despite the progress made in this newly emerging field, pure
deep learning-based material modeling suffers from three main
shortcomings. First, the training of neural networks requires
stress-strain pairs which are rarely experimentally available.
Therefore, this approach is mainly useful in multi-scale settings
where a reliable micro-scale simulation is available. Second, as
the training is solely dependent on externally provided data, it
often requires tens of thousands of data points to be sufficiently
trained for most interesting cases. Third, pure data-driven meth-
ods offer little guarantee on the behaviors of materials. While
pure data-driven material modeling is shown to be applicable
for part-scale implicit solutions, as implicit time integration is
inherently stable, it can easily lead to instability in explicit solu-
tions. Bonatti et al. [27] propose a RNN architecture that integra-
tes self-consistency in its definition based on solid
understanding of the physics between strain increment and
stress increment. They successfully demonstrated explicit FEM
executions using this model.

3.1.2. Physics-embedded deep learning
To overcome the challenges of purely data-driven methods, recent

research efforts have attempted to embed physical laws and insights
into the formulation of deep learning-based material models to
increase the generalizability and stability of the solutions. The previ-
ously mentioned PINN architecture is one of methods in this cate-
gory. Masi et al. [176] proposed a customized neural network
architecture that imposes thermodynamics conservation law over its
predictions. Their network structure (depicted in Fig. 5) primarily
outputs free energy and later computes stress increment and dissipa-
tion rate through differentiation. By careful selection of activation
functions over energy output and regularizing it according to the sec-
ond thermodynamics law, the network predictions uphold thermo-
dynamic laws by construction. This method is demonstrated for two
material types of hyper- and hypo-elastic in an implicit macro-scale



Fig. 5. Thermodynamics-based neural network for predicting plasticity. The architec-
ture of the network (top) and an illustrative result (bottom) are shown [175].

Fig. 6. Architecture of physics-informed neural network for material modeling where
part-scale and dynamic structural equations are incorporated into the training process
[96].
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solver. Further, this methodology is extended to capture microstruc-
ture variations using an autoencoder extension [175] (see Fig. 5) and
within a recurrent neural network (RNN) formulation [103]. Linear-
ized Minimal State Cell (LMSC) [26,27] introduced an alternative
form of RNN formulation that is approximately self-consistent, i.e.,
the response does not depend on the increment size. While LMSC is
less representative compared to its purely data-driven alternative,
such as GRU, its self-consistency alleviates stability issues when used
in an explicit solver. This method's weaknesses include requiring
unintuitive initialization (hints at the sensitivity of the approach) and
the lack of methodology for selecting stable increment sizes (unlike
conventional FEM where one can compute the critical time step).

Another intriguing approach to embedding physics into data-
driven material modeling is proposed in [268]. Xu et al. designed a
neural network architecture (named SPD-NN) in which instead of
predicting stress directly, only non-zero elements in the Cholesky
matrix are predicted, and later stress tensor increment is derived
from the Cholesky matrix. Using this construct, the tangent stiffness
matrix remains symmetric positive definite (SPD) and; hence, creates
a convex strain-energy field and satisfies the work criterion, which is
shown to benefit the generalization and stability of the numerical
simulations.

Besides incorporating physics at the modeling stage, physical
principles can also be considered at the data pre-processing state. In
a study on hot-rolled Ti micro-alloyed steel samples, Cui et al. [48]
transformed their high dimensional steel composition and rolling
parameters data with physical metallurgical principles and achieved
a better performance in predicting yield strength and elongation
when compared with using input data extracted from pure dimen-
sion reduction algorithms like an autoencoder.

As one can see, there are several options for which physical con-
cept to select and how to implement it into deep neural networks
(e.g., start from thermodynamics laws, plasticity concepts, or numeri-
cal self-consistency). While these methods show significant improve-
ment over pure data-driven methods, they come with their unique
limitations. The assumptions used in deriving the thermodynamics
laws require considerable knowledge about the material as this infor-
mation is used for deriving energy formulation and limits the materi-
als that the model can be applied to. For instance, a common
assumption is the strain-rate independency, which can be easily vio-
lated. Additionally, as these methods often use second-order deriva-
tives, careful design of loss functions and activation functions are
required to avoid sensitivity to noise and second-order vanishing gra-
dients. Finally, these methods are mainly demonstrated for cases
where they are subject to relatively simpler loading conditions and
hardening laws and further investigations can shed light on the full
extent of their capabilities.
A fundamental limitation of supervised training using conjugate
stress-strain pairs is that it requires access to stress. While the strain
can be directly measured using DIC, stresses need to be inferred given
the external forces, except for the simplest of geometries. This moti-
vates a different approach to data-driven modeling in which the
material model is learned directly from strains and macro-scale
external forces. The previously mentioned SDP-NN method achieved
direct part-scale optimization by developing a finite element method
framework that supports automatic differentiation [113,268]. Using
their differentiable framework, the neural network was directly
trained to infer stresses that lead to correct boundary forces. How-
ever, as reported by the authors, the optimization problem can only
be solved given great initialization to stress distribution and might
require starting from multiple initialization points to converge. Addi-
tional research has also shown promising results for capturing aniso-
tropic behavior during cup drawing [71] and highly nonlinear
behavior of material in high contact settings for both fluid and solid
use cases [229,235].
3.1.3. Macro-scale regulated deep learning
Another approach to obtaining direct part-scale solutions is to

introduce macro-scale physical laws (e.g., dynamic structural and
deformation equations) as regularization terms into the optimization
process of neural networks, which is broadly named as Physics-
Informed Neural Networks (PINN). PINN is a promising method for
building flexible learning models that easily incorporate heteroge-
neous data by adjusting the regularization terms in the loss function.
For example, Liao et al. [158] proposed a hybrid physics-based data-
driven thermal modelling approach of additive manufacturing pro-
cesses with PINN and realized accurate temperature prediction and
parameter identification. As another example of this methodology,
Haghighat et al. [96] developed an approach that learns the material
model directly from external forces under the assumption of linear
elasticity, von Mises yield surface, and no hardening (see Fig. 6). They
found that by embedding the physics the PINN model can accurately
predict the solution for a wide range of parameters. This method was
later extended to coupled damage elasto-plasticity, albeit in a case
with a single element and von Mises plasticity assumption [95].
Recently, Niu et al. used the PINN framework to model multi-step
loading and unloading cases [192]. Using comparable logic, Li et al.
[153] proposed an equilibrium-based convolution neural network
(ECNN) that predicts the spatial distribution of stress over the geome-
try and given external forces directly solves the global equilibrium
problem. The loss function of ECNN consists of two components that
are optimized simultaneously: the balance of internal nodal forces
and the balance of external forces on the displacement boundary.
The Deep Energy Method (DEM) method [190,226] offers an alterna-
tive formulation to classical PINN where by formulating the loss
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function in terms of energy, one can avoid the second-order differen-
tiation of neural networks. Other notable examples of part-scale reg-
ularized deep learning are proposed for hyperelasticity [159], strain-
rate and temperature dependence viscoplasticity [12], and elasto-
plasticity [66]. Generalizing finite element method within deep learn-
ing framework, Saha et al. [223] proposed Hierarchical Deep-learning
Neural Network (HiDeNN); the HiDeNN family of methods have dem-
onstrated potential in solving various problems in computational
mechanics, such as topology optimization [152], nonlinear problems
[162], higher order analysis [201], etc.

The current drawback of part-scale regulated deep learning
methods is that they are applied to relatively simple material
models when a closed-form or well-defined PDE exists. Therefore,
these methods are yet to be proven effective beyond parameter
identification and interpolation over geometry. Additionally, these
methods have shown to be sensitive to the type of elements (e.g.,
low-order elements) and struggle when dealing with discontinu-
ous fields [82].

3.1.4. Sparse optimization
A fundamentally different approach to directly learning mate-

rial models from part-scale data is to formulate the problem as a
sparse optimization. By collecting a large collection of candidate
material models, the sparse optimization algorithm attempts to
find a minimal set of candidates that capture material behaviors.
This is similar to the established literature on sparse system iden-
tification for dynamical systems [35]. A pioneering version of this
idea for plasticity is proposed in [77], where they construct a
library of material yield surface functions, represented using
Fourier series. The optimization problem is solved using a nonlin-
ear optimization with a sparsity promotion algorithm (trust-
region reflective Newton solver) which leads to discovering yield
surface characteristics, i.e., original yield surface shape and the
hardening behavior (see Fig. 7). Note that due to the sparsity of
optimization signal, this method puts significant assumptions on
the material model, requiring a homogeneous and isotropic mate-
rial for which linear elastic behavior is followed by associated,
pressure-insensitive plastic behavior with isotropic and or kine-
matic hardening. It can be expected that in this approach, the
model predicts very well when the candidate library is carefully
designed and tuned. When the true yield surface is not within
Fig. 7. Plasticity discovery using sparse identification from candidate yield surfaces
[77].
proximity of the provided candidates the optimization may fail.
Similar results were reported in dynamical system applications
using similar underlying optimization techniques [64].

3.2. AI for failure prediction

Failure in metal forming takes various forms, including necking
and fracture, and buckling. Failure prediction using AI can take
numerical data and/or experimental data. Below, past work related
to failure prediction will be summarized.

3.2.1. Necking and fracture
Necking and fracture are common failure modes in metal forming

processes, which can be effectively modeled and predicted with AI
methods. Yao et al. [274] proposed a neural network based calibra-
tion method to accurately predict damage initiation, accumulation,
and fracture of the 6061 aluminum alloy sheet specimen with dis-
placement control boundary conditions. Through this work, a semi-
coupled fracture model was developed and used to train a back prop-
agated neural network. The experimental force-displacement curve
was inputted into the ML model to obtain predicted results, this pro-
cess is depicted in Fig. 8. A model for the evolution of ductile damage
in terms of void fractions using fully connected neural networks
(FCNN) and experimental data was proposed in Schowtjak et al.
[233]. They showed the potential of using the data-driven model
obtained from pure experimental notched tensile tests and in-plane
torsion tests for accurate predictions of damage evolution in air bend-
ing. However, less accurate results were obtained for Radial Stress
Superposed (RSS) bending as the loading states in RSS bending were
outside of the domain of the training data.

Jaremenko et al. [122] studied the growth behavior and traceabil-
ity of the necking area using a weakly supervised ML approach with
Fig. 8. Process for parameter identification method using a back propagation neural
network for machine learning assistance [274].
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data obtained from a Nakajima test. Liu et al. [161] used supervised
machine learning to quantify the bendability and resistance to frac-
ture of steels considering the effect of subsurface non-metallic inclu-
sions, where they consider inclusion size, location and strength as
the input space while the macroscopic flexural strain to failure as the
output prediction. Chen et al. [42] studied tearing failure in cold roll-
ing process and used several classic ML methods such as random for-
est and naïve Bayes to reveal a functional relationship between input
variables obtained from domain experts (e.g., rolling speed and pres-
sure feedback) and output tearing event. Sun et al. [246] used a neu-
ral network approach for the determination of ductile fracture
properties of 16MND5 bainitic forging steel, where the nonlinear
relationship between geometric sizes of the specimen (input) and the
coefficients for the J-integral vs. crack growth resistance curve (out-
put) was well learned. Pandya et al. [200] proposed an isotropic neu-
ral network based fracture initiation model to predict the onset of
fracture for aluminum alloy 7075 manufactured through a hot stamp-
ing process. Li et al. [156] used stress state, strain rate and tempera-
ture to predict the onset of ductile fracture for an aluminum alloy
AA7075-T6.

In the context of failure prognosis and process supervision, Di Lor-
enzo et al. [57] used NNs for a fracture forecast in an upsetting pro-
cess. The network was trained with experimental data of different
forming processes except of the upsetting process. In this context
Klocke and Breuer [137] used the fracture generating forming histo-
ries for the training of an artificial neural network. With this ANN a
better failure prognosis in different forming operations for example
upsetting or blanking could be achieved.

In sheet metal forming, several works have focused on predicting
the forming limit diagram (FLD) with ML methods. Jaremenko et al.
[123] adopted a CNN as feature extractors and used Student’s t mix-
ture model to cluster the learned features so that the brittle regime
of a FLD is better addressed; in another similar work of theirs [5], a
pattern recognition based method was employed for the determina-
tion of the FLD defined by the onset of necking. Chheda et al. [46]
constructed a two-stage ML approach with support vector regression
and gradient boost regression so that the trained ML model success-
fully predicted FLDs with R2 value above 0.93. This ML approach was
used to predict the simulations results of a cross-die geometry as
seen in Fig. 9. Yatkin and Korgesaar [275] used a 1D-CNN to predict
sheet strain localization of sheet metal forming.
Fig. 9. Simulation results for stamping process using (a) measured and (b) predicted
values for the forming limit diagram. Predicted results were obtained using a two-
stage trained machine learning model [46].

Fig. 10. Framework of deep autoencoder energy model used to predict bending, vibra-
tion, and buckling behavior of Kirchhoff plates [288].
3.2.2. Buckling
Buckling is a type of instability that occurs when the energy

attributed to the compressive stresses in the part exceeds the defor-
mation energy attributed to a buckling mode in the part, leading to
failures of undesirable part geometry. Buckling analysis is typically
performed with nonlinear finite element methods that are
computationally expensive, hence data-driven surrogate models are
of particular interest and importance. Direct predictions of buckling
occurrence with ML-based methods have been an active topic in
recent years. Ly et al. [169] developed a hybrid model combining sev-
eral ML algorithms for predicting the critical buckling load of I-
shaped cellular beams with complex internal structure. Duong [62]
used a fully connected neural network (FCNN) and successfully
assessed the critical buckling load of a functionally graded plate. As a
notable factor, buckling with imperfections was paid special atten-
tion to in several works. Zhu et al. [286] investigated buckling of
imperfect reticulated shell with neural networks and support vector
regression. Wagner et al. [262] applied decision tree-based ML meth-
ods to derive general design recommendations for a maximum buck-
ling load and a minimum imperfection sensitivity for laminate
stacking of composite cylinders. ML for thermally affected buckling
were studied in [10] for graphene oxide reinforced nanocomposites
and in [189] for ballasted railway tracks. Other than end-to-end
buckling predictions, Zhuang et al. [288] proposed a deep autoen-
coder energy method (DAEM) for modeling and solving buckling
behavior of Kirchhoff plates; their approach is similarly to the con-
cept in PINN family and is further accelerated with transfer learning.
The proposed DAEM, shown in Fig. 10, has the total potential energy
equation expressed in the autoencoder. The approach was demon-
strated effective in predicting relatively simple buckling cases.

Beyond forward prediction, Maurizi et al. [177] tackled the
more challenging inverse design problems of buckling; they com-
bined deep neural network and genetic algorithm so that truss
lattice materials with superior buckling resistance were rationally
designed. In [54], the effectiveness of a neural network for pre-
dicting wrinkling limits in sheet metal-forming was examined; it
was found that the trained neural network is capable of covering
a wide range of material properties and its prediction of nominal
strain at the onset of wrinkling is in reasonable agreement with
the analytical results. In [202], neural networks and genetic algo-
rithm are combined to optimize the bending sequence in roll
forming, so that the longitudinal strain is maintained to be less
than the buckling limit to avoid failure.
3.3. AI for interface and process modeling

An important aspect in metal forming is the understanding of the
wear behaviour of the tools. Gouarir [90] used machine learning tech-
niques for a better in-process tool wear analysis. The experimental
results indicated that a conventional neural network (CNN) approach
is suitable for the identification of the existing correlation between
the forces produced during the process and the wear. An artificial-
neural-networks-based in-process tool wear prediction system was
presented by Chen and Chen [39]. Their system was able to correctly
predict the occurring tool wear. A more generalized study was



Fig. 11. Schematic of random forest architecture used to predict tool wear using
regression trees [266].

Fig. 12. Diagram of interpolation spaces. Elementwise HiDeNN-FEM shape function
has partially connected two hidden layers while that of C-HiDeNN has one additional
layer that represents convolution patch functions. DNN interpolants are constructed
with fully connected feedforward neural networks [223].

Fig. 13. Working principle of CrystalMind [207]. It predicts deformation and recrystal-
lization as a consequence of flat forging strokes which can be placed with a range of
bite infeed and offset values.
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presented byWu et al. [266]. Their comparative study was focused on
machine learning algorithms. They compared an artificial neural net-
work (ANN) with support vector regression (SVR) and a RF-based
prognostic method for the tool wear. They demonstrated that the
predictive model trained by random forests can predict tool wear
very accurately with the architecture demonstrated in Fig. 11.

Petkar et al. [206] used an ANN with differential evolution optimi-
zation algorithm to analyze a cold forging backward extrusion pro-
cess and enhance the lifetime of the punch by optimizing various
parameters like billet size and punch angle on the basis of the identi-
fied forming responses such as effective stresses and forming forces.
The findings of Kubik et al. [141] reindicated that a regressive ML
model can accurately predict abrasive wear levels on sheet metal
forming tools in real-time. The study focused on two sheet metal
forming processes, blanking and roll forming, which exhibit distinct
time series characteristics. Despite these differences, the model
successfully estimated the cutting-edge radii and roll-edge radii
on the forming tools by following the systematic approach of the
Knowledge Discovery in Time series and image data in Engineer-
ing Applications.

Finite element simulations are a widely used numerical method
for solving partial differential equations (PDEs) that describe the
above-mentioned behaviors. These simulations are based on discre-
tizing the workpiece into a mesh of finite elements, which reduces
the problem from solving an infinite dimensional PDE to algebraic
equations with finite degrees of freedom. There are mainly PDEs
resulting from the mechanical and thermal governing equations in
metal forming processes. Hence, finite element simulations require a
detailed understanding of the underlying physical laws and mecha-
nisms that govern the behavior of the material, the interface and the
system, which can be computationally expensive due to fine mesh
and small time-step used for resolving complex behaviors like plas-
ticity and crack propagation, and the underlying physics may not
always be fully understood, such as interface behavior between tool
and workpiece. For example, a single three-path English wheeling
simulation using commercial software might take more than one day
to obtain reasonable predictions of local deformation while the
experiment can be performed in seconds. Similar challenges exist in
simulating incremental forming processes or stamping of bipolar
plates (> 100mm x 100mm) with local fine features in the microme-
ter scale. This multi-scale nature can limit FEM’s practical usage for
large-scale problems.

Aiming to overcome the difficulties that FEM faces, machine
learning approaches have been explored to replace FEM simulations
to provide a system-level model in addition to that for constitutive
models described in Section 3.1. Since research in this field requires
significant involvement of software engineering for developing new
architectures, which is out of scope for metal forming researchers
and practitioners, two examples (one in solid and one in fluids
domain) will be briefly illustrated so that readers are aware of devel-
opments in computational mechanics. Saha et al. [223], as shown in
Fig. 12, proposed a less-densely connected NN as a kernel function,
which can be tuned to have superior accuracy, higher smoothness
and fast convergence rates compared to the shape function used in
the traditional FEM approach. For reaching a H1 norm error of 10�3 in
a 2-D Poisson’s problem, they demonstrated a 106 speed up com-
pared to the linear FEM model and 104 speed up compared to the
cubic FEM model. In computational fluid dynamics area, White et al.
[264] reformulated the simulation problem to effectively increase the
size of constrained pre-computed datasets and introduced a new NN
architecture (called a cluster network) with an inductive bias. They
showed that their approach is nearly as accurate, however, an order
of magnitude faster.

In metal forming, Petrik et al. [207] proposed a fast surrogate
model called CrystalMind for open die forging based on
PointNET++, which is an AI architecture that works on point
clouds and considers local and global features. As shown in
Fig. 13, CrystalMind predicts the full deformation field in the
workpiece including microstructure resulting from a forging
stroke in milliseconds with an accuracy close to the underlying
FEM training data and hence allows for schedule planning using
optimization techniques, see Section 4.3.
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3.4. Summary for AI in process modeling

Forming is a multi-physics multi-scale manufacturing process
that has been traditionally modelled using analytical estimation
or finite element methods. The choice between using a machine
learning approach or a finite element simulation will depend on
the specific needs and goals of the application. Finite element
simulations may be more suitable for problems where a more
detailed and accurate representation of the behavior of materials
is needed, or where the mathematical models used are well-
established, and material data are readily available. Machine
learning approaches may be more suitable for problems where
large amounts of data are available, or where the underlying
physical mechanisms are not well understood, or the computa-
tional cost in physics-based model is overwhelmingly unpractical.
Machine learning techniques may offer some advantages over
finite element simulations, including increased efficiency and the
ability to incorporate additional data into the model.

The most advancement made using AI in metal forming pro-
cess simulation is in the area of material constitutive modelling.
AI algorithms are not restricted to specific functional approxima-
tion spaces and can hence model any material behavior. They
have the potential to replace the plethora of models used to
describe the yield locus or hardening by a unified approach as
described in Section 3.1.

The adoption of ML-based or hybrid approach in industrial form-
ing simulation has been slow, probably due to the facts that codes
and datasets are not readily available for many materials or
extremely expensive to obtain, such as residual stress distributions
as a result of metal forming operation. Hence, it is difficult to calibrate
complex models. Villarreal et al. [259] introduced a deep reinforce-
ment learning algorithm for design of experiments that maximizes
the information gain measured by Kullback�Leibler divergence
obtained via the Kalman filter (KF), suitable for the high-dimensional
parametric design space. Experiments were formulated as a decision
tree and a Bayesian update of the parameters was used to enhance
the state representation. Such approach can be used for effective
parameter identification in numerical models and for efficient
design.

4. Designing parts, tools and processes using AI

Since the 1990s, AI techniques have found application in a range
of design tasks within the domain of metal forming. While so far only
Hamouche and Loukaides [97] have explored the capabilities of
machine learning in classifying and selecting sheet forming pro-
cesses, the majority of research in this area has concentrated on
leveraging AI for optimizing process parameters (Section 4.1), tool
and preform design (Section 4.2), and process planning (Section 4.3).
The following sections provide a comprehensive review of prior
work in this field and offer an analysis of the prospective applications
of AI in the future.

4.1. AI for process parameter design

A recent review by Campos et al. [11] shows that a wide vari-
ety of optimization algorithms has been applied in metal forming,
and that a number of publications have used meta-modelling
techniques to reduce the computational effort involved in com-
puting the cost function [101]. Meta-models are crafted to repli-
cate the behaviour of a more intricate model while reducing
computational expenses, typically relying on spatial interpolation
methods like kriging. An evident use of AI algorithms is to substi-
tute these meta-models.

Regarding the prognosis of springback in a bending process,
Narayanasamy and Padmanabhan [185] compared a regression
model to an ANN. The neural network led to an improved predic-
tion of the springback behavior after bending showing the
potential of AI for the improved process prediction. In [19], Baseri
et al. compared a back propagating neural network (BPNN) with a
varying number of layers and nodes as described in [51] to a radial
basis function neural network (RBFNN) with three layers and a
varying number of nodes as proposed in [33]. Note that both BPNN
and RBFNN belong to the category of FCNN as described in Section
2 (Fig. 2a). The main difference is the selection of their activation
function used, sigmoid function and the radial basis function for
BPNN and RBFNN, respectively. A better prediction of the bending
angle was achieved with the BPNN. Decisive factors for the quality
of the predictions made by neural networks are the number of
layers and of the nodes. Froitzheim et al. [81] utilized an ANN to
model a ship panel sheet forming process, replacing the traditional
manual approach. The ANN facilitated accurate and automated pre-
dictions of process results and parameters, addressing the limita-
tions of numerical simulations in providing predictions in real-
time. Similar usage of AI for the optimization of process parameters
is exemplified by Zhou and Cheng [285] for deep drawing and by
Sbayti et al. [231] for incremental forming. R€omisch et al. [215]
Klicken oder tippen Sie hier, um Text einzugeben.demonstrated
the value of data-driven methods in analyzing process parameters
for cold forward extrusion of metallic pin structures used in joining
operations. They used experimental data and machine learning
techniques to create a metamodel for identifying key factors in the
extrusion process. Additionally, the authors suggested extending
the data-driven approach to a broader process chain, including
joining and joint characterization, to enhance its versatility. There
are a number of papers in which AI algorithms are primarily used
as regressors and combined with optimization methods. Lu et al.
[166] used a random forest (RF) approach to predict the outcome
of a stretch bending operation and combined it with multi-objec-
tive optimization to identify optimal forming paths. Kurra et al.
[146] applied ANN, Support Vector Regression (SVR) and Genetic
Programming (GP) to minimize surface roughness in single point
incremental forming (SPIF). Mearyo et al. [179] optimized the ANN
topology to predict mechanical properties of wrought aluminium
alloys, and found that more than 150 perceptrons are needed in
the hidden layers. Tang and Chen [248] used an SVM capable of
accounting for nonlinearities in pattern recognition and regression
to model part quality in stamping as a function of process parame-
ters. Their approach adopted adaptive importance sampling tech-
niques, which allowed them to account for uncertainties, opening
the way for robust design of cup-drawing experiments. Machine
learning algorithms, such as decision tree regression, random for-
est, support vector, were applied in [25] to optimize the friction
riveting process. The results showed that considering process
parameters and mechanical energy input to train the machine
learning algorithms is useful for the prediction quality of the
mechanical properties.

The temperature field is a crucial factor in numerous metal form-
ing processes. Elevated temperatures generally reduce forming force
and improve material formability, yet they also pose challenges such
as increased tool adhesion, decreased tool strength, complex micro-
structure changes, and thermal distortion due to uneven temperature
distribution. Consequently, the capability to predict and measure
both local and global temperature fields is highly sought after for
effective process design and monitoring. Since physics-based fully
coupled thermal-mechanical simulations can be computationally
expensive for process design, Jiang et al. [126] developed a CNN to
predict the forming temperature at the tool/sheet interface in an
electrically-assisted double-sided incremental forming. To enhance
computational efficiency in generating synthetic data, a CNN model
was trained using temperature outputs from a simplified FEM model.
This study underscored the importance of justifying these model sim-
plifications, emphasizing that domain experts with a strong grasp of
the underlying physics and validated experimental data should be
involved in this process. King et al. [134] developed a physics-
informed machine learning (PINN) model that predicted heat



Fig. 15. Training configurations of property prediction (forward) and model calibra-
tion (inverse), according to [277]. VPSC stands for Visco-Plastic Self-Consistent code.

Fig. 14. Result of a process map from an expert system trained on simulation data
[147].
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generation in shear assisted extrusion. The model has qualitative
agreement with crystal plasticity simulations and can be used in pro-
cess design.

The conventional design processes, based on expert knowledge,
can be slow and error-prone. To overcome these challenges, a toolbox
of artificial intelligence methods has been developed [65]. This tool-
box includes various techniques and enables the prediction of joining
technologies, locations, and dimensioning while considering com-
plexity and cost, aiming to meet the needs of a diverse range of prod-
ucts.

Machine learning algorithms have been applied also to investigate
specific target variables, such as load-bearing capacities in clinched
joints. Lambiase and Di Ilio [147] optimized clinching tools with
extensible dies to enhance the strength of clinched joints across vari-
ous sheet thicknesses. They used an expert system trained on finite
element simulation data, coupled with a genetic algorithm for opti-
mization. This versatile expert system can be repurposed for different
objectives, eliminating the need for additional simulations. Fig. 14
illustrates the relationship between clearance, punch diameter, and
joint strength as an example.

While the list of published papers is not exhaustive, it shows that
machine learning is predominantly used to build regressors that can
be evaluated faster than full-scale process models. However, using
ANN to model a system to be optimized with a gradient-based opti-
mizer requires to pay attention to the following issues:

� Differentiability: For the optimization algorithm to work, the
cost function and the ANN model must be differentiable. This
means that the model must be composed of differentiable func-
tions, such as sigmoid or ReLU, and not use any non-differentia-
ble operations such as max or step functions.

� Extrapolation: ANNs are typically trained on a limited range of
input data, and their ability to make accurate predictions outside
of this range is uncertain. Meta-modeling and kriging are specifi-
cally designed for extrapolation, as they are based on approximat-
ing the underlyingmodel over a limited range of inputs.

� Overfitting: Overfitting occurs when the ANNmodel is too com-
plex or the data is too few so that the model fits the noise in the
data rather than the underlying signal. This can lead to poor
generalization and poor performance on unseen data, affecting
the optimization process.

Given that multiple prior studies used meta-models (see e.g. [28])
with a sound mathematical foundation for optimization of metal
forming processes, work that uses machine learning lacks mathemat-
ical rigor. Future work in this domain must make sure to use techni-
ques such as regularization and cross-validation to prevent
overfitting, and Bayesian optimization or population-based methods
to explore the cost function more efficiently.

While most of the work reviewed so far combines ML-based sur-
rogate models trained by supervised learning with gradient-based or
heuristic optimizers, RL algorithms are only being taken up slowly.
Jeong et al. [124] used compression tests on AISI 4340 alloy at
900�1200 °C to set up a processing map and used a Q-learning based
RL algorithm to optimize forming parameters, thus preventing
defects. Stendal et al. [244] applied RL to find optimal ram trajectories
for isothermal forging of rather titanium aluminides which are
known for their limited ductility. At the moment, there is no in-depth
analysis of the performance of RL compared to more conventional
optimizers.

Another promising line of research could be to use differentiable
simulators (DS) as system models, which have been applied in a vari-
ety of areas such as fluid mechanics [23], finite element solvers [269],
molecular dynamics [23], robotics [105] and additive manufacturing
[183]. DS can be used to simulate physical systems and are differen-
tiable with respect to their input variables, e.g., process parameters
that dominate the behaviour of the system. With the derivative com-
puted by the automatic differentiation technique, efficient gradient-
based optimization algorithms can be used to optimize over model
parameters and achieve higher performance requirement.

A less common approach to using AI for process optimization is to
invert process models for metal forming using machine learning
algorithms to learn the relationship between the input parameters
and the output of the process. In early work by Ruffini and Cao [216],
a fully connected neural network was used to identify when and by
how much a stepped binder force should be applied to obtain a tar-
geted and consistent springback angle in a channel forming at the
presences of variations and uncertainties in materials and lubrication
conditions. Frayman et al. [79] developed a neural network based
inverse model of a sheet forming process which outperformed a lin-
ear model in finding appropriate input parameters. Recently, Ryser et
al. [220] trained data-driven models on datasets consisting of pairs of
input and output data (draw-ins) from a stamping process simula-
tion. The trained model predicted the output of the process for a
given set of input parameters, allowing the input parameters to be
adjusted to achieve the desired output. Later, the approach was
extended to experimental work by determining the position of
markers on the sheet surface [219]. Another notable study is the one
conducted by Yuan et al. [277], where inverse modeling is achieved
through the training of a random forest model. This model predicts
the initial texture and constitutive model parameters based on inputs
such as a stress-strain curve, loading conditions, and final texture.
Notably, this approach permits both forward and reverse machine
learning configurations, as illustrated in Fig. 15. Given that inversion
of process models in general offers new ways of solving ill-posed
optimization problems, as showcased e.g. in the inversion of struc-
ture-property relationships of metamaterials [20], future work on
data-driven inverse models could outperform classical optimization
approaches.
4.2. AI for tool and preform design

AI techniques such as expert systems and evolutionary program-
ming can be applied to tool design problems. Expert systems were a
popular AI technique in the 1980s and 1990s. Already in 1991, Sitara-
man et al. [240] proposed a knowledge-based system for the design
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of a stamping process sequences, claiming to have achieved a 90%
reduction in design time compared to conventional design methods.
In the same year, Pillinger et al. [209] presented a system for the
design of forging tools programmed in the Lisp programming lan-
guage. The work discusses improving design processes by integrating
an intelligent system that combines rule-based design with simula-
tion. The design rules, however, were fixed, leading to repeated
issues in die designs. While the system was able to identify and sug-
gest improvements, a faster approach reportedly involved manually
updating design rules based on system insights. [251] put forward a
knowledge-based system for the design of process plans for sheet
metal designs, claiming that this system was successfully imple-
mented in the industry. Similarly, [239] implemented a knowledge-
based process layout system using decision tables for deep-drawing
of axisymmetric parts. In 1998, a knowledge-based design tool for
progressive dies for the manufacture of small metal-stampings for
electrical and electronic equipment was described, but it remains
unclear from the work whether the approach received industrial take
up [45,132], and claimed to offer comprehensive support in die
design. From today’s perspective, it is difficult to assess how
advanced these expert systems were and how well they generalized
and offered industrially useful solutions for die design. It is clear from
the literature that the popularity of expert systems diminished in the
late 1990s. Probably, the substantial manual effort required for set-
ting up and maintaining their knowledge base and their limitations
in adapting to new situations were the major obstacles to a broader
industrial take up. After the decline of research into expert systems,
machine learning algorithms gained popularity due to their ability to
learn from data and adapt to changing circumstances. [208] resented
a hybrid intelligent systems approach for die design for sheet metal
parts that combined a knowledge-based system with FEA and ANN. It
was claimed to support conceptual design, rapid prototyping, auto-
matic evaluation, optimization of new designs, and process optimiza-
tion, with self-learning capabilities. The system automates input
adjustments regarding process, material, and geometry to enhance
manufacturability. Case studies demonstrate its ability to optimize
design by automatically adjusting variables like punch velocity,
drawbead force, blankholder pressure, and material properties to
eliminate forming defects. The original part geometry and the subse-
quent optimized geometries are Fig. 16. In later work, ANN fully
replaced expert systems. [257] proposed an ANN-based algorithm to
optimize the tool shape for reducing springback in sheet metal
stamping. They put forward a new methodology for die optimization
to address springback in automotive manufacturing. The method uti-
lizes a curvature adjustment approach and FEA calibration to improve
the precision and efficiency of die design, but showcase it only on a
single part geometry. The approach presented by Fritzsche et al. in
[80] was related to the clamping systems for the fixture of car-body
panels in joining operations, which normally have to be exchanged
for the production of different car models. By correcting the
Fig. 16. Application of hybrid intelligent system combining knowledge-systems with
FEA and ANN according to [208]. This combination enables design iteration optimiza-
tion of strain distribution of commercial quality steel to be within the material’s limit
strain of 0.20%.
positioning depending on the different external loads using a data-
base system based on AI, the joining fixture parameters are adapted
automatically, which makes it possible to reuse the main part of the
body shop production equipment for positioning and clamping the
parts for various car models [80]. An image-based surrogate model
using a U-net convolutional neural network (CNN) with an attention-
based ResNet layer was developed by Liu et al. [163] to improve pre-
diction of shape errors in asymmetric channels in the automotive
industry. Traditional models struggle with accuracy because they
cannot incorporate location information. The proposed model,
enhanced by automatic data preprocessing that converts information
into image data, accurately predicts dimensional deviations in real-
time. An optimization framework combining this CNN model with a
differential evolution algorithm significantly enhances forming accu-
racy, confirmed by validation experiments.

Despite this reported success it is difficult to assess both the aca-
demic and industrial merit of these AI approaches, which would only
be possible had these methods been tested with the same set of rep-
resentative geometries.

AI was also applied in die design for bulk forming. [44] applied a
Radial Basis Function (RBF) neural network and a back propagation neu-
ral network to forging die design and concluded that both networks per-
formed well “as long as the number of learning samples is enough”
[279]. report that porthole die design can be accelerated using a Support
Vector Machine Polynomial Kernel (SVMP) model. The main conclusion
was that the SVMP model demonstrated the highest performance for
each output variable, but the paper does not show whether the method
generalizes. Porthole die design was also tackled [276]. The primary
objective was to achieve a balanced flow within the die, taking into
account parameters such as the number of portholes, their shapes,
arrangement, distribution, and die bearing. The study introduced two
distinct DCNN architectures, one for the classification of porthole geom-
etry and another for the detection of factors related to die bearing
design. Training the porthole model yielded varying levels of accuracy
for different attributes: 50% for porthole number, 80% for arrangement,
14.29% for shape, and 66.67% for distribution concerning the extruded
profile, highlighting the need for further research in this field.

In parallel to tool design, AI-based pre-form design has been investi-
gated. Kim and Kim [133] presented a neural network based approach
to initial billet design in forging, reducing the number of finite element
simulation for designing the die for a rib-web part, i.e. well defined
geometry. Chan et al. [37] developed a hybrid approach combining FEA
and ANN to find optimal design parameters for an axisymmetric forging,
which limits the range of geometries that the algorithm can handle.
Similarly, ANN were used to design an optimal preform for a cold head-
ing process, leveraging formability and forming forces [138]. In these
works, rather simple neural networks are used as regressors. A novel
platform for addressing shape distortion in sheet metal stamping using
deep learning to inform tool compensation was put forward by Attar et
al. [14]. The platform iteratively updates tool geometries to counteract
springback while satisfying thinning criteria, akin to GANs but with a
classical optimization approach. Fig. 17 shows the deep learning-
enabled tool compensation process.
Fig. 17. AI-based tool compensation to reduce springback in bending [14].



J. Cao et al. / CIRP Annals - Manufacturing Technology 73 (2024) 561�587 573
An automated data preprocessing method that converts design
parameters and simulation results into image data for asymmetrical
channel chain-die forming was introduced by Liu et al. [163]. They
utilized a U-net CNN to establish an image-based surrogate model for
predicting dimensional deviations across the formed part. To
enhance network sensitivity to different regions of the die surface in
sheet metal forming, they proposed an attention-based ResNet layer,
which replaced the bottleneck of the U-net-style base network. This
approach led to a significant improvement in forming accuracy.
Another machine learning approach for optimizing blank designs in
deep drawing was introduced by Lee et al. [150], using a Blank Design
Mapping Function (BDMF) that combines Gaussian Process Regres-
sion with a Radial Basis Function kernel. Their method correlates pre-
dictions with their uncertainties, trained on data from a 3D finite
element analysis model. Validated by laboratory experiments on steel
and aluminum, the method showed maximum deviations of 13.3% in
drawing force and 0.35% in earing profile. The BDMF's predictions for
metal blanks were highly accurate, with deviations of 1.3% in thick-
ness and 0.25% in outer radius, proving its reliability and generality
across different flanged geometries.

In the work surveyed above, neural networks are used for setting
up a mapping with design parameters as inputs and design criteria as
outputs, allowing to optimize designs. This task is similar to finding
optimal process parameters discussed in the previous subsection
(Section 4.1), and hence, the challenges and recommendations made
there also apply to die and pre-form design.

More advanced AI methods can be found in recent work on gener-
ative design (GD), i.e., the use of computational tools to automatically
generate design solutions that meet specific requirements or con-
straints. Oh et al. [193] proposed a combination of topology optimiza-
tion and generative adversarial networks (GANs) to create a large
number of designs as shown in Fig. 18 based on limited data sets. An
adaptive ANN-based generative design approach has been proposed
and developed for layout design. Qian et al. [211] combined GANs
with CNN and a genetic algorithm to optimize a heat transfer prob-
lem. In contrast to the work on tools and pre-form design in metal
forming, AI-supported generative design algorithms allow to general-
ize and explore new designs by the use of GANs.
Fig. 18. Images of generated wheel designs created using the Boundary Equilibrium
Generative Adversarial Network (BEGAN) according to [193].
4.3. AI for planning problems in metal forming

Various metal forming processes are multi-stage processes. Natu-
rally, processes like breakdown rolling of cast blocks or open die forg-
ing require multiple stages. Planning of such processes can be
interpreted as a sequence of discrete decisions. In sheet forming, Gar-
cia et al. [83] addressed the bending tool repositioning problem
which belongs to the class of NP-hard problems with two algorithms:
a two-step heuristic and an approximated mixed-integer linear pro-
gramming (MILP) heuristic. The MILP heuristic performed best, mini-
mizing repositioning and reshuffled segments. The MILP model's
computational demand was found to be high for large instances,
though such instances are rare in industrial settings. This work does
not exploit AI for discrete optimization problems, which is a vivid
research area in other fields such as path planning in additive
manufacturing, where e.g. Monte Carlo Tree Search (MCTS) algo-
rithms have been used recently to optimize deposition paths [237].
Hartmann et al. [99] introduce an automated approach for generating
tool paths in incremental sheet metal free-forming processes, using
an artificial neural network architecture to produce parts directly
from digital models. The study focuses on designing an effective net-
work input and output structure, generating balanced datasets for
training, and evaluating different training algorithms and network
configurations. The system's effectiveness is validated through auto-
mated production of sheet parts, showcasing the potential and limi-
tations of the proposed manufacturing system. Sala et al. [224]
present a planning algorithm for Laser Peen Forming (LPF), aiming at
precise bending of sheet metals. A data-driven approach, specifically
an Artificial Neural Network (ANN), was developed to predict defor-
mations from LPF under different conditions. The ANN's predictions
facilitate a novel process planning method, enabling desired defor-
mations in thin Ti-6Al-4 V sheets, demonstrated through one-direc-
tional, bi-directional, and pre-bent specimen deformation
adjustments. For incremental forming using a moving heat source
a novel prediction method that integrates an Improved Salp
Swarm Algorithm (ISSA) with an Extreme Learning Machine
(ELM) was introduced by Li et al. [154] to enhance line heating
and forming processes. Initially, the method uses a three-dimen-
sional FE simulation to analyze how process parameters affect
deformation. It then employs the ELM network, trained with sim-
ulation data, to predict hull plate deformation. The ISSA is devel-
oped to optimize the ELM's input weights and hidden layer
biases, thereby stabilizing prediction outcomes. Comparative anal-
ysis shows the ISSA-ELM model outperforms other models in pre-
dicting line heating and forming effects.

As mentioned in Section 3.3, Petrik et al. [207] proposed a fast sur-
rogate model for open die forging based on PointNET++, which is able
to predict the full deformation field of the workpiece including
microstructure in milliseconds and hence allows for schedule plan-
ning . This work shows that AI models are important for generating
large training sets, which are required for advanced planning and
scheduling algorithms such as RL and MCTS.

First attempts of using AI algorithms such as RL in forming sched-
ule planning were reported for hot stamping, where RL was show-
cased to outperform an industrial controller for the cycle time [191].
While the number of control parameters is rather low in this work,
more complex scenarios are found in bulk forming. In hot rolling,
reinforcement learning was successfully applied by Idzik et al. [118].
They utilized RL and analytical rolling models for pass schedules
planning in rolling processes and ensured consistent product quality.
The Deep Deterministic Policy Gradient algorithm automates pass
schedule design, combining established rules with new strategies to
maximize mechanical properties. This approach was validated using
a laboratory rolling mill and allowed for adaptive scheduling to man-
age process disruptions efficiently and reduce material waste. Dorn-
heim et al. [59] compared two deep RL algorithms for optimizing
processing paths based on structure space representations and objec-
tive functions. Single-goal structure-guided processing path optimi-
zation combines function-based reinforcement learning with reward
shaping for guided optimization. Multi-equivalent-goal structure-
guided processing path optimization extends this to handle multiple
equivalent target structures efficiently. It is shown that complex tasks
such as the optimization of crystallographic texture can be performed
using these RL approaches. Further research into using RL for process
planning and scheduling is needed to understand the full potential
and limitations of the approach.

4.4. Summary

Rather standard machine learning approaches have been applied
to design of process parameters, die and preform design problems in
metal forming so far. Mostly, machine learning is used to build
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regressors replacing the underlying more costly process model. More
advanced AI techniques such as optimization based on differentiable
simulations and AI-supported generative design algorithms have not
yet found their way into design problems in metal forming and offer
untapped potential to significantly improve the efficiency and effec-
tiveness of the design process including the design of forming pro-
cesses and tools for metal forming. Additionally, the coupling of
isogeometric representation in the classical work of Hughes et al.
[116] on modeling complex topology with deep learning, represented
by and Gasick and Qian in a recent work [84] provides great potential
in rapid and effective design of preform, tools and processes. Only
very recently, advanced planning algorithms such as RL have been
explored in metal forming, and there are various options for future
research into planning complex multi-stage forming processes using
RL as well as high-performance heuristic search algorithms such as
MCTS. A striking point is that the relevant work shows a large variety
of used methods which are applied to different processes and part
geometries. This makes a direct comparison of the different
approaches impossible, and shows that the forming community
should establish a set of benchmark parts to compare the perfor-
mance of existing and future algorithms.

5. AI for process control

Process control must have an objective function consisting of tar-
get parameters defined as variables. The observability of those varia-
bles determines the effectiveness of process control strategies. The
developments of AI/ML have greatly enhanced the observability of
various variables in metal forming using either pure data-driven
(experimental data or numerical synthetic data) or hybrid data that
combines both experimental and physics-based simulation data.
Table 2 summarizes various target parameters used in three major
forming disciplines (sheet metal forming, bulk metal forming, form-
ing for joining) to demonstrate the intensity of the corresponding
research areas. In sheet metal forming, special attention is paid to the
process monitoring and control of the draw- in order to ensure a con-
stant part quality despite deviations. Therefore, the geometry of the
part or the semi-finished part is often used as the target parameter.
Another approach is to consider the force curves in order to enable
control of the process. Due to the high tool loads representing a spe-
cial challenge in bulk metal forming, the focus of AI in bulk forming
process control is on wear and maintenance prediction. As of joining
processes, the aim is to control the joint design and the joint strength
by minimizing the influence of disturbances. For this reason, similar
to sheet metal forming, the geometry of the component or the joint is
one of the central target parameters.

Despite the different focuses of target parameters in various form-
ing operations, there exist similar end objectives in process control. A
Table 2
Target parameters of the different forming disciplines.

Forming discipline Sheet metal
forming

Bulk metal
forming

Joining by
formingTarget

parameters

Part geometry [3,56,73,231,
250,278,281,
285,290]

[206] [65,69,119,
147,215]

Geometry of the
semi-finished part

[19,206,285]

Draw-in [58,68,76,
170,220,238]

Force [3,24,61,
232,250,273]

Friction coefficient [173]
Material properties [148,173] [137]
Stress [285] [57]
Strain [285]
Process kinematics [185,203] [80]
Tool geometry [19,206] [69]
Count rate of acoustic

emission
[256]

Wear [39,90, 266] [230]
full feedback process control allows one to in-situ adapt process
parameters for every part and therefore reduce waste and rejects.
Challenges for establishing an effective and robust process control
are sensing and data reduction, and control strategies that correlate
data with quality criterions and process parameters. Allwood et al.
[8] specifically reviewed process control for metal forming. Here in
this review, the focus is given on the implementation of AI/ML in
sensing and data reduction (Section 5.1) and in control strategies
(Section 5.2).

5.1. AI for sensing and data reduction

Sensing is one essential element in process control. Sensing can be
in-situ sensing that is used for immediate in-situ process control or
can be ex-situ sensing, for example, measuring geometry of a
stamped part periodically, that can affect the control decision of this
particular process (e.g., deep drawing) and/or subsequent processes
(e.g., redrawing, flanging, etc.). In [230], algorithms based on CNNs
were used for the real-time detection of faults, caused by worn tools
for instance, in a riveting process. In this case, the vibrations during
riveting were detected by a sensor and on this basis, waveform-
dependent images were generated that were analysed by the convo-
lutional neural network.

Several publications focus on the acquisition of data in the run-
ning production process. For the determination of the mechanical
properties, the use of eddy current as shown by Heutling et al. [107]
and by Heing€artner et al. [106] is a promising approach. The magnetic
properties of materials correlate with their microstructure, which
also correlates with the mechanical properties. The integration of the
measurement in a press shop was shown by Purr [210]. Further prop-
erty measurements for the semi-finished parts are the determination
of the sheet thickness by laser triangulation or of the surface condi-
tion and the amount of lubricant (Purr, [210]) on the sheet.

As presented by Fischer et al. [76] or by Doege et al. [58], the mea-
surement of the draw-in is a suitable factor for the in-situ process
monitoring of deep drawing processes. The draw-in can be measured
with different physical principles. Examples for tactile measurement
are shown in [58] and [238]. An approach using electromagnetic
fields was proposed by Mahayotsanun et al. [170]. Embedded pres-
sure sensors were developed for deep-drawing [222], microrolling
[289], and electrically-assisted microrolling [70]. In [100], a bending
process was monitored using a camera-based system to determine
the bending angle. Maier et al. [171] showed the use of a camera-
based measurement of the deep drawing operation after forming by
measuring a skid-line. In Low et al. [165], the investigations on CNN
forming prediction have proven to be a successful data-driven
method that autonomously identifies features in input CAD geome-
tries and predicts SPIF springback behavior. This predictive tool is
valuable for identifying problematic areas before forming by analyz-
ing a CAD model. Consequently, preemptive corrective measures can
be taken to minimize time and resource wastage during the forming
process.

Another approach in knowing the state of a forming process is
through monitoring force-displacement curves. Havinga et al. [102]
showed this principle for a bending operation and the correlation of
the process force with the bending angle of a flange. Wiesenmayer et
al. used the force-displacement curves of a cutting operation to deter-
mine the properties of semi-finished components for subsequent
process steps [265].

Sensing data obtained from metal forming processes often have
the characteristics of typical 5 V for data, i.e., velocity, volume, value,
variety and veracity. It is highly recommended to use domain knowl-
edge in data preparation. For example, in [119], a methodology
including the use of data-based models of supervised machine learn-
ing was introduced, which enables the prediction of the expected
joint properties for self-piercing riveting and additionally allows
assertions about adequate joining parameters. By comparing differ-
ent learning algorithms, it was shown that the size of the used data
set can influence the prediction quality and that numerically deter-
mined databases with varying material properties of the sheets to be



Fig. 21. Error estimation and compensation algorithm in Incremental Sheet Forming,
according to [74].

Fig. 19. GNN Model and transfer learning for force prediction in double-sided incre-
mental forming process across different material, geometry and forming machine sizes
[61].
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joined, rivet properties and die geometry can be used to extend com-
paratively small experimental data sets [119].

Duan et al. [61] proposed a transfer learning approach using graph
neural networks (GNN) to predict the entire forming force history
during double-sided incremental forming processes based on the ini-
tial forming force measurement in the first few cycles. This GNN-
based model was proposed to aggregate information about part geo-
metric and toolpaths. Furthermore, a transfer learning method was
adopted to improve the prediction speed, such that the model has
the potential to be used in-situ process control to achieve better
geometry accuracy. They experimentally demonstrated the effective-
ness of the approach across several materials and machine variations
(Fig. 19).

5.2. AI in control strategies

Iterative learning control (ILC) is often used for process control.
ILC is an intelligent control tool, which learns from previous inputs
and errors in order to improve the tracking performance of the cur-
rent iteration [6]. Some applications in sheet metal forming processes
are presented as follows.

Endelt and Danckert [68] proposed an ILC system for a deep draw-
ing process comprising two nested loops. The inner loop allowed
minimizing the effects of short-term process fluctuations during
every punch stroke. Additionally, due to the outer loop, the system is
able to react on long term process changes like varying material
parameters, wear and tool temperature and thereby allows for a
gradual reduction of errors resulting from long term disturbances
over time. The control system is illustrated in Fig. 20. The studies
were based on data gained from numerical simulations. As control
variable, the flange draw-in was chosen. The compensation of fluctu-
ations was achieved via local adjustment of the blank-holder pres-
sure. This was realized by an elastic blank-holder design with four
fluid-load cavities, which allowed for adapted pressurization and
thus changing the size of the contact area. For the control system, a
linear learning algorithm was used. In [67], it was shown by Endelt,
that an additional fast initial response filter in the outer loop
improved the performance of the iterative learning control.

Zhang et al. [281] also used an ILC model as an intelligent optimi-
zation method for a deep drawing process in order to adapt the draw
bead restraining force. The model was constructed through the
Fig. 20. Two loop control system according to [68].
imitation of the die trial process by a FE-model, which predicted the
global and local forming quality near each draw bead segment for the
given process parameters. The approach was verified by the numeri-
cal simulation of automotive covering panels. Using the ILC model, an
adequate prediction of the draw bead restraining force without pre-
ceding experience is possible.

Fiorentino et al. [73,74] and Fisher et al. [75] used an ILC as well,
but they applied this approach to an incremental forming process. In
[74], the algorithm was used in a numerical simulation environment.
Within the developed software, based on the desired part geometry
as well as tool geometry and sheet thickness, a toolpath was created
automatically. The geometry deviation between the nominal and the
calculated part was examined by means of an error map. As long as
the deviation exceeded a defined tolerance value, the simulation was
repeated with a newly created toolpath. The error compensation
algorithm considered target, measured, and corrected geometries,
with meshing the geometries with j nodes. For the i th step, the cor-
rection (ei) was estimated by projecting the nodes of the target t on
measured geometry (mi), and thus generating the new corrected
geometry, a schematic is shown in Fig. 21. It was proven for two dif-
ferent geometries that within only three iterations a satisfactory
accurate process result with geometry deviations less than 0.40mm
can be achieved. In [73], this algorithm was tested in experimental
forming of two different part geometries. It was shown that the use
of the ILC allows to compensate geometrical errors within a few steps
by learning from the errors of the previous part. Similarly, in Fisher et
al. [75] a method of constructing a data-driven model for use with
norm-optimal Iterative Learning Controller (ILC) is developed to
improve the accuracy of a SPIF process. Using in-process measure-
ments of the sheet along with knowledge of the input, a data-driven
model is constructed to optimize the input by predicting the resulting
geometry from a change in tool depth. This ILC was tested on a trun-
cated pyramid geometry, and the results showed that the controller
was able to effectively reduce the process error from an MAE of
4.053mm to 0.912mm after five iterations.

In addition to the use of ILC, other artificial intelligence
approaches are also in the focus of sheet metal forming process con-
trol. Examples include the use of artificial neural networks as well as
the use of various deep learning methods, which are presented
below. Yang et al. [273] were using artificial intelligence for optimiza-
tion of a V-bending process of sheet metal. Force-displacement-
curves of the punch in experiment were compared to curves that led
to the desired bending angle in numerical variation studies. Also,
springback behaviour in experiment and numerical simulation was
analysed. By means of an online adaptive filter, experimental force-
displacement curve and the springback value were modified in order
to achieve coincidence with the output of the respective simulation.
Thus, an online database was generated, which was used to control
the process via an adaptation of the punch stroke. The process control
system led to a very high precision of the bending angle and was
expected to be transferrable to other metal forming processes.



Fig. 23. Control system of the feedforward feedback coordinated regulation used in
[282].

Fig. 22. Analogies between cutting force curves and stress-strain diagrams according
to [232].
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In [232], Schenek et al. introduced an AI-based approach to deter-
mine material parameters of different investigated dual-phase steels
with the aid of an ANN. As a basis for this, the force curves during
punching of the sheet materials are measured using a direct force
measurement device that is integrated in the punching tool. In this
way, mechanical properties of the materials can be precisely pre-
dicted and, moreover, the mechanical properties of similar materials
not used for training can also be predicted. The used analogies are
shown in Fig. 22.

The approach, as in many other cases, involves data preparation
by filtering out measurement oscillations and data augmentation by
multiplying the measured force curves by random arrays to achieve a
high data diversity for the training of the neural networks. In further
investigations [89], the same authors also used other methods
besides ANN such as domain knowledge-based feature engineering,
statistical feature extraction and a derivative-based method to
extract features from the measurement data.

Manabe et al. [173] used a three-layered ANN for the identifica-
tion of material properties in the deep-drawing process of a circular
cup for improving the uniformity of thickness distribution. As input
parameters for the model, punch load, punch stroke, blank-holder
force, flange thickness strain and flange reduction ratio were used.
The layers of the ANN were comprising 20, 40 and three neurons. For
data generation, deep-drawing experiments were conducted. Based
on the material parameters identified by the model, the friction coef-
ficient during the process was determined by means of elastoplastic
theory. This allowed for a prediction of the fracture and wrinkle limit
for the current part using defined process curves. Based on that, an
adaption of the blank-holder force was performed. The process was
monitored via continuous sensing of the ANN input parameters, pro-
viding a closed loop control.

Biegel et al. [24] investigated deep learning-based monitoring
approaches in order to enhance the performance of Multivariate Sta-
tistical Process Control (MSPC). Therefore, a dataset of high-fre-
quency force and displacement sensors was used. The dataset
contained curves representing normal operating conditions as well
as abnormal operating conditions while deep drawing trunk lids.
Using different deep learning-based methods, the monitoring of
high-frequency time series data of the sheet metal forming process
was possible. A comparison of the different methods showed that the
best results are achieved by using a deep dense autoencoder. Similar
results are obtained by using the naïve mean approach.

In Lechner et al. [148] a concept to improve the global part qual-
ity by adjusting the kinematics during a freeform bending process
using a neural network is presented. Therefore, a very fast surrogate
model of the process is necessary, which was trained with simula-
tion data to compute the expected geometry. Using SVM a good
accuracy was achieved. After that, the expected geometry was
optimized by adjusting the process kinematics to compensate geo-
metrical deviations due to material variations. For the real time opti-
mization an ANN served as fast computing process model in the
controller. The deviations of the bent tube ends could be reduced by
an average of 52.4% using the data-based model. Recently, Zhao et al.
[282] used an ANN-based feedforward feedback control to success-
fully improve flatness in a 1420mm strip tandem cold rolling
production line. The control scheme used within the studies is
shown in Fig. 23.

To increase the geometric accuracy in a robot-based incremental
sheet forming process, St€orkle et al. [245] used the approach of
reinforcement learning. As core component served a so-called learn-
ing agent, which was able to calculate a desired geometry of the sheet
metal component. With the help of this calculated geometry, the
compensation of the geometric deviations was possible. Therefore,
the forming tool path was adapted. The learning agent used the expe-
riences from previous forming processes. The approach is not only
limited on one geometry but can be used for several geometric
shapes.

In-process geometric distortion correction also plays a major role
for the work of Abdolmohammadi et al. [3], who established a virtual
geometry sensing system for a robotic roll forming process. The
geometry after forming is predicted on the basis of a virtual sensor
for in-line robot path optimization. This approach can be exploited to
enhance the process robustness by applying a geometrical correction
to sheets that can be utilized for the process in this way even though
they do not comply with the specified tolerances. In this context, var-
ious algorithms such as vector regression, random forest and neural
networks were investigated, whereby a neural network with four
hidden layers turned out to be the best-proposed model for this pur-
pose. Furthermore, according to the investigations, there exist value
ranges of parameters such as batch size, epoch numbers and learning
rate, for which best values of the mean squared error are achieved.
Thus, it becomes clear that hyperparameter tuning not only has an
impact on the results when using neural networks but also can entail
overfitting, which results in the model not being suitable for new
data sets, although a high prediction quality is reached for the train-
ing data.

In an incremental forming process with an active medium an
online control was used to adjust the geometry of the product auton-
omously. Therefore, Thiery et al. [250] integrated an axial force sen-
sor and a laser distance sensor. The target of the control was to
ensure a certain height of the formed convex truncated cone by
adapting pressure with the integrated pressure chamber. The used
control scheme, which is divided in a discrete control, which runs
one time per forming cycle, and the continuous forming process, is
shown in Fig. 24. To predict the necessary pressure an ANN was used.
Besides the geometry of the formed component, the circle diameter
of the tool path, the current cycle, the height difference and the aver-
age forming force were inputs for the ANN in order to predict the
pressure as output. To train the network, experiments forming trun-
cated domes of different geometries were conducted. Before the
training of the ANN the inputs and the output were normalized. To
validate the results, the performance of the ANN was evaluated using
a training dataset. After that, the closed-loop control was validated
by forming parts with different geometries while using the control
system.



Fig. 26. Parallel paths of the real experiments (with ModelExp) and the computer simu-
lation (ModelSim) according to [186].Fig. 24. Closed-loop control scheme to adjust the product height during incremental

sheet forming with active medium according to [250].
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In general, different methods are involved when using AI for pro-
cess control in sheet metal forming. However, a trend towards the
use of ANN is discernible. In [198], the prediction results of different
machine learning methods, including Gaussian process regression,
SVM, decision trees, k-nearest neighbours and ANN, are analysed and
compared in the context of a SPIF process and ANN is identified as
the most accurate method in this case, albeit the most inefficient in
regard to training time. Park and Kang [203] used and compared a
regression model and an ANN with one hidden layer for the investi-
gation of a flexibly reconfigurable roll forming process and showed
that the prediction quality of the models was dependent on the sur-
face shape of the parts. For this reason, it is currently still the case
that an appropriate method must be selected depending on the
actual framework conditions and that a balance must be made
between the required prediction accuracy and the training time and
effort. In [2], it is shown that data obtained by a load cell during a
robotic roll forming process can be used for the prediction of the
workpiece geometry. The authors apply and compare linear, polyno-
mial, and exponential regression. They achieve the best results using
second degree polynomial regression. In a next step, the neural net-
works are used for in-line robot path optimization [3].

The artificial neural network approaches can be used to predict
the forming force or volumes during flange forming. Rasche et al.
[213] used the open-source machine learning library, LIBSVM, for
this purpose. This resulted in an accurate prediction of more than
0.998. A disadvantage here is that this approach only considers one
spot because the data cannot be separated. Furthermore, investiga-
tions by Kirchen et al. [136] showed that these approaches can also
be applied to a flexible rolling process for the production of custom-
ized semi-finished products, whereby fundamental relationships
between process and quality parameters could be determined using
data-driven methods. Here, the predictive model is set up using
incremental regression modeling and subsequently evaluated with
the aid of process and quality data. Since the stroke prediction model
is affected by preceding strokes, a stepwise prediction is required, as
Fig. 25. Incremental regression for discrete processes [136].
shown in Fig. 25. The quality parameter describing the homogeneity
of the sheet thickness of the semi-finished product could be pre-
dicted with a maximum deviation of 5%. It allows one to derive
adapted parameter settings between process steps for a product,
which offers the possibility to intervene during the production of a
product and to optimize the control.

Nemati et al. [186] presented an approach for modelling self-
piercing riveting with the aid of local fuzzy pattern models with a
multidimensional membership function, which allows to predict rel-
evant output parameters and can build the basis for process control
aiming on increasing efficiency while ensuring a high product quality.
This involves a coupling of the parallel paths from experiment and
simulation and enables an interaction between the two models, as
shown schematically in Fig. 26.

5.3. Summary of process control

In summary, the examples provided illustrate how artificial intel-
ligence methods are used to improve forming processes and increase
component quality. A major challenge for the application of AI in the
field of forming technology is the acquisition and structured analysis
of training data. Data preparation and the generation of larger and
additional data sets to provide sufficient variety of data for training
have a crucial impact on the results. However, it is not only the quan-
tity of data that is decisive in this regard but especially the quality of
the data. It is known from various studies, for example in the field of
biomedical engineering [252] and materials science [255], that good
results with sufficient predictive accuracy are also achievable on the
basis of small data sets when using machine learning methods. More-
over, data acquisition plays a major role when using AI methods for
process control in forming processes because the accuracy of the
models depends on the sensors used to obtain data. This aspect is
already known from research activities related to other manufactur-
ing technologies. Groche et al. [92] demonstrated the impact of sen-
sor types and sensor positions on the measurement results in a shear
cutting process. Within the framework of the wear analysis using a
multiclass support vector machine for a blanking process in [142], it
was also shown that the sensors utilized and the measurement meth-
ods can lead to differences of time signals, which in turn influences
the model performance. In view of these findings, it can be assumed
that sensor technology also has an impact when implementing AI
methods for the process analysis and control of forming processes.
Therefore, attention needs to be paid to this in the future.

In cases already high-quality process knowledge is available, often
individual solutions, but no transferable knowledge is provided by AI.
On the one hand, the generalizability of the models must be evalu-
ated in future studies, on the other hand the potential of other math-
ematical approaches, e. g., graph theory, has to be investigated.
Approaches from rule-based to learning AI are used in all areas.
Almost all applications involve the creation of models to link the
input variables of the process with the target variable that is of inter-
est. In terms of models, the trend is generally already towards neural
networks, which is also shown in Table 3. This can be seen for all
forming disciplines. The use of different algorithms depending on
whether, for example, sheet or bulk metal forming is concerned, has



Table 3
AI approaches of the different forming disciplines.

NN GA ILC Class. Reg. Others

SMF � Refs. [3,19,24,
81,89,173,185,
203,206,232,
250,256,285]

[231,285,
290]

[67,68,73,
281]

[56,142] [3,185,203] Adaptive
filter [273],
PCA-based [24],
RL [278],
Random
Forrest [3]

SMF- #
Data sets

25 [185] to
480 [232]

15 [231] to
48 [285]

N/A 170 [56] to
10 K [142]

12 [3]
to 27 [203]

12 [3] to
273 [24]

BMF � refs. [39,57,90,137,266] Fuzzy [151]
BMF �

Data sets
100 [39] to
315 [90]

JF � refs. [80,119,147,215] [69] Fuzzy [186]
JF - # of data 27 [147] to

312 [215]
2376 [69] 125 [186]

SMF � Sheet metal forming; BMF � bulk metal forming; JF � Joining by Forming; GA
� Genetic Algorithm; ILC � Iterative Learning Control; Class. � Classification; Reg. �
Regression.

Fig. 27. Anomaly detection with machine learning models for a hot forming process
[187].

Fig. 28. The architecture of the deep attention residual convolutional neural network
(DARCNN), according to [115].
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not yet become evident. Nevertheless, the method must be chosen
depending on the required prediction accuracy of the model, as usu-
ally an increased accuracy is also accompanied by an increased time
for training. The main differences of the applied approaches relate to
the processed data (e. g., machine data, image recognition or noise),
for which the quantity and quality of the training data is one of the
main challenges in terms of reliable functioning of the models. If a
large number of datasets is used, usually numerical simulation is
applied to create the respective database. However, the investiga-
tions regarding AI in forming processes are mainly on a laboratory
scale. In case of experimental datasets, sensors are needed to record
the input variables. In the field of sheet metal forming, the sensor-
based input predominantly relates to forces and geometric quantities
of the component. This trend can also be seen for bulk metal forming,
whereas in joining by forming, process parameters are mainly preset
and part geometry is measured after the process is finished. Sensors
are used to measure acoustic emission, forces, strokes, draw-in, part
height, pressure, and displacement. At the moment, it is difficult to
generally differentiate between areas or use cases, what seems to be
a trend for future activities.

6. AI for qualification and certification

The uncertainty associated with numerous process parameters
such as tool configurations, material properties, lubrication condi-
tions, and machine settings can lead to large variance in product
quality for metal forming processes. Defective products that need to
be reworked or disposed cause a significant loss in the economic
value of the manufacturing process. The focus of this section is on
using AI techniques for qualification of reliable manufacturing pro-
cesses and certification of defect-free products.

Currently, common industrial practices heavily rely on manual
inspections of various causal parameters based on expert experience.
Analytical prediction of the product quality from process parameters
simply fails for most cases due to the highly tangled nonlinear rela-
tionship [144]. From the input process parameters to the output part
quality, there are many intermediate hidden states that are not acces-
sible or measurable, e.g., temperature distribution in the forming
zone of a double-sided incremental forming process is almost impos-
sible to measure [126]. Simulation-based approaches have found
their values in predicting these “invisible” intermediate phenomena
with physical models and numerical solutions, eventually generating
predictions of concerned properties of the as-built parts [270]. How-
ever, the usefulness of pure numerical simulations for product quali-
fication and certification is questionable in metal forming processes.
The accuracy of numerical predictions is affected by many factors,
e.g., model inconsistency with real physics, numerical discretization
errors, and lack of understanding of the fundamental mechanisms.
Also, the rich sensorial and monitoring data obtained from
manufacturing processes are nontrivial to be incorporated into
numerical simulations; in many situations, experimental data is only
used for calibrating certain parameters. In addition, the high compu-
tational cost prohibits numerical simulation from being used in real-
time monitoring scenario where a slight delay in response can cause
massive production of failed products.

The adoption of AI techniques for fast and reliable product quality
control is of increasing interest. An example is shown in Fig. 27,
where machine learning methods can be applied in real-time anom-
aly detection for a sheet metal hot stamping process [187]. In the fol-
lowing discussions, the focus is given on challenges and
opportunities of using AI-based methods starting with model archi-
tecture (Section 6.1), followed by data quality (Section 6.2), and
knowledge transfer and sharing (Section 6.3).

6.1. Model architecture

Innovations in designing ML models, e.g., advanced neural net-
work architecture, help to enhance model capability and achieve
higher performance when solving metal forming qualification tasks.
Huang et al. [115] employed the attention mechanism and proposed
deep attention residual convolutional neural network (DARCNN) to
recognize surface defects for hot-rolled steel strip; compared with
the sub-optimal models, the accuracy, precision and area under curve
(AUC) of DARCNN are improved by 1.17%, 1.03% and 0.58%. The archi-
tecture of DARCNN is shown in Fig. 28, which contains 8 residual
blocks, 1 squeeze-and-excitation block, 1 global average pooling
layer, 2 convolution layers, 4 max pooling layers, and 2 dense layers.
Deep neural networks can also be combined with classic ML models
to generate better overall performance. For example, Boudiaf et al.
[29] developed an intelligent recognition system of surface defects
for hot-rolled steel strips images using modified AlexNet convolution
neural network and support vector machine model. Another possibil-
ity for model improvement is to use ensemble methods that adopt
multiple ML algorithms/models to obtain better performance than
any of the constituent learning algorithms alone. For the prediction
of defects in sheet metal forming processes, Dib et al. [55] showed
that their ensemble predictive models present relatively high per-
formances compared to the single learning model.
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Another interesting direction is the combination of physics-based
models with data-driven ML models. For mass production, AI meth-
ods can be more statistically driven by abundant data; in the case of
one-of-a-kind production, it becomes particularly meaningful to fuse
physical models (often in the form of physical simulations) with lim-
ited experimental data. Relevant works in metal forming include
[127], where a hybrid approach was proposed by combining ML tech-
niques and physics-based kinematics model for tool wear prediction
in edge trimming of carbon fibre-reinforced polymers. In our opinion,
the future trends of quality control problems will involve more inte-
grated analysis where experimental characterization, physical simu-
lation, and AI-based methods all play indispensable roles. For
example, to study the influence of composition and heat treatment
on the rolling contact fatigue of hypereutectoid pearlitic steels, Sol-
ano-Alvarez et al. [242] combined experimental synchrotron meas-
urements and neural network analysis and discovered that hardness,
attained by increasing the cooling rate from the hot rolling tempera-
ture, is the most important factor. In other fields like metal additive
manufacturing, a representative work can be found in [214], where
high-speed synchrotron x-ray imaging and thermal imaging were
coupled with multi-physics simulations, based on which ML models
are trained for the prediction of keyhole porosity defect.
6.2. Data quality

Data fuels machine learning algorithms. Due to the time and cost
of manufacturing processes, acquiring sufficient high-quality data to
successfully train a machine learning model is often a challenge.
Without enough data, the ML model is prone to overfitting in the
sense that it is perfect on training data but has poor performance on
test data. On the one hand, relatively cheap and abundant simulation
data can supplement expensive and sparse experimental data as a
strategy of data augmentation [143]. On the other hand, synthetic
data augmentation can be realized by a suite of techniques to
enhance the size and quality of training datasets so that better
machine learning models can be built [236]. In a surface defects
detection task for hot-rolled steel strip, Jain et al. [121] augmented
their dataset with classic methods (e.g., random translation, rotation,
and scaling of the images) and obtained a prediction accuracy of
90.28%; the same original dataset was also augmented with synthetic
images generated from a GAN method and the accuracy is enhanced
to 95.78%. On tool wear classification for a blanking process, Molitor
et al. [180] used basic image manipulation, different types of GAN
and their hybrid application to improve the accuracy of prediction up
to 18% (see Fig. 29 for GAN-synthesized images). In a more recent
work about surface roughness prediction, Cooper et al. [47] reduced
the error of prediction from 58% to 9.1% with data augmentation by a
conditional GAN.
Fig. 29. Synthesized images of three different GANmodels (row) for three wear classes
of different cutting punch radii (column), according to [180].
Besides data insufficiency, imbalanced dataset is another chal-
lenge that critically affects the success of AI for quality control. In a
typical defect detection situation, most of the data collected will be
defect-free. Highly imbalanced data poses serious challenges on
training the ML models as they will bias towards the majority class,
and in extreme cases, may ignore the minority class altogether [129].
Common strategies on solving this problem include over sampling of
the minority class, under sampling of the majority class, using the
right evaluation metrics, etc. For example, Tan et al. [247] used a con-
ditional GAN to generate synthetic minority fault class images so that
the dataset is more balanced.

Similarly in a surface inspection task, Zhou et al. [284] employed a
deep convolutional generative adversarial network so that synthetic
image data with defect is generated and used to achieve an overall
classification rate of 0.9174. Rather than direct augmentation of the
minority class data, Heger et al. [104] proposed an interesting alter-
native solution in anomaly detection for formed sheet metals. Instead
of employing a CNN for direct prediction, they used a convolution
autoencoder trained only on defect-free data, and the model identi-
fies anomalies at the deployment stage by checking if the reconstruc-
tion error is larger than a threshold. In our view, the issues associated
with imbalanced dataset is underappreciated and needs more atten-
tion of the community.

Although most existing works on quality control collect and use
image-based datasets, other formats of data exist and can be useful,
and are usually used with models other than CNNs. In [91], signals of
acoustic emissions are employed to train a ML model to classify gall-
ing wear on sheet metal stamping tools, where an accuracy of 97% is
reported with regression tree (CART) technique. Chen et al. [43]
extracted historical multivariate time-series data of a cold rolling
process in a run-to-failure manner and trained recurrent neural net-
works for strip breakage prediction.

For supervised learning, raw data must be labelled, a process that
is usually time-consuming and may incur high costs. Innovations can
be made by automating this process for cost-saving. In a rolling sur-
face defect inspection task, Tao et al. [249] proposed a new AI-based
labelling method called Padua Incremental Mask Labelling Method to
accelerate the labelling process and the data was used to train a You-
Only-Look-Once-OurNet (YOLO��OurNet) deep-learning network for
defect prediction.

Finally, it should be noted that not all tasks require ‘’big data’’ for
training. In certain applications, “small data” also lead to satisfactory
results. For example, ML models are built successfully for a SPIF pro-
cess with only 5�20 samples [164] and for a hot stamping process
with 64 samples [283]. Gradually and adaptively increasing the size
of datasets when overfitting occurs is a recommended strategy. Simi-
larly, the number of features for each data point need not be always
large. For example, in an anomaly detection task about scrap floating
event in stamping, Ohashi [194,195] showed that with only six sug-
gested features the prediction accuracy outperformed that of the tra-
ditional ‘center-of-gravity’method.

6.3. Knowledge transfer and sharing

From the perspective of Bayes’ Theorem and statistical machine
learning, training a model is considered as finding the posterior dis-
tribution given observed data and prior knowledge. In a situation
where sufficient high-quality data is sometimes difficult to obtain
(like qualification data in metal forming), a strong prior can be valu-
able. For example, Mondal et al. [181] proposed to build a prior based
on existing manufacturing knowledge sources like the Failure Mode
and Effect Analysis (FMEA) and use the prior to guide the data-driven
learning process of a Bayesian network. Knowledge gained from solv-
ing previous similar problems can be transferred and applied to solve
the current problem. In this spirit, readers can refer to several review
articles on transfer learning [199], few-shot learning [263] and meta-
learning [112]. Several successful applications of these “knowledge
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transfer” techniques in forming processes have merged. Liang et al.
[157] applied transfer learning by establishing a shared connected
deep neural network and improved the electricity consumption
time-series anomaly forecasting in aluminium extrusion pro-
cesses. A similar work is performed by Neuhauser et al. [188]
where transfer learning helps in real-time classification and
detection of surface defect on extruded aluminium profiles. Kubik
et al. [145] developed a domain adaptation deep learning method
to handle the change of system configurations so that the neural
network models do not need to be retrained, and the classifica-
tion accuracy for finely graded wear states in a blanking process
is 95%. Currently, many existing works are based on their in-
house datasets. Yet, the publication of open datasets is beneficial
for the community for knowledge sharing and transfer learning,
and hence is encouraged. One such example is the surface defect
database that contains six kinds of typical surface defects of the
hot-rolled steel strip [243].

It is important that manufacturing knowledge of quality
inspection can be properly managed and reused. A systematic
way of extracting information, building knowledge-based sys-
tems, and performing reasoning/inference is through knowledge
engineering. Powered by deep graph neural networks, knowledge
graph (KG) has become an appealing approach for efficient and
scalable knowledge representation through structural relations
between entities [125]. Knowledge graph has proven to be a use-
ful tool in understanding manufacturing processes better, and in
particular, additive manufacturing [167]. For example, Ko et al.
[139] proposed a Design for AM (DfAM) framework by adopting
ontology with KGs as a knowledge base for storing both a priori
and newfound AM knowledge (see Fig. 30); the goal was to
improve the understanding of the influence of AM process param-
eters on part qualities.

Applying KG to metal forming processes creates opportunities
of building shared and transferrable knowledge base that helps
the quality control task. Beden et al. [21] proposed the Steel Cold
Rolling Ontology (SCRO) to model and capture domain knowledge
of cold rolling processes and built a KG for data access, data inte-
gration, data querying, and condition-based maintenance pur-
poses. Jing et al. [128] made an attempt in information extraction
and domain knowledge graph construction for hot strip rolling
based-on a language model. A relevant work for sheet metal
forming that used knowledge engineering but not KG can be
found in [141] where the authors built a system called Knowl-
edge Discovery in Time series and image data in Engineering
Applications (KDT-EA) for wear detection.

Manufacturing processes are often distributed and require the
connection and cooperation of individual manufacturing systems for
efficient, on-demand production. Each manufacturing unit holds the
knowledge that can be shared and transferred for training better AI
models. In the previous discussion, the management and reuse of
manufacturing knowledge were emphasized; here, the focus is given
Fig. 30. Overall Data-Knowledge-Design Rule framework by adopting knowledge
graphs as the storing base for part quality control, according to [139].
on federated learning algorithms that directly use distributed data
without the need for centralization. Federated and distributed learn-
ing is an active research field that involves training ML models over
localized data with a focus on dealing with heterogenous data, effi-
cient communication, privacy-preserving data analysis, etc. [155].
Federated learning for manufacturing processes is applicable and
promising. Truong et al. [254] proposed a lightweight federated
learning-based anomaly detection for time-series data in industrial
control systems. Brik et al. [32] used federated deep learning to build
a prediction model of resources locations in manufacturing systems
so that system disruptions are detected in real time. In a fault diagno-
sis task for rotating machinery, a federated learning approach was
taken and its performance was examined for different data distribu-
tions across 30 participating factories [178]. Chen et al. [41] applied
federated learning for better privacy protection in prediction of
remaining useful life for turbofan engines. Federated learning is also
applied in sheet metal forming processes to predict defects in a qual-
ity control task [49].

6.4. Summary of AI for qualification

Several aspects of effectively using AI for metal forming quality
control and defect detection have been discussed. In general, the
improvement of current methods can be performed either by
enhancing the quantity and quality of data or through architecting
novel model structures. It is also encouraged to compare and adopt
useful techniques from other manufacturing processes, e.g., additive
manufacturing, to better serve for metal forming.

7. Conclusions and future perspectives

A rising adoption of AI techniques in the metal forming industry
has been observed, mainly for detecting defects (e.g., die wear) and
predicting failures before they occur. This paper highlights a much
broader range of opportunities for AI techniques, such as different
machine learning algorithms and expert systems, to improve the effi-
ciency and effectiveness of metal forming processes in the near
future.

In addition to the summary section in each of Section 3 to Section
6, in which both summary and future directions were noted, here, a
comprehensive overview of the benefits and future perspectives of
using AI in metal forming is provided. Specifically, the provable bene-
fits of using AI in metal forming include:

(B1) AI can substitute classic constitutive models for plastic defor-
mation, and are not restricted to special function classes such
as, e.g., polynomials used to define yield criteria. They hence
offer a way to unify constitutive models and make the simula-
tion results less dependent on the choice of human operators.
AI-based constitutive model are, however, much less
researched than their classic physics-based and empirical coun-
terparts, and have yet to prove that they are efficient and reli-
able in process simulation frameworks.

(B2) AI algorithms such as PINN allows for predicting the outcome of
entire process simulations, but have yet to prove that they can
be reliably applied to large scale problems like stamping and
forging.

(B3) AI was demonstrated to improve the quality of the manufactur-
ing process, by allowing for the real-time optimization of pro-
cess variables and the identification of potential problems.

(B4) AI techniques can significantly reduce lead time and cost by
automating the optimization of process parameters. Through
the use of AI approaches, it is possible to predict the perfor-
mance of the forming process, and invert process models to
determine the input parameters that will result in a desired
output.
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(B5) Tool design has been the first field of application of expert sys-
tems in the 1990s, but its seems that initial efforts in this field
did not persist. New approaches such as generative design offer
new ways for the design of metal forming tools but have yet to
be applied to forming and proven to be effective.

Despite the rapid progress in this field, further research is needed
to expand the reliability, robustness, and applicability of data-driven
material modeling to today’s challenging problems. Promising future
directions include:

(F1) While physics-embedded deep learning methods have shown
several ways to integrate physical principals and insights into
modern deep learning networks, these methods are mainly
focused on improving generalization. Vigorous studies to reveal
which physical principals and methods of integration would
cause stability guarantees can significantly benefit the field.

(F2) Current demonstrations of part-scale solutions are limited to
relatively simple material models. While this is to some extent
expected due to the sparse nature of the optimization problem,
future works can push the limits of material complexity that is
viable to solve using this class of methods.

(F3) Data-driven material modeling research has remained con-
tained within simulation data, with few exceptions such as
[153]. Expanding the scope of this research to include experi-
mental training data are essential to gauge the effectiveness of
these methods in various industrial applications.

(F4) Current studies do not account for the uncertainty in the meas-
urements and process modeling. While promising early
attempts have been made [114,130], further research is needed
to enable the robust design of materials and manufacturing pro-
cesses.

(F5) As data-driven modeling is heavily dependent on the training
data and conducting experiments, or even simulations, can be
expensive, investigating efficient strategies for design-of-exper-
iment and information-rich geometries and loadings is an
impactful future research direction.

(F6) Further research is needed to fully understand the relative
strengths and limitations of each approach for modeling plastic
deformation in different types of materials.

It is worthwhile to note that there are also several generic open
research questions that need to be addressed in order to fully realize
the potential of AI in metal forming. Although these points are not
specific to forming, they will have a large impact on the acceptance
and adoption of AI tools in forming:

(F7) Explainable AI. Explainable AI refers to AI systems that are able
to provide insight into the reasons behind their decisions and
predictions [13]. This is important in applications where it is
necessary to understand the underlying mechanisms that drive
the behavior of the system, such as in metal forming where
choice of process parameters significantly impacts the effi-
ciency of the process. At present, explainability of AI tools used
in the context of metal forming is low. Thus, explainable AI is
an important future research area in metal forming, as it has
the potential to improve our understanding of the underlying
mechanisms that govern the behavior of these manufacturing
processes. This can facilitate the optimization of the process
and the development of more accurate models for predicting
the performance of the manufacturing process.

(F8) Extrapolation. In general, machine learning algorithms are
designed to learn patterns in the training data and to make pre-
dictions based on these patterns. If the test data is significantly
different from the training data, the model may not be able to
generalize well and may make inaccurate predictions. This is
known as the "curse of dimensionality," and can be a serious
problem in high-dimensional spaces. Therefore, it is generally
recommended to only use machine learning algorithms to
make predictions within the range of the training data. This is
difficult in metal forming, where lab scale data may not repre-
sent the entire spectrum of loading paths that the real process
imposes on the material. If it is necessary to make predictions
outside of the safe region, it may be necessary to gather addi-
tional data or to use a different model at present. First solutions
to this problem involve the combination of machine learning
and filters from control engineering such as particle filters, but
more research is needed to allow for extrapolating machine
learning models.

(F9) Scarcity, quality and cost of generating good training data.
There are a number of strategies that can be used to use AI in
fields such as metal forming, where it is expensive to generate
training data and the amount of data is generally quite low.
These strategies include:
� Data augmentation: One approach is to use data augmentation
techniques to artificially increase the size of the training data-
set. This can be done by generating additional data points by
manipulating the existing data in various ways, such as rotating,
scaling, or shifting the data, or by using GAN.

� Transfer learning: Another approach is to use transfer learning,
which involves training a machine learningmodel on a large data-
set, e.g., from simulations, and then fine-tuning the model on a
smaller metal forming dataset [287]. This can allow the model to
leverage the knowledge learned from the larger dataset, and may
improve its performance on themetal forming data.

� Active learning: Another strategy is to use active learning tech-
niques, which allow the model to actively select the most infor-
mative data points to label, rather than labeling all of the data
[234]. Gaussian process models represent a sound theoretical
framework for active learning. This can be an effective approach
when the cost of labeling data is high, as it allows the model to
focus on the most important data points.

� Hybrid approaches: Finally, it is possible to use a hybrid approach
that combines multiple techniques, such as physics-based and
machine learning algorithms, to leverage the strengths of each
approach. This can allow for the incorporation of domain-specific
knowledge and expertise into the model, which can improve its
performance evenwith a limited amount of data.

Overall, further research is needed to understand the best ways to
incorporate AI into the workflow of setting up and running forming
processes, to develop methods for evaluating and explaining the per-
formance of AI models, and to allow AI models to extrapolate beyond
the space spanned by their training data. Finally, (F10) the emergence
of Large Language Model (LLM) [131] such as ChatGPT (natural lan-
guage processing chatbot driven by generative AI technology) or co-
pilot tools provides a potential new way for tool design or for captur-
ing tacit knowledge that has been accumulated in our metal forming
business over decades. These LLM models need to be trained on large
data, which can be extracted from past publications or patents - the
outcome of rich scientific research and practices over the humankind
history. However, the challenge of having consistent data interrup-
tions and the need of critical thinking skills will require the interwo-
ven and the co-development of both physics-based approach and
data-driven approach.
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