GENETICS, 2024, 227(4), iyae089

https://doi.org/10.1093/genetics/iyae089
Advance Access Publication Date: 28 May 2024

Investigation

sailill GENETICS

Selection leads to false inferences of introgression
using popular methods

Megan L. Smith (®,"?* Matthew W. Hahn ()

1De|c>artment of Biological Sciences, Mississippi State University, Starkville, MS 39762, USA
2Department of Biology, Indiana University, Bloomington, IN 47405, USA
3De|c>artment of Computer Science, Indiana University, Bloomington, IN 47405, USA

*Corresponding author: Department of Biological Sciences, Mississippi State University, 219 Hamed Hall, 295 Lee Blvd, Mississippi State, MS 39762, USA. Email: ms4438@msstate.edu

Detecting introgression between closely related populations or species is a fundamental objective in evolutionary biology. Existing
methods for detecting migration and inferring migration rates from population genetic data often assume a neutral model of evolution.
Growing evidence of the pervasive impact of selection on large portions of the genome across diverse taxa suggests that this assumption
is unrealistic in most empirical systems. Further, ignoring selection has previously been shown to negatively impact demographic infer-
ences (e.g. of population size histories). However, the impacts of biologically realistic selection on inferences of migration remain poorly
explored. Here, we simulate data under models of background selection, selective sweeps, balancing selection, and adaptive introgres-
sion. We show that ignoring selection sometimes leads to false inferences of migration in popularly used methods that rely on the site
frequency spectrum. Specifically, balancing selection and some models of background selection result in the rejection of isolation-only
models in favor of isolation-with-migration models and lead to elevated estimates of migration rates. BPP, a method that analyzes se-
quence data directly, showed false positives for all conditions at recent divergence times, but balancing selection also led to false po-
sitives at medium-divergence times. Our results suggest that such methods may be unreliable in some empirical systems, such that new

methods that are robust to selection need to be developed.
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Introduction

In recent years, as genomic data have become readily available for
many taxa, evidence of introgression has accumulated across the
tree of life (Mallet et al. 2016). A growing interest in understanding
the role of introgression in diversification has led to the develop-
ment of numerous phylogenetic methods for detecting introgres-
sion (reviewed in Hibbins and Hahn 2022), but most of these
methods cannot detect introgression between sister taxa—only
methods that use population genetic data attempt to do this.
While detecting introgression between sister taxa is a difficult
task, it is of central interest to many researchers. For example, un-
derstanding whether closely related taxa exchanged genes during
divergence is central to distinguishing among modes of speciation
(Payseur and Rieseberg 2016; Roux et al. 2016), with evidence of
gene flow between closely related taxa sometimes being interpreted
as a possible signal of sympatric speciation. Characterizing gene
flow between sister species is also essential for developing null mod-
els in scans for selection (Williamson et al. 2005; Nielsen et al. 2007;
Excoffier et al. 2009; Lugman et al. 2021). Thus, despite the difficulties
of the task, many population genetic methods have been developed
(and have been widely applied) to detect gene flow between sister
taxa.

Introgression should lead to increased allele-sharing between
taxa and increased variance in coalescence times compared
with incomplete lineage sorting alone, and methods to detect

introgression between sister taxa rely on these expectations.
Summary-statistic methods aim to detect particular regions
of the genome that have introgressed based on the expectation
that these regions should be more similar between sister taxa
than nonintrogressed regions (Joly et al. 2009; Geneva et al. 2015;
Rosenzweig et al. 2016). Other approaches focus on comparing
models with and without migration and/or estimating genome-
wide migration rates. For example, many site frequency spectrum
(SFS)-based methods estimate migration rates and other para-
meters by finding the parameters that maximize the composite
likelihood of the SFS (e.g. Gutenkunst et al. 2009; Tellier et al.
2011; Excoffier et al. 2013), which can be computed using diffusion
approximation (e.g. dadi; Gutenkunst et al. 2009) or simulations
(e.g. fastsimcoal2; Excoffier et al. 2013). Models with and without
migration can then be compared based on estimated likelihoods.
While powerful, SFS-based approaches do not take advantage of
linkage information, and other approaches exist that directly ana-
lyze sequence data rather than relying on the SFS as a summary.
For example, BPP estimates divergence times and the intensities
of introgression events from sequence data under the multispe-
cies coalescent with introgression (MSci) model using a Bayesian
Markov chain Monte Carlo (MCMC) approach (Flouri et al. 2020).
While these methods are powerful and can be highly accurate
on simulated datasets, all assume selection does not affect the
patterns observed. Several programs attempt to relax this as-
sumption by allowing for variation in effective population sizes
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across loci, which should mimic some effects of linked selection
(e.g. Tine et al. 2014; Roux et al. 2016; Rougeux et al. 2017); however,
the accuracy of such programs has not been tested in a wide var-
iety of settings.

Mounting evidence suggests that selection impacts large por-
tions of the genome (reviewed in Cutter and Payseur 2013; Kern
and Hahn 2018). Notably, selection can produce genomic signals
that mimic demographic processes. For example, linked selection
can produce signals that mimic population growth or contraction
and can mislead commonly used methods for inferring popula-
tion size histories (Ewing and Jensen 2016; Schrider et al. 2016;
Johri et al. 2021). Ignoring selection may also pose a substantial
problem for methods aiming to detect migration (Cruickshank
and Hahn 2014; Mathew and Jensen 2015; Roux et al. 2016;
Fraisseetal. 2021). Selection leads toincreased heterogeneity in le-
vels of divergence among loci by either decreasing (directional se-
lection) or increasing (balancing selection) levels of polymorphism
at some loci. Furthermore, balancing selection may maintain
polymorphisms for extended periods of time, leading to shared
polymorphisms between otherwise diverged species. Since
many methods for detecting introgression rely on these same sig-
nals, this can lead to false inferences of migration (e.g.
Cruickshank and Hahn 2014; Roux et al. 2016). Despite more wide-
spread acknowledgment of the role of selection and the shortcom-
ings of neutral assumptions in recent years, methods for inferring
migration rates that ignore selection are still widely used.

Here, we simulate data under several evolutionary models that
include selection, including background selection (BGS), selective
sweeps, balancing selection, and adaptive introgression. We evalu-
ate the impact of selection on inferences of migration rates in oadi,
fastsimcoal2, and BPP, and show that some types of selection lead
to high rates of false inferences of migration. Our results highlight
the importance of incorporating selection into tests for migration.

Materials and methods
Simulations

We simulated two populations that diverged at a set timein the
past, Tp, and considered 2 migration histories: no migration
(nomig) and a pulse of migration from Population 1 to
Population 2 looking forward in time (pl_p2). We set all
population sizes to 125,000 and considered 3 divergence
times: Tp=0.25%4N, 1x4N, and 4 x 4N (low, medium, high).
The time since introgression, Ty, was drawn from a vector
{0.01xTp, 0.05%xTp, 0.10xTp, 0.15%xTp, ..., 0.9x Tp} and the
probability of any lineage migrating, py, was drawn from a vec-
tor {0.05, 0.1, 0.15, ..., 0.95}. We set the per site mutationrate,
u, to 1e-8, and the per site recombination rate, r, to 5e—8, both
per generation. To lessen the computational burden of
forward-in-time simulations, we scaled all simulations by an
order of 100: population sizes were scaled to 1250, and muta-
tion rates, recombination rates, and selection coefficients
(s; see below) were all scaled to keep values of Ng, Nr, and Ns
constant. Similarly, divergence times and the timing of migra-
tion were scaled down by an order of 100. To verify that scaling
did not bias our results, we also simulated a small number of
datasets scaling only by an order of 10 (see Results). We simu-
lated 10,000 independent 10 kb windows for most conditions
(see the following for details).

To evaluate the impact of selection on inferences of migration
rates, we simulated data under 6 scenarios in SLiM v4.0.1 (Haller
and Messer 2019), overlaying neutral mutations with pyslim
v1.0.3 and tskit v0.5.5 (Kelleher et al. 2018; Haller et al. 2019). We

considered the following selective scenarios: (1) a neutral model,
(2) BGS; (3) a selective sweep in the ancestor of the two popula-
tions; (4) a selective sweep in Population 1; (5) balancing selection
in both populations and their ancestral population; and (6) adap-
tive introgression. For all scenarios except adaptive introgression,
we considered both the aforementioned migration models (nomig
and pl_p2). For adaptive introgression, we considered only the
pl_p2 model. For all simulations, ancestral neutral variation
was added via recapitation in pyslim. Each condition is described
in detail as follows:

1) Neutral model: To simulate data in the absence of selection,
we overlay all mutations on recorded tree sequences with
pyslim.

2) “BGS”": Tosimulate under a model of BGS, we simulated 75%

of mutations as deleterious and 25% as selectively neutral.

Deleterious mutations had a dominance value of 0.25, corre-

sponding to partially recessive mutations. Selection coeffi-

cients for deleterious mutations were drawn from a

gamma distribution with a mean and shape of —0.000133

and 0.35, respectively (prescaling; mean of —0.0133 postscal-

ing), corresponding to estimates from Drosophila (Huber et al.

2017; Schrider 2020). With the population sizes used in our

simulations, this corresponds to a mean 2Ns=-33.25. We

included a burn-in period in which background selection
was acting for 25,000 generations (postscaling) prior to
population splitting.

Selective sweep in the ancestral population (“sweep ances-

tor”): When simulating a selective sweep in the ancestor of

the two populations, the selection coefficient was drawn

from a uniform (0.001, 0.005) distribution prescaling (0.1,

0.5, postscaling) with a dominance of 1. At generation 1, a

single selectively advantageous mutation was introduced

into the ancestral population at position 5000 (i.e. the middle
of the locus). Then, until generation 1000 (postscaling), we
checked whether the mutation had fixed or been lost. If it
had been fixed, the two populations split at generation

1000 and the simulation proceeded. If the mutation was

lost, we restarted at generation 1 and repeated the proced-

ure until the mutation fixed.

Selective sweep in Population 1 (“sweep p1”): Immediately

after divergence, a selectively advantageous mutation

with a selection coefficient and dominance as in the an-
cestral sweep simulation was introduced into

Population 1 at position 5000. If the mutation was lost be-

fore migration between populations began (or before the

end of the simulation in the no-migration model), we re-
started the simulation. The mutation had no fitness effect

in Population 2.

Balancing selection (“balancing”): To simulate under a mod-

el of balancing selection, we introduced a mutation into the

common ancestor of Populations 1 and 2 at the beginning of
the simulation. We used a mutation effect callback to spe-
cify the fitness of this mutation as 1.5 minus the frequency
of the mutation in the corresponding population. Thus,
when the mutation is rare in a population, it is highly bene-
ficial, but when it is common, it becomes deleterious.

Selection should therefore favor maintaining this mutation

at an intermediate frequency. At generation 5000 (postscal-

ing), the two populations split. If the mutation was lost prior
to the end of the simulation, we restarted the simulation.

Adaptive introgression (“adaptive int”): For this model, only

one migration direction was considered (pl_p2). The
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selection coefficient and dominance were the same asin the
model with a selective sweep in P1, except that the mutation
was also advantageous in P2. We did not require that the ad-
vantageous mutation actually introgressed in these
simulations.

We also evaluated the effects of a more biologically realistic
model by including variations in mutation rate, recombination
rate, and selection coefficients across genomic segments using
the “real BGS-weak CNE” approach described in Schrider (2020).
Following Schrider (2020), we used annotation data from the
University of California Santa Cruz Table Browser for the
Drosophila melanogaster genome (release 5/dm3; Adams et al.
2000). We also used the D. melanogaster recombination map from
Comeron et al. (2012). Briefly, each simulated replicate was mod-
eled after a randomly selected genomic region with selection coef-
ficients 10-fold smaller in conserved noncoding elements (CNEs)
than in coding regions. We modeled windows based on the
Drosophila genome. For each 10 kb window, we selected an end-
point (constrained to be a multiple of 10kb). Windows with
>75% assembly gaps were not allowed, but otherwise windows
were drawn randomly with replacement. The locations of anno-
tated exons and phastCons elements were recorded, and deleteri-
ous mutations occurred only at these sites. We used
recombination rates drawn from the Drosophila recombination
map for the selected window. We drew the mutation rate from a
uniform (3.445e-9, 3.445e-8) distribution (prescaling) for each si-
mulated region. We refer to these simulations as the “complex
genomic architecture” condition in what follows.

We simulated 10,000 10-kb regions for the background selec-
tion and neutral conditions and 1,500 10-kb regions for each
sweep condition and balancing selection. These simulated regions
were used to build datasets for downstream analyses. We
sampled 20 diploid individuals (40 chromosomes) in total, 10 per
population. We then constructed a genotype matrix, discarding
sites that were constant in our sample. We calculated = within
each population, Fsr, and d,, from tree sequences using functions
from tskit. We also generated alignments using the generate_nu-
cleotides and convert_alleles functions in pyslim.

These simulated regions were used to construct test datasets
(Table 1) for downstream analyses with fastsimcoal2, dadi, and
BPP. Test datasets for background selection and neutral condi-
tions consisted of the 10,000 regions simulated under the corre-
sponding condition and model. For the sweep conditions (sweep
p1l, sweep ancestor, and adaptive introgression) and balancing se-
lection, we constructed test datasets by sampling 500 (5%), 1,000
(10%), or 1,500 (15%) regions simulated under the corresponding
condition and the remainder of datasets (9,500, 9,000, or 8,500, re-
spectively) from the corresponding set of simulations under a
neutral model. Sampling was conducted independently to gener-
ate datasets for analyses with SFS-based methods (fastsimcoal2
and odadi) and BPP. For SFS-based methods, we constructed 100
replicate site frequency spectra (SFS) for each condition by sam-
pling one single nucleotide polymorphism (SNP) per region in
the test dataset (see the following for additional details). For ana-
lyses with BPP, for each condition, we generated a 500-bp align-
ment for each region included in the test dataset (see the
following for additional details).

Comparing models and estimating migration
rates in 0aoi

To estimate migration rates in dadi, we constructed SFS for all si-
mulated datasets (50 datasets per divergence time; Table 1). We

Table 1. Simulation conditions considered in this study.

Genomic architecture Model Condition

Neutral
Background selection
Sweep P1 (5, 10, 15%)
Sweep Ancestor (5, 10, 15%)
Balancing (5, 10, 15%)
Neutral
Background selection
Sweep P1 (5, 10, 15%)
Sweep ancestor (5, 10, 15%)
Balancing (5, 10, 15%)
Adaptive introgression

(5, 10, 15%)
Neutral
Background selection
Sweep P1 (5, 10, 15%)
Sweep ancestor (5, 10, 15%)
Balancing (5, 10, 15%)
Neutral
Background selection
Sweep P1 (5, 10, 15%)
Sweep ancestor (5, 10, 15%)
Balancing (5, 10, 15%)
Adaptive introgression

(5, 10, 15%)

Uniform No migration

pl_p2

Complex no migration

pl_p2

built 100 replicate SFS for each dataset, sampling a single biallelic
SNP with replacement from each simulated fragment (10,000 per
dataset). When constructing the SFS for dadi, we did not populate
the monomorphic cell.

We estimated migration rates, population sizes, and diver-
gence times using the split_mig model in dadl v.2.3.0
(Gutenkunst et al. 2009). This model includes 2 populations, with
sizes V1 and V, relative to the ancestral population, a divergence
time, t, and 2 migration rates, M, and M,,. We used starting par-
ameter estimates of 0.1 for V4 and V,, 0.01 for M4, and M,4, and 0.5
for t. We set the lower and upper bounds for v, and v, to 1e-3 and
5, respectively. The lower and upper bounds for the migration rate
parameters were set to O and 5, respectively. For t, the bounds de-
pended on the divergence time of the simulated dataset being
analyzed. The upper and lower bounds were set to 0.005 and 1
for low divergence, 0.02 and 4 for medium divergence, and 0.04
and 16 for high divergence. We perturbed parameters using the
perturb_params function in dadi. Then, we optimized parameters
using the BOBYQA algorithm, the default algorithm in dadgi. We
performed a maximum of 400 evaluations.

For all datasets without migration, we also estimated para-
meters by maximizing the likelihood of the same model but
with migration rates set to zero. Then, we compared the likelihood
of the split_mig model to the likelihood of the model without mi-
gration using a likelihood ratio test (LRT). We calculated the test
statistic A as

A =2x(In (splity;g) — IN(NOme)). We then computed the P-value
using a y° distribution with two degrees of freedom, and we re-
jected the null (no migration) model at a significance level of 0.01.

A common approach for accommodating background selection
is to allow for different effective population sizes across genomic
regions (Roux et al. 2016; Rougeux et al. 2017). Rougeux et al. (2017)
developed an approach to accommodate variation in effective
population sizes and migration rates across loci in dadi. They al-
lowed 2 categories of loci with different effective population sizes
for each category, and they allowed for heterogeneous migration
across the genome by considering 2 categories of loci. We ran a
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modified version of the scripts from Rougeux et al. (2017) on our
high-divergence datasets with a complex genomic architecture
and balancing or background selection. We considered five mod-
els: SI (strict isolation), SI2N (strict isolation with variation in ef-
fective population sizes across loci), IM (isolation with
migration), IM2N (isolation with migration with variation in ef-
fective population sizes across loci), and IM2m (isolation with mi-
gration with variation in migration rates across loci). As
mentioned previously, we optimized parameters using the
BOBYQA algorithm and performed a maximum of 400 evalua-
tions. We also adjusted starting parameters for population sizes
and divergence times to mirror those used previously, except in
the IM2m model, for which we used starting values for migration
rates of 0.1 and 0.01 for the 2 different sets of loci. We increased
the upper bound on divergence times from the values used by
Rougeux et al. (2017) to accommodate the deeper divergences si-
mulated in our study. We compared the five models using
Akaike Information Criteria.

Comparing models and estimating migration
rates in fastsimcoal2

To estimate migration rates in fastsimcoal2, we used the SFS con-
structed for dadi, except that we included the number of mono-
morphic sites. To calculate the number of monomorphic sites,
we used the following equation:

10000

1
Nmonomorphic = Z (10, 000 — Xi) X X
i=1 i

where x; is the number of segregating sites in fragment i. This cal-
culation accounts for the fact that we only sampled a single segre-
gating site per fragment.

We estimated migration rates, population sizes, and diver-
gence times in fastimcoal2 v.2.7.0.9 (Excoffier et al. 2013) using a
model with the same parameterization as used in dadi. We set
the mutation rate to the value used in the uniform simulations
(1e-8). Note that the units used in fastsimcoal? differ from those
used in dadi. We set the minimum bounds for migration rates to
zero, the minimum bounds for population sizes to 1,250, and the
minimum bounds for the relative population sizes v; and v, to
le-2. The minimum bounds on the divergence time were set to
1,250 for low divergence, 5,000 for medium divergence, and
10,000 for high divergence. We used 100,000 simulations to esti-
mate the expected SFS and performed 40 ECM cycles to estimate
parameters. We also compared the migration model to a model
with migration rates set to zero using an LRT with 2 degrees of
freedom as described previously for daai.

Estimating migration rates with BPP

We estimated introgression probabilities and divergence times in
BPP v4.4.0 (Flouri et al. 2020). Notably, BPP uses the MSci model,
which models an instantaneous introgression event, rather than
continuous migration as modeled in our simulations and by dadi
and fastsimcoal2. We first generated sequence alignments for
each region equivalent to a 500-bp locus. We used the middle
500 base pairs of each of the 10,000 fragments composing the
test dataset. For each simulation condition (Table 1), we created
20 replicate datasets with 500 500-bp loci by sampling loci without
replacement from our simulated fragments. In BPP we fixed the
species tree to a 2-population tree with introgression allowed in
both directions and used an inverse gamma (3, 0.01) prior for the
parameters 0 and t. Since the inverse gamma prior is a conjugate

prior for 6, this allowed the 6 parameters to be integrated out ana-
lytically, improving run times (Hey and Nielsen 2007). We allowed
mutation rates to vary across loci using the a_mubar, b_mubar,
and a_mui priors. We set a_mubar and b_mubar to 0, so that mu-
tation rates were relative. We set a_mui equal to 2, and we used the
iid prior. We also used the heredity scalar to allow for variation in
effective population sizes across loci. For the heredity scalar, we
used a Gamma(4,4) prior. We collected 500,000 samples from the
posterior after discarding the first 20,000 samples as burn-in and
sampling every 2 iterations. Some runs did not finish in 90 or
96 hours, but we collected a minimum of 431,090 samples for all
runs. These samples were used to estimate all parameters (using
the posterior mean). To assess convergence, we used effective
sample size (ESS) values. To use the results from BPP to provide a
binary determination of the presence of migration, we asked
whether the highest posterior density interval (HDI) for migration
parameters included 0. An alternative approach is to use Bayes
Factors to compare models with and without introgression. The
Bayes Factor (BF) is the ratio of the marginal likelihoods of 2 models
and requires that we approximate the marginal likelihood of each
model. To do this in BPP, we used a path-sampling approach with 8
steps, which required that we run an MCMC algorithm over each
step for each model. Given that our MCMC runs take up to 96
CPU hours to complete, this requires ~1,536 CPU hours per dataset.
Because of this, we only calculated BFs for a subset of datasets: 5
datasets each from the nomig background selection, nomig neu-
tral, and p1_p2 background selection datasets.

Results
Selection alters levels of diversity and divergence

Selection altered patterns of diversity and divergence in both ex-
pected and initially surprising ways. Under the model with
uniform mutation and recombination rates, the patterns ob-
served in summary statistics conformed to expectations
(Supplementary Figs. 1-3). Background selection and (to a lesser
extent) selective sweeps and adaptive introgression reduced nu-
cleotide diversity relative to the neutral case. Conversely, balan-
cing selection slightly increased diversity. Background selection
also decreased divergence between populations, as expected due
to reductions in ancestral levels of diversity. Migration from
Population 1 into Population 2 increased nucleotide diversity in
Population 2 and decreased divergence between populations.

The results were more complicated under the model with vari-
ation in recombination and mutation rates. As mentioned previ-
ously, selective sweeps and adaptive introgression reduced
nucleotide diversity, and balancing selection increased nucleotide
diversity relative to the neutral case. However, contrary to our ini-
tial expectations, background selection increased nucleotide di-
versity in many simulations. Such a pattern might be explained
by associative overdominance, which maintains neutral diversity
when strongly linked to partially recessive deleterious mutations,
as in our simulations. Associative overdominance can therefore
maintain variation in a population (Ohta 1971; Pamilo and
Péalsson 1998; Gilbert et al. 2020). To assess whether associative
overdominance could be driving our results, we simulated a smal-
ler number of replicates (n = 1000) with a dominance coefficient of
0.5, which should eliminate the effects of associative overdomi-
nance. As predicted, diversity was reduced relative to the neutral
case (Supplementary Fig. 4). When the scaling of our simulations
is less extreme, the amount of nucleotide diversity observed is
very similar to the amount observed with more extreme scaling
(Supplementary Fig. 4).
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We also plotted the SFS under all models and conditions
(Supplementary Figs. 5-7). As expected, migration led to an in-
crease in the number of variants shared between populations.
Balancing selection and background selection with a complex
genomic architecture also led to an increase in the number of
shared variants between populations, even in the absence of mi-
gration. Again, in the background selection case, this could be ex-
plained by associative overdominance in regions of low
recombination. When the dominance coefficient is set to 0.5,
this pattern in the SFS disappears, again supporting associative
overdominance as an explanation (Supplementary Fig. 8). When
the scaling of our simulations is less extreme, the SFS results in
our background selection simulations remain (Supplementary
Fig. 8d and e).

Selection leads to false inferences of migration
using o0aoi

Selection sometimes resulted in false inferences of migration in
dadi using an LRT. For the lowest divergence times, false positive
rates were elevated even in the absence of selection and were
not heavily impacted by selection (Fig. 1a and b, Supplementary
Fig. 9). The rates of rejection ranged from 18 to 41%, when only
1% false positives are expected at this P-value. When divergence
times were moderate, false positive rates were not greater than
1% for any conditions (Fig. 1c and d; Supplementary Fig. 9). Most
strikingly, for the highest divergence times considered here, the
isolation-only model was often erroneously rejected in favor of
the isolation-with-migration model in the presence of balancing
and background selection. Under the uniform recombination
model, the isolation-only model was rejected in 10, 41, and 50%
of replicates with 5, 10, and 15% of loci experiencing balancing se-
lection, respectively (Fig. le, Supplementary Fig. 9). Under the
complex recombination model, the isolation-only model was re-
jected in 95, 100, and 100% of the replicates with 5, 10, and 15%
of loci experiencing balancing selection (Fig. 1f, Supplementary
Fig. 9). Background selection led to false positives in 100% of the
replicates under the complex model (Fig. 1f). Under the complex
model, selective sweeps also led to false positives in some condi-
tions. Specifically, when 5% of loci experienced sweeps in popula-
tion 1 or in the ancestor, the isolation-only model was rejected in
28 and 29% of the replicates, respectively (Supplementary Fig. 9).
Although the unconstrained model (including migration) should
always have a higher likelihood than the constrained model (with-
out migration), this was not always the case. Particularly in the
medium-divergence case, in dadi we observed instances in which
the constrained model had higher likelihoods, indicating potential
issues accurately approximating the likelihood for some datasets
(Supplementary Fig. 10).

Perhaps as expected given the LRT results, selection also some-
times resulted in elevated estimates of migration rates in dadi. As
with the LRT, results for the lowest divergence time lack any clear
signal related to selection: nonzero rates are observed even in the
absence of selection in very recently diverged populations (Fig. 2a
and b). Again, the most striking impact was seen in the high-
divergence case in the presence of balancing and background se-
lection (Fig. 2e and f, Supplementary Fig. 11). Migration rates were
slightly overestimated under the uniform model with balancing
selection. Rates were also overestimated under the complex mod-
el with balancing or background selection (Fig. 2f), and, in the case
of balancing selection, the degree of overestimation increased
with the percentage of loci experiencing balancing selection
(Supplementary Figs. 13 and 14). When simulations included

migration, migration rate estimates tended to be higher under
the complex genomic architecture (Supplementary Figs. 11-14).

In the absence of migration and selection, ancestral 8 was un-
derestimated (Supplementary Fig. 15). Background selection un-
der the uniform model and selective sweeps tended to reduce
estimates of ancestral 6, while background selection with a com-
plex genomic architecture and balancing selection led to overesti-
mates of ancestral 6 when divergence times were high. The
presence of migration led to increased estimates of ancestral 6
(Supplementary Fig. 15). We also estimated the size of each popu-
lation relative to the ancestral population (V, V,, Supplementary
Figs. 16 and 17). Notably, especially under the uniform genomic
architecture, estimates of V; and V, tended to compensate for
mistakes in the estimates of ancestral 0. In other words, when an-
cestral ® was underestimated, V; and V, tended to be overesti-
mated, and vice versa. Divergence time estimates were fairly
accurate in the absence of migration and selection, although
they were somewhat overestimated in the high-divergence case
(Supplementary Fig. 18). When combined with a uniform genomic
architecture, background selection and selective sweeps led to
overestimates of divergence times in the absence of migration,
while balancing selection led to underestimates of divergence
times in the high-divergence case. However, when combined
with a complex genomic architecture and moderate or high-
divergence times, background selection led to underestimated di-
vergence times. Divergence times were always underestimated in
the presence of migration, except for at the lowest-divergence
times with background selection and a uniform genomic
architecture.

For the 2 cases with the highest false positive rates (background
and balancing selection with high divergence times and a complex
genomic architecture), we compared models with and without mi-
gration, with and without variation in effective population sizes,
and with or without variation in migration rates following
Rougeux et al. (2017). With background selection, this led to a re-
duction in false positives (from 100 to 81%), but for the majority
of replicates a model with migration was still selected as the
best model, and the most commonly selected model included 2
categories of migration rates (Supplementary Fig. 19a). For balan-
cing selection, this approach also reduced the false positive rate
(from 100 to 83%), and the isolation-with-migration model was se-
lected most often (Supplementary Fig. 19b).

Selection leads to false inferences of migration
using fastsimcoal2

Background and balancing selection often resulted in false infer-
ences of migration in fastsimcoal2. For the lowest divergence times,
we rarely rejected the isolation-only model (Fig. 3a and b,
Supplementary Fig. 20). When divergence times were medium, false
positive rates were elevated across all conditions, even in the ab-
sence of selection: rates of rejection ranged from 13 to 45% (Fig. 3¢
and d). For the highest divergence times considered here, the
isolation-only model was always erroneously rejected in favor of
the isolation-with-migration model in the presence of background
selection and a complex genomic architecture (Fig. 3f). Under the
complex genomic architecture, the isolation-only model was re-
jected in 21, 81, and 100% of the replicates with balancing selection
in 5, 10, and 15% of the loci, respectively (Fig. 3f, Supplementary Fig.
20). There was also a slightly elevated false positive rate (4%) under a
uniform genomic architecture when 15% of the loci experienced bal-
ancing selection (Fig. 3e). Although the unconstrained model (in-
cluding migration) should always have a higher likelihood than
the constrained model (without migration), as with dadi this was
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not always the case. Particularly in the low-divergence case, in fas-
tsimcoal2 we observed instances in which the constrained model
had higher likelihoods, indicating potential issues accurately ap-
proximating the likelihood (Supplementary Fig. 21).

As with oadi, selection resulted in elevated estimates of migra-
tion rates in fastsimcoal? (Fig. 4, Supplementary Figs. 22-25).
When divergence times were high, migration rates were slightly
overestimated with a uniform genetic architecture and balancing
selection and were substantially overestimated in the presence of
a complex genomic architecture and background or balancing se-
lection (Fig. 4f). In the case of balancing selection, the degree of
overestimation increased with the percentage of loci experiencing
balancing selection (Supplementary Figs. 24 and 25). When simu-
lations included migration, migration rate estimates tended to be
lower under the complex genomic architecture and were slightly
elevated in the presence of background selection with a complex
genomic architecture, balancing selection, and adaptive intro-
gression (Supplementary Figs. 22-25).

Estimates of the ancestral population sizes were fairly accurate
in fastsimcoal? (Supplementary Fig. 26). The relative population
sizes V4 and V, were overestimated across all models and

conditions (Supplementary Figs. 27 and 28). In the absence of se-
lection, migration, and variation in mutation and recombination
rates, divergence time estimates were accurate (Supplementary
Fig. 29). Divergence time estimates were higher under the com-
plex genomic architecture compared with the uniform genomic
architecture and were reduced in the presence of background se-
lection (Supplementary Fig. 29). Divergence times tended to be un-
derestimated in the presence of migration (Supplementary Fig.
29).

Selection leads to false inferences of migration
in BPP

Using BPP, nonzero migration rates were often inferred in the ab-
sence of migration (Fig. 5; Supplementary Figs. 30-32). The HDI of
the 2 migration parameters, ¢-X and ¢-Y, rarely contained zero in
the low-divergence case, regardless of the presence of selection
(Fig. 5, a and b; Supplementary Fig. 30). In the medium- and high-
divergence cases, BPP still inferred nonzero migration often. In the
medium-divergence case, under the uniform recombination and
mutation model, the HDI for ¢-Y did not include zero in 30, 30,
and 40% of the replicates with balancing selection in 5, 10, and
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15% of the loci (Fig. 5¢; Supplementary Fig. 31). Similarly, the HDI
for ¢-X did notinclude zeroin 10, 35, and 45% of the replicates with
balancing selection in 5, 10, and 15% of the loci (Fig. 5c;
Supplementary Fig. 32). Under the complex model, the HDI for
¢-Y did not include zero in 10, 25, and 40% of the replicates with
balancing selection in 5, 10, and 15% of the loci (Fig. 5d;
Supplementary Fig. 31). Similarly, the HDI for ¢-X did not include
zero in 25, 45, and 65% of the replicates (Fig. 5d; Supplementary
Fig. 32). False positive rates were also slightly elevated across
other conditions in the medium-divergence case (0-10% false
positive rate). (Fig. 5d; Supplementary Figs. 30-32). In the high-
divergence case, BPP inferred nonzero migration in 0-10% of the
replicates under each model and condition, but there was no clear
pattern with respect to selection and genomic architectures
(Fig. 5, e and f; Supplementary Figs. 30-32). Although Bayesian
methods do not have an equivalent “false positive” rate to fre-
quentist methods, we would not expect such a high proportion
of HDIs to not include the true parameter value. We also used
Bayes Factors to compare a model with introgression to a model
without introgression for a subset of datasets with high diver-
gence (Supplementary Table 1). We rejected the model without
migration in 40% of replicates without migration under both

neutral and background selection conditions, and we failed to re-
ject the model without migration in 20% of replicates with migra-
tion and background selection.

As expected, given that the HDIs do not overlap zero, migration
rate estimates were elevated in the presence of balancing selec-
tion (Fig. 6; Supplementary Figs. 33). When simulations included
migration, estimates of ¢-X and ¢-Y were generally higher under
the complex genomic architecture (Supplementary Figs. 33 and
34). The results were qualitatively similar whether 5, 10, or 15%
of sweep datasets experienced a sweep (Supplementary Figs. 35
and 36).

We also evaluated whether there was evidence for a lack of
convergence in BPP runs by examining ESS values. We focused
on ESS values for the log likelihood, along with the ¢-X and ¢-Y
parameters. In the low-divergence case, ESS values for the ¢ para-
meters were often low, indicating a lack of convergence, particu-
larly under the complex genomic architecture; however, ESS
values were generally greater than 200 in the medium- and high-
divergence cases (Supplementary Fig. 37). Under some conditions,
there was evidence of a correlation between ESS values and par-
ameter estimates (e.g. for ¢-X under a neutral model with a com-
plex genomic architecture, Supplementary Fig. 38). This suggests
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complex genomic architecture.

thatin some (but notall) instances, assessing convergence may al-
low researchers to identify problematic cases.

In the absence of selection and migration, divergence times were
generally overestimated (Supplementary Fig. 39). Divergence time
estimates were reduced in the presence of background selection
and were elevated under the complex genomic architecture relative
to the uniform genomic architecture. The presence of migration led
to underestimates of divergence times when divergence times were
high.

Discussion

Ourresults suggest that while popular methods for estimating mi-
gration rates between sister populations or species are largely ro-
bust to selective sweeps and simple models of background
selection, models with nonuniform recombination rates and mod-
els with balancing selection can lead to high rates of false posi-
tives. The 3 approaches tested (fastsimcoal, 0adi, and BPP) all
showed high rates of misleading results in the presence of balan-
cing selection and background selection with a complex genetic
architecture (Figs. 1, 3, and 5). Given that large portions of the

genomes of many species are impacted by selection (Begun et al.
2007; McVicker et al. 2009; Sella et al. 2009; Langley et al. 2012;
Corbett-Detig et al. 2015; Phung et al. 2016; Pouyet et al. 2018) and
that variation in mutation and recombination rates across the
genome is the norm, these results suggest that some inferences
of introgression may be artifacts that do not reflect biological
reality.

Numerous studies have found that ignoring natural selection
can negatively impact different types of demographic inferences.
Selection can lead to false inference of population size changes
(e.g. Ewing and Jensen 2016; Schrider et al. 2016; Johri et al. 2021)
and several studies have suggested that selection can also mislead
inferences of migration (e.g. Cruickshank and Hahn 2014; Mathew
and Jensen 2015; Roux et al. 2016). In our study, false inferences
appear to be primarily driven by the impacts of balancing selec-
tion and associative overdominance. Both balancing selection
and associative overdominance increase the number of poly-
morphisms shared between 2 populations. This effect is clearly
visible in the SFS produced under these conditions, which resem-
ble those produced by migration (Supplementary Figs. 6 and 7). It
remains unclear how prevalent these patterns are likely to be in
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empirical systems. Notably, we did not set out to simulate the ef-
fects of associative overdominance—our simulations were para-
meterized based on the D. melanogaster genome, and this
unexpectedly led to associative overdominance. In species with
compact genomes and low recombination regions, therefore, we
may expect these impacts to potentially be widespread. In species
with large genomes, but many functional noncoding elements,
the impacts may also extend throughout the genome (e.g.
Gilbert et al. 2020). Furthermore, while the balancing selection si-
mulated here may seem extreme, there are numerous examples
of trans-specific polymorphisms maintained by balancing selec-
tion (e.g. the S-locus in flowering plants; Wright 1939; Le Veve
et al. 2023). We recommend that researchers exclude such loci
and neighboring regions—if they can be identified—when con-
ducting demographic inference.

To account for the effects of selection, several approaches for
inferring migration have been developed that allow for heteroge-
neous effective population sizes among loci (Sousa et al. 2013;
Roux et al. 2016; Sethuraman et al. 2019; Fraisse et al. 2021).
Although these methods vary in the types of inferences that can
be made—from locus-specific migration rates to genome-wide mi-
gration rates—they all model selection by allowing for variation in

6 among loci. Notably, while this may accommodate some of the
simpler effects of background selection (e.g. reduced diversity
and increased variation in coalescence times), it is unlikely to ac-
commodate the impacts of associative overdominance or balan-
cing selection. To evaluate this, we applied such an approach to
compare models in oadi, and, while false positive rates were re-
duced, they were still high (81 and 83% for background and balan-
cing selection, respectively). BPP also allows for variation across
loci, either by using a rate multiplier for 6 and t, or for 6 alone
(Flouri et al. 2020). In our analyses, we used both rate multipliers
and still found relatively high false positive rates, particularly in
the presence of balancing selection. It is not clear that the results
using any other similar methods would differ qualitatively from
these (to our knowledge, none have been tested against a no-
migration scenario with selection).

Phylogenetic methods for inferring gene flow are much more ro-
bust to assumptions about selection, largely because they often de-
pend on asymmetries in tree topologies (Hibbins and Hahn 2022).
However, the dependence on tree asymmetry also means that
they cannot be used to detect gene flow between sister lineages.
So, what is the way forward? Our results, along with previous stud-
ies, highlight several potential possibilities. Statistical-learning
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approaches are highly flexible (Schrider and Kern 2018), and one
path forward involves training these algorithms under appropriate
models that incorporate selection. One such approach has success-
fully used approximate Bayesian computation to jointly estimate
the distribution of fitness effects and population size histories
(Johri et al. 2020). Beyond training statistical-learning algorithms
on more realistic training data, techniques for domain adaptation
—a subfield of machine learning that aims to adapt an algorithm
trained on the source domain (e.g. on simulations under a model
of interest) to the target domain (i.e. empirical data; reviewed in
Wilson and Cook 2020) offer a promising path forward to accommo-
dating complex biological realities in population genomics (e.g. Mo
and Siepel 2023). Regardless of which methods are used, accurate
inferences of demographic histories will have to include the com-
plexities introduced by selection.

Accurate inferences of introgression histories are important be-
cause they can tell us about modes of speciation. A large number
of studies supporting gene flow between closely related populations
have been interpreted as lending support to speciation-with-
gene-flow models; our results highlight that caution is warranted
in these interpretations (cf. Cruickshank and Hahn 2014), although

there are other reasons to exercise caution as well (Yang et al.
2017). Further, although many estimates were nonzero, migration
rates estimated for datasets generated under models including se-
lection were low absolutely. In fastsimcoal2, estimated migration
rates per generation were on the order of 1077, in dadi, 2 x Nyef X m;
was on the order of 0.002 (~10~° migrants per generation), and in
BPP the weight of the hybrid edge was on the order of 0.002 (Figs.
2,4 and 6). Conversely, estimates of effective population size often
change multiple orders of magnitude over extremely short periods
of time in analyses of empirical data using these same methods
(e.g. Rosser et al. 2024), suggesting that there are other biological
complexities not captured by these methods (or by our simulations).
Moving forward, we recommend that inferences of migration made
without considering selection be interpreted with caution, particu-
larly when inferred rates of migration are low. Importantly, we do
not believe that the results found here with a limited set of selective
scenarios and a limited set of introgression histories can fully de-
scribe the effects of selection, mutation, and recombination on in-
accurate demographic inferences. Inferences about the presence,
direction, and timing of introgression (including whether speciation
and introgression occur at the same time—i.e. homoploid hybrid
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Fig. 6. Mean posterior estimates of ¢-Y in BPP for datasets simulated without migration. ¢-Y is the weight of the introgression edge Y in the MSci model. a)
results for T= 1N with a uniform genomic architecture; b) results for T= 1N with a complex genomic architecture; c) results for T=4N with a uniform
genomic architecture; d) results for T=4N with a complex genomic architecture; e) results for T= 16N with a uniform genomic architecture; and f) results

for T=16N with a complex genomic architecture.

speciation) may all be affected by models that ignore natural selec-
tion and complex genomic architectures. We hope that new meth-
ods can be developed to overcome these obstacles.

Data availability

Simulated data formatted for various programs are available on

Figshare (DOI: 10.6084/m9.figshare.24354277 v2). All scripts are available

on GitHub (https:/meganlsmith github io/selecionandmigration/).
Supplemental material available at GENETICS online.
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