
A Study of Data-Path Bugs in PyTorch with a

Focus on Memory Management

Rubayet Rahman Rongon

Washington State University

Vancouver, Washington

r.rongon@wsu.edu

Chen Cao

Pennsylvania State University Behrend

Erie, Pennsylvania

ccao@psu.edu

Xuechen Zhang

Washington State University

Vancouver, Washington

xuechen.zhang@wsu.edu

Abstract—This paper presents a comprehensive and quanti-
tative study of bugs related to Data Path in PyTorch with a
focus on tensor management in memory. The bugs were reported
from 2017 to 2024. Analyzing 3,089 closed issues, we identified
11 distinct bug types affecting the data storage, allocation, and
loading, including memory bugs, indexing errors, and tensor
contiguity violations. Our analysis reveals that data-path bugs
have more occurrences than bugs related to computation in
PyTorch in recent years. Among the memory bugs, non-contiguity
bugs account for 30.2% of the total number of bugs and
they have the most significant impact, leading to both crashes
and silent correctness failures. One of the common solutions
to addressing non-contiguity bugs is transforming from non-
contiguous data to contiguous data in memory before machine-
learning computation. To assess the impact of memory layout
transformation, we conducted experiments involving tensor aug-
mentation and non-contiguous tensor conversion. Our findings
demonstrate that maintaining tensor contiguity throughout the
augmentation process can improve performance by up to 73.9%,
while the time required for non-contiguous tensor conversion
varies significantly based on the number and order of dimensions.

Our research provides valuable insights for developers and
researchers working with PyTorch, helping them to identify
and address potential bugs in data paths and tensor memory
management.

Index Terms—Deep Learning, Bug Analysis, PyTorch

I. INTRODUCTION

Deep Neural networks (DNNs) have been successfully used

in various domains, such as computer vision, recommenda-

tion systems, speech recognition, etc. PyTorch is one of the

dominating open-source machine learning libraries for training

DNNs [1]. PyTorch needs to manage a large amount of data in

host servers and GPUs for tensor creation, transformation, and

computation. As a result, data paths and memory management

in Pytorch affect the performance and correctness of DNN

model training and inference.

Today’s data paths (i.e., storage and memory systems)

in PyTorch suffer from various types of errors, including

segment faults, indexing errors, concurrency errors, etc. In this

paper, we perform a comprehensive study of the open-source

PyTorch software. We examine the patches committed over

seven years from 2017 to 2024. The study covers 3,089 issues

across PyTorch versions from 1.3.0 to 2.4. We manually label

each issue after carefully checking the patch, its descriptions,

and follow-up discussions posted by developers. The insights

derived from the study can help developers build more reliable

and efficient data paths and memory systems in PyTorch and

develop associated debugging tools.

We first investigated the bugs related to the data path in

PyTorch from 2017 to 2024 by analyzing 3,089 closed issues

from the PyTorch issue repository. We identified 101 issues

categorized as bugs, silent bugs, crashes, or those producing

NaNs or Infinity. Focusing on those with at least one patch,

we conducted a detailed analysis of 73 bugs. We discovered

12 distinct types of bugs affecting the data path. Among these,

memory-related bugs were the most prevalent, accounting for

48.4% of the total bugs with patches. Notably, these memory

bugs have been predominantly distributed from 2020 to 2024.

Second, we analyze memory system bugs with patches,

focusing on their types and impacts. We categorize these bugs

into 11 types, including non-contiguity in memory, segment

fault, indexing, etc. Our analysis highlights that non-contiguity

bugs are the most impactful, leading to crashes and silent

correctness failures that are difficult to detect. Segment faults

are associated with severe system failures, while indexing bugs

contribute to runtime errors.

Finally, we observe that most of the non-contiguity bugs

were resolved by memory layout transformation. Although

the patches ensure the code correctness, they ignore the

impact of these patches on the performance (e.g., latency) of

data paths. In this paper, we conducted two experiments to

assess the impact of memory layout on tensor operations. The

first experiment compared tensor augmentation performance

between a memory-layout-aware approach, which ensures

tensor contiguity throughout the augmentation process, and

the default PyTorch approach, which permits alternating tensor

contiguity. The second experiment measured the time required

to convert non-contiguous tensors to contiguous ones, focusing

on how the number of dimensions affect conversion time. We

have the following observations from the results. (1) Main-

taining contiguous tensors during augmentation resulted in a

73.9% performance improvement on CIFAR-10 dataset. (2)

Converting a permuted non-contiguous tensor to contiguous

ones took minimal time for two-dimensional permutations but

up to 53 seconds for five-dimensional permutations.

The rest of this paper is organized as follows. Section II

gives a brief description of related work. In Section III

we describe the methodology of our bug study. Section IV

describes the overall patterns in data-path bugs. Section V



studies the causes and impact of memory bugs. Section VI

experimentally studies the performance impact of memory lay-

out transformation widely used for addressing memory bugs.

Finally, in Section VII, we share our suggestions, followed by

conclusions in Section VIII.

II. RELATED WORK

Bug analysis and distribution: Recent related works [2]–

[6] have adapted examining their relationships with symptoms

and root causes from various perspectives. Ho et al. [2]

analyzed 194 bugs in TensorFlow and PyTorch to discern

performance issues. Chen et al. [3] expanded the scope by

incorporating 1000 bugs from 4 popular frameworks - Ten-

sorFlow, PyTorch, MXNet, and DL4J - characterizing bug

distribution across the five layers of framework architecture.

Makkouk et al. [4] scrutinized 17,893 and 16,284 bug reports

from TensorFlow and PyTorch, respectively, shedding light on

performance and non-performance bug complexity, fix time,

and fix size. Jia et al. [5] conducted a meticulous examination

of 202 manually selected TensorFlow bugs to explore bug

locations. Yang et al. [6] analyzed 1,127 bug reports from eight

DL frameworks. Another study [7] segregated pulled bugs into

machine learning (ML) and non-ML bugs, analyzing 109 ML

bugs to investigate their fixing time. Du et al. [8] initially

classified 3,555 TensorFlow, MXNet, and PaddlePaddle bugs

into Bohrbugs and Mandelbugs types, later extending into

bug classification, correlation among types, and fixing time.

Tambon et al. [9] focused on a specific bug subcategory

- silent bugs - collecting 1,168 closed issues from Keras

and TensorFlow. Different from these, our work focuses on

analyzing memory bugs that occurred in data paths.

Tools derived from different bug study works: Various

approaches have been adapted following bug analysis in DL

frameworks. Ho et al. [2] identified patterns for 84 issues,

leading to the discovery of eight repair patterns. Chen et

al. [3] proposed TENFUZZ, a tool primarily focusing on tensor

operations, which tests frameworks by mutating tensor type,

shape, structure, and parameter values. Jia et al. [5] priori-

tized bug location/component, categorizing repair patterns and

proposing new ones for TensorFlow. Yang et al. [6] discussed

15 fixing patterns identified from 143 bug reports. Tambon et

al. [9] showed the distribution of silent bugs with threat levels

and verified them through developer surveys.

These [10], [11] two works proposed developing a testing

tool for DL frameworks. Audee was able to identify [10]

26 unknown bugs where COMET found 32 new bugs. Both

of the ideas mutated model test cases for multiple layers

in DL frameworks. However, they differed in the way of

searching test cases. Audee adopted genetic algorithms and

COMET used parameter analysis and a random sampling-

based approach.

Optimizations for non-contiguous data in memory: Sev-

eral studies highlight the performance challenges and so-

lutions related to non-contiguous data in GPU computing.

[12] emphasizes that tensor gradient computation benefits

from contiguous memory storage, as non-contiguous storage

can significantly hinder the unfolding process and compu-

tational efficiency. [13] identifies that repeatedly launching

GPU kernels for packing and unpacking operations introduces

overhead, degrading performance across successive operations.

[14] also points out the additional computational resources

required for rearranging non-contiguous data into contiguous

blocks, which increases latency. Furthermore, [15] discusses

how typical PyTorch implementations of non-contiguous pool-

ing operations result in high GPU memory usage and slower

performance due to inefficient memory handling. This issue

was mitigated by developing custom CUDA kernels that

directly handle non-contiguous memory, thereby improving

efficiency and reducing memory usage.

Research highlights several challenges associated with non-

contiguous data in GPU computing. [16] notes that traditional

data transfer methods struggle with non-contiguous data due

to the need for extra memory copies and rearrangement,

leading to increased latency and resource usage. [17] discusses

inefficiencies such as irregular memory access and complex

workload distribution, which can slow down processing and

necessitate advanced load-balancing strategies. According to

[18], the CUDA graph programming model also suffers from

kernel call overhead and multiple memory accesses when

handling non-contiguous memory. Additionally, [19] points

out that traditional matrix multiplication routines and tensor

operations, optimized for contiguous data, face performance

issues with non-contiguous tensors due to costly reshaping and

temporary arrays. Lastly, [20] highlights that non-contiguous

memory allocations lead to fragmentation, which hampers

memory management efficiency and increases allocation over-

head in deep learning frameworks.

III. METHODOLOGY

We focus on PyTorch because of its prominent role in deep

learning and its evolving capabilities for high-performance

computing. Our study was conducted in three phases. First, we

categorized PyTorch’s code into data path and computation

components, tracking code growth from version 1.3.0 to the

latest release to pinpoint significant changes and potential bug

areas. Second, we analyzed 3,089 closed issues from 2017

to 2024, identifying 101 critical bugs, with 73 reviewed in

detail by experts to validate fixes and reveal patterns. Finally,

we manually examined 29 non-contiguous data bugs from

2020 to 2024, with expert analysis to understand root causes

and performance impacts. This approach provided a thorough

understanding of key issues in PyTorch’s memory management

and tensor operations.

First, we identify the source codes that have been frequently

modified over the years. For this purpose, we divide the

PyTorch source code into two primary components: data path

and computation. The data-path component encompasses the

management of data storage, allocation, and loading, involv-

ing PyTorch modules such as c10/core, torch/utils,

torch/backends, and torch/sparse. The computa-

tion component includes the code responsible for neural

network training and optimization, with key modules like



Fig. 1: The change in the Pytorch code in terms of LOC across

different PyTorch versions

torch/autograd, torch/nn, and torch/optim. By

analyzing the growth in lines of code for these components

from PyTorch version 1.3.0 to the most recent version on

the ‘main’ branch, we aim to identify which areas have

experienced the most significant changes over time. This

approach helps us pinpoint where the codebase has evolved

the most, allowing us to focus on finding and studying bugs

related to the more frequently modified parts of the source

code.

Second, we analyze the major causes and consequences of

memory bugs because they account for almost 50% of the

bugs in the data-path component. Our second phase of analysis

began by extracting data from the PyTorch issue repository,

focusing on closed issues between 2017 and 2024. From this,

we identified 3,089 closed issues related to the data path and

filtered for those issues as bugs, silent bugs, crashes, or issues

that resulted in NaNs or Infinity during computation. This

filtering process resulted in 101 distinct bugs. We further nar-

rowed our focus to 73 bugs that had at least one patch applied,

ensuring that only issues with confirmed fixes were selected

for detailed examination. This phase involved a thorough

investigation by experts, who meticulously reviewed each bug

and its corresponding patch to validate the fix and uncover any

underlying patterns. Their expertise was crucial in identifying

the root causes and ensuring that the fixes effectively addressed

the issues without introducing new problems.

In the final phase of our study, we focused on a particular

type of memory bug: non-contiguous bugs because they are

unique in PyTorch. They cause many silent bugs and have

never been comprehensively studied in the literature. The

non-contiguous data bugs often stem from inefficient memory

layouts and incorrect assumptions during tensor manipulations.

To gain deeper insights, we manually examined 29 issues from

the PyTorch repository, covering the period from 2020 to 2024.

This manual analysis was conducted with the involvement

of expert contributors who possess in-depth knowledge of

PyTorch’s internals. Together, we systematically reviewed each

bug, beginning with the initial report and tracing the issue

through the applied patches and resolution. This hands-on

approach allowed us to carefully identify the root causes, such

as improper handling of non-contiguous tensors in memory,

and to understand the wider consequences, including silent

errors, crashes, or performance bottlenecks. The expert in-

put was invaluable in ensuring an accurate interpretation of

complex bugs and their underlying mechanisms, providing a

clear picture of how these issues arose and were subsequently

addressed. This methodical examination also allowed us to

assess the impact on performance, revealing patterns that could

guide improvements in PyTorch’s memory management and

tensor operations.

IV. EVOLUTION OF DATA-PATH BUGS

In this section, we conduct an evolution study of PyTorch

bugs. We first analyze the lines of code (LOC) in Data

Path and Computation components of PyTorch. As shown

in Figure 1, the analysis of LOC reveals a substantial growth

disparity between the two components. The data-path compo-

nent has expanded by approximately 833%, from 15,000 LOC

to 140,000 LOC, reflecting a major increase in data handling

and management capabilities. In comparison, the computation

component has grown by around 250%, from 20,000 LOC to

70,000 LOC. This indicates that while both components have

seen significant growth, the data-path code has experienced

a much more pronounced increase, highlighting its enhanced

focus on complex data management in memory and storage.

Bug type Definition

Memory Errors related to memory management, such as il-
legal memory access, memory corruption, segmen-
tation faults, improper handling of memory layouts,
memory leaks, or buffer overflows.

Data Pipe A composable component in PyTorch that represents
a sequence of data processing operations.

Device Manage-
ment

Controlling and communicating with hardware de-
vices, like CPUs and GPUs, to perform operations.

Logical Bugs that stem from improper implementation in the
program’s logic rather than syntax or runtime errors.

Data Type Errors caused by mismatches or improper handling
of different data types in PyTorch.

File Descriptor An identifier used to manage open files or commu-
nication channels like sockets and shared memory
between processes.

Indexing The process of accessing and manipulating specific
elements or slices of tensors using indices, allowing
for selective data retrieval and modification.

Initialization Errors that occur due to improper or incomplete
initialization of elements.

ONNX Errors occurring during or after the conversion of
PyTorch models to ONNX format due to issues or
limitations in the conversion process or resulting
ONNX representation.

Resource Limit Issues that occur when the program requests more
system resources than are available, leading to fail-
ures or issues due to improper handling of resource
constraints.

Thread Manage-
ment

Issues related to the handling and synchronization
of multiple threads, which can lead to warnings,
crashes, or unpredictable behavior when threading
resources are not properly managed or configured.

TABLE I: Definitions of bug types in the data-path component

in PyTorch.



Fig. 2: Bug distribution in the source code of the data path

module over time.

The analysis of the data-path component in PyTorch re-

veals substantial growth in managing complex data structures.

The torch/nested module expanded from 149 lines to

3,537 lines, and the torch/sparse module grew dramat-

ically from 136 lines to 11,677 lines, with both increases

occurring primarily from version 2.0.0 to the main branch.

This significant growth reflects a heightened focus on sup-

porting hierarchical and sparse data structures. Addition-

ally, advancements in torch/distributed/tensor and

torch/distributed/pipelining highlight progress

in distributed data management. These developments empha-

size PyTorch’s ongoing efforts to enhance its capabilities for

handling and processing diverse data types.

The data-path component in PyTorch is frequently updated,

much like other subsystems in the software. The source code in

the data-path component has more changes than computation

as shown in Figure 1. However, few comprehensive studies

have focused on bugs in this critical area. In our research,

we examine bugs related to code in the data path between

2017 and 2024 by analyzing closed issues from the PyTorch

issue repository. From a total of 3,089 closed issues related

to the data path, we identified 101 that were labeled as bugs,

silent bugs, crashes, or those returning NaNs or Infinity. We

further investigated only those issues that had at least one patch

applied to fix the problem, resulting in a detailed analysis of

73 such bugs. We found 12 types of bugs as shown in Figure 2.

The definition of each bug type is described in Table I.

1) How is the Data Path Evolving?: Figure 2 illustrates

the distribution of patches across various components within

the data path, addressing issues that could otherwise result

in crashes, NaNs, silent bugs, or infinite values. Early in the

development cycle (2017-2018), bugs were more concentrated

around foundational issues like file descriptor management,

device handling, and ONNX framework integration. However,

as the system matured, more complex issues began to surface.

Fig. 3: Bug type distribution on Data Path.

Fig. 4: Data-path patches submitted from 2019 to 2024. The

patches are grouped based on components.

By 2020-2022, there was a notable increase in logical, data

type, and memory-related bugs, indicating that while the

core system had stabilized, challenges were shifting toward

efficient data handling and performance optimization. Since

2020, memory-related bugs have been consistently occurring

in every semi-annual period, except the first half of 2022.

This steady presence underscores the ongoing challenges and

critical nature of memory management in Pytroch software

development.

2) Where did the Data Path Change?: Figure 3 illustrates

the distribution of bug types within the data-path category. The

most prominent bug type is Memory, accounting for 48.4%

of the total. This is followed by Logical and Data type,

which constitute 22.6% and 10.8%, respectively.

In PyTorch, Memory issues have been a significant contrib-

utor to crashes, correctness (silent) failures, and unexpected

outcomes with a marked prevalence during the period from

2020 to 2024. Given their substantial impact, it is crucial to

conduct further research into Memory bugs to improve the

stability and performance of the PyTorch software.



Type Subtype Description

Non-contiguous

CUDA limitation CUDA software constraint on specific memory structure.
Information loss Stride information loss.
Input tensor management Issue while managing non-contiguous data as input tensor.
Channel management Issue with non-contiguous data on convolution layer channel layout.

Segment fault

Memory Access violation Accessing incorrect memory address.
Invalid memory address Accessing memory that does not exist anymore.
Memory corruption A program unintentionally modifies memory, leading to unpredictable behavior,

crashes, or security vulnerabilities.
Programming Failure due to developer’s implementation.

Indexing

Overflow Indexing boundary overflow.
Data type Issues due to use of wrong data types as element index in tensors.
Invalid class type Indexing data type is of invalid class type.
Invalid memory access Accessing memory that does not exist anymore while indexing.

Memory format
Channel management Convolution layer fails to correctly format the output
Stride calculation manually PyTorch fails to calculate output memory format, thus needs manual memory

format

Logic Order Code implementation order.

Pin memory
Input tensor management Pinning page table failure for tensor.
Programming Failure due to developer’s implementation.

Concurrency Miss lock Expected lock issue.

Layout of nested tensor Storage format mismatch Storage format mismatch for nested tensor.

Memory overflow Programming Failure due to developer’s implementation.

Checking Input checking Input data type or class, subclass checking.

Initialization Order Code implementation order.

TABLE II: Table of Types, Subtypes, and Descriptions

Besides, we can see from Figure 4 that the number of

patches applied to distributed tensors (dtensor) and nested

tensor is higher than any other components in PyTorch since

mid of 2022. This shows the shift of development efforts from

model computation to the data path.

Summary: (1) PyTorch has been actively improving its

data path. (2) Recently, the code changes in the data path

are highly concentrated on supporting its training using

nested and distributed tensors in large-scale distributed

systems. (3) 48.4% of the patches of data path are related

to addressing memory bugs.

V. MEMORY BUGS IN DATA PATH OF PYTORCH

A memory bug refers to any issues in memory allocation,

access, or management that can lead to crashes, data corrup-

tion, or performance problems. In this section, we examine

the memory bugs in the Data Path of PyTorch in detail to

understand their patterns and consequences. We focus on the

memory bugs because (1) they account for nearly 50% of the

bugs in the data path and (2) non-memory bugs have been

well-studied in the previous work, e.g., [2]–[4].

A. What are the Memory Bugs in PyTorch?

We categorize these bugs into 11 types: non-contiguous

memory, segment fault, indexing, memory layout, pin memory,

memory overflow, concurrency, logic, initialization, layout of

nested tensor, and checking. Each type addresses specific

memory-related challenges. Within each type, various subtypes

further detail the nature of the bugs. The complete breakdown

of these subtypes and their descriptions can be found in

Table II.

Fig. 5: The distribution of memory bugs and sub-type break-

down.

B. How are Memory Bugs Distributed?

Figure 5 shows the distribution of memory bugs in PyTorch.

A majority of these bugs lie in 5 sub-types: input tensor

management, channel layout management, invalid memory

access, order and programming limitations. More specifically,

we identify several interesting findings in the memory bugs.

1. Non-contiguity bugs (30.2%): Non-contiguous data

refers to data elements that are not stored in adjacent memory

locations. The non-contiguous data layout can occur in various

PyTorch data structures where tensor elements are spread out

across different memory locations rather than being laid out



in a single, continuous memory block. For example, non-

contiguous tensor slices may need to be transferred between

GPUs, which is a common scenario in ML applications. We

find that input tensor management (e.g., [21]–[23]) are the

most common bugs in this category because the existing Py-

Torch implementation is not flexible enough for handling non-

contiguous data as input. We also find that the CUDA driver

is also not flexible enough to tackle such non-contiguous data.

Thus, computation like backward or gradient computation

using CUDA ends up crashing [24], [25] when processing non-

contiguous data. Moreover, wrong convolution layer channel

management, information loss, and performance degradation

can be caused by non-contiguous data input [26], [27]. As a

result, PyTorch and CUDA drivers cannot always assume that

tensor elements in memory are contiguous. In fact, because

nested tensors and distributed tensors are widely adopted for

training large machine learning models, non-contiguous data

becomes the norm. They need to provide the flexibility and

capability of processing non-contiguous data in-situ without

the manual process (e.g., code patching) of transforming data

layout in memory explicitly by users or the library.

2. Segmentation fault (20.9%): There are five types

of bugs that commonly lead to segmentation faults: invalid

memory access, input type checking, data type issues, pro-

gramming implementation errors, and memory corruption.

Invalid memory access occurs when the callback func-

tions registered for tensors improperly handle garbage collec-

tion in memory [28], [29]. Programming and Input type

checking can also lead to segmentation fault [30], [31].

3. Indexing (14%): In PyTorch, memory overflow occurs

due to mismanagement of indexing like padding in the convo-

lution layer or creation of pointers [32], [33]. Moreover, when

data type is misused and invalid class is initiated,

the wrong index can also lead to memory bugs [34] [35].

4. Memory format (11.6%): Memory format tells the oper-

ator how to organize the output in memory, ensuring efficient

access and computation. Convolution layer computation fails

to correctly format the output on memory resulting in Memory

format bugs [36]–[38]. Changing the weight tensor format

to channels_last in ConvTranspose2d can corrupt

output, leading to random or NaN values. Additionally, when

using channels_last format for weights, convolutions

with a contiguous input tensor may yield incorrect results if

the input has only one channel.

5. Logical (4.7%): Wrong ordering of code implementation

leads to logical bugs in memory [39].

6. Pin Memory (4.7%): In PyTorch, “pin memory” refers

to the process of using pinned (or page-locked) memory for

tensors on the CPU. This can be beneficial when transferring

data from CPUs to GPUs because using the pinned memory

can accelerate the data transfer process [40]. We found errors

related to pin memory in input tensor management

and programming implementation [41], [42].

7. Concurrency (4.7%): Concurrently accessing shared

memory by multiple processes needs to assign proper locking

on the memory regions. Memory bugs related to concurrency

Fig. 6: Heatmap of memory bugs and its bug distribution

regarding the consequences.

happen when there is any kind of lock misses.

8. Other (9.2%): A Few other types of memory bugs (i.e.,

memory overflow, checking,initialization, nested tensor layout)

also occurred leading to memory bugs.

C. What are the Consequences of Memory Bugs?

From the heatmap in Figure 6, we observe that crashes

are the most frequent consequence (46.5%) across different

memory bug types, followed by silent correctness issues

(32.6%) and runtime errors (20.9%). The most prominent bug

types, contributing to the most severe consequences, are non-

contiguity (30.2%) and segment fault (20.9%), while indexing

(14%) and memory layout (11.6%) bugs are also significant

contributors.

Further, the type of non-contiguity bugs stands out promi-

nently in the heatmap, contributing to 7 crashes, 4 silent

correctness issues, and 2 runtime errors. These numbers un-

derscore how non-contiguous memory handling can result in

some of the most severe system breakdowns, such as crashes

and silent correctness failures. The association with silent

correctness is especially concerning because these bugs do

not immediately cause visible system failure but can lead to

incorrect results, making them more difficult to detect and

resolve. This highlights the need for specialized techniques to

handle non-contiguous memory to ensure that systems remain

robust and accurate during execution.

Other significant memory bug types include segment fault,

which accounts for 4 crashes and 5 runtime errors, demon-

strating its association with severe system failures. Indexing

bugs, while contributing to fewer crashes, are still associated

with 5 runtime errors. Additionally, the memory layout bugs

contribute to both crashes and silent correctness issues. Lastly,



Fig. 7: Consequence distribution of Tensor memory layout

bugs for Nested tensor and dtensor

Concurrency issues are linked to both crashes and runtime er-

rors, reflecting the complexity of managing parallel processes.

D. Non-Contiguity Bugs

We further analyzed 29 non-contiguity bugs. Among the

identified issues, 15 were specifically tied to the implemen-

tation of memory contiguity in CUDA computations, high-

lighting a recurring problem that affects multiple aspects of

the system. One example of such bugs is [43]. It arises

because transposing the key tensor (k) within a self-attention

module results in a non-contiguous memory layout for the

nested tensor. During the backward pass, PyTorch expects the

gradient tensor to be contiguous in memory. However, due to

the transpose operation, the tensor becomes non-contiguous,

leading to the RuntimeError error. The bug is challenging

to detect for two reasons. First, the transposed non-contiguous

tensor (k) can be produced after passing a contiguous tensor

(x) through one or multiple linear layers. Second, since the

nested tensors can contain the tensors with irregular structures,

transposing the nested tensor is not straightforward.

Additionally, we examined various components such as

torch serialization, nested tensor backward operations, device

mesh, and sharding. Of particular concern were the challenges

posed by maintaining tensor layout, especially during CUDA-

based computations, and the resulting impact on gradient com-

putation, backward propagation, tensor indexing, performance,

and compatibility across different components.

In Figure 7, the distribution of consequences reveals that

44% of non-contiguity bugs caused crashes, indicating sig-

nificant reliability concerns. 22% of issues cause incorrect

output but are silent, meaning they do not immediately cause

visible failures but may lead to subtle errors. 11% of the bugs

pertain to runtime errors, garbage results, and performance

drops or compatibility complexities, highlighting areas where

operations either fail, produce incorrect results, or experience

performance inefficiencies.

Fig. 8: The comparison of the augmentation time with tensor

layout transformation using the layout-aware approach and the

time with the default PyTorch approach

Summary: (1) Non-contiguity bugs account for 30% of

memory bugs in PyTorch. The consequences of these bugs

are system crashes, incorrect results, and runtime errors.

(2) Memory bugs are hard to detect because they may

cause incorrect outputs without system failures. We call

them silent bugs. It is hard to detect such bugs using exist-

ing tools designed based on static and dynamic analysis.

(3) PyTorch and CUDA drivers may assume that tensor

elements are contiguous in memory for the convenience

of programming. However, as distributed tensors and nest

tensors are widely adopted, many components in PyTorch

did not work correctly for non-contiguous tensors.

VI. PERFORMANCE STUDY OF TENSOR LAYOUT

TRANSFORMATION

After extensively studying the patches for 29 non-contiguity

bugs, we found that 9 bugs (31%) were fixed by converting the

non-contiguous layout to contiguous layout for tensors [44]–

[52]. In some cases, the conversion was hard-coded into the

PyTorch source code by the developers [44], [45], [49]. In

other cases, users were asked to manually convert tensors

to contiguous format and pass them to PyTorch [49], [52].

Additionally, there are bugs associated with the lack of support

for non-contiguous tensors, which necessitate converting them

to a contiguous format to function properly [53]. Therefore,

it is crucial to study the performance characteristics of non-

contiguous tensors, particularly focusing on the conversion

process to contiguous tensors.

In this section, we conducted two experiments to study

the performance of tensor layout conversion and its impact

on the performance of data paths. All the experiments were

conducted on a machine equipped with one Intel Xeon Silver

4208 processor featuring 8 cores and 16 threads, running at

2.10 GHz. It has 64 GB of RAM and two NVIDIA GeForce

RTX 3090 GPUs, each with 24 GB of VRAM, supported by

CUDA 12.3. The system operates on Ubuntu 22.04 LTS. The

primary storage is a 916 GB SSD.



Fig. 9: Conversion time for non-contiguous tensors to contigu-

ous tensors with varying numbers of transposed dimensions.

A. Performance Impact on Augmentation Operations

In the first experiment, we use tensor augmentation opera-

tions as benchmarks. The benchmark executes a sequence of

augmentations including tensor conversion, crop, vertical flip,

horizontal flip, rotation, color jitter, crop, and grayscale. It

concludes with normalization. It executes these augmentation

operations on 60,000 images repeatedly. We use CIFAR-10

datasets in the experiment. We compare the execution time of

this benchmark between a contiguity-aware approach, which

maintains tensor contiguity throughout the process after each

augmentation operation, and the default PyTorch approach,

which allows tensors to alternate between contiguous and non-

contiguous states. Figure 8 shows that the execution times of

the contiguity-aware approach and the default PyTorch are 23

sec and 40 sec, respectively. This indicates that maintaining a

contiguous memory layout can reduce data augmentation time

by 42.5% on average.

B. Performance Impact on Permutation Operations

In the second experiment, we use tensor permutation oper-

ations as benchmarks. The benchmark executes one permute()

function and one contiguous() function in order on a 6-

dimension tensor whose shape is (1, 101, 101, 101, 101,

101). In PyTorch, after permute(), a tensor will always be

converted to a non-contiguous tensor in memory. After that,

the contiguous() function will convert the output of permute()

to a contiguous tensor. We measure the execution time of

the benchmark given a different number of dimensions being

permuted. Figure 9 shows the results, which show a significant

increase in conversion time as the number of permuted dimen-

sions increases. For instance, permuting only two dimensions

resulted in a minimal conversion time of 0.00005 sec, whereas

permuting four dimensions caused the conversion time to spike

to 23 sec. This effect is even more pronounced when five

dimensions are permuted, leading to a conversion time of 53

sec. These results underscore the challenges of working with

non-contiguous tensors, particularly when operations demand

contiguous memory layouts.

Our experimental results also show that even with the

same number of dimensions, different permutation orders can

lead to significantly different conversion times. This result

underscores the complexity of tensor memory layout and

suggests that the efficiency of tensor operations is influenced

not only by the number of dimensions permuted but also by

the specific order of these permutations.

Summary: The substantial performance drop observed

with default PyTorch handling tensors highlights how

deviations from an optimal memory layout can lead

to significant inefficiencies. This finding emphasizes the

need for memory layout awareness in tensor operations

to ensure optimal performance and avoid unnecessary

delays.

VII. DISCUSSIONS AND SUGGESTIONS

A. Tensor Contiguity Requirements

Assumptions about tensor contiguity. Developers often

assume [54] that tensors are always contiguous during back-

ward and gradient computations, which can result in silent

correctness issues. Errors occur when users do not verify

whether the input tensor is non-contiguous [55], [56], leading

to unexpected outcomes.

Intermediate tensor requirements. The intermediate ten-

sor received from upstream operations during backpropagation

must maintain a contiguous memory layout to ensure efficient

computation and correctness in gradient propagation [43].

Applying operations such as narrow(), view(), expand(), trans-

pose(), and permute() [57]–[62] can alter a tensor’s memory

layout, potentially resulting in errors if users are unaware of

these changes.

Suggestion: Ensure that all tensors involved in gradient

and backward computations, including input and interme-

diate tensors, are in a contiguous memory layout to avoid

silent correctness issues and ensure efficient computation.

B. Indexing Errors in Large Tensors

When a tensor has a very large number of elements, the data

type for implementing element index in tensors may not have

a sufficient range to index all elements correctly. This can

lead to indexing errors, where indices exceed the allowable

range, causing operations on the tensor to crash or produce

silent, incorrect results. This issue is particularly problematic

in scenarios where the tensor’s size impacts the ability to

access and manipulate its elements accurately [63]–[65].

Suggestion: (1) To prevent potential indexing errors and

ensure compatibility with the declared ScalarType, all

tensor indexing operations should use index data type

(e.g., index t). (2) It is crucial to implement checks or



assertions to verify that indexing operations do not exceed

the bounds of the data type, especially in large tensor

operations.

C. Programming Language and Hardware Constraints

Some programming languages need special attention when

used with GPUs. For example, Fortran supports a feature

called contained subroutines. However, when non-contiguous

arrays are passed to Fortran subroutines, the runtime needs

to create temporary contiguous arrays as a temporary data

buffer. This leads to inefficiency and increased memory usage,

especially in the CUDA systems [66]. Therefore, users should

avoid non-contiguous pointer slices and contained subroutines

to mitigate these issues.

A limitation in CUDA is that efficient data transfers require

contiguous physical memory addresses, which is best achieved

with pinned host memory [67]. Transfers from pageable mem-

ory involve extra DMA overhead and lower performance, par-

ticularly for small transfers. Managing transfer sizes and using

pinned memory is crucial for optimizing performance [68]–

[71].

Another limitation arises from compatibility issues where

even identical graphics cards can expose different device num-

bers to host operating systems. For example, assume that we

have three GPU cards. On one host, it may be visible as device

0, device 1, and device 3. On another host, it may be visible

as device 0, device 2, and device 3. This discrepancy may

lead to the failure of PyTorch [72]. Finally, CUDA involves

incorrect bounds during device-to-host memory copies, which

can cause undefined behavior, crashes, or incorrect results.

Such problems often occurs when copying more data than

allocated, incorrect strides for multi-dimensional arrays are

used, and failure to account for padding [73]–[75] happens.

Suggestion: (1) To ensure effective CUDA programming,

it is crucial to understand both software and hardware

restrictions and compatibility with the device memory

architecture. (2) The programmers need to make sure that

copy sizes match the allocated memory to avoid errors.

And (3) they need to employ proper APIs for handling

various data layouts and utilize debugging tools like cuda-

memcheck to identify and resolve issues.

VIII. CONCLUSION

In this paper, we present a comprehensive study of bugs re-

lated to memory management in PyTorch, examining changes

from version 1.3.0 to the latest release over the past seven

years. These patches and bugs reflect critical aspects and

challenges within PyTorch’s memory management. Our exper-

iments highlighted the importance of memory-layout aware-

ness in optimizing performance. Additionally, our detailed

analysis of non-contiguity bugs provided insights into their

root causes and the performance impacts of tensor contiguity.

We anticipate that our findings will enhance the development

of current and future PyTorch memory systems and improve

bug detection and debugging tools. Furthermore, our study

offers valuable perspectives for the advancement of fast com-

putational kernels, such as CUDA, which are integral to high-

performance computing tasks within the PyTorch ecosystem.

REFERENCES

[1] “PyTorch,”
https://github.com/pytorch/pytorch.

[2] S. C. Yin Ho, V. Majdinasab, M. Islam, D. E. Costa, E. Shihab,
F. Khomh, S. Nadi, and M. Raza, “An empirical study on bugs inside
pytorch: A replication study,” in 2023 IEEE International Conference
on Software Maintenance and Evolution (ICSME), 2023, pp. 220–231.

[3] J. Chen, Y. Liang, Q. Shen, J. Jiang, and S. Li, “Toward understanding
deep learning framework bugs,” 2023.

[4] T. Makkouk, D. J. Kim, and T.-H. P. Chen, “An empirical study on per-
formance bugs in deep learning frameworks,” in 2022 IEEE International
Conference on Software Maintenance and Evolution (ICSME), 2022, pp.
35–46.

[5] L. Jia, H. Zhong, X. Wang, L. Huang, and X. Lu, “The symptoms,
causes, and repairs of bugs inside a deep learning library,” Journal of
Systems and Software, vol. 177, p. 110935, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0164121221000327

[6] Y. Yang, T. He, Z. Xia, and Y. Feng, “A comprehensive empirical study
on bug characteristics of deep learning frameworks,” Information and
Software Technology, vol. 151, p. 107004, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0950584922001306

[7] M. M. Morovati, A. Nikanjam, F. Tambon, F. Khomh, and Z. M. J.
Jiang, “Bug characterization in machine learning-based systems,”
Empirical Software Engineering, vol. 29, no. 1, p. 14, Dec 2023.
[Online]. Available: https://doi.org/10.1007/s10664-023-10400-0

[8] X. Du, Y. Sui, Z. Liu, and J. Ai, “An empirical study of fault triggers
in deep learning frameworks,” IEEE Transactions on Dependable and
Secure Computing, vol. 20, no. 4, pp. 2696–2712, 2023.

[9] F. Tambon, A. Nikanjam, L. An, F. Khomh, and G. Antoniol, “Silent
bugs in deep learning frameworks: an empirical study of keras and
tensorflow,” Empirical Software Engineering, vol. 29, no. 1, p. 10, Nov
2023. [Online]. Available: https://doi.org/10.1007/s10664-023-10389-6

[10] Q. Guo, X. Xie, Y. Li, X. Zhang, Y. Liu, X. Li, and C. Shen, “Audee:
automated testing for deep learning frameworks,” in Proceedings of
the 35th IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE ’20. New York, NY, USA: Association
for Computing Machinery, 2021, p. 486–498. [Online]. Available:
https://doi.org/10.1145/3324884.3416571

[11] M. Li, J. Cao, Y. Tian, T. O. Li, M. Wen, and S.-C. Cheung, “Comet:
Coverage-guided model generation for deep learning library testing,”
2023.

[12] A. H. Phan, P. Tichavský, and A. Cichocki, “On fast computation of
gradients for candecomp/parafac algorithms,” 2012. [Online]. Available:
https://arxiv.org/abs/1204.1586

[13] C.-H. Chu, K. S. Khorassani, Q. Zhou, H. Subramoni, and D. K. Panda,
“Dynamic kernel fusion for bulk non-contiguous data transfer on gpu
clusters,” in 2020 IEEE International Conference on Cluster Computing
(CLUSTER). IEEE, 2020, pp. 130–141.

[14] K. K. Suresh, K. S. Khorassani, C. C. Chen, B. Ramesh, M. Abdul-
jabbar, A. Shafi, H. Subramoni, and D. K. Panda, “Network assisted
non-contiguous transfers for gpu-aware mpi libraries,” in 2022 IEEE
Symposium on High-Performance Interconnects (HOTI). IEEE, 2022,
pp. 13–20.

[15] D. K. Pal and M. Savvides, “Learning non-parametric invariances from
data with permanent random connectomes,” CoRR, vol. abs/1911.05266,
2019. [Online]. Available: http://arxiv.org/abs/1911.05266

[16] W. Wu, G. Bosilca, R. Vandevaart, S. Jeaugey, and J. Dongarra, “Gpu-
aware non-contiguous data movement in open mpi,” in Proceedings of
the 25th ACM International Symposium on High-Performance Parallel
and Distributed Computing, 2016, pp. 231–242.

[17] M. Osama, S. D. Porumbescu, and J. D. Owens, “A programming model
for gpu load balancing,” in Proceedings of the 28th ACM SIGPLAN
Annual Symposium on Principles and Practice of Parallel Programming,
2023, pp. 79–91.

[18] D.-L. Lin and T.-W. Huang, “Efficient gpu computation using task graph
parallelism.” Springer, Cham, 2021, pp. 435–450.



[19] D. A. Matthews, “High-performance tensor contraction without trans-
position,” 2016.

[20] C. Guo, R. Zhang, J. Xu, J. Leng, Z. Liu, Z. Huang, M. Guo, H. Wu,
S. Zhao, J. Zhao, and K. Zhang, “Gmlake: Efficient and transparent
gpu memory defragmentation for large-scale dnn training with virtual
memory stitching,” in Proceedings of the 29th ACM International
Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 2, ser. ASPLOS ’24. New York,
NY, USA: Association for Computing Machinery, 2024, p. 450–466.
[Online]. Available: https://doi.org/10.1145/3620665.3640423

[21] “linalg.householder product is incorrect when given non-contiguous
inputs 67513,” https://github.com/pytorch/pytorch/issues/67513.

[22] “Incorrect gradient for masked select when inputs are non-contiguous ,”
https://github.com/pytorch/pytorch/issues/99638.

[23] “kthvalue incorrect with strided GPU tensor ,” https://github.com/
pytorch/pytorch/issues/45721.

[24] “Custom Autograd Functions Don’t Work If Forward Pass Outputs a
List of Tensors ,” https://github.com/pytorch/pytorch/issues/87713.

[25] “Investigate from padded implementations correctness,”
https://github.com/pytorch/pytorch/issues/84082.

[26] “Investigate from padded implementations correctness,”
https://github.com/pytorch/pytorch/issues/84082.

[27] “Calling nested tensor.transpose(-1, -2) causes autograd error,”
://github.com/pytorch/pytorch/issues/94303.

[28] “Calling saved tensors hooks. exit inside unpack hook can lead to
segfault,” https://github.com/pytorch/pytorch/issues/130734.

[29] “Segmentation fault when a Tensor backward hook removes itself,”
https://github.com/pytorch/pytorch/issues/58354.

[30] “Segmentation fault in dataloader after upgrading to pytorch v1.8.0
53894,” https://github.com/pytorch/pytorch/issues/53894.

[31] “SSegfault on setting gradient value to instance of user-defined class
64813,” https://github.com/pytorch/pytorch/issues/64813.

[32] “CUDA error: an illegal memory access was encountered when us-
ing output padding in nn.ConvTranspose3d 32866,” https://github.com/
pytorch/pytorch/issues/32866.

[33] “Illegal Memory Access was encountered in AvgPool2d CUDA kernel
84018,” https://github.com/pytorch/pytorch/issues/84018.

[34] “Cross Entropy doesn’t work with the specific batch, but works with each
sample from this batch 108345,” https://github.com/pytorch/pytorch/
issues/108345.

[35] “Incorrect and inconsistent outputs from CrossEntropy-
Loss(reduction=”none”) with torch.float16 dtype 111484,”
https://github.com/pytorch/pytorch/issues/111484.

[36] “Wrong output of single-channel channels last convolution with channels
first input 82060,” hhttps://github.com/pytorch/pytorch/issues/82060.

[37] “[PT2.0] Channels last for weight for ConvTranpose gives Random
output 99519,” https://github.com/pytorch/pytorch/issues/99519.

[38] “CUDA native batch norm backward returns non-channels last grad for
channels last input 107199,” https://github.com/pytorch/pytorch/issues/
107199.

[39] “Segment Fault after model inference all images using C++ API,” https:
//github.com/pytorch/pytorch/issues/38385.

[40] “TORCH.UTILS.DATA,” https://pytorch.org/docs/master/data.html.

[41] “NotImplementedError: Cannot access storage of SparseCsrTensorImpl
115330,” https://github.com/pytorch/pytorch/issues/115330.

[42] “Calling pin memory() fails for nested tensor 102167,” https://
github.com/pytorch/pytorch/issues/102167.

[43] “contiguous non-contiguous tensors,”
https://github.com/pytorch/pytorch/issues/94303.

[44] “Incorrect gradient for masked select when inputs are non-contiguous
99638,” https://github.com/pytorch/pytorch/issues/99638.

[45] “call contiguous on BMM inputs for NT on CUDA 88108,” https://
github.com/pytorch/pytorch/pull/88108.

[46] “[Breaking change 2.1] Passing non-contiguous inputs to SDPA on
CUDA device with the mem-efficient attention backend returns garbage
112577,” https://github.com/pytorch/pytorch/issues/112577.

[47] “Incorrect and inconsistent outputs from CrossEntropy-
Loss(reduction=”none”) with torch.float16 dtype 111484,”
https://github.com/pytorch/pytorch/issues/111484.

[48] “[CUDA] 64-bit indexing fixes for cross-entropy kernels,” https://
github.com/pytorch/pytorch/pull/112096.

[49] “sparse.mm produces incorrect derivatives 102493,” https://github.com/
pytorch/pytorch/issues/102493.

[50] “sparse.mm.backward: fix for non-contiguous grad values on CPU
106127,” https://github.com/pytorch/pytorch/pull/106127.

[51] “[NestedTensor] Add a contiguous checks to get buffer 86496,” https:
//github.com/pytorch/pytorch/pull/86496.

[52] “Custom Autograd Functions Don’t Work If Forward Pass Outputs a List
of Tensors 87713,” https://github.com/pytorch/pytorch/issues/87713.

[53] “torch.flip not implemented for non-contiguous boolean tensors 52062,”
https://github.com/pytorch/pytorch/issues/52062.

[54] “sparse.mm.backward: fix for non-contiguous grad values on CPU,”
https://github.com/pytorch/pytorch/pull/106127.

[55] “[Breaking change 2.1] Passing non-contiguous inputs to SDPA on
CUDA device with the mem-efficient attention backend returns garbage,”
https://github.com/pytorch/pytorch/issues/112577.

[56] “Pull Request #86496: Fix for contiguous tensor handling in PyTorch,”
https://github.com/pytorch/pytorch/pull/86496.

[57] “Contigious vs non-contigious tensor,” https://discuss.pytorch.org/t/
contigious-vs-non-contigious-tensor/30107/2.

[58] “Performance of contiguous vs. non-contiguous tensors,”
https://discuss.pytorch.org/t/performance-of-contiguous-vs-non-
contiguous-tensors/107288.

[59] “Different between permute, transpose, view? Which should I use?”
https://discuss.pytorch.org/t/different-between-permute-transpose-view-
which-should-i-use/32916.

[60] “what makes a tensor have non-contiguous memory?”
https://stackoverflow.com/questions/54095351/in-pytorch-what-makes-
a-tensor-have-non-contiguous-memory.

[61] “What does .contiguous() do in PyTorch?” https://stackoverflow.com/
questions/48915810/what-does-contiguous-do-in-pytorch.

[62] “What’s the difference between ‘reshape()‘ and ‘view()‘ in PyTorch?”
https://stackoverflow.com/questions/49643225/whats-the-difference-
between-reshape-and-view-in-pytorch/49644300#49644300.

[63] “Incorrect and inconsistent outputs from CrossEntropy-
Loss(reduction=”none”) with torch.float16 dtype,” https:
//github.com/pytorch/pytorch/issues/111484.

[64] “Cross Entropy doesn’t work with the specific batch, but works with
each sample from this batch,” https://github.com/pytorch/pytorch/issues/
108345.

[65] “BF16 Matmul not get same result on cuda and cpu,” https://github.com/
pytorch/pytorch/issues/111457.

[66] “OpenACC: cuStreamSynchronize crash when using pointers
as parameters,” https://forums.developer.nvidia.com/t/openacc-
custreamsynchronize-crash-when-using-pointers-as-parameters/
196944.

[67] M. Bauer, H. Cook, and B. Khailany, “Cudadma: optimizing gpu
memory bandwidth via warp specialization,” in Proceedings of 2011
international conference for high performance computing, networking,
storage and analysis, 2011, pp. 1–11.

[68] “efficiency of copying a strided array,” https://
forums.developer.nvidia.com/t/efficiency-of-copying-a-strided-array/
135518.

[69] “Efficient Host-Device Data Transfer,” https://engineering.purdue.edu/
∼smidkiff/ece563/NVidiaGPUTeachingToolkit/Mod14DataXfer/
Mod14DataXfer.pdf.

[70] “How to transfer massive data efficiently?” https://
forums.developer.nvidia.com/t/how-to-transfer-massive-data-
efficiently/37621.

[71] “Why is the transfer throughput low when transferring
small size data from Host to Device (or Device to Host)?”
https://forums.developer.nvidia.com/t/why-is-the-transfer-throughput-
low-when-transferring-small-size-data-from-host-to-device-or-device-
to-host/153962.

[72] “2 same Quadro P1000 cards, but only one can install Ubuntu.”
https://forums.developer.nvidia.com/t/2-same-quadro-p1000-cards-but-
only-one-can-install-ubuntu/64612.

[73] “Memory read error when using csrmv with transpose oper-
ation,” https://forums.developer.nvidia.com/t/memory-read-error-when-
using-csrmv-with-transpose-operation/136019/8.

[74] “CUDA C++ Programming Guide,” https://docs.nvidia.com/cuda/cuda-
c-programming-guide/index.html.

[75] “ Memory Management,” https://docs.nvidia.com/cuda/cuda-runtime-
api/groupCUDARTMEMORY.html.


