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Abstract—This study presents an in-depth manual analysis
of memory-related bugs within the PyTorch deep learning
framework, leveraging a filtered dataset of 1,678 closed issues
from the official PyTorch GitHub repository. The selected issues
span a three-year period from January 1, 2020, to March
23, 2023, allowing for a comprehensive examination of trends,
patterns, and solutions. This study aims to understand the
correlations between the characteristics of PyTorch bugs and
also the composition of the root causes behind memory bugs.
The findings reveal that Correctness and Runtime Error bugs
occur most frequently, with a lack of a correlation between
Affected Components and Bug Symptoms. Our results highlight
the need for more integrated inter-component debugging tools.
Furthermore, the findings show that indexing errors occur most
frequently among memory bugs. We determine that, to address
the severe impact of such memory bugs, there exists a need
for more comprehensive and redundant test cases. Through
this analysis, this work aims to provide actionable insights for
developers to improve the robustness of PyTorch, improving its
reliability in machine learning applications.

Index Terms—Deep Learning, Bug Analysis, PyTorch

I. INTRODUCTION

Deep neural networks (DNNs) have become foundational to

many modern software systems, enabling the modern demand

for data extraction, transformation, and processing. Many

developers and researchers have turned to DNN frameworks to

abstract the complexities of designing, training, and deploying

models. One of these DNN frameworks is PyTorch [1]. Py-

Torch is currently the second most popular DNN framework

on GitHub and is actively maintained and improved upon.

This work comprehensively studies and analyzes bugs and

their solutions within PyTorch. By studying and analyzing

these bugs in PyTorch, this work aims to identify trends and

patterns to assist in understanding the composition of bugs

and create references for debugging and building more robust

systems.

This work further analyzes memory-related bugs. Mem-

ory bugs within PyTorch have especially fatal consequences.

Crashes and segmentation faults can block other system

functionality, requiring immediate fixes. Hence with a more

specialized analysis of memory bugs, this work further aims

to understand the root cause and prevention of these bugs.

Similarly to the prior analysis, the insights create a better

understanding of the composition of the issues, which will

help in building more reliable systems.

We first examined 1,678 closed issues from the PyTorch

GitHub repository, collected over three years, from January

1, 2020, to March 23, 2023. After carefully examining issue

attributes, this subset was then manually labeled for its charac-

teristics. Our analysis discovered that correctness and runtime

errors were most prominent in the data set. We further discover

that core PyTorch components make up a lower percentage

of the total issues than the issues with a critical severity

(classification discussed in Section IV). In a similar manner,

runtime errors are discovered to comprise 23.6% of total issues

but 41.2% of critical severity issues.

Next, we analyze memory bugs that reside within the prior

subset that also have at least one accessible patch. We focus

on the root cause and prevention steps that can be taken for

these bugs. This is determined primarily by further discussion

and the code changes in the pull request. The root causes are

then generalized between the bugs to create three categories,

being indexing, empty tensor, and device mismatch errors,

with indexing bugs comprising 42.8% of the total. Between

all three categories, the need for more comprehensive and

redundant testing is exhibited.

The rest of the paper is organized as follows. In Section II,

we discuss the related works. In Section III, we describe the

methodology of this work. In Section IV we analyze overall

correlations and patterns within the bugs. In Section V we

determine the root causes and mistakes of memory bugs. In

Section VI we discuss the findings and implications. Finally,

in Section VII, we discuss our conclusions.

II. RELATED WORK

Recent related works have analyzed root causes, symptoms,

pipeline steps, and bug types for DNN frameworks and their

applications. They have further discovered relationships be-

tween such characteristics. Jia et. al manually analyzed 202

Tensorflow bugs, looking at symptoms, root causes, and repair

methods [2]. Similarly, Ho et. al examined PyTorch, acting as a

replication of Jia et. al’s study to compare the two frameworks

[3]. Chen et. al further expanded the scope, analyzing 1000

bugs across TensorFlow, PyTorch, MXNet, and DL4J [4].

Zhang et. al focused on symptoms and root causes of bugs for

applications built upon TensorFlow, looking through 175 stack

overflow posts and GitHub commits [5]. Islam et. al analyzed

970 bugs also on applications built on DNN frameworks,



looking through Stackoverflow posts and GitHub commits

across the 5 most popular DNN frameworks: Caffe, Keras,

Tensorflow, Theano, and Torch [6]. Thung et. al focused on

three ML systems, searching for bug frequencies, bug types,

the severity of the bug, bug-fixing duration, bug-fixing effort,

and bug impact [7]. Rongon et. al studied the bugs related to

the data path of machine-learning applications [8]. Building

on these works, our research focuses on manual analysis

of correlations between components, symptoms, and severity

with a larger dataset of specifically GitHub issues, focusing on

the PyTorch framework itself rather than applications built on

top of it. Furthermore, we focus on analyzing the root cause

and prevention of memory bugs within PyTorch.

III. METHODOLOGY

PyTorch was selected due to its significant role in both

academic research and industry applications. PyTorch pro-

vides a comprehensive set of tools for building, training, and

deploying DNNs. Its ease of use whilst also including the

complexities has made it a top choice for many users.

PyTorch’s prominence is seen on GitHub, where it is the

second most popular DNN framework. With an extensive

repository of contributions, bug reports, and patches it provides

a substantial dataset for analyzing real-world issues encoun-

tered by users. Furthermore, PyTorch’s large, active commu-

nity constantly works together to improve the framework,

making it an ideal candidate for studying how bug patterns

and resolutions have evolved and improved.

Data was primarily collected in the form of GitHub issues.

We collected closed issues from the PyTorch GitHub repos-

itory, focusing on those reported between January 2020 to

March 2023. The dataset was filtered based on the presence of

the keywords “bug” and “fix,” ensuring that the selected issues

had a substantial problem and was not just an improvement.

Each issue was evaluated to ensure it was marked closed,

with an emphasis on those linked to a pull request. Issues

without pull requests were included only when significant

discussion and resolution steps were available. However, there

were exceptions such as issue #29779 [9] where the issue was

indicated to be discussed and resolved elsewhere. Through this

process, 1678 issues were collected and analyzed.

Next, these 1678 issues were examined based on the patch,

description, further discussion, and tags. The bugs were as-

sessed on an issue-by-issue basis and then were classified into

four characteristics—component, symptom, severity, and date

solved—according to predefined criteria (See Section IV for

the criteria). For instance, severity was assessed based on the

impact of the bug on system stability and user experience (e.g.,

crashes = major severity).

Finally, due to the prominence of such bugs within

high-severity issues and their especially fatal consequences,

memory-related runtime errors are examined for their root

causes and prevention. First, the issues were narrowed down to

28 issues based on the symptom of the bug (eg. Segmentation

Fault) and the information provided in the further discussion.

Next, each bug was manually examined and categorized into

one of 3 common root causes within the memory bugs.

This was done by deeply analyzing the further discussion of

the GitHub issue and the associated pull request/patch. The

classification of the characteristics is discussed in Section V

IV. RESULTS

This section of this study provides a detailed analysis

of the symptoms, components, and severities of the bugs

identified. By categorizing bugs into distinct groups based on

their symptoms, components, and severity, this study reveals

patterns and trends that can inform future bug identification

and mitigation efforts. A majority of the bugs fell into six

key symptom categories, with correctness and runtime errors

being the most prevalent. This section further examines the

distribution of bugs across PyTorch’s core components and

how severity levels correlate with these components.

A. Symptoms

The bug symptoms have been categorized into 6 different la-

bels. 91.6% of the bugs fell under these 6 common categories.

For the remaining 8.4%, they were grouped under “Other”, due

to the distinctiveness between each of them.

1. Correctness (28.8%): This category encompasses bugs

where the program produces inaccurate or unexpected results.

For example, issue #51036 shows incorrect index checking

resulting in incorrect gradient calculations [10].

2. Runtime Error (25.8%): Bugs in this category cause the

program to crash or terminate unexpectedly during execution.

For example, in issue #41768, the program crashes when one

of the function arguments has a dimension of size 0 [11].

3. Build Failure (13.8%): Build failures occur when the

codebase cannot be compiled. For example, in issue #79449,

the program fails to compile due to a variable being referenced

before assignment [12].

4. Functional Failure (10.4%): This category includes

cases where the program does not perform its intended func-

tion. Although correctness failures could be considered a

subset of functional failures, they were separated here due

to their prevalence. For example in issue #90500, changes to

certain parameters did not affect gradient calculations, leading

to incorrect training behavior [13].

5. Test Failure (6.8%): This symptom accounts for when

tests break or do not comprehensively check all test cases. For

example in issue #28958, the CI test gives different results with

the same test case [14].

6. Performance Degradation (6.2%): Performance issues

arise when the software runs significantly slower than expected

or consumes more resources than necessary. For example in

issue #48049, a particular function consumed approximately

ten times the GPU memory compared to similar operations

[15].

7. Other (8.4%): This category includes less common

issues such as data corruption, typos, or misconfigurations.

Due to their varied nature, these issues are harder to group

under a single symptom type but are still important to address.
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Fig. 1. Distribution of Components from 2020-2022

It is shown that correctness and runtime errors are the most

frequent symptoms of the bugs, accounting for 28.8% and

25.4% respectively. This is particularly worrying due to the

difficulty in resolving both of these kinds of bugs. Correctness

bugs are often silent, making them difficult to discover and

resolve. On the other hand, runtime errors terminate the

entire program and can be considered “loud”, though they

require running of the program to discover them which can

be especially time-consuming.

B. Components

A ”component” refers to a functional module or subsystem

that provides a specific function. These components can vary

widely in their purpose, though they generally fall into 6 of the

groups described below. The distribution of the affected groups

of components of PyTorch issues are also shown below.

1. Core (27.1%): The Core component contains the fun-

damental functionalities of PyTorch, such as tensor operations

and autograd. Given its central role in the framework, issues

in this area can have far-reaching consequences, affecting a

wide range of models and workflows.

2. Model Conversion and Deployment (27.1%): Bugs

within this category typically involve the conversion of models

into formats suitable for deployment, such as ONNX. Conver-

sion processes such as quantization are also included under

this category.

3. Computation and Acceleration (22.5%): The Com-

putation and Acceleration category covers bugs related

to performance optimizations, hardware accelerators, and

distributed computing. CUDA, torch.multiprocessing, and

torch.distributed related issues are hence labeled under this

category

4. Interface and Extensibility (7.4%): This component

includes issues related to PyTorch’s APIs, user interfaces, and

platform-specific support. For example, Mac support belongs

under this category.

5. Data Transformation and Loading (7.2%): This cat-

egory contains essential data preparation, extraction, trans-

formation, and loading. Modules such as torchvision and
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Fig. 2. Distribution of Consequences across Components

dataloader are included in this category for their data trans-

formation and loading capabilities respectively.

6. Tests (5.1%): This category accounts for bugs related to

tests and testing modules. CI tests and torch.testing are both

included in this category. Furthermore, debugging tools such

as tensorboard are included in this category.

7. Other (3.6%): This category includes bugs that don’t fit

into the main component categories, such as documentation

errors, small inconsistencies, or other less common issues.

As expected, core components take up the largest percentage

of the issues. This percentage is inflated by the sheer amount of

components related to core framework components. However,

Model Conversion and Deployment also take up 27.1%. After

further analysis, we discover a significant growth in such bugs.

This is shown in Figure 1, where we see a drastic jump in

Model Conversion and Deployment in the first half of 2021.

C. Distribution of consequence across components

As shown in Figure 2, the distribution of bug consequences

is relatively uniform across the different PyTorch components.

This highlights the lack of correlation between component

and consequence, further demonstrating that no component is

especially vulnerable or immune to a certain kind of bug.

D. Severity

Severity does not have a formal definition and hence is

dependent on the context of the situation. In this work,

bug severity was classified into five levels: trivial, minor,

major, critical, and blocker. Analyzing the distribution of these

severities is crucial for prioritizing and allocating resources to

address the most impactful bugs.

1. Trivial (0.11%) Trivial issues include issues where it

was not necessary to fix the bug. This is seen in issue #74978,

where a variable is turned from a signed to unsigned integers

[16]. As many “trivial” changes are improvements rather than

bug fixes, there are very little within the entire data set. Hence,

trivial issues are not further analyzed in this study.

2. Minor (25.3%) This category includes issues where the

issue could be mitigated and would not affect core function-

ality. For example, in issue #49932, the lack of return type

annotation can cause separate code to misinterpret the object
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type [17]. This bug doesn’t affect the functionality of any other

components.

3. Major (71.0%) Issues are defined to have a major

severity when the bug in subject has a significant impact on

functionality, but will not completely stop the overall program

from running. For example, in issue #89560, the model fails

when the input shape is 1D [18]. Although this does impact

the functionality of the specific component heavily, other

components are not severely impacted.

4. Critical (3.6%) Critical issues occur when a bug heavily

impacts the program and causes it to fail. While it does not

prevent the entire framework from running, there will still be

significant impacts on other components. For example, in issue

#71094, the function crashes, disrupting the entire program

[19].

5. Blocker (0%) Blocker issues occur when the entire

software is prevented from working. No bug in the dataset

prevented the entire PyTorch framework from functioning.

E. Correlation of Components across Severities

From Figure 3, we see that core PyTorch components make

up a higher percentage of critical severity issues. For Core

components, they make up 27.1% of total issues but 45.8%

of critical components. It is also observed that model and

data-related issues make up a lower percentage of critical

issues. Model Conversion and Deployment issues make up

27.1% of total issues and 15.3% of critical issues. Similarly,

Computation and Acceleration issues make up 22.5% of total

issues and 13.6% of critical issues. This significant disparity

between the distribution for total and critical severity issues

is contrasted with minor and major severity issues, where we

see that the composition of affected components do not differ

significantly.

F. Correlation of Consequences across Severities

We see from Figure 4 that performance degradation makes

up a much larger portion of minor issues, from 6.2% of total

issues to 13.1% of minor issues. This is explainable, as while

performance flaws are serious bugs, it is not something that

needs to be immediately fixed as it does not directly affect
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functionality. Figure 4 further shows that for critical severity

issues, runtime errors make up a much larger portion, making

up 41.2% of critical issues but only 27.1% of the total.

V. MEMORY BUGS IN PYTORCH

When further analyzing the composition of critical severity

issues, we discovered that memory-related issues, particularly

memory access violations, which can cause segmentation

faults and crashes, comprised a small percentage of the total

issues but a high percentage of the critical issues. Of the total

issues memory issues make up 2.2%, but of the critical issues

they make up 29.7%. In general, 25.0% of memory bugs are

labeled with a critical severity as shown in Figure 5, which is

held in stark contrast to the 3.6% of bugs labeled with critical

severity overall. In this section, we address the root causes of

these bugs and aim to generalize the steps to fix or prevent

them.

1. Indexing (42.8%): An indexing bug refers to the over-

sight in the accessible indices, resulting in an inaccessible

index being attempted to be accessed. In the case where there

is a failure of bounds checking, the solution is to simply add

an exception in the case of an inappropriate index. As seen in

issue #77896, by adding bounds checks, it prevents undefined

behavior, creating a more stable and debuggable function [20].

In issue #52715, an extremely large tensor fails to be

processed due to the integer type of the indexing being too

small [21]. The solution is to add 64-bit indexing as shown

in the issue. Another solution implemented is to “chunk” the

tensor into more manageable sectors, which can also help deal

with larger tensors. Creating more comprehensive checks with

all the edge cases (bounds, small, large) would help discover

and prevent more of these issues.

2. Empty Tensors (28.6%) Within these issues, the bug

involved a reference to an empty tensors. For example, in issue

#46700, a check was added to disallow tensors of element size

0 [22]. Similarly, in [16], unary operators are set to output an

empty tensor in the case of an input of an empty tensor. In

many of these cases, the issue is an oversight of such an edge

case, similar to indexing. Checking the error raised in the case
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of an empty tensor would drastically reduce the occurrence of

these issues.

3. Device Disparity (10.7%): Memory access violation

bugs under this category occurred due to a mismatch between

the input and output devices. The disparity between two

different devices can cause a memory location in one to be

attempted to be accessed in the other, causing the memory

access violation. As shown in issue #82531, the issue only

occurs in the CUDA kernel and not the CPU may explain

the oversight, once again demonstrating the need for more

comprehensive tests [23].

4. Other (17.6%): The rest of the issues were highly

contextual and hence could not be generalized to another

group.

Our analysis of the root causes and prevention of mem-

ory access violations demonstrates the increased need for

comprehensive bug checks. Indexing and empty tensor bugs,

accounting for 71.4% of the total memory access violation

issues, are a direct cause of oversights within edge cases.

Although many of these edge cases simply cannot be foreseen,

adding such comprehensive checks despite their redundancy

can create more robust systems. Furthermore, as highlighted

by the device disparity issues, testing on different environ-

ments as PyTorch’s extensibility grows is also likely to help

prevent further similar issues.

VI. DISCUSSION

A. Correctness

We have seen in the analysis that correctness bugs make up

a large proportion of the bugs. As previously discussed, these

bugs are difficult to detect. A lack of test cases and case-

checking led to this scenario. This implies that an increased

emphasis on correctness testing, particularly fuzzing, can help

minimize a very large proportion of the bugs. Extensive

research has already been performed on fuzzing. However,

with the development of automated fuzzing frameworks like

the automated fuzzing framework presented in [25], the ease

of use and time it takes to test can be significantly improved.

B. Relation between Component and Consequence

In the analysis, we also see the lack of a correlation

between specific components and their consequences. While a

more specialized module, such as torchvision, might naturally

exhibit issues tied to the unique context in which it operates,

the uniformity of bug impact across general component groups

reveals this important insight. Additionally, this highlights the

difficulty in predicting the consequences of bugs based solely

on their component location. As many issues arise from inter-

actions between various modules, bugs may not always show

predictable symptoms until they surface during complex model

executions. Similar to how traditional debugging tools are

ineffective for DNN frameworks due to their interoperability,

this interaction demonstrates the need for the development of

more integrated debugging tools, ensuring that small bugs from

interactions between seemingly unrelated components can still

be caught.

C. Runtime Errors

Among the critical severity issues, analysis shows that there

is a significant increase in runtime errors compared to the

entire dataset. This is explained by the significant impact of

runtime termination not only shutting down the respective

component but also the framework as a whole. This indicates

the need to resolve runtime errors earlier and more efficiently,

which can only be done with a more thorough understanding

of what causes runtime errors and the common developer

mistakes that lead to them.

D. Bounds Checking and Empty Tensors

Memory access violations can occur when the program

tries to access bounds exceeding the appropriate range or

inputs empty tensors. These edge cases can often be difficult

to predict, and may sometimes be completely irrelevant to

the context of the operation. Despite the simplicity of these

kinds of bugs, they occur extremely often. To prevent such

bugs, more comprehensive testing procedures are required.

Furthermore, due to the difficulty in predicting them, redun-

dant checks need to be added.

E. Large Tensors

When the input tensor is very large, not using the appropri-

ate data type (eg. floating-point tensor) can cause a memory

access violation. The analysis suggests to ensure there is

proper indexing support for the tensors and add appropriate

checks for the respective data type.

F. Device Disparity

Device disparities cause memory problems in PyTorch when

a program incorrectly tries to access a memory location on a

different device than intended, such as attempting to access

CPU memory from a tensor stored on a GPU (CUDA) or

vice versa. This occurs because PyTorch tensors are device-

specific; tensors allocated on a GPU must be accessed with



operations targeting that same GPU, and the same applies

to CPU tensors. The frequency of this error shown from the

analysis suggests that checks for device consistency across all

different environments should be added.

VII. CONCLUSION

As deep learning frameworks are increasingly depended

upon, the need for creating more robust systems only ever

grows. By analyzing the trends within such data, we can

better understand the situation and further steps to improve

on reliability. In this paper, we comprehensively study the

distribution and relations of bugs within PyTorch by analyzing

1678 closed issues from the PyTorch GitHub repository, dating

from 1/1/2020 to 3/23/2023. These bugs are examined for

four characteristics, being the framework component affected,

severity, symptom, and date solved. We further analyze the

root causes and preventions of memory bugs specifically. Our

study found that there is no correlation between an affected

Pytorch component and a consequence. Furthermore, indexing

bugs are found to be the most populous root cause of memory

issues. A limitation of our study is the time frame over which

the bugs are identified, as it is subject to timing factors like

the focused development of a certain feature, and could be

repeated over the lifespan of the framework to reduce outliers

and skewing in the data. The study also relies on manual

analysis of metadata and qualitative descriptions, which adds

further inconsistency to the inherent errors of manual analysis

and could be improved upon by implementing more quantifi-

able measures of categorization. Future research could focus

on analyzing the inter-module interactions and development

of context-aware debugging tools, helping capture bugs more

effectively.
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