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Abstract—This study presents an in-depth manual analysis
of memory-related bugs within the PyTorch deep learning
framework, leveraging a filtered dataset of 1,678 closed issues
from the official PyTorch GitHub repository. The selected issues
span a three-year period from January 1, 2020, to March
23, 2023, allowing for a comprehensive examination of trends,
patterns, and solutions. This study aims to understand the
correlations between the characteristics of PyTorch bugs and
also the composition of the root causes behind memory bugs.
The findings reveal that Correctness and Runtime Error bugs
occur most frequently, with a lack of a correlation between
Affected Components and Bug Symptoms. Our results highlight
the need for more integrated inter-component debugging tools.
Furthermore, the findings show that indexing errors occur most
frequently among memory bugs. We determine that, to address
the severe impact of such memory bugs, there exists a need
for more comprehensive and redundant test cases. Through
this analysis, this work aims to provide actionable insights for
developers to improve the robustness of PyTorch, improving its
reliability in machine learning applications.
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I. INTRODUCTION

Deep neural networks (DNNs) have become foundational to
many modern software systems, enabling the modern demand
for data extraction, transformation, and processing. Many
developers and researchers have turned to DNN frameworks to
abstract the complexities of designing, training, and deploying
models. One of these DNN frameworks is PyTorch [1]. Py-
Torch is currently the second most popular DNN framework
on GitHub and is actively maintained and improved upon.

This work comprehensively studies and analyzes bugs and
their solutions within PyTorch. By studying and analyzing
these bugs in PyTorch, this work aims to identify trends and
patterns to assist in understanding the composition of bugs
and create references for debugging and building more robust
systems.

This work further analyzes memory-related bugs. Mem-
ory bugs within PyTorch have especially fatal consequences.
Crashes and segmentation faults can block other system
functionality, requiring immediate fixes. Hence with a more
specialized analysis of memory bugs, this work further aims
to understand the root cause and prevention of these bugs.
Similarly to the prior analysis, the insights create a better
understanding of the composition of the issues, which will
help in building more reliable systems.
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We first examined 1,678 closed issues from the PyTorch
GitHub repository, collected over three years, from January
1, 2020, to March 23, 2023. After carefully examining issue
attributes, this subset was then manually labeled for its charac-
teristics. Our analysis discovered that correctness and runtime
errors were most prominent in the data set. We further discover
that core PyTorch components make up a lower percentage
of the total issues than the issues with a critical severity
(classification discussed in Section IV). In a similar manner,
runtime errors are discovered to comprise 23.6% of total issues
but 41.2% of critical severity issues.

Next, we analyze memory bugs that reside within the prior
subset that also have at least one accessible patch. We focus
on the root cause and prevention steps that can be taken for
these bugs. This is determined primarily by further discussion
and the code changes in the pull request. The root causes are
then generalized between the bugs to create three categories,
being indexing, empty tensor, and device mismatch errors,
with indexing bugs comprising 42.8% of the total. Between
all three categories, the need for more comprehensive and
redundant testing is exhibited.

The rest of the paper is organized as follows. In Section II,
we discuss the related works. In Section III, we describe the
methodology of this work. In Section IV we analyze overall
correlations and patterns within the bugs. In Section V we
determine the root causes and mistakes of memory bugs. In
Section VI we discuss the findings and implications. Finally,
in Section VII, we discuss our conclusions.

II. RELATED WORK

Recent related works have analyzed root causes, symptoms,
pipeline steps, and bug types for DNN frameworks and their
applications. They have further discovered relationships be-
tween such characteristics. Jia et. al manually analyzed 202
Tensorflow bugs, looking at symptoms, root causes, and repair
methods [2]. Similarly, Ho et. al examined PyTorch, acting as a
replication of Jia et. al’s study to compare the two frameworks
[3]. Chen et. al further expanded the scope, analyzing 1000
bugs across TensorFlow, PyTorch, MXNet, and DL4J [4].
Zhang et. al focused on symptoms and root causes of bugs for
applications built upon TensorFlow, looking through 175 stack
overflow posts and GitHub commits [5]. Islam et. al analyzed
970 bugs also on applications built on DNN frameworks,



looking through Stackoverflow posts and GitHub commits
across the 5 most popular DNN frameworks: Caffe, Keras,
Tensorflow, Theano, and Torch [6]. Thung et. al focused on
three ML systems, searching for bug frequencies, bug types,
the severity of the bug, bug-fixing duration, bug-fixing effort,
and bug impact [7]. Rongon et. al studied the bugs related to
the data path of machine-learning applications [8]. Building
on these works, our research focuses on manual analysis
of correlations between components, symptoms, and severity
with a larger dataset of specifically GitHub issues, focusing on
the PyTorch framework itself rather than applications built on
top of it. Furthermore, we focus on analyzing the root cause
and prevention of memory bugs within PyTorch.

III. METHODOLOGY

PyTorch was selected due to its significant role in both
academic research and industry applications. PyTorch pro-
vides a comprehensive set of tools for building, training, and
deploying DNNs. Its ease of use whilst also including the
complexities has made it a top choice for many users.

PyTorch’s prominence is seen on GitHub, where it is the
second most popular DNN framework. With an extensive
repository of contributions, bug reports, and patches it provides
a substantial dataset for analyzing real-world issues encoun-
tered by users. Furthermore, PyTorch’s large, active commu-
nity constantly works together to improve the framework,
making it an ideal candidate for studying how bug patterns
and resolutions have evolved and improved.

Data was primarily collected in the form of GitHub issues.
We collected closed issues from the PyTorch GitHub repos-
itory, focusing on those reported between January 2020 to
March 2023. The dataset was filtered based on the presence of
the keywords “bug” and “fix,” ensuring that the selected issues
had a substantial problem and was not just an improvement.
Each issue was evaluated to ensure it was marked closed,
with an emphasis on those linked to a pull request. Issues
without pull requests were included only when significant
discussion and resolution steps were available. However, there
were exceptions such as issue #29779 [9] where the issue was
indicated to be discussed and resolved elsewhere. Through this
process, 1678 issues were collected and analyzed.

Next, these 1678 issues were examined based on the patch,
description, further discussion, and tags. The bugs were as-
sessed on an issue-by-issue basis and then were classified into
four characteristics—component, symptom, severity, and date
solved—according to predefined criteria (See Section IV for
the criteria). For instance, severity was assessed based on the
impact of the bug on system stability and user experience (e.g.,
crashes = major severity).

Finally, due to the prominence of such bugs within
high-severity issues and their especially fatal consequences,
memory-related runtime errors are examined for their root
causes and prevention. First, the issues were narrowed down to
28 issues based on the symptom of the bug (eg. Segmentation
Fault) and the information provided in the further discussion.
Next, each bug was manually examined and categorized into

one of 3 common root causes within the memory bugs.
This was done by deeply analyzing the further discussion of
the GitHub issue and the associated pull request/patch. The
classification of the characteristics is discussed in Section V

IV. RESULTS

This section of this study provides a detailed analysis
of the symptoms, components, and severities of the bugs
identified. By categorizing bugs into distinct groups based on
their symptoms, components, and severity, this study reveals
patterns and trends that can inform future bug identification
and mitigation efforts. A majority of the bugs fell into six
key symptom categories, with correctness and runtime errors
being the most prevalent. This section further examines the
distribution of bugs across PyTorch’s core components and
how severity levels correlate with these components.

A. Symptoms

The bug symptoms have been categorized into 6 different la-
bels. 91.6% of the bugs fell under these 6 common categories.
For the remaining 8.4%, they were grouped under “Other”, due
to the distinctiveness between each of them.

1. Correctness (28.8%): This category encompasses bugs
where the program produces inaccurate or unexpected results.
For example, issue #51036 shows incorrect index checking
resulting in incorrect gradient calculations [10].

2. Runtime Error (25.8%): Bugs in this category cause the
program to crash or terminate unexpectedly during execution.
For example, in issue #41768, the program crashes when one
of the function arguments has a dimension of size 0 [11].

3. Build Failure (13.8%): Build failures occur when the
codebase cannot be compiled. For example, in issue #79449,
the program fails to compile due to a variable being referenced
before assignment [12].

4. Functional Failure (10.4%): This category includes
cases where the program does not perform its intended func-
tion. Although correctness failures could be considered a
subset of functional failures, they were separated here due
to their prevalence. For example in issue #90500, changes to
certain parameters did not affect gradient calculations, leading
to incorrect training behavior [13].

5. Test Failure (6.8%): This symptom accounts for when
tests break or do not comprehensively check all test cases. For
example in issue #28958, the CI test gives different results with
the same test case [14].

6. Performance Degradation (6.2%): Performance issues
arise when the software runs significantly slower than expected
or consumes more resources than necessary. For example in
issue #48049, a particular function consumed approximately
ten times the GPU memory compared to similar operations
[15].

7. Other (8.4%): This category includes less common
issues such as data corruption, typos, or misconfigurations.
Due to their varied nature, these issues are harder to group
under a single symptom type but are still important to address.



Fig. 1. Distribution of Components from 2020-2022

It is shown that correctness and runtime errors are the most
frequent symptoms of the bugs, accounting for 28.8% and
25.4% respectively. This is particularly worrying due to the
difficulty in resolving both of these kinds of bugs. Correctness
bugs are often silent, making them difficult to discover and
resolve. On the other hand, runtime errors terminate the
entire program and can be considered “loud”, though they
require running of the program to discover them which can
be especially time-consuming.

B. Components

A “component” refers to a functional module or subsystem
that provides a specific function. These components can vary
widely in their purpose, though they generally fall into 6 of the
groups described below. The distribution of the affected groups
of components of PyTorch issues are also shown below.

1. Core (27.1%): The Core component contains the fun-
damental functionalities of PyTorch, such as tensor operations
and autograd. Given its central role in the framework, issues
in this area can have far-reaching consequences, affecting a
wide range of models and workflows.

2. Model Conversion and Deployment (27.1%): Bugs
within this category typically involve the conversion of models
into formats suitable for deployment, such as ONNX. Conver-
sion processes such as quantization are also included under
this category.

3. Computation and Acceleration (22.5%): The Com-
putation and Acceleration category covers bugs related
to performance optimizations, hardware accelerators, and
distributed computing. CUDA, torch.multiprocessing, and
torch.distributed related issues are hence labeled under this
category

4. Interface and Extensibility (7.4%): This component
includes issues related to PyTorch’s APIs, user interfaces, and
platform-specific support. For example, Mac support belongs
under this category.

5. Data Transformation and Loading (7.2%): This cat-
egory contains essential data preparation, extraction, trans-
formation, and loading. Modules such as torchvision and

Fig. 2. Distribution of Consequences across Components

dataloader are included in this category for their data trans-
formation and loading capabilities respectively.

6. Tests (5.1%): This category accounts for bugs related to
tests and testing modules. CI tests and torch.testing are both
included in this category. Furthermore, debugging tools such
as tensorboard are included in this category.

7. Other (3.6%): This category includes bugs that don’t fit
into the main component categories, such as documentation
errors, small inconsistencies, or other less common issues.

As expected, core components take up the largest percentage
of the issues. This percentage is inflated by the sheer amount of
components related to core framework components. However,
Model Conversion and Deployment also take up 27.1%. After
further analysis, we discover a significant growth in such bugs.
This is shown in Figure 1, where we see a drastic jump in
Model Conversion and Deployment in the first half of 2021.

C. Distribution of consequence across components

As shown in Figure 2, the distribution of bug consequences
is relatively uniform across the different PyTorch components.
This highlights the lack of correlation between component
and consequence, further demonstrating that no component is
especially vulnerable or immune to a certain kind of bug.

D. Severity

Severity does not have a formal definition and hence is
dependent on the context of the situation. In this work,
bug severity was classified into five levels: trivial, minor,
major, critical, and blocker. Analyzing the distribution of these
severities is crucial for prioritizing and allocating resources to
address the most impactful bugs.

1. Trivial (0.11%) Trivial issues include issues where it
was not necessary to fix the bug. This is seen in issue #74978,
where a variable is turned from a signed to unsigned integers
[16]. As many “trivial” changes are improvements rather than
bug fixes, there are very little within the entire data set. Hence,
trivial issues are not further analyzed in this study.

2. Minor (25.3%) This category includes issues where the
issue could be mitigated and would not affect core function-
ality. For example, in issue #49932, the lack of return type
annotation can cause separate code to misinterpret the object
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Fig. 3. Distribution of Components across Severities

type [17]. This bug doesn’t affect the functionality of any other
components.

3. Major (71.0%) Issues are defined to have a major
severity when the bug in subject has a significant impact on
functionality, but will not completely stop the overall program
from running. For example, in issue #89560, the model fails
when the input shape is 1D [18]. Although this does impact
the functionality of the specific component heavily, other
components are not severely impacted.

4. Critical (3.6%) Critical issues occur when a bug heavily
impacts the program and causes it to fail. While it does not
prevent the entire framework from running, there will still be
significant impacts on other components. For example, in issue
#71094, the function crashes, disrupting the entire program
[19].

5. Blocker (0%) Blocker issues occur when the entire
software is prevented from working. No bug in the dataset
prevented the entire PyTorch framework from functioning.

E. Correlation of Components across Severities

From Figure 3, we see that core PyTorch components make
up a higher percentage of critical severity issues. For Core
components, they make up 27.1% of total issues but 45.8%
of critical components. It is also observed that model and
data-related issues make up a lower percentage of critical
issues. Model Conversion and Deployment issues make up
27.1% of total issues and 15.3% of critical issues. Similarly,
Computation and Acceleration issues make up 22.5% of total
issues and 13.6% of critical issues. This significant disparity
between the distribution for total and critical severity issues
is contrasted with minor and major severity issues, where we
see that the composition of affected components do not differ
significantly.

FE. Correlation of Consequences across Severities

We see from Figure 4 that performance degradation makes
up a much larger portion of minor issues, from 6.2% of total
issues to 13.1% of minor issues. This is explainable, as while
performance flaws are serious bugs, it is not something that
needs to be immediately fixed as it does not directly affect
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functionality. Figure 4 further shows that for critical severity
issues, runtime errors make up a much larger portion, making
up 41.2% of critical issues but only 27.1% of the total.

V. MEMORY BUGS IN PYTORCH

When further analyzing the composition of critical severity
issues, we discovered that memory-related issues, particularly
memory access violations, which can cause segmentation
faults and crashes, comprised a small percentage of the total
issues but a high percentage of the critical issues. Of the total
issues memory issues make up 2.2%, but of the critical issues
they make up 29.7%. In general, 25.0% of memory bugs are
labeled with a critical severity as shown in Figure 5, which is
held in stark contrast to the 3.6% of bugs labeled with critical
severity overall. In this section, we address the root causes of
these bugs and aim to generalize the steps to fix or prevent
them.

1. Indexing (42.8%): An indexing bug refers to the over-
sight in the accessible indices, resulting in an inaccessible
index being attempted to be accessed. In the case where there
is a failure of bounds checking, the solution is to simply add
an exception in the case of an inappropriate index. As seen in
issue #77896, by adding bounds checks, it prevents undefined
behavior, creating a more stable and debuggable function [20].

In issue #52715, an extremely large tensor fails to be
processed due to the integer type of the indexing being too
small [21]. The solution is to add 64-bit indexing as shown
in the issue. Another solution implemented is to “chunk” the
tensor into more manageable sectors, which can also help deal
with larger tensors. Creating more comprehensive checks with
all the edge cases (bounds, small, large) would help discover
and prevent more of these issues.

2. Empty Tensors (28.6%) Within these issues, the bug
involved a reference to an empty tensors. For example, in issue
#46700, a check was added to disallow tensors of element size
0 [22]. Similarly, in [16], unary operators are set to output an
empty tensor in the case of an input of an empty tensor. In
many of these cases, the issue is an oversight of such an edge
case, similar to indexing. Checking the error raised in the case



Fig. 5. Severity Composition of Memory Bugs

of an empty tensor would drastically reduce the occurrence of
these issues.

3. Device Disparity (10.7%): Memory access violation
bugs under this category occurred due to a mismatch between
the input and output devices. The disparity between two
different devices can cause a memory location in one to be
attempted to be accessed in the other, causing the memory
access violation. As shown in issue #82531, the issue only
occurs in the CUDA kernel and not the CPU may explain
the oversight, once again demonstrating the need for more
comprehensive tests [23].

4. Other (17.6%): The rest of the issues were highly
contextual and hence could not be generalized to another
group.

Our analysis of the root causes and prevention of mem-
ory access violations demonstrates the increased need for
comprehensive bug checks. Indexing and empty tensor bugs,
accounting for 71.4% of the total memory access violation
issues, are a direct cause of oversights within edge cases.
Although many of these edge cases simply cannot be foreseen,
adding such comprehensive checks despite their redundancy
can create more robust systems. Furthermore, as highlighted
by the device disparity issues, testing on different environ-
ments as PyTorch’s extensibility grows is also likely to help
prevent further similar issues.

VI. DISCUSSION
A. Correctness

We have seen in the analysis that correctness bugs make up
a large proportion of the bugs. As previously discussed, these
bugs are difficult to detect. A lack of test cases and case-
checking led to this scenario. This implies that an increased
emphasis on correctness testing, particularly fuzzing, can help
minimize a very large proportion of the bugs. Extensive
research has already been performed on fuzzing. However,
with the development of automated fuzzing frameworks like

the automated fuzzing framework presented in [25], the ease
of use and time it takes to test can be significantly improved.

B. Relation between Component and Consequence

In the analysis, we also see the lack of a correlation
between specific components and their consequences. While a
more specialized module, such as torchvision, might naturally
exhibit issues tied to the unique context in which it operates,
the uniformity of bug impact across general component groups
reveals this important insight. Additionally, this highlights the
difficulty in predicting the consequences of bugs based solely
on their component location. As many issues arise from inter-
actions between various modules, bugs may not always show
predictable symptoms until they surface during complex model
executions. Similar to how traditional debugging tools are
ineffective for DNN frameworks due to their interoperability,
this interaction demonstrates the need for the development of
more integrated debugging tools, ensuring that small bugs from
interactions between seemingly unrelated components can still
be caught.

C. Runtime Errors

Among the critical severity issues, analysis shows that there
is a significant increase in runtime errors compared to the
entire dataset. This is explained by the significant impact of
runtime termination not only shutting down the respective
component but also the framework as a whole. This indicates
the need to resolve runtime errors earlier and more efficiently,
which can only be done with a more thorough understanding
of what causes runtime errors and the common developer
mistakes that lead to them.

D. Bounds Checking and Empty Tensors

Memory access violations can occur when the program
tries to access bounds exceeding the appropriate range or
inputs empty tensors. These edge cases can often be difficult
to predict, and may sometimes be completely irrelevant to
the context of the operation. Despite the simplicity of these
kinds of bugs, they occur extremely often. To prevent such
bugs, more comprehensive testing procedures are required.
Furthermore, due to the difficulty in predicting them, redun-
dant checks need to be added.

E. Large Tensors

When the input tensor is very large, not using the appropri-
ate data type (eg. floating-point tensor) can cause a memory
access violation. The analysis suggests to ensure there is
proper indexing support for the tensors and add appropriate
checks for the respective data type.

FE. Device Disparity

Device disparities cause memory problems in PyTorch when
a program incorrectly tries to access a memory location on a
different device than intended, such as attempting to access
CPU memory from a tensor stored on a GPU (CUDA) or
vice versa. This occurs because PyTorch tensors are device-
specific; tensors allocated on a GPU must be accessed with



operations targeting that same GPU, and the same applies
to CPU tensors. The frequency of this error shown from the
analysis suggests that checks for device consistency across all
different environments should be added.

VII. CONCLUSION

As deep learning frameworks are increasingly depended
upon, the need for creating more robust systems only ever
grows. By analyzing the trends within such data, we can
better understand the situation and further steps to improve
on reliability. In this paper, we comprehensively study the
distribution and relations of bugs within PyTorch by analyzing
1678 closed issues from the PyTorch GitHub repository, dating
from 1/1/2020 to 3/23/2023. These bugs are examined for
four characteristics, being the framework component affected,
severity, symptom, and date solved. We further analyze the
root causes and preventions of memory bugs specifically. Our
study found that there is no correlation between an affected
Pytorch component and a consequence. Furthermore, indexing
bugs are found to be the most populous root cause of memory
issues. A limitation of our study is the time frame over which
the bugs are identified, as it is subject to timing factors like
the focused development of a certain feature, and could be
repeated over the lifespan of the framework to reduce outliers
and skewing in the data. The study also relies on manual
analysis of metadata and qualitative descriptions, which adds
further inconsistency to the inherent errors of manual analysis
and could be improved upon by implementing more quantifi-
able measures of categorization. Future research could focus
on analyzing the inter-module interactions and development
of context-aware debugging tools, helping capture bugs more
effectively.
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