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Abstract. We consider the Korteweg–de Vries (KdV) equation, and prove that
small localized data yields solutions which have dispersive decay on a quartic time-
scale. This result is optimal, in view of the emergence of solitons at quartic time,
as predicted by inverse scattering theory.
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1. Introduction

We consider real solutions for the Korteweg–de Vries equation (KdV)

(1.1)
{
ut + uxxx − 6uux = 0

u(0) = u0,

on the real line. Assuming that the initial data is small and localized, we seek to
understand the long time dispersive properties of the solution.

This has been a long term goal of research in this direction. In particular, one natu-
ral question to ask is whether, for localized initial data, the solutions to the nonlinear
equation exhibit the same dispersive decay as the solutions to the corresponding lin-
ear equation. In general this is not the case globally in time, due primarily to two
types of nonlinear solutions:

(i) Solitons, which move to the right with constant speed.
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(ii) Dispersive shocks, where the nonlinearity acts like a transport term and pushes
the dispersive part of the solution to the left.

This paper combines some earlier work and insight gained by the authors when
analyzing global or long time dynamical behaviour of solutions to certain models
of dispersive equations. Our long term goal is to understand the soliton resolution
conjecture for the nonlinear Korteweg–de Vries equation (KdV). Historically, solitary
waves (water waves which do not disperse for a long time and which move at a
constant speed without changing their shape) were first observed and reported by
John Scott Russell in a shallow canal. He called such a wave “a wave of translation,
in a wave tank”. This phenomenon was first explained mathematically by Korteweg
and de Vries in [20] in 1895. Solitons represent interesting mathematical objects that
influence the long time dynamics of the solutions.

The soliton resolution conjecture applies to many nonlinear dispersive equations
and asserts, roughly speaking, that any reasonable solution to such equations even-
tually resolves into a superposition of a dispersive component (which behaves like
a solution to the linear equation) plus a number of “solitons”. This should only be
taken as a guiding principle, as many variations can occur; for instance the number
of solitons could be finite or infinite, while the dispersive part might not truly have
linear scattering, but instead some modified scattering behavior.

This conjecture was studied in many different frameworks (i.e. for different dis-
persive equations like for example for the nonlinear Schrödinger equation (NLS), see
[25] and references within) and it is known in many perturbative cases in the setting:
when the solution is close to a special solution, such as the vacuum state or a ground
state, as well as in defocusing cases, where no non-trivial bound states or solitons
exist. But it is still almost completely open in non-perturbative situations (in which
the solution is large and not close to a special solution) which contain at least one
bound state.

Turning our attention to solutions to the KdV equation with small initial data, one
can distinguish two stages in the nonlinear evolution from the perspective of soliton
resolution. Initially, one expects the solutions to satisfy linear-like dispersive bounds.
This stage lasts until nonlinear effects (i.e. solitons and dispersive shocks) begin to
emerge. The second stage corresponds to solutions which split into at least two of
the following components: a linear dispersive part, a dispersive shock, and a soliton.

In this article we aim to describe the first of the two stages above. To better frame
the question, we restate the problem as follows:

Question: If ε≪ 1 is the initial data size, then what is the time scale up to which
the solution will satisfy linear dispersive decay bounds?

Our main result identifies the quartic time scale Tε = ε−3 as the optimal time
scale on which linear dispersive decay for all localized data of size ≤ ε. The precise
statement of the result is provided in Theorem 1.2 below.
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We prove this, and also provide some heuristic reasoning, based on inverse scatter-
ing, as to why this result is optimal, in other words that the quartic time scale that
marks the earliest possible emergence of either solitons or dispersive shocks. To our
knowledge this is the first result that rigorously describes the dispersive decay of the
solutions on a quartic time-scale.

1.1. The linear KdV flow. If one removes the nonlinearity and considers instead
the linear Korteweg–de Vries equation

(1.2)
{
ut + uxxx = 0

u(0) = u0,

then the solutions will exhibit Airy type decay. To better understand this bound, it
is useful to separate the domain of evolution (t, x) ∈ R+ × R into three regions (see
Figure 1 above/below):

(1) The hyperbolic region

H := {x ≲ −t
1
3},

where one sees an oscillatory, Airy type behavior for the solution, with dis-
persive decay.

(2) The self-similar region

S := {|x| ≲ t
1
3},

where the solution essentially looks like a bump function with t−
1
3 decay.

(3) The elliptic region,
E := {x ≳ t

1
3},

which is eventually left by each oscillatory component of the solution, and
consequently we have better decay.

x

t = 1

t

E

|x| = t
1
3

H S

Figure 1. The partition into the three main regions: H, E, and S.
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Consistent with the above partition we define the expression ⟨x⟩ in a time dependent
fashion as

(1.3) ⟨x⟩ := (x2 + |t|
2
3 )

1
2 .

Then the following result describes the dispersive decay of linear KdV waves:

Proposition 1.1. Assume that the initial data u0 for (1.2) satisfies

(1.4) ∥u0∥H1 + ∥x2u0∥L2 ≤ ε.

Then the corresponding solution satisfies the bound

(1.5) t
1
4 ⟨x⟩

1
4 |u(t, x)|+ t

3
4 ⟨x⟩−

1
4 |ux(t, x)| ≲ ε.

Furthermore, in the elliptic region E we have the better bound

(1.6) ⟨x⟩|u(t, x)|+ t
1
2 ⟨x⟩

1
2 |ux(t, x)| ≲ ε ln(t−

1
3 ⟨x⟩).

Here the ε factor is not important, we have only added it for easier comparison
with the nonlinear problem later on.

We also remark that the norm in (1.4) is stronger than we need. In Section 2,
where the proposition is proved, we will in effect state and prove a sharper version,
with the same conclusion but a weaker hypothesis. Incidentally, the bound (1.6) in
the elliptic region is the one that follows from that weaker hypothesis, and can be
improved under the assumption (1.5); we leave the details for the interested reader.

1.2. The nonlinear problem. KdV is a completely integrable flow, and admits an
infinite number of conservation laws. The first few ones are as follows:

E0 =

∫
u2 dx,

E1 =

∫
u2x + 2u3 dx,

E2 =

∫
u2xx + 10uu2x + 5u4 dx,

E3 =

∫
u2xxx + 14uu2xx + 70u2u2x + 14u5 dx.

In a Hamiltonian interpretation, these energies generate commuting Hamiltonian
flows with the Poisson structure defined by the associated Poisson form (which is the
dual or inverse of the symplectic form)

Λ(u, v) =

∫
uvx dx.

The first of these flows is the group of translations, and the second is the KdV flow.
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The local well-posedness and eventually the global well-posedness for the KdV
equations has received a lot of attention over the last twenty years. To frame the
discussion that follows we recall the scaling law for KdV, which is

u(x, t) → λ2u(λx, λ3t),

and corresponds to the critical Sobolev space Ḣ− 3
2 .

Without being exhaustive we mention only a few of the results. We begin with the
study of the local L2 well-posedness of the KdV equations which was proved both
on the line and on the circle by Bourgain in [2]. Refinements of the ideas developed
in [2] were further implemented by Kenig-Ponce-Vega in [15]; their work extended
the Sobolev index of the local well-posedness theory down to s > −3/4 in Hs(R),
respectively s > −1/2 in the Hs(R/Z) case. For the Sobolev indices s = −3/4
respectively s = −1/2 see the work of Christ-Colliander-Tao [4], and Colliander-
Keel-Staffilani-Takaoka-Tao [6, 5, 7]. Using inverse scattering techniques Kappeler
and Topalov [14] proved that the solution maps can be continuously (and globally in
time) extended to H−1 in the period case.

The local well-posedness results were extended globally in time in [5] with the sole
exception of the case s = −3/4. This was later independently settled by Guo [9] and
Kishimoto [18]. Very recently it was proved by Killip and Visan [17] that the KdV
flow is globally well-posed in H−1(R). This is a definitive result, as it is known that
below H−1(R) the flow map cannot be continuous (see [21]).

An important role in the global results was played by the conservation laws for the
KdV evolution. In addition to the classical conservation laws we also have conserva-
tion laws for Hs norms of the solution for s ≥ −1, see [3, 19, 17]. We will rely on these
conservation laws in the work that we will present here. In fact, these conservation
laws also played a crucial role in the proof of the global well-posedness result in [16].

1.3. Solitons and dispersive shocks. The nonlinear KdV evolution shares some
of the features of the linear evolution, but also exhibits some new behaviour patterns.
Here we discuss two such patterns: solitons and dispersive shocks.

1. Solitons. As it is well-known, the KdV equation admits soliton solutions, for
instance the state

Q = −2 sech2 x

is a soliton which moves to the right with speed 4. We can also translate and rescale
it. Its rescales for instance are

Qλ(x) = λ2Q(λx),

which move to the right with speed 4λ2.
A given KdV solution may contain one or more solitons. The KdV equation is

integrable so one expects solitons to interact without changing their shape.
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Solitons within a given KdV solution are in a one-to-one correspondence with the
negative eigenvalues of the Schrödinger operator

ψ → −ψ′′ + u(t)ψ.

Precisely, an eigenvalue −λ2 corresponds to the soliton Qλ up to a possible shift.
The Schrödinger operator may have a negative eigenvalue even if the initial data

u0 is a small nice bump function, and a soliton will emerge in this case. The only
question is after how long does it happen? Properties of the discrete spectrum are
collected in Proposition 8.1 in the appendix. In particular we apply the results by
Schuur [23] to the case when ϕ0 is a Schwartz function, 0 < ε is small and u0 = εϕ0.
In this case there is exactly one negative eigenvalue of size −ε2/2. Hence there is
exactly one soliton, which has width ε−1. This follows from estimates of Schuur [23].
Heuristically, one expects this soliton to emerge from the self-similar region when the
spatial scales are matched. But this happens exactly at quartic time ε−3.

2. Dispersive shocks. If one neglects the third order derivative in the KdV equation
then what is left is the Burgers equation, which develops shocks in finite time. The
third order derivative adds dispersion to the mix, sending the high frequencies to the
left as a dispersive tail. This guarantees that shocks as a jump discontinuity cannot
form. Are we still left with a tangible Burgers like effect at low frequencies? This
does indeed happen, and is what we call a dispersive shock.

To understand the mechanics of its possible appearance, suppose for a moment that
the solution for KdV has the same behavior as the linear KdV solution in the self-
similar region (we focus our attention there because no oscillations are present). There
the solution has size u ≈ εt−

1
3 and frequency t−

1
3 . On the other hand, interpreting

the nonlinear term as a transport term, we see that it would shift the solution by εt
2
3

within a dyadic time region. This is consistent with the size of the self-similar region
only if εt

2
3 ≲ t

1
3 , or equivalently t ≲ ε−3. Thus for larger times one cannot expect a

linear decay, and instead most of the mass will be pushed (if u is positive) into the
dispersive region; this of course depends on the sign of the transport velocity, and
would be effective only provided that u > 0 in the self-similar region.

To understand the shock quantitatively, one can consider another class of special
solutions to the KdV equation, namely the self-similar solutions. These must be
functions of the form

u(t, x) = t−
2
3ϕ(x/t

1
3 ),

where ϕ solves the following Painlevé type equation

(1.7)
1

3
(2ϕ+ yϕy)− ϕyyy + 6ϕϕy = 0.

This admits a one parameter family of solutions, given by the Miura map applied to
solutions to the Painlevé II equation,

(1.8) ψ′′ − 2ψ3 − xψ = α
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with α ∈ R. If ψ satisfies (1.8) then ϕ = ψ′ + ψ2 satisfies (1.7).
Of particular interest is a family of solutions to (1.8), parametrized by −1 ≤ σ ≤ 1.

For such σ there exists a unique bounded global solution (see [22]) to (1.8) which
behaves like σAi(x) as x → ∞. It leads to solutions to (1.7) which decay to the
right, and are oscillatory, Airy type to the left, and are positive around y = 0 if
|σ| < 1. We expect these solutions to become important for understanding the large
time behaviour near the self-similar region. The solution with σ = 1 is the famous
Hastings-McLeod solution [11]. In this way we obtain KdV solutions with t−

2
3 decay in

the self-similar region. One expects the dispersive shock to cause either convergence
in the self-similar region to one of these self-similar solutions, or alternatively, to
generate a slow motion along this family. The first case happens for the Miura map
of solutions to mKdV studied by [10]. Unfortunately this class of solutions is non-
generic, see Schuur [23] and Ablowitz and Segur [1].

1.4. The main result. We now turn our attention to the nonlinear KdV equation
(1.1) with localized data of small size ε. For this problem we seek the answer to the
following:

Question: What is the optimal time scale, depending on ε, where nonlinear effects
can become dominant ?

As a quantitative version of the above question, we will ask what is the optimal
time scale on which the linear dispersive decay bounds in Proposition 1.1 hold for the
nonlinear problem for small decaying initial data. Our main result asserts that this
timescale is the quartic time scale, Tε = ε−3:

Theorem 1.2. Assume that the initial data u0 for KdV satisfies

(1.9) ∥u0∥
Ḃ

− 1
2

2,∞
+ ∥xu0∥Ḣ 1

2
≤ ε≪ 1.

Then for the quartic lifespan

(1.10) |t| ≪ ε−3,

we have the dispersive bounds (using the notation (1.3))

(1.11) |u(t, x)| ≲ εt−
1
4 ⟨x⟩−

1
4 |ux(t, x)| ≲ εt−

3
4 ⟨x⟩

1
4 .

Furthermore, in the elliptic region E we have the better bound

(1.12) ⟨x⟩|u(t, x)|+ t
1
2 ⟨x⟩

1
2 |ux(t, x)| ≲ ε ln(t−1/3⟨x⟩).

The implicit constants are independent of ε and u.

A small multiple of the Dirac measure at 0 is a particular case of initial data
satisfying the assumptions. More generally, if the initial data is a Dirac measure, then,
with a scaling argument, the theorem gives bounds for the corresponding solution up
to a small time.
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The time scale in this result is optimal. To clarify this assertion, in the last section
we discuss the possible emergence of solitons from the dispersive flow at quartic time.
In a similar manner, dispersive shocks may also arise at the same time, as argued in
their brief heuristic discussion above.

We also comment on the choice of the norms in the theorem. The Besov space Ḃ− 1
2

2,∞
is the minimal one at low frequency where we can place our initial data: A smooth
localized bump function with nonzero integral is in Ḃ

− 1
2

2,q if and only if q = ∞. Here
only frequencies larger than ε are interesting, and below that we can freely flatten off
the Ḣ− 1

2 Fourier weight. Choosing this norm also at high frequency is harmless, and
allows us to use scaling in order to streamline the analysis.

The Ḣ
1
2 norm for xu scales in exactly the same way as the above Besov norm. Their

combination is exactly consistent with the pointwise decay rates above even for the
linear KdV flow with fully localized data. At a technical level, the Ḣ

1
2 corresponds

by duality to the Ḣ− 1
2 well-posedness for the linearized equation. In turn, Ḣ− 1

2 is an
optimal space where this well-posedness for the linearized equation can be studied in
that well-posedness in any other Sobolev space Ḣs implies 1 Ḣ− 1

2 well-posedness.
It is instructive to relate the theorem to inverse scattering techniques. The as-

sumptions we make on the initial data are not strong enough to exclude an infinite
number of negative eigenvalues for the corresponding Schrödinger operator. In fact,
it is not hard to construct a potential u satisfying the assumptions for a given ε > 0
with an infinite number of negative eigenvalues. There are a number of papers on
asymptotics for fast decaying initial data [1, 23, 8]. To our knowledge no quantitative
bounds near the self-similar region are available - the difficulty is the emergence of
solitons. On the other hand slightly sharpened asymptotics of Schuur (based on the
inverse scattering procedure) show that solitons emerge at the quartic time scale for
a large class of initial data, see the discussion in the appendix.

We remark that the similar problem for the Benjamin-Ono equation was considered
in recent work by the first and the last author [13]. There the optimal time scale turns
out to be the almost global one, Tε = e

c
ε .

The structure of the paper is as follows: in Section 2 we prove the linear KdV
bound in Proposition 1.1. Along the way we introduce some tools which will be very
useful in the nonlinear analysis later on. In Section 3 we begin the proof of our main
result, and reduce it to four key elements: (i) energy estimates for u, (ii) energy
estimates for the linearized equation, (iii) energy estimates for a nonlinear version
LNLu of Lu related to the scaling derivative of u, and (iv) a nonlinear Klainerman-
Sobolev inequality which yields the pointwise estimates starting from the L2 bounds.
These four largely independent steps are carried out in the following three sections.

Finally, in the last section we discuss the optimality of our result in two steps.
First we use the inverse scattering tools to discuss the possible emergence of solitons

1. To make this accurate one needs to consider simultaneously the forward and backward well-
posedness, as these are interchanged by duality.
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from small initial data. Then we provide a heuristic argument for the appearance of
dispersive shocks at the quartic time scale.

1.5. A few notations and definitions. We recall the definition of the scaled Japan-
ese bracket (1.3) . Throughout the paper we use a standard Littlewood-Paley decom-
position,

u =
∑
λ

Pλu :=
∑
λ

uλ,

where λ ∈ 2Z and uλ are frequency localized in dyadic annuli {|ξ| ≈ λ}. We also use
the related notations P>λ, P<λ, and correspondingly u>λ, u<λ.

In particular we will use the time dependent multipliers P+, P− and Plo which
select the regions {ξ > t−

1
3}, {ξ < −t− 1

3} and {|ξ| ≲ t−
1
3}.

With these notations the homogeneous Besov norm Ḃ
− 1

2
2,∞ is defined by

∥u∥
Ḃ

− 1
2

2,∞
= sup

λ
λ−

1
2∥uλ∥L2 .

The homogeneous Sobolev space Ḣ
1
2 , Ḣ− 1

2 are the standard spaces defined by the
usual Fourier multipliers.

Acknowledgments. Mihaela Ifrim was partially supported by a Clare Boothe Luce
Professorship. Herbert Koch was partially supported by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) through the Hausdorff Center for
Mathematics under Germany’s Excellence Strategy - EXC-2047/1 - 390685813 and
through CRC 1060 - project number 211504053. Daniel Tataru was partially sup-
ported by the NSF grant DMS-1800294 as well as by a Simons Investigator grant
from the Simons Foundation.

2. Linear analysis

In this section we consider dispersive bounds for the linear KdV equation (1.2),
and prove Proposition 1.1. We begin with a heuristic discussion.

The fundamental solution for (1.2) can be described using the Airy function,

K(t, x) = t−
1
3 Ai(x/t

1
3 ).

Explicitly, the solution to (1.2) is

u(t, x) = K(t, x) ∗ u0(x).

Based on the known asymptotics for the Airy function, it follows that solutions with
integrable localized initial data

(2.1) ∥u0∥L1 ≤ 1,
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and with the support supp u0 included in the interval [−1, 0], then the solution and
its derivative will satisfy the same decay bounds for t ≳ 1:

(2.2) |u(t, x)| ≲ t−
1
4 ⟨x⟩−

1
4 e−

2
3
x
3
2
+ t−

1
2 and |ux(t, x)| ≲ t−

3
4 ⟨x⟩

1
4 e−

2
3
x
3
2
+ t−

1
2 .

Our goal now is to relax the compact support assumption to a decay estimate,
while, at the same time, to provide a more robust proof of the pointwise decay bound
which will be later adapted to the nonlinear problem.

Precisely we introduce the time dependent operator

L(t) := x− 3t∂2x,

which is the push forward of the operator x along the linear KdV flow and which
satisfies the following properties:

[∂x, L] = 1,
[
∂t + ∂3x, L

]
= 0.

If u solves the equation (1.2) then so does Lu, therefore we have at our disposal
L2 type bounds for both u and Lu. One might be tempted to try to work with both
u and Lu in L2. However, it turns out to be more efficient to work in the following
functional framework:

u ∈ Ḃ
− 1

2
2,∞, Lu ∈ Ḣ

1
2 .

At time t = 0, these norms can be readily estimated in terms of the norms in Propo-
sition 1.1,

∥u0∥
Ḃ

− 1
2

2,∞
+ ∥xu0∥Ḣ 1

2
≲ ∥u0∥H1 + ∥x2u0∥L2 .

Because of this, we can replace Proposition 1.1 with the following stronger form:

Proposition 2.1. Assume that the initial data u0 for (1.2) satisfies

(2.3) ∥u0∥
Ḃ

− 1
2

2,∞
+ ∥xu0∥Ḣ 1

2
≤ 1.

Then the corresponding solution u satisfies the pointwise bounds

(2.4) t
1
4 ⟨x⟩

1
4 |u(t, x)|+ t

3
4 ⟨x⟩−

1
4 |ux(t, x)| ≲ 1, x ∈ R.

Furthermore, in the elliptic region E we have the better bound

(2.5) ⟨x⟩|u(t, x)|+ t
1
2 ⟨x⟩

1
2 |ux(t, x)| ≲ ln(t−

1
3 ⟨x⟩).

Furthermore, since both Sobolev norms for u and Lu are preserved in time, it will
suffice to prove the following fixed time result:

Lemma 2.2. Let t > 0. Assume that a function u ∈ Ḃ
− 1

2
2,∞(R) satisfies

(2.6) ∥u∥
Ḃ

− 1
2

2,∞
+ ∥L(t)u∥

Ḣ
1
2
≤ 1.

Then it also satisfies the pointwise bounds

(2.7) t
1
4 ⟨x⟩

1
4 |u|+ t

3
4 ⟨x⟩−

1
4 |ux| ≲ 1, x ∈ R.
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Furthermore, in the elliptic region E we have the better bound

(2.8) ⟨x⟩|u(x)|+ t
1
2 ⟨x⟩

1
2 |ux(x)| ≲ ln(t−

1
3 ⟨x⟩).

There are two motivations for using these particular Sobolev norms. One is linear,
and is the fact that with this choice of spaces the estimates in the above proposition
and lemma are invariant with respect to scaling.

A second motivation will come from the nonlinear problem later on, and arises from
the fact that, while all Sobolev norms are equally good for linear energy estimates,
this is no longer the case for the nonlinear problem. There, it seems that the Ḣ

1
2

norm for the nonlinear counterpart LNLu of Lu is the only one we have access to.

Proof. We first take advantage of the observation that our bounds in the lemma are
invariant with respect to scaling in order to rescale the problem and set t = 1 and
we omit t in the notation. This will not make a major difference, but simplify the
computations somewhat.

We will split the real line into the self-similar region S, which after scaling is
S = {|x| ≲ 1} (would be = {|x| ≲ t

1
3} in general), the elliptic region E = {x ≫ 1}

and the hyperbolic region H = {−x≫ 1}. Furthermore, we split the last two regions
into dyadic components. We begin with some elliptic L2 bounds in dyadic regions
AR = {⟨x⟩ ≈ R ≳ 1}. By a slight abuse we also denote A1 = {⟨x⟩ ≲ 1}. To address
some of the issues arising from our use of the Ḃ

− 1
2

2,∞ and Ḣ
1
2 norms, we start our

analysis with some elliptic bounds.

A. A low frequency bound. The Ḣ
1
2 bound for Lu does not see the constants

in Lu. More quantitatively, in a dyadic region AR functions at frequencies below 1/R
are indistinguishable from constants. In order to be able to localize our estimates to
dyadic scales, it is essential to be able to better estimate these low frequencies in Lu.
Precisely, we prove that

Lemma 2.3. Assume that (2.6) holds. Then

(2.9) ∥Lu∥L2(AR) ≲ R
1
2 .

Proof. To prove this, we split u at the frequency cut-off R−1,

u = u<R−1 + u≳R−1 .

Then use the Besov bound on u to compute

∥Lu<R−1∥L2(AR) ≲ R∥u<R−1∥L2(R) ≲ R
1
2 .

On the other hand

Lu≳R−1 = P≳R−1Lu+ [L, P≳R−1 ]u = P≳R−1Lu+ [x, P≳R−1 ]u,

and the conclusion follows since the commutator is a Fourier multiplier of size R
supported near |ξ| ∼ R−1. □
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B. A high frequency bound. The balance of the two terms in Lu indicates that
the bulk of u in AR is localized at frequency R

1
2 . In the next lemma we take advantage

of this balance in order to improve the regularity of u in AR at high frequency > R
1
2 :

Lemma 2.4. Assume that (2.6) holds. Then

(2.10) ∥u∥L2(AR) ≲ R
1
4 , ∥ux∥L2(AR) ≲ R

3
4 , ∥uxx∥L2(AR) ≲ R

5
4 .

Proof. The bound for the low frequencies of u (i.e. below R
1
2 ) follows directly from

the Besov bound in (2.6), irrespective of the spatial localization. Hence it suffices to
consider the high frequencies of u, λ≫ R

1
2 . For these we have

(2.11) Luλ = PλLu+ λ−1uλ,

where, by a slight abuse of notation, the uλ on the right stands for a generic frequency
λ unit multiplier applied to u. Thus, using again (2.6), we compute

(2.12) ∥Luλ∥L2 ≲ λ−
1
2 , ∥uλ∥L2 ≲ λ

1
2 .

To obtain the bound on the derivative, we integrate by parts in AR to get∫
R
χR|uλ,x|2 dx =

∫
R

1

3
χRuλLuλ +

(
1

2
χ′′
R − 1

3
xχR

)
|uλ|2 dx,

which yields the preliminary bound

∥uλ,x∥2L2(AR) ≲ Rλ.

We now express uλ in terms of uλ,x, and localize,

χRuλ = χR∂
−1
x,λuλ,x = ∂−1

x,λ (χRuλ,x)− [∂−1
x,λ, χR]uλ,x,

where the antiderivative ∂−1
x,λ is localized at frequency λ. The integral kernel decays

polynomially away from the diagonal, which suffices to add up the contributions from
the areas AR′ . This yields a local bound for uλ,

∥uλ∥L2(AR) ≲ R
1
2λ−

1
2 .

Repeating the argument above we then have

(2.13) ∥uλ,x∥L2(AR) ≲ Rλ−
1
2 ,

and further

(2.14) ∥uλ∥L2(AR) ≲ Rλ−
3
2 .

By (2.11) and (2.12) we can easily obtain the last bound

∥uλ,xx∥L2(AR) ≲ λ−
1
2 +R2λ−

3
2 ,

and hence the proof is complete. □
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C. Localization. Here we use the elliptic bounds in A, B to conclude that we
can localize the problem to the region AR simply by replacing u by v := χRu. All
the norms here are restricted to the region AR. Hence, we will for example, write L2

instead of L2(AR), just for the sake of simplicity. We will use this notation throughout
this section (i.e. in paragraphs D, E, and F within this section).

Here v solves an equation of the form

(x− 3∂2x)v = f

in AR, where we control

(2.15) ∥v∥L2(AR) ≲ R
1
4 , ∥vx∥L2(AR) ≲ R

3
4 , ∥vxx∥L2(AR) ≲ R

5
4 .

and, with f supported in AR,

(2.16) ∥f∥
Ḣ

1
2 ∩R

1
2L2

≲ 1.

D. Pointwise estimate in the hyperbolic region. Here we consider the region
AH

R to the left of the origin, and use hyperbolic energy estimates to establish the
desired pointwise bound for v supported in AH

R .
Here the primary frequency is λ = R

1
2 , but f is worse at lower frequency than at

higher frequencies, and we need to account for this. For expository purposes assume
at first that this is not the case, i.e. that f simply satisfies the low frequency bound

∥f∥L2 ≲ R− 1
4 .

Then we simply treat the v equation as a hyperbolic evolution equation and use an
energy estimate,

d

dx

(
−x|v|2 + 3|vx|2

)
= −|v|2 − 2fvx,

and then apply Gronwall’s inequality on the R dyadic region to obtain the pointwise
bound

sup
x∈AH

R

(
−x|v|2 + 3|vx|2

)
≲ ∥vx∥L2∥f∥L2 ≲ R

3
4 ·R− 1

4 ≲ R
1
2 ,

which suffices.
Consider now the situation in (2.16), where a direct estimate of fvx would yield

logarithmic losses in the dyadic frequency summation. To avoid those we use the
frequency scale R

1
2 to split

f = flo + fhi,

and correspondingly

fvx = flovx + fhivx = −flo,xv + fhivx + ∂x(flov),

where flo := χ̃Rf<R
1
2
, and fhi := χ̃Rf≥R

1
2
. Here χ̃R is also a characteristic function

similar to χR but with a larger support than χR.

13



Now we view the last term as an energy correction,
d

dx

(
−x|v|2 + 3|vx|2 − 2flov

)
= −|v|2 − 2fhivx − 2flo,xv,

and using Gronwall’s inequality again we obtain

sup
x∈AH

R

(
−x|v|2 + 3|vx|2

)
≲ R

1
2 + sup |flov|.

For flo we get from (2.16) by Bernstein’s inequality

∥flo∥L∞ ≲ (lnR)
1
2 ,

where the ln loss arises from the dyadic summation in the frequency range

{R−1 ≤ |ξ| ≤ R
1
2}.

This again leads to the desired bound

sup
x∈Ar

h

(
−x|v|2 + 3|vx|2

)
≲ R

1
2 .

E. Pointwise estimate in the self-similar region.
This follows from (2.15) and Sobolev embeddings.

F. Pointwise estimate in the elliptic region.
Here we split again f = flo + fhi. The leading part of v will then be x−1flo.

Subtracting that, we are left with

v1 := v − x−1flo,

which solves
Lv1 = f1 := fhi + 3∂2x(x

−1flo).

Here we can easily estimate f1 using (2.16),

∥f1∥L2 ≲ R− 1
4 .

This allows us to estimate integrating by parts in the following identity∫
R
v1Lv1 dx =

∫
R
f1v1 dx

and arrive at ∫
R
x|v1|2 dx+ 3

∫
R
|v1,x|2 dx =

∫
R
f1v1 dx.

Using Cauchy-Schwartz inequality implies

R∥v1∥2L2 + 3∥v1,x∥2L2 ≲ ∥f1∥L2∥v1∥L2 ,

which further leads to

(2.17) R∥v1∥2L2 + 3∥v1,x∥2L2 ≲ R−1∥f1∥2L2 .
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Thus, using the bound on f1, we arrive at

∥v1∥L2 ≲ R− 5
4 , ∥∂xv1∥L2 ≲ R− 3

4 ,

and further using the v1 equation,

∥∂2xv1∥L2 ≲ R− 1
4 .

Now we can obtain pointwise bounds for v1 by Sobolev embeddings,

|v1| ≲ R−1, |∂xv1| ≲ R− 1
2 .

This is exactly as needed. On the other hand for the x−1flo we proceed as we did
before, and we use Bernstein’s inequality, in order to obtain a similar bound but with
a log loss. □

3. The nonlinear quartic result

In this section we describe the main building blocks in the proof of Theorem 1.2,
and show how these can be used to conclude the proof of Theorem 1.2.

The proof of the result is based on energy estimates. The difficulty is that we need
to take full advantage of the nonresonant structure of the equation. Primarily, in our
setting we expect resonant interactions to primarily occur in the self-similar region
{|x| ≲ t

1
3}, which corresponds to frequencies ≲ t−

1
3 .

Following the pattern in the linear analysis in Section 2, one of our energy estimates
will be for u. The second energy estimate in the linear case is for Lu. Unfortunately,
in the nonlinear case Lu no longer solves a good equation, so we will seek a nonlin-
ear replacement for it LNLu. In view of the scaling symmetry, one solution for the
linearized equation

(3.1) zt + zxxx = 6∂x(uz)

is provided by the function

z = ∂x(xu− 3tuxx + 9tu2) + u.

However, given our initial data assumption and the linear estimates in Section 2 we
would rather like to work at the level of ∂−1z. If z solves (3.1) then w := ∂−1z
formally solves the adjoint linearized equation

(3.2) wt + wxxx = 6(uwx).

However, working with ∂−1u does not seem like a good idea unless we assume that
the function has zero average, i.e. that following equality holds∫

R
u dx = 0.

Because of that, we will work instead with the function

w = LNLu := xu− 3tuxx + 9tu2.
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This in turn solves an inhomogeneous adjoint linearized equation

(3.3) wt + wxxx = 6(uwx) + 3u2.

To start with, we recall the bounds we seek to prove, namely

(3.4) |u(t, x)| ≲ εt−
1
4 ⟨x⟩−

1
4 , |ux(t, x)| ≲ εt−

3
4 ⟨x⟩

1
4 .

Our proof will be a nonlinear version of the linear argument in Section 2, but organized
as a bootstrap argument.

We will work with solutions in a time interval [0, T ], where T will be chosen later.
Our main bootstrap assumption will be

(3.5) |u(t, x)| ≤Mεt−
1
4 ⟨x⟩−

1
4 , |ux(t, x)| ≤Mεt−

3
4 ⟨x⟩

1
4 , t ∈ [0, T ],

where M ≫ 1 is a large universal constant also to be chosen later. We will use this
in order to both prove the desired conclusions and to improve the bootstrap bounds
(3.5). For this to work the constant M is chosen first, and then T is chosen small
enough depending on M ,

(3.6) T ≪M ε−3.

Given this set-up, our proof has four main steps:

I. Uniform energy estimates for u. Here no bootstrap assumption is necessary,
and the main bound is translation invariant. To motivate the norms we will use,
we start with the homogeneous Besov space Ḃ− 1

2
2,∞ which is the best we can do for

the initial data at low frequency. Tracking the time evolution of this homogeneous
norm seems difficult at low frequency, so instead we will seek to replace it with an
inhomogeneous norm below a well chosen threshold frequency.

To motivate the choice of the threshold frequency, we start by observing that up to
time t, frequencies below t−

1
3 in u do not have any interesting linear KdV dynamics.

Because of that, it seems wasteful to use the homogeneous Besov norm below this
scale. In our case, the quartic lifespan corresponds to t ≤ ε−3, so the above frequency
threshold is exactly ε. Based on that, we define the inhomogeneous Besov space
B

− 1
2
,ε

2,∞ , where we make the norm inhomogeneous below frequency ε,

B
− 1

2
,ε

2,∞ := Ḃ
− 1

2
2,∞ + ε

1
2L2,

or equivalently
∥u∥

B
− 1

2 ,ε

2,∞
= inf

u=u1+ε
1
2 u2

∥u1∥
Ḃ

− 1
2

2,∞
+ ∥u2∥L2 ,

where the two components are matched exactly at frequency ε
1
2 .

Then our uniform energy estimate is as follows:
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Proposition 3.1. Assume the solution u to KdV equation (1.1) has initial data u0
so that

∥u0∥
B

− 1
2 ,ε

2,∞
≤ ε.

Then

(3.7) sup
t∈R

∥u(t)∥
B

− 1
2 ,ε

2,∞
≲ ε.

This result is derived in Section 4 from the H−1 conservation law for KdV obtained
in [19] (see also the earlier bounds in [3] and the bounds in [17]).

II. Ḣ− 1
2 bounds for the linearized equation. The main result in this step is

as follows:

Proposition 3.2. Let u be a solution to the KdV equation (1.1) in a time interval
[0, T ] which satisfies the smallness assumption (1.9) for the initial data, as well as
the bootstrap assumption (3.5). Assume that T is as in (3.6). Then the linearized
equation (3.1) is well-posed in Ḣ− 1

2 with uniform bounds

(3.8) ∥w(t)∥
Ḣ− 1

2
≈ ∥w(0)∥

Ḣ− 1
2
, t ∈ [0, T ].

Equivalently, the adjoint linearized equation (3.2) is well-posed in Ḣ
1
2 with uniform

bounds. We note here that the implicit constant in (3.8) does not depend on the
bootstrap constant M . Instead, M appears only in the choice of the quartic time
constant.

This result is proved in Section 5, and serves as a key tool in the next step.

III. Uniform Ḣ
1
2 bounds for LNLu. We recall that LNLu solves the equation

(3.3), which is the adjoint linearized equation with an u2 source term. In view of the
result in step II, it is thus natural to seek estimates for LNLu in the space Ḣ

1
2 . Using

the linear estimates above, this amounts to proving appropriate bounds for the u2
inhomogeneity. We will show the following:

Proposition 3.3. Let u be a solution to the KdV equation (1.1) in a time interval
[0, T ], which satisfies the smallness assumption (1.9) for the initial data, as well as
the bootstrap assumption (3.5). Assume that T is as in (3.6). Then we have

(3.9) ∥LNLu(t)∥
Ḣ

1
2
≲ ε, t≪M ε−3 t ∈ [0, T ].

This result is proved in Section 6, and will play the same role as the similar bound
for Lu in the linear case.

IV. Nonlinear Klainerman-Sobolev inequalities. Taking into account the
uniform bounds for u in Proposition 3.1 and for LNLu in Proposition 3.3, the desired
pointwise bound (3.4) will follow from the following:
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Proposition 3.4. Assume that T is as in (3.6) and 0 ≤ t ≤ T . Let u(t) be a a
function which satisfies the bootstrap assumption (3.5) associated to the time t, as
well as the L2 bounds

(3.10) ∥u(t)∥
Ḃ

− 1
2

2,∞
+ ∥LNLu(t)∥

Ḣ
1
2
≲ ε.

a) Then we have the pointwise bound

(3.11) t
1
4 ⟨x⟩

1
4 |u(t, x)|+ t

3
4 ⟨x⟩−

1
4 |ux(t, x)| ≲ ε.

b) In the elliptic region E we have the additional bound

(3.12) ⟨x⟩|u(t, x)|+ t
1
2 ⟨x⟩

1
2 |ux(t, x)| ≲ ε ln(t−1/3⟨x⟩).

This result is derived in Section 7. We point out that the bounds in this proposition
are fixed time bounds, i.e. they only involve u(t) and make no reference to the
KdV equation; nevertheless the time t is still present in the statement, as both the
hypothesis and the conclusion depend on t.

One sees that at the conclusion of steps I-III above we obtain the bound (3.10) in
the time interval [0, T ] provided that T ≪M ε−3. Here it is crucial that the constant
M in the bootstrap assumption (3.5) does not influence the implicit constant in (3.10).
Then applying step IV above we obtain the desired pointwise bounds (3.4), again with
implicit constants independent of M , in the same range 0 ≤ t ≤ T ≪M ε−3.

Thus we can first choose M to be a sufficiently large universal constant, so that
(3.12) improves (3.5). Then we choose T small enough (depending on M) as in (3.6).
This concludes the bootstrap argument, since it is obvious that the dependence of the
implicit constants on M is monotone, provided that M is a sufficiently large universal
constant.

4. Energy estimates

The goal of this section is to establish the uniform bounds for u in Proposition 3.1,
which involve the Besov space B− 1

2
,ε

2,∞ . This is an easy consequence of uniform H−1

bounds in [3] as well as of the H−1 energy functional constructed in [19], and a special
case of Theorem 1.2 by Killip-Visan-Zhang [17]:

Theorem 4.1. There exists δ > 0 and an energy functional

E−1 : Bδ(H
−1) :=

{
u ∈ H−1 , ∥u∥H−1 ≤ δ

}
→ R+,

so that
(i) Norm equivalence: E−1 is equivalent to the H−1 norm,

E−1(u) ≈ ∥u∥2H−1 .
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(ii) Conservation: E−1 is conserved along the KdV flow.

Proof of Proposition 3.1. We interpret the (nearly) homogeneous Besov norm in the
proposition in terms of H−1 norms by using the rescaled KdV solution

u[α](x, t) = α−2u(x/α, t/α3),

where the frequency λ for u corresponds to the frequency 1 for u[λ]. Using this scaling
applied with λ ≥ ε, the Besov norm in B− 1

2
,ε

2,∞ can be expressed as

∥u∥
B

− 1
2 ,ε

2,∞
≈ sup

λ≥ε
λ∥u[λ]∥H−1 .

Here the norm on the right essentially selects the λ frequencies of u. The λ factor
arises because the KdV scaling is at the Ḣ− 3

2 level, whereas here we are measuring
Ḣ− 1

2 type norms. Precisely, going in one direction we have for λ ≥ ε

∥Pλu∥
B

− 1
2 ,ε

2,∞
≈ λ

1
2∥Pλu∥Ḣ−1 ≈ λ∥P1u

[λ]∥Ḣ−1 ≲ λ∥u[λ]∥H−1 ,

where Pλ and P1 are standard dyadic Littlewood-Paley projectors. The other direction
is similar.

At the initial time t = 0 the norm on the left has size ≪ ε, so all the norms on the
right have size ≪ 1. Hence the above theorem applies, and they (i.e. the norms) are
approximatively conserved. This yields the desired bound for the Besov norm. □

5. Bounds for the linearized equation

The aim of this section is to prove Proposition 3.2. Throughout the section we will
assume that u solves the KdV equation and satisfies the uniform energy estimates
(3.7) in Proposition 3.1 as well as our bootstrap assumptions (3.5).

Using the standard notation D = −i∂x, we switch to a new variable

y := |D|−
1
2w,

which solves the equation

(5.1) (∂t + ∂3x)y = 6H|D|
1
2 (u|D|

1
2y).

where H = D
|D| is the usual Hilbert transform.

This new variable has the role to shift our problem in an L2 setting, and also to
simplify the exposition of the paper. Thus, for this equation we need to prove uniform
bounds for the L2 norm of y,

E[2](y) = ∥y∥2L2 ,

namely
E[2](y(t)) ≈ E(2)(y(0)).
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We have

(5.2) ∂tE
[2](y) = −12

∫
H|D|

1
2y · u|D|

1
2y dx.

The expression on the right is too large to be estimated directly in terms of ∥y∥L2 .
However, it is nonresonant when all three entering frequencies are nonzero, so we can
try to eliminate it using a normal form energy correction. Precisely, we will seek to
eliminate (the bulk of) this expression by adding a cubic correction to the quadratic
energy functional, at the expense of producing further quartic errors; these quartic
errors will be bounded.

In this paragraph we will explain the heuristics which are meant to justify the energy
correction we will consider below. Thus we begin with our initial KdV equation (1.1)
for which we can formally compute the normal form transformation that removes the
quadratic nonresonant terms:

ũ = u− (∂−1
x u)2.

Here ũ is the normal form variable which will satisfy a KdV like-equation: the linear
part of the equation we obtain after implementing the normal form transformation is
the same as in (1.1), but there are no quadratic terms, only cubic ones. However this
is singular at frequency 0. Nevertheless this issue can be bypassed if we truncate in
a self-similar fashion, avoiding the low frequencies on the scale |ξ| ≲ t−

1
3 ,

˜̃u := u− (∂−1
x u

≥t−
1
3
)2,

and thus making the normal form rigorous. We now go further and compute the
normal form transformation for the linearized equation (which is the linearization of
the original normal form) (3.1), which at the formal level is given by

w̃ = w − 2∂−1
x u · ∂−1

x w.

The same truncation as above will also fix the singularity issue encountered at fre-
quency zero. However, we are interested in correcting the functional energy corre-
sponding to the y equation (5.1). For this equation we also have a normal form
transformation as the quadratic terms are nonresonant, and based on the definition
of y and its connection with the the linearized equation (1.2), the normal form (formal
expression) is given by

ỹ = y + 2|D|−1/2∂−1
x u ·H|D|−

1
2y.

To determine what the cubic correction should be, we go ahead and proceed as in
[12]. Hence, formally, the correction to the energy would be

(5.3) E(3) = 4

∫
H|D|−

1
2y · ∂−1

x u|D|−
1
2y dx.

We have two issues here: i) we do not know apriori that this correction (i.e. E(3)) is
bounded, but we will show this is the remaining part of this section; ii) (5.3) cannot be
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used as it is because of low frequency issues. To remedy this, we will estimate directly
all the low frequency contributions to ∂tE[2](y) (see (5.2)), choosing the self-similar
frequency scale t−

1
3 as the truncation threshold. We apply the standard Littlewood-

Paley trichotomy, which asserts that the two highest frequencies must be comparable
while the third may be smaller. Because of this, there are three cases to consider:

(i) Three low frequencies:⏐⏐⏐⏐∫ H|D|
1
2y

≲t−
1
3
· u

≲t−
1
3
· |D|

1
2y

≲t−
1
3
dx

⏐⏐⏐⏐ ≲ t−
1
3∥u∥L∞∥y∥2L2 ≲ εMt−

2
3∥y∥2L2 .

Here we use Cauchy-Schwartz inequality together with the bootstrap assumption
(3.5).

(ii) Low frequency on u. Here we have∫
H|D|

1
2y

≫t−
1
3
· u

≲t−
1
3
· |D|

1
2y

≫t−
1
3
dx = 0,

as H is skew-adjoint and we can commute it across u.

(iii) Low frequency on either y factor. Here we move the fractional derivative to
the product of the two other factors and compute using a fractional Leibniz rule:⏐⏐⏐⏐∫ H|D|

1
2y

≫t−
1
3
· u

≫t−
1
3
· |D|

1
2y

≲t−
1
3
dx

⏐⏐⏐⏐ ≲ t−
1
6∥|D|

1
2u

≫t−
1
3
∥L∞∥y∥L2∥y

≲t−
1
3
∥L2

≲Mεt−
2
3∥y∥2L2 .

Here we also get a milder commutator term when switching the half-derivative onto
u. The pointwise bound on |D| 12u follows as an interpolation of the bootstrap bounds
in (3.5).

To summarize, we have proved

(5.4) ∂tE
[2](y) = 12

∫
H|D|

1
2yhi · uhi · |D|

1
2yhi dx+O(Mεt−

2
3 )∥y∥2L2 ,

where
yhi := y

≫t−
1
3
, uhi := u

≫t−
1
3
.

This simplification allows us to use a restricted normal form energy correction,

(5.5) E[3] := 4

∫
H|D|−

1
2yhi · ∂−1

x uhi · |D|−
1
2yhi dx,

which is a rigurous truncation at high frequencies of the functional E(3) defined in
(5.3). Then we define the modified energy as

E := E[2] + E[3],

and we need to prove norm equivalence,

(5.6) E(y) ≈ ∥y∥2L2 ,
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and slow growth,

(5.7) ∂tE(y) ≲Mεt−
2
3∥y∥2L2 .

For the first bound we estimate

|E[3](y)| ≲ t
1
3∥∂−1

x uhi∥L∞∥y∥2L2 ≲ εt
1
3∥y∥2L2 ,

which suffices on the quartic time scale.
It remains to prove (5.7). For that, using also (5.4), we compute

∂tE(y) = D1 +D2 +D3 +O(Mεt−
2
3 )∥y∥2L2 ,

where all cubic terms arising from ∂3x cancel because of our choice of the correction:

(i) D1 arises from the scale change in the truncation, as the multiplier P hi is time
dependent, with symbol of the form

phi(ξ) := χ(t
1
3 ξ).

Its time derivative has the form

∂tp
hi(ξ) = t−1 t

1
3 ξ

3
χ′(t

1
3 ξ),

which is supported exactly in the region |ξ| ≈ t−
1
3 , and we harmlessly abbreviate it

as
t−1P

t−
1
3
.

Then the corresponding error term is

D1 =

∫
t−1H|D|−

1
2yhi · ∂−1

x u
t−

1
3
· |D|−

1
2yhi dx+

∫
t−1H|D|−

1
2y

t−
1
3
· ∂−1

x uhi · |D|−
1
2yhi dx

+

∫
t−1H|D|−

1
2yhi · ∂−1

x uhi · |D|−
1
2y

t−
1
3
dx.

(ii) D2 is the quartic term arising from ut,

D2 =

∫
H|D|−

1
2yhi · (u2)hi · |D|−

1
2yhi dx.

(iii) D3 is the quartic term arising from yt,

D3 =

∫
(u|D|

1
2y)hi · ∂−1

x uhi · |D|−
1
2yhi dx.

For D1 we use the pointwise bounds

(5.8) |∂−1
x uhi|+ |∂−1

x u
t−

1
3
| ≲Mε

to compute
|D1| ≲Mεt−

2
3∥y∥2L2 .
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For D2 we use the pointwise bound on u to estimate

|D2| ≲ t
1
3∥u2∥L∞∥y∥2L2 ≲M2ε2t−

1
3∥y∥2L2 ,

which again suffices.
Finally for D3 we write

D3 =

∫
|D|

1
2y · u · P hi(∂−1

x uhi · |D|−
1
2yhi) dx

=

∫
y · |D|

1
2

[
u · P hi

(
∂−1
x uhi · |D|−

1
2yhi

)]
dx.

Then we distribute |D| 12 to each of the other factors using a fractional Leibniz rule
to get

|D3| ≲ ∥y∥L2

(
∥|D|

1
2u∥L∞∥∂−1

x uhi∥L∞∥|D|−
1
2yhi∥L2+

∥u∥L∞∥|D|−
1
2uhi∥L∞∥|D|−

1
2yhi∥L2 + ∥u∥L∞∥∂−1

x uhi∥L∞∥yhi∥L2

)
.

We again use the bootstrap bounds (3.5) and and the high frequency bounds (5.8)
we conclude that

|D3| ≲ (Mεt−
1
2 ·Mε · t

1
6 +Mεt−

1
3 ·Mεt−

1
6 · t

1
6 +Mεt−

1
3 ·Mε)∥y∥2L2

≲ M2ε2t−
1
3∥y∥2L2 .

Thus (5.7) is proved, and the conclusion of Proposition 3.2 follows via a direct appli-
cation of Gronwall’s inequality for the modified energy functional E(y).

6. Ḣ
1
2 bounds for LNLu.

Our aim here is to prove the Ḣ
1
2 bound for LNLu in Proposition 3.3. Here we assume

that u is a solution to the KdV equation (1.1), which satisfies the uniform energy
bounds given by Proposition 3.1, as well as the pointwise bootstrap assumptions in
(3.5).

To improve the clarity of the proof, we will add to this a second bootstrap assump-
tion, namely

(6.1) ∥LNLu∥
Ḣ

1
2
≤Mε,

where M is the same as in (3.5). In order to streamline various computations we will
make the harmless additional assumption

M2εT
1
3 < 1.

We recall that w = LNLu solves the inhomogeneous adjoint linearized equation
(3.3), which we recall here:

(6.2) wt + wxxx = 6(uwx) + 3u2.
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By Proposition 3.2 we know that this equation is well-posed in Ḣ
1
2 with uniform

bounds. In order conclude the proof of Proposition 3.3 we need to have a good way
to deal with the source term u2.

One might at first hope that this term can be treated perturbatively, i.e. estimated
directly in L1

t Ḣ
1
2 . This indeed turns out to be the case within the self-similar region.

The elliptic region is also favourable due to the better decay, but the hyperbolic region
is a problem due to the weaker Airy decay for u. However, the redeeming feature there
turns out to be that the bilinear interaction in u2 is largely nonresonant, and can be
treated using a normal form type correction. To implement the above heuristics we
will prove the following:

Proposition 6.1. Assume that u solves the KdV equation and satisfies the energy
bounds (3.7) and the bootstrap assumptions (3.5) and (6.1). Then the function u2

admits the representation

(6.3) u2 = Plinw1 + f1,

where Plin refers to the linear part of (6.2) and the functions w1 and f1 satisfy the
uniform Ḣ

1
2 bounds

(6.4) ∥w1(t)∥Ḣ 1
2
≲ εM2(εt

1
3 ),

respectively

(6.5) ∥f1(t)∥Ḣ 1
2
≲ εt−1M2(εt

1
3 ).

It is easily seen that, given this proposition, the conclusion of Proposition 3.3 follows
easily by applying Proposition 3.2 to w = LNLu− w1. The remainder of this section
is devoted to the proof of the above proposition. Along the way, we will establish
some additional bounds on u and LNLu, which will also be useful in the proof of the
nonlinear Klainerman-Sobolev inequalities in the next section.

6.1. The decomposition of u2. To define the functions w1 and f1 above we begin
with a linear decomposition of u, using the spectral projectors (multipliers) Plo and
P± defined based on the time dependent t−

1
3 threshold by

Plo := P
<t−

1
3
, P± := P±

≥t−
1
3
,

so that
1 = Plo + P+ + P−.

This produces a corresponding decomposition of u, namely

u = ulo + u+ + u−, ulo := Plou, u± := P±u.

We note that ulo is real, whereas u± are complex conjugate of each other.
We split u2 into

u2 = (u+)2 + (u−)2 + f2 + f3,
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where
f2 := −u2lo + 2u · ulo, f3 := 2u+ · u−.

Here we expect ulo to have better decay at infinity, so we will place f2 into f1. The
product in f3 does not have better decay but instead is localized close to frequency
zero, so its Ḣ

1
2 norm will be better; thus we will also place it in f1.

The remaining two terms are large, but have the redeeming feature that their
interaction is nonresonant. Hence for them we will apply the normal form analysis.
This will yield the quadratic correction

w1 := ∂−1
x

(
(∂−1

x u+)2 + (∂−1
x u−)2

)
.

This is chosen so that the quadratic terms in Plinw1 give exactly (u+)2 + (u−)2.
However, Plinw1 will also have cubic terms, as both the equation (1.1) for u and the
linearized equation have quadratic terms. Hence we obtain a relation of the form

Plinw1 = (u+)2 + (u−)2 + f4 + f5

where the cubic terms f4 and f5 are as follows:
- f4 arises from the quadratic term in the KdV equation,

f4 := 6∂−1
x

(
∂−1
x u+P+(u2) + 6∂−1

x u−P−(u2)
)
,

-f5 arises from the quadratic term in Plin,

f5 := 6u · ∂xw1.

These we will seek to place in the perturbative box f1. Thus we will set

f1 = f2 + f3 + f4 + f5.

Now that we have the decomposition (6.3) for u2, it remains to prove the desired
estimates. We remark that from here on, all the estimates in this section are at fixed
time.

6.2. Elliptic bounds for u and LNLu. As a preliminary step to estimating the
functions u± and ulo, we need to improve our understanding of u and LNLu. For that,
we have to repeat the elliptic estimates in Lemmas 2.3,2.4 in the nonlinear setting,
under the bootstrap assumptions (3.5) and (6.1).

However, we will also need to reuse these elliptic estimates in slightly greater gener-
ality in the proof of the Klainerman-Sobolev inequalities in Section 7. Because of this,
in this subsection we will replace the bootstrap assumption (6.1) with the following
variation:

(6.6) ∥LNLu∥
Ḣ

1
2
≤MLε.

where ML is assumed to satisfy

1 ≤ML ≤M

For the purpose of this section we could simply take ML =M . However, as the con-
clusion of the bootstrap argument in this section we will obtain that the above bound
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holds with ML = 1, and then in the proof of the Klainerman-Sobolev inequalities in
Section 7 we will use instead ML = 1.

The results will be stated in full generality, but for the proofs it will be convenient
to rescale to t = 1. Here this can be done using the exact scaling associated to the
KdV equation. Precisely, given the equation

(x− 3t∂2x)u+ 3tu2 = f, f := LNLu

we make the substitution

ũ(x) := t
2
3u(t, xt

1
3 ), f̃(x) := t

1
3f(t, xt

1
3 ).

Now ũ and f̃ solve the same equation but with t = 1,

(6.7) (x− 3∂2x)ũ+ 3ũ2 = f̃ .

Our energy bound for u in (3.7) becomes

(6.8) ∥ũ∥
B

− 1
2

2,∞
≲ ε̃,

where the new smallness parameter ε̃ is given by

ε̃ := εt
1
3 ≪ 1.

On the other hand the bootstrap bounds (3.5) and (6.1) for u and f transferred to ũ
and f̃ = LNL

|t=1ũ become

(6.9) |ũ(x)| ≤Mε̃⟨x⟩−
1
4 , |ũx(x)| ≤Mε̃⟨x⟩

1
4 ,

respectively

(6.10) ∥f̃∥
Ḣ

1
2
≲MLε̃.

In this setting we are assuming for simplicity that

(6.11) Mε̃ ≤ML ≤M.

As in the analysis of the linear equation in Section 2, we begin with a low frequency
bound for LNLu:

Lemma 6.2. Under the assumptions (3.5) and (6.6) we have

(6.12) ∥LNLu∥L2(AR) ≲MLεR
1
2 .

Proof. As discussed above, by rescaling, we can set t = 1. As in the proof of
Lemma 2.3 we split u at the frequency cutoff R−1,

u = u<R−1 + u>R−1 ,

and compute
LNLu = P>R−1LNLu+ P<R−1Lu+ P<R−1(u2).
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The first term is estimated by (6.6) and the second by the Besov norm of u as in the
linear case in Lemma 2.3. For the third one we use our bootstrap assumption (6.9)
to get

|u2| ≲ M2ε̃2

⟨x⟩ 1
2

,

which yields
∥P<R−1(u2)∥L2(AR) ≲M2ε̃2R

1
2 ≲MLε̃R

1
2

as needed. □

We now continue with the counterpart of Lemma 2.4, namely

Lemma 6.3. Under the assumptions (3.5) and (6.6) we have

∥u∥L2(AR) ≲MLεt
− 1

4R
1
4 , ∥ux∥L2(AR) ≲MLεt

− 3
4R

3
4 ,

∥uxx∥L2(AR) ≲MLεt
− 5

4R
5
4 .

(6.13)

Proof. Again we rescale to t = 1. It suffices to consider the high frequencies of u,
λ ≥ R

1
2 . For these we have

Luλ = PλL
NLu+ [Pλ, x]u− Pλ(u

2).

As before we show that
∥Luλ∥L2 ≲ ε̃R

1
4λ−

1
2 , ∥[Pλ, x]u∥L2 ≲ ε̃λ−

1
2 .

The only difference is that we now also need to estimate the nonlinear term; but for
this purpose the nonlinear term only plays a perturbative role. Using our bootstrap
assumption we have

∥Pλ(u
2)∥L2(AR) ≲ ε̃2M2,

and
∥Pλ∂x(u

2)∥L2(AR) ≲ ε̃2M2R
1
2 .

Therefore, using (6.11),

∥Pλ(u
2)∥L2(AR) ≲ ε̃2M2R

1
4λ−

1
2 ≲ ε̃MLR

1
4λ−

1
2 ,

which suffices. Now the argument is completed as in the linear case. □

The bounds above on u and on LNLu allow us to localize the function u spatially as
follows. Given a dyadic R ≥ t

1
3 we consider a bump function χR selecting the region

{|x| ≈ R} if R > t
1
3 , respectively the region {|x| ≲ R} if R = t

1
3 . We denote the

localization of u by
uR := χRu.

Where necessary we will distinguish between the elliptic and hyperbolic regions by
using the notations χh

R and χe
R, respectively uhR and ueR. Multiplying by χR in the

LNLu = f equation we obtain an equation for uR, namely
(6.14) (x− 3t∂2x)uR + tuuR = fR,
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where
fR = χRf + tχ′

Rux + tχ′′
Ru.

By Lemma 6.2 and Lemma 6.3, uR and fR satisfy the bounds

(6.15) ∥uR∥L2 ≲MLεt
− 1

4R
1
4 , ∥uR,x∥L2 ≲MLεt

− 3
4R

3
4 , ∥uR,xx∥L2 ≲MLεt

− 5
4R

5
4 ,

respectively

(6.16) ∥fR∥Ḣ 1
2+R

1
2L2

≲MLε.

This localization will be used for the remainder of this section with M =ML, as well
as in the proof of the nonlinear Klainerman-Sobolev estimates in Section 7, where we
use it with ML = 1.

6.3. Bounds for ulo and u±. The pointwise bounds for the components of u are the
same as those for u, namely

(6.17) |ulo|+ |u±| ≲Mεt−
1
4 ⟨x⟩−

1
4 , |∂xulo|+ |∂xu±| ≲Mεt−

3
4 ⟨x⟩

1
4 .

However, we expect the bulk of u in the hyperbolic region in x < 0 to be concentrated
at frequency (|x|/t) 1

2 , so ulo as well as the low frequency parts of u± should be better
behaved. We begin with the pointwise bounds for ulo:

Lemma 6.4. The low frequency part ulo of u satisfies

(6.18) |ulo| ≲Mε⟨x⟩−1 ln
(
⟨x⟩t−

1
3

)
.

Proof. The bound follows from our bootstrap assumption (3.5) if |x| ≲ t
1
3 . For larger

x we write
xulo = [x, Plo]u+ 3t∂2xulo + Plo(tu

2 + f),

and estimate pointwise all terms on the right.
The commutator is t

1
3 times a mollifier on the t

1
3 scale, so by (3.5) it satisfies

|[x, Plo]u| ≲ εMt
1
3

1

t
1
4 ⟨x⟩ 1

4

,

which suffices. The same bound also follows for the second term, as the x derivatives
contribute t−

1
3 factors.

For tu2 we also use (3.5) to write

|tu2| ≲M2ε2t
1
2 ⟨x⟩−

1
2 ≲Mεt

1
6 ⟨x⟩−

1
2 ,

which survives after localization and is even better.
Finally we consider the contribution of f , which we expand as

Plof =
∑
R

Plo(χRf).
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For χRf we use the corresponding component of (6.16). For the dyadic components
of χRf we use Bernstein’s inequality, which yields an Mε bound. After dyadic sum-
mation in the frequency range R−1 ≲ λ ≲ t−

1
3 we obtain the extra logarithmic loss in

the Lemma. □

We continue with bounds for the low frequencies of u±:

Lemma 6.5. The functions u± satisfy

(6.19) |∂−1
x u±| ≲Mεt

1
4 ⟨x⟩−

3
4 , ||D|−

3
2u±| ≲Mεt

1
2 ⟨x⟩−1.

Proof. Since the multipliers ∂−jP± have kernels which are localized on the t
1
3 spatial

scale, it suffices to separately consider the functions

u±R := χRu
±.

The case R ≲ t
1
3 follows directly from (3.5), so we consider larger R. The high

frequencies (≳ (R/t)
1
2 ) of uR are also estimated directly from (3.5), so we can discard

them from uR.
We now consider in greater detail the bound for ∂−1

x u±. We write

x∂−1
x u±R = t∂xu

±
R + [x, ∂−1

x P±]uR + ∂−1
x P±(tuuR + f).

For the first term we use directly (3.5). The commutator [x, ∂−1
x P±] equals t

2
3 times

an averaging operator on the t
1
3 scale, so we can also use (3.5) to estimate

|[x, ∂−1
x P±]u| ≲ t

2
3Mε

1

t
1
4 ⟨x⟩ 1

4

=Mε
t

5
12

⟨x⟩ 1
4

.

For the third term we use (3.5) twice, while for the last term we use Bernstein’s
inequality to obtain

|∂−1
x f | ≲MLεt

− 1
3 ,

which is better than we need. This concludes the proof of the bound for ∂−1
x u±. The

bound for ∂−
3
2

x u± is entirely similar. □

Finally, we will need

Lemma 6.6. Assume that (6.15) and (6.16), as well as the bootstrap assumption
(3.5) hold at time t ≪M ε−3. Then in the hyperbolic region x < 0 we have the
pointwise bound

(6.20) |(∂x − i
√
3|x|

1
2 t−

1
2 )u+| ≲Mε⟨x⟩−

1
2 t−

1
2 ln(⟨x⟩t−

1
3 ),

and in the elliptic region x > 0

(6.21) |∂xu+|+ |x|
1
2 t−

1
2 |u+| ≲Mε⟨x⟩−

1
2 t−

1
2 ln(⟨x⟩t−

1
3 ).
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Proof. We will prove the compact bound

(6.22) |(∂x − i(−3x)
1
2 t−

1
2 )u+| ≲Mε⟨x⟩−

1
2 t−

1
2 ln(⟨x⟩t−

1
3 ),

where the expression (−3x)
1
2 selects the positive square root if x < 0, i.e. in the

hyperbolic region, but is allowed to be either imaginary root if x > 0, i.e. in the
elliptic region. This reflects the fact that the pointwise bounds are better there.

As discussed earlier, we can rescale and reduce the problem to the case t = 1, in
which case the bound on t translates into ε̃≪M 1.

Arguing as above, we localize to the region AR and work with u+R. In doing that
we loose the sharp frequency localization; instead we only retain an improved bound
for the negative frequencies,

(6.23) ∥P−u+R∥HN ≲ ε.

If R ≲ 1 then the bound (6.22) follows directly from (6.17). Hence in the sequel
we assume that R ≫ 1. Denoting

v = (∂x − i(−3x)
1
2 )u+R

we can write an equation for v as follows:

(∂x + i(−3x)
1
2 )v = g,

where
g = (∂x + i(−3x)

1
2 )(∂x − i(−3x)

1
2 )u+R

= (x− 3∂2x)u
+
R +

3i

2
(−3x)−

1
2u+R

= χRP
+(u2 + f) + χR[x, P

+]u+O(R−1)u+x +O(R− 1
2 )u+.

Using (6.17) for all the u terms and the low frequency bound (6.19) for the commutator
we get

(6.24) g = χRP
+f +O(Mεt−

5
6R− 1

2 ).

Now v is essentially localized at positive frequencies whereas the operator

Q = (∂x + i(−3x)
1
2 )

has symbol i(ξ + (−3x)
1
2 ) which is elliptic in the larger frequency region

(6.25) {ξ > −1/4R
1
2}.

Thus we can find a microlocal (semiclassical) parametrix Q−1
+ (x,D) for it in this

region with the following properties:

(i) Symbol bounds ⏐⏐⏐∂αx∂βξ q−1
+ (x, ξ)

⏐⏐⏐ ≲ R−α(R
1
2 + |ξ|)−β−1.
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(ii) Approximate inverse at positive frequencies,

Pellv = PellQ
−1
+ (x,D)Qv +OL2(R−N),

where Pell is a multiplier selecting the region (6.25).

This in particular guarantees that the kernel K(x, y) of Q−1
+ (x,D) satisfies

(6.26) |K(x, y)| ≲ (1 +R
1
2 |x− y|)−N

To estimate v we use directly the bound (6.23) for (1−Pell)v to get εO(R−N), and
similarly for the error term in Pellv above.

Then it remains to estimate the remaining expression Q−1
+ (x,D)g where g is as in

(6.24) above. For this we distinguish three main contributions:

a) From f frequencies below R
1
2 , by (6.26) we get roughly

Q−1
+ (x,D)f

<R
1
2
≈ R− 1

2f
<R

1
2
,

where we use Bernstein’s inequality and (6.16) loosing a log.

b) From f frequencies above R
1
2 we get roughly

Q−1
+ (x,D)f

>R
1
2
≈ ∂−1

x f
>R

1
2
,

which is as above, but without the log loss.

c) For the remaining source term, i.e. the last term in (6.24), we use again (6.26)
to get

Q−1
+ (x,D)O(Mεt−

5
6R− 1

2 ) = O(Mεt−
5
6R−1)

which is better than needed in (6.22). □

6.4. Proof of Proposition 6.1. We successively consider the bounds for w1, f2, f3, f4
and f5, which were defined in Section 6.1:

(i) The bound for w1. We consider the "+" term, where we need to estimate
the L2 norm of

D
1
2w+

1 := D− 1
2 (∂−1

x u+ · ∂−1
x u+).

Here the two inner frequencies are both positive; we denote their dyadic sizes by
λ1, λ2 ≳ t−

1
3 . Then the outer multiplier must have size λmax = max{λ1, λ2}. After

a Littlewood-Paley decomposition and separating the two frequencies, we obtain a
representation

D
1
2w+

1 =
∑

t−
1
3≤λ1≤λ2

λ
− 3

2
2 λ−1

1 u+λ1
u+λ2

.

Clearly (6.17) also holds for u+λ . Combining this with (6.19) we obtain

|u+λ | ≲Mεmin{t−
1
4 ⟨x⟩−

1
4 , λ

3
2 t

1
2 ⟨x⟩−1},
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where the two terms balance exactly at λ ≈ ⟨x⟩ 1
2 t−

1
2 . Summing up over λ1, λ2 we

obtain ⏐⏐⏐|D|
1
2w1

⏐⏐⏐ ≲M2ε2t
3
4 ⟨x⟩−

7
4 ,

and
∥w1∥Ḣ 1

2
≲ ε2t

3
4 t−

5
12 = ε2M2t

1
3 ,

exactly as needed.

(ii) The bound for f2. Here we use (3.5) and (6.18) to estimate pointwise

|uulo| ≲ Mε⟨x⟩−
1
4 t−

1
4 ⟨x⟩−1Mε ln(⟨x⟩t−

1
3 )

≲M2ε2t−
1
4 ⟨x⟩−

5
4 ln(⟨x⟩t−

1
3 ),

and a similar bound for ∂x(uulo) with an added (⟨x⟩/t) 1
2 factor. Hence for the half

derivative we obtain ⏐⏐⏐|D|
1
2 (uulo)

⏐⏐⏐ ≲M2ε2t−
1
2 ⟨x⟩−1 ln(⟨x⟩t−

1
3 ),

and we can now bound its L2 norm by|D|
1
2 (uulo)


L2

≲M2ε2t−
2
3

as needed.

(iii) The bound for f3. Here we will estimate u+u− in Ḣ
1
2 . We start with the

pointwise bound
|u+u−| ≲M2ε2t−

1
2 ⟨x⟩−

1
2 .

Next we differentiate,

∂x(u
+u−) = (∂x − i(−3x)

1
2 t−

1
2 )u+u− + u+(∂x + i (−3x)

1
2 t−

1
2 )u−.

Then using (6.22) and (6.17) we get

|∂x(u+u−)| ≲Mεx−
1
2 t−

1
2 ln(⟨x⟩t−

1
3 ) ·Mεx−

1
4 t−

1
4 = ε2x−

3
4 t−

3
4 ln(⟨x⟩t−

1
3 ),

and interpolating,
∥u+u−∥

Ḣ
1
2
≲M2ε2t−

2
3 ,

which suffices.

(iv) The bound for f4. We use the pointwise bounds (6.19) for ∂−1u± and (3.5)
for u to obtain

|D
1
2f4| ≲ εMt

1
6 t

1
4 ⟨x⟩−

3
4 · ε2M2t−

1
2 ⟨x⟩−

1
2 = ε3M3t−

1
12 ⟨x⟩−

5
4 ,

which yields
∥f4∥Ḣ 1

2
≲ ε3M3t−

1
3 ,

which suffices.
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(v) The bound for f5. For ∂xw1 and ∂2xw1 we have from (6.19) and (6.17):

|∂xw1| ≲M2ε2t
1
2 ⟨x⟩−

3
2 , |∂xw1| ≲M2ε2⟨x⟩−1.

Hence, for uw1,x we get

|uw1,x| ≲ ε3M3t
1
4 ⟨x⟩−

7
4 , |∂x(uw1,x)| ≲ ε3M3t−

1
4 ⟨x⟩−

5
4 .

Thus ⏐⏐⏐|D|
1
2 (uw1,x)

⏐⏐⏐ ≲ ε3M3⟨x⟩−
3
2 .

and
∥uw1,x∥Ḣ 1

2
≲ ε3M3t−

1
3

as needed.
The proof of Proposition 6.1 is concluded.

7. Klainerman-Sobolev estimates

Our aim here is to prove the nonlinear Klainerman-Sobolev estimates in Proposi-
tion 3.4. We follow the spirit of the proof of Proposition 1.1, but with nonlinear
adjustments. Now the Sobolev bounds on u and LNLu have an ε factor, which we
seek to recover linearly in the output. We can still use the scaling associated to
the KdV equation to reduce the problem to the case t = 1, following the setup in
Section 6.2.

Thus we are now working with the equation (6.7), which we recall here

(7.1) (x− 3∂2x)ũ+ 3ũ2 = f̃ .

Our bounds for ũ and f̃ = LNL
|t=1u are now (see (6.8) and (6.10))

(7.2) ∥ũ∥
B

− 1
2

2,∞
≲ ε̃,

respectively

(7.3) ∥f̃∥
Ḣ

1
2
≲ ε̃,

where
ε̃ = εt

1
3 ≪ 1.

Finally, our bootstrap assumption (3.5) on u now reads

(7.4) |ũ(x)| ≤Mε̃⟨x⟩−
1
4 , |ũx| ≤Mε̃⟨x⟩

1
4 .

Here we can freely assume that Mε̃ ≪ 1. Our goal will be to improve this by
eliminating the constant M , and show that

(7.5) |ũ(x)| ≲ ε̃⟨x⟩−
1
4 , |ũx| ≲ ε̃⟨x⟩

1
4 .

To keep the notations simple we will drop the tilde notation in what follows.
We note that the nonlinear part of LNL is nonperturbative in this argument; how-

ever it is also nonresonant, which saves the day.
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We will reuse here the results of Section 6.2 where we set ML = 1. By Lemma 6.12
we have the low frequency bound

(7.6) ∥LNLu∥L2(AR) ≲ εR
1
2 ,

and by Lemma 6.3 we have the high frequency bound

(7.7) ∥u∥L2(AR) ≲ εR
1
4 , ∥ux∥L2(AR) ≲ εR

3
4 , ∥uxx∥L2(AR) ≲ εR

5
4 .

Recall that here, due to the discussion in Section 6.2, we can freely set t = 1, and
indeed arrive at the bounds above.

Also following the discussion in Section 6.2, we can localize the problem to dyadic
regions {|x| ≈ R} where R ≳ 1. Setting v := χRu, it follows that v solves the equation

(7.8) (x− 3∂2x)v + 3uv = f,

where v and f satisfy the bounds

(7.9) ∥v∥L2(AR) ≲ εR
1
4 , ∥vx∥L2(AR) ≲ εR

3
4 , ∥vxx∥L2(AR) ≲ εR

5
4 ,

respectively

(7.10) ∥f∥
Ḣ

1
2
≲ ε, ∥f∥L2 ≲ εR

1
2 .

We now consider separately the three regions:

A. Pointwise estimate in the hyperbolic region: −x ≈ R ≫ 1. Here we
consider the region AH

R to the left (of the origin), and use hyperbolic energy estimates
to establish the desired pointwise bound for u supported in AH

R . As in the linear
argument, we consider an energy conservation type relation

d

dx

(
−x|v|2 + 3|vx|2 − 2flov

)
= −|v|2 − 2fhivx − 2flo,xv − 6uvvx.

The nonlinear term is written in the form

uvvx =
1

3
∂x(χ

2
Ru

3) +
1

3
χRχ

′
Ru

3

The first term is added to the energy (this represents in this case a rudimentary
normal form energy correction), so we get

d

dx

(
−x|v|2 + 3|vx|2 − 2flov − 2uv2

)
= −|v|2 − 2fhivx − 2flo,xv − 2χRχ

′
Ru

3.

Then applying Gronwall’s inequality as in the linear case we obtain

sup
x∈AH

R

{
−x|v|2 + 3|vx|2

}
≲ ε2R

1
2 + sup

x∈AH
R

flov +R−1

∫
χR|u|3 dx.
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On the left the cubic correction −uv2 is dominated by the main term −x|v|2. The
second term on the right is as in the linear case, while for the last one we use the
bootstrap assumption to estimate

R−1

∫
χR|u|3 dx ≲M3ε3R− 3

4 ,

which is much better than needed.
E. Pointwise estimate in the self-similar region |x| ≲ R = 1
Here we simply use Sobolev embeddings starting from the u bounds in (7.7).

F. Pointwise estimate in the elliptic region.
Here we argue as in the proof of the linear estimate. The only difference is the

nonlinear term u2 in LNLu. In the hyperbolic region this term was nonperturbative
but nonresonant. Here the situation is simpler, as the nonlinear term is perturbative.
Indeed in (7.8) we can include the 3u coefficient with x. The 3u coefficient is negligible
due to our bootstrap assumption (3.5). There we can proceed as in (2.17) in step F
of the proof of Proposition 2.1.

8. Solitons and inverse scattering

The Lax operator associated to a state u for the KdV equation has the form

Lu := −∂2x + u.

The Lax pair associated to (1.1) is given by Lu and M , where

M := −4∂3x + 6u∂x + 3ux,

such that as for u solving (1.1) we have
d

dt
Lu = [M,Lu] .

This relation insures that the operators Lu are unitarily equivalent in L2 as u evolves
along the KdV flow.

The inverse scattering theory, see [1], predicts that each state can be viewed as
a nonlinear superposition of solitons and dispersive states, where the solitons are
associated to the eigenvalues of Lu. As an example, the state

Q = 2 sech2 x

is a soliton which moves to the right with speed 4, for which the corresponding
Lax operator LQ has a single negative eigenvalue λ = −1 with the corresponding
eigenfunction

ϕ = sechx.

Rescaling, we obtain the soliton state

Qµ(x) = µ2Q(µx),
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which moves to the right with speed 4µ2, for which the Lax operator has the eigenvalue
λ = −µ2 and eigenfunction ϕ(µx).

More generally, if the Lax operator Lu for a state u has a negative eigenvalue −µ2,
then its evolution contains a soliton Qµ which is localized to the spatial scale µ−1.

For localized data, such a soliton would emerge from the dispersive wave at the
time where the soliton scale matches the self-similar scale,

µ−1 = t
1
3 .

In particular, for our ε size data, the cubic timescale corresponds to t = ε−3 and thus
to µ = ε. To see that solitons can only emerge at cubic time, and that this indeed
happens, we will prove the following:

Proposition 8.1. a) Assume that u satisfies the smallness assumption (1.9). Then
any negative eigenvalue λ0 for Lu satisfies

(8.1) − λ0 ≲ ε2.

b) Suppose that ε→ u(ε) satisfies 2

(8.2) ∥u∥
Ḃ

− 1
2

2,∞
+ ∥xu∥

Ḣ
1
2
< ε,

as well as

lim
ε→0

−1

ε

∫
R
u(ε) dx = ℓ > 0.

Then there exists ε0 so that for 0 < ε < ε0 there exists a smallest eigenvalue λ(ε) and

− lim
ε→0

λ(ε)/ε2 =
1

4
ℓ2.

c) If the negative part u− of u satisfies

∥xu−∥L1 ≤ N,

then Lu has at most N negative eigenvalues.
d) Given N ≥ 1, ε > 0 there exists u ≤ 0 such that

∥xu∥L1 ≤ N − 1 + ε

and Lu has N negative eigenvalues.

Remark 8.2. For part (a) we only use the small Besov norm, without the decay in
the second term in (8.2). But even adding this decay, it is still possible have infinitely
many negative eigenvalues. The parts (c) and (d) of the above proposition clarify the
additional decay which would be needed in order to have finitely many eigenvalues.
Part c) has been proven by Seto [24]. We provide a short elementary argument.

2. This in particular guarantees that
∫
R u dx is well defined.
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Proof. a) To show the lowest eigenvalue is at least −ε2 we need the inequality∫
R
uϕ2dx ≲ ∥∇ϕ∥2L2 + ε2∥ϕ∥2L2 .

Here we use only the Besov norm B
− 1

2
,ε

2,∞ for u which guarantees that

∥u≤ε∥L∞ ≲ ε,

and
∥uλ∥L2 ≲ ελ

1
2 , ∥uλ∥L∞ ≲ ελ, λ ≥ ε.

Now we use the Littlewood-Paley trichotomy to estimate the left hand side,∫
R
uϕ2 dx ≲

∑
ε≤λ,λ1,λ2

∫
R
uϕ2 dx.

If λ < λ1 = λ2 we use the L∞ bound for uλ to get∑
λ1>ε

ελ1∥uλ1∥2L2 ,

which is controlled by the right hand side.
On the other hand if λ = λ1 > λ2 then we use L∞ for uλ2 to get the bound∑

λ1>λ2>ε

ελ
1
2
1 ∥uλ1∥L2 λ

1
2
2 ∥uλ2∥L2 ,

which is again estimated by the right hand side.

b) We observe that
ε−2u(x/ε) → −ℓδ0

in H−1+L∞. On the other hand the eigenvalues depend continuously on the potential
in H−1 + L∞. But is not hard to check that the potential −ℓδ0 yields exactly the
simple eigenvalue −(ℓ/2)2.

c) Replacing u by −u− decreases the eigenvalues of Lu, so without any restriction
in generality we can assume that u ≤ 0.

Suppose that there are at least N + 1 nonpositive eigenvalues. Then the N + 1-th
eigenfunction ϕ has N points of vanishing, and N +1 nodal intervals. Let (x0, x1) be
one of them.

The operator Lu restricted to [x0, x1] with Dirichlet boundary condition has at least
one negative eigenvalue, with the restriction of ϕ as the corresponding eigenfunction.
On the other hand L0 with the same Dirichlet boundary condition is positive. Hence a
continuity argument shows that there exists an unique h ∈ (0, 1) so that the operator
Lhu has 0 as the lowest eigenvalue. We denote by ψ the corresponding eigenfunction,
solving

ψ(x0) = ψ(x1) = 0, −ψ′′ + huψ = 0.
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We can freely assume that ψ > 0 in [x0, x1]. Then ψ is concave there, so we can also
assume that ψ′(x0) = 1. Hence ψ(x) ≤ x− x0 and ψ′(x2) < 0. Thus

1 < ψ′(x0)− ψ′(x1) = −
∫ x1

x0

hu(t)ψ(x) dx ≤ −
∫ x1

x0

u(t)(t− x0) dx

with equality iff u is a Dirac measure and h = 1. If (x0, x1) is a nodal interval with
0 ≤ x0 then

1 <

∫ x1

x0

u(t)(t− x0) dx ≤
∫ x1

x0

tu(t) dt.

The argument for x1 = ∞ is similar. If on the other hand x1 < 0 then we interchange
the roles of x0 and x1 and the same conclusion follows. Since there are N nodal
intervals not containing 0, it follows that∫

|x||u(x)| dx > N,

which yields a contradiction.

d) Suppose we find N + 1 points

−∞ < x0 < · · · < xN <∞,

a measure u in (x0, xN) and a solution ϕ to

−ϕ′′ + uϕ = 0 in (x0, xN)

vanishing at these N + 1 points.
Then ϕ is an eigenfunction to the N -th eigenvalue of the SchrÃűdinger operator

on (x0, xN) with Dirichlet boundary condition. By the variational characterization of
eigenfunctions we see that the SchrÃűdinger operator on R has at least N negative
eigenvalues. We construct a sum of Dirac measures and ϕ with these properties. A
simple approximation argument yields the full result.

We choose x0 = −1, and a sequence of points x0 = −1 < 0 = y1 < x1 < y2 < · · · <
yN < xN and we put the Dirac masses at the points yj. We choose ϕ continuous and
affine on [x0, y1], [yj, yjj + 1] and [yN , xN ]. Let ∆ϕ(yj) be the jump of the derivatives
at this point. We assume yj to be a point of a local maximum of |ϕ|. Then

ϕ′′(yj) = ∆ϕ(yj)δyj =
∆ϕ(yj)

ϕ(yj)
ϕ(yj)δyj .

Starting at x0 = −1, y1 = 0, x1 = 1 and

ϕ = x− 1 for − 1 ≤ x ≤ 0, ϕ(x) = −1 + x for 0 ≤ x ≤ y2

with y2 to be chosen. We put a multiple of a Dirac measure at y2

−ϕ′′ − 1 + ε/(2N)

y2 − 1
δy2ϕ = 0.
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Then ϕ(y2) = 1 − y1, ϕ′(y2+) > 0. If we choose y2 large we can ensure that its
contribution to the L1 norm of xu is only slightly larger than 1,

y2
1 + ε/(2N)

y2 − 1
< 1 + ε/N.

After the point y2 the function ϕ is linearly increasing. We denote by x2 the point
where it vanishes and then repeat the procedure to chose y2 < x2 < y3, as the location
of the next Dirac mass in u. We repeat this procedure to construct all the y’s and
x’s. □

The inverse scattering method allows to study solutions under stronger conditions
as in this paper, but for all times. This is a nontrivial task. Here we adapt and
explain results of Schuur [23] for special initial data. We fix a Schwartz function ϕ0

with ∫
R
ϕ0 dx = −1.

We consider the initial data u0 = εϕ0. It satisfies the smallness condition if ε > 0 is
sufficiently small. By Proposition (8.1) we know that there is exactly one negative
eigenvalue −λ of size −ε2. The corresponding pure soliton is

−2λ sech2(
√
λ(x− y0 − λt)).

Schuur proved that there exists y0 with |y0| ≲ 1 so that to the right of the self-similar
region we get

∥u(t) + 2λ sech2(
√
λ(x− y0 − λt))∥

L∞
x (−c1t

1
3 ,∞)

≤ c2t
− 1

3 ,

for all t ≥ t0, with precise formulas for the constants t0, y0, c1 and c2. It is not too
hard to check their size:

1 ≲ c1, |y0| ≲ 1, c2 ≲ ε, t0 ≥ ε−3.

If t ∼ ε−3 the size of the soliton is the same as the size of the error estimate, and this
is the scale on which the soliton emerges.
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