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Low frequency Raman scattering in the Terahertz range

Proc. SPIE 9073, 90730K (2014).
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soft bonds
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Rev. Mod. Phys. 79, 175 (2007).

• Microwave and RF
- E/M polarization, translation/rotation

• Optical and IR
- electronic transitions, bond vibrations

• THz range
- bridge between global and local dynamicsProc. SPIE 7391, 73910D (2009).

• Molecular crystals
• Clusters, clathrates
• Supramolecular complexes

• Quantum materials
• Spin waves / magnons
• Intraband electronic transitions

• Halide perovskites
• MOFs, COFs, ZIFs
• Van der Waals materials
• Functional polymers

Example systems of interest
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Low frequency Raman scattering in the Terahertz range

Inagaki, M. et al, Curr Opin Electrochem 2019, 17, 143–148. 3



Low frequency Raman scattering in the Terahertz range
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Low frequency Raman scattering in the Terahertz range
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LFR reveals extreme anharmoncity

Yaffe, O.,† Guo, Y.,† et al.  Phys. Rev. Lett. 2017, 118 (13), 136001.

AIMD elucidates anharmonic motion

double well dwell timeBX octahedral 
distortion

A dynamic 
displacement

Nat. Mater. 2012, 11 (4), 294–300.

Interlayer modes of vdW materials

ACS Nano 11, 11777 (2017).

Lattice dynamics 
of lead halide 
perovskites
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Low-frequency SERS and TERS in the Terahertz range

Inagaki, M. et al. J. Phys. Chem. Lett. 2017, 8 (17), 4236–4240. 

Electrochemical THz-SERS Observation of Thiol Monolayers on Au(100) 
Using Nanoparticle-Assisted Gap-Mode Plasmon Excitation.
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Low-frequency SERS and TERS in the Terahertz range

Rodriguez, A. et al. J. Phys. Chem. Lett. 2022, 13 (25), 5854–5859. 

Nano-Optical Visualization of Interlayer Interactions in WSe2/WS2 Heterostructures
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Asymmetrical spectral background continuum in LF-SERS

50um

Asymmetric background continuum in LF-SERS

AuNPs and AgNPs NP aggregates dropcast on Si wafer

• central peak (around the Rayleigh line)

• merging into a finite flat baseline (Stokes side)

• sloping down toward zero (anti-Stokes side)

Colloidal plasmonic nanoparticles

AgNPs intensity scaled down by 10 fold and vertically offset
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The Bose Einstein factor is inherently asymmetrical

Asymmetric Bose-Einstein scaling

Origin of asymmetry: 
Stokes (Anti-Stokes) scattering 
creates (annihilates) one excitation

𝐼𝑖𝑗 ∝ 𝑅𝑖𝑗
𝑚 2

𝑛 + 1 𝑄𝑚 𝑛 2

𝑛 + 1 𝑄𝑚 𝑛 ∼ 𝑛𝐵𝐸 + 1

𝑛 − 1 𝑄𝑚 𝑛 ∼ 𝑛𝐵𝐸
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Variety of LF-SERS background continuum lineshapes

AgNPs intensity scaled down 
by 10 fold and vertically offset

𝒏𝑩𝑬 =
𝟏

𝒆
ℏ𝝎
𝒌𝑻 − 𝟏

𝝎 → 𝟎 ⇒ 𝒏𝑩𝑬 →
𝒌𝑻
ℏ
𝟏
𝝎

• As frequency approaches 0, the Bose-Einstein factor diverges as 1
𝜔

• The shape of the background continuum is morphology/material dependent

• Much weaker divergence (or flat lines) were observed in various cases
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Survey and comparison of low frequency spectral continua

Physical origins
• Anharmonic / relaxational 

structural dynamics
• Intraband electronic 

Raman scattering

Plasmonic nanoparticles Molecular liquids
A different central peak

Key differences: 
• Baseline Intensity
• Frequency dependence
• Optimal temperature
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Distinctions in signal origins: AuNPs vs. AgNPs

Plasmonic nanoparticles

Key differences after B-E normalization
• AgNPs: flat baseline with vibrational features
• AuNPs: negative divergence near Rayleigh line

Bose-Einstein scaling behaviors reveal the nature of signal origins

Signals of Bosonic origins
• Molecular vibrations
• Optical / acoustical phonons 
• Relaxational motions in liquids
• Elementary excitation of an electron gas
❖ Anything described as a harmonic oscillator
❖ Scaled by the B-E factor

Signals of non-Bosonic origins
• Photoluminescence
❖ Not scaled by the B-E factor
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The Bose-Einstein factor as a signal enhancement mechanism

Viewing the Bose-Einstein factor as a signal 
enhancement mechanism
❖ Significant for the low frequency THz region
❖ Universal and inherent

• resonance enhancement 
• plasmonic enhancement
• independent of materials properties 

and substrate structures
❖ Depends only on 𝑇 and 𝜈
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Bose-Einstein normalization thermometry

❖ Model independent, lineshape free
• spectral continuum
• broad peaks or groups
• reduces to peak-pair intensity ratio 

when integrating over a sharp peak

❖ Peak pair intensity ratio
• start with well defined peaks
• model peak lineshape
• calculate intensity ratio and T

Thermometry via the Boltzmann factor

Thermometry via the Bose-Einstein factor
❖ Numerically robust

• single variable, single minimum
• Well-behaved optimization routine
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Summary

❖ Asymmetrical spectral continuum 

background observed in LF-SERS

❖ The Bose-Einstein factor 

• symmetrizes the spectra

• reveals underlying responses 

• distinguishes signal origins

• enhances signal strength

• measures sample temperature

Sun, S.; Rathnayake, D. T. N.; Guo, Y. 
J. Phys. Chem. C 2022, 126 (27), 11193–11200. 
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