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Abstract

Understanding the process of molecular photoexcitation is crucial in various fields,
including drug development, materials science, photovoltaics, and more. The elec-
tronic vertical excitation energy is a critical property, for example in determining the
singlet-triplet gap of chromophores. However, a full understanding of excited-state
processes requires additional explorations of the excited-state potential energy surface
and electronic properties, which is greatly aided by the availability of analytic energy
gradients. Owing to its robust high accuracy over a wide range of chemical problems,
equation-of-motion coupled-cluster with single and double excitations (EOM-CCSD)
is a powerful method for predicting excited state properties, and the implementation
of analytic gradients of many EOM-CCSD (excitation energies, ionization potentials,
electron attachment energies, etc.) along with numerous successful applications high-
lights the flexibility of the method. In specific cases where a higher level of accuracy
is needed or in more complex electronic structures, the inclusion of triple excitations
becomes essential, for example, in the EOM-CCSD* approach of Saeh and Stanton.

In this work, we derive and implement for the first time the analytic gradients of



EOMEE-CCSD*, which also provides a template for analytic gradients of related ex-
cited state methods with perturbative triple excitations. The capabilities of analytic

EOMEE-CCSD* gradients are illustrated by several representative examples.

1 Introduction

The excited states of molecules exhibit a range of unique properties that are of great interest
to many fields of science and technology: bioluminescence,! mutagenesis and carcinogene-
sis,? and photovoltaics and light-emitting diodes,®* and many more. These diverse electronic
characteristics arise from their complex potential energy landscapes, which can be probed
through optical or ultraviolet (UV) absorption. The relaxation and decay processes to the
ground state, occurring via either radiative or non-radiative pathways, further contribute
to their functionality and provide valuable spectroscopic insights, such as fluorescence and
phosphorescence. Quantum chemistry calculations play a crucial role in facilitating the in-
terpretation of this experimental spectroscopy data, offering a comprehensive understanding
of the excited states.

Despite the inherent complexity of excited states (for example, open-shell and multi-
reference character), numerous models have been developed to calculate excited state energies
and properties. Generally, these models fall into two categories. The first category comprises
explicitly multi-reference methods that deal with solutions spanning a space of determinants
or other suitable basis functions, which aim to provide either state-selective, state-averaged,
or state-universal descriptions of electronic states. A comprehensive review of these methods
is available elsewhere.® While these methods, such as complete active space self-consistent
field (CASSCF) method,® its second perturbation-corrected variant (CASPT2),” and the
second-order n-electron valence state perturbation theory (NEVPT2)® 1 have been highly
successful, they demand a high level of expertise and familiarity with the system under
investigation in order to tune the active orbital space and other calculation parameters.

On the other hand, equation-of-motion coupled-cluster (EOM-CC) methods ! '3 adopt a
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distinct approach, encompassing the entire set of multi-configurational target states within a
single-reference framework. This black box theory has gained considerable popularity, owing
to its favorable computational accessibility and its robust high accuracy over a wide range
of chemical problems.'* For excited states, equation-of-motion coupled-cluster with single
and double excitations (EOMEE-CCSD)! has become the gold standard method for the
prediction of singly excited state energies and properties. The development of variants for
ionization potentials (EOMIP-CCSD), electron attachment energies (EOMEA-CCSD), and
spin-flip excitations (EOMSF-CCSD) has greatly extended its capability to describe doublet
radicals, diradicals, triradicals, and bond breaking. 1°:16

Energy differences and transition probabilities are the key quantities that are desirable to
explain and predict the spectroscopic properties.!” Importantly, these quantities have to be
computed at significant points on the potential energy surface (PES). The development of
analytic-derivative techniques has significantly facilitated the exploration of potential energy
surfaces (PESs) of molecules in their electronic ground state, essentially for all available
quantum-chemical schemes. '* 2% Gradients are accessible for various multireference methods,
including MCSCF,? MR-CI?** 32, and fully internally contracted CASPT2.33 Nevertheless,
the efficiency of the EOM-CCSD gradient notably distinguishes itself. Analytic gradients for
all the variants of EOM-CCSD methods have been documented. 113439

While EOM-CCSD offers great accuracy for predominantly one-electron excitations, it is
poor for double electron excitations.*?#? Efforts have been made in either iterative or non-
iterative schemes to include triple excitation to improve accuracy, particularly for double-
excited states,*® EOM-CCSD*,* EOM-CCSD(T),* EOM-CCSDT-3,%2 EOM-CC3 (equiv-
alent to LR-CC3 for energies), ¢ and EOM-CCSDT.*" Analytic gradients for full EOM-
CCSDT were reported by Kallay as part of a general-order EOM-CC program,*® while
gradients for full EOMEE-CCSDT are also available in the CFOUR program package® and
transition dipole moments for EOM-CCSDT were reported by Hirata.® However, no analytic

gradients have been published for any EOM-CC methods with approximate triples. Counter-



intuitively, the analytic gradients for the non-iterative triples methods are more complicated
than for iterative models, as discussed below. In this paper, we present, for the first time, de-
tailed formulas and implementation details of analytic closed-shell EOMEE-CCSD* energy

gradients. Several demonstrative applications are also discussed.

2 Theory

For convenience, in the following context |H) represents the set of all possible n-electron
Slater determinants within a given spin-orbital basis. |H) can be further split into |H) =
|IP)+]Q) = [0)+|G)+|Q) = |0)+]S)+|D)+|Q), where |0) is the reference determinant (Fermi
vacuum), |S) = |¢) are the singly-excited determinants, and |D) = |fjb> are the doubly-excited

determinants. |Q)) = }‘»‘bc> + ‘fﬁgﬁ + ...., represents any determinant of excitation rank higher

ijk
than two, out of which we specifically identify the triply-excited determinants |T") = ‘fjbg .
Briefly, the CCSD and excited state EOMEE-CCSD energies are given by,
Ecesn = (0] e”" Hye™ [0) = (0] (Hye"). 0) = (0] H |0) (1)
= (G| H10) 2)
N 1 A ~
_ T _
HN—ng{apaq}+Zvaq{a alaa} =F+V (3)
pq pars
T = Z t%ala; + Z tf]b tala o, = Ty + Ty (4)
ai abzg
Erom.cosp = (0| LH R |0) (5)
= (G| (H — Egom-cosp) 2 |0) (6)
0= (0| L(H — EEOM-CCSD) G) (7)
R =ry+ Z rala; + Z fjb laba]az Ro+ Ry + Ry (8)
ai abzg
L= Zl aja, + — Zl” aTa*abaa =L+ Ly (9)
abz]



where {. ..} indicates normal ordering and (.. .). indicates a connected operator product. The
energy From.cosp and amplitudes R and L correspond to the same excited state which is
otherwise unspecified, except that it should be non-degenerate. When properties of a specific
excited state p are required, we will employ the notation Egon.ccsp(u), R(1), L(p), etc.
Finally, the difference between the excited and ground state energies (the vertical excitation
energy) is denoted as w = Erom.ccsp — Feosp-

The perturbative third-order correction to the EOMEE-CCSD energy, as formulated by
Stanton and Gauss,** is derived using Lowdin’s matrix partitioning approach to perturbation
theory,®! which has been thoroughly reviewed by Saeh and Stanton.®? Essentially, by parti-
tioning the space of single and double excitations as the |P) space, and higher excitations

as the complementary |Q) space, the post-EOM-CCSD energy can be written as,

Aw = <O|EPHPQ(W + Aw — [_{QQ)_lﬁQPRPKD
= (0|LpHpo(w — Heyy) ™ HopRp|0)
+ (0| LpHpo(w — Hy) ™ (AHqq — Aw)(w — Hiy) ™ Hop Rp|0)

4o (10)

where subscripts indicate projection onto the partitioned spaces and the energy, transformed

Hamiltonian, and left /right eigenfunctions are all expanded in a perturbation series,

Aw = AwP + At 4 ... (11)

[_{:[_{[0]+H[1]+H[2]+...

= 0%+ AH (12)
Lp=L0+ LW+ LB 4. (13)
Rp=RY + RW L R 4 ... (14)

The single excitation parts of the left and right eigenfunctions are taken as zeroth-order,



while the double excitation parts are taken as first order. Likewise, F' is taken as zeroth-
order (assuming a canonical Hartree—Fock reference), while V is taken as first order, with
orders of T' assigned as in standard many-body perturbation theory. 53

With this choice, the correction to the energy appears first at third order—also note that

the second-order correction to Rp is absent. This correction is expressed as follows,
Awl = (0| LV |T)(T| (w — F) " |T) (T| V Ry + (VT3 Ry). |0) (15)

The total EOM-CCSD* energy can be written as,

Eroncesp* =Eroncosp + Awl! = (0| LHR |0) + (0| Ls(w — F))R5 |0) (16)
(0] Ls |T) = (0| LV (w — ) |T) (17)
(T| B3 |0) =(T|(w— F)" (VRy + (VTaRy).) |0) (18)

assuming a canonical reference determinant. As with perturbative triples corrections to the
ground state, both the evaluation of the energy and the gradient scale as O(N7) for a system
with IV orbitals.

The gradient of any post-Hartree-Fock method can be conveniently formulated in the
molecular orbital basis as the product of the effective one and two-particle density matrices

and the one- and two-electron derivative integrals,

E¥orv-ccsps = ZDP (ep)* + erq opd)X (19)

pars

where the DP and I'?! are the effective one and two-particle density matrices. The derivatives
of molecular orbital integrals require further development due to rotation of the molecular
orbitals due to the perturbation and enforcement of canonical perturbed orbitals before an
equivalent expression can be obtained in terms of derivatives of atomic orbital integrals.

18,19,27,54

Further details are omitted here since this process is well-documented, independent



of the method from which the one- and two-particle densities were obtained, and is already
implemented in most quantum chemistry software.

The general strategy to obtain the form of (19) from (16) will be as follows:
1. Perform a straight-forward differentiation of (16).

2. Differentiate the equations defining R, L, and T in order to obtain definitions for the

differentiated amplitudes which can be substituted in.

3. Reformulate the resulting expression by defining new amplitudes as the solutions of

(perturbation independent) linear equations.

4. Once all amplitude derivatives are removed, group terms in order to define effective

one- and two-particle density matrices.

Alternatively, one could start from a the definition of a suitable Lagrangian by including

constraints and multipliers for all amplitude equations and normalization conditions,

% = (0| LHR|0) + (0] Ls(w — F)Rs |0)
+ (0| TI(H — Egom.cesp)R|0) + (0] L(H — Egom.cesp) T [0)

(0] ZH|0) + X (1 (0| LR yo>) (20)

Differentiation of this expression with respect to the amplitudes (Z%, i, T) yields linear equa-
tions for the Lagrangian multipliers. However, this approach requires very careful attention
to detail, particularly with regard to the normalization constraint, which yields additional

orthogonalization conditions as noted below.



Straightforward differentiation of (16) with respect to an arbitrary perturbation y gives,

Efom.cespr =Exon-cesp + (0 LXV R3|0) + (0] LVXR; |0)

— (0 ﬁs(w - F)XRS 0) + (0] is(f/}%%< + VTQRi() 0)

+ (0] LsV Ry T [0) + (0| LsVX(Ry + ToRy) |0) (21)

Note there is a negative sign in the term (0| Ls(w — F)XR3 |0) as,
(w=F)")=—(w-F) " (w=F)w-F)" (22)
This term can be further expanded as follows, where for convenience we set § = (0| L3 R3 |0),

— (0] La(w — F)XR5 |0) = (O] Ls(F™ + Egosp — Egom.cosp) s 0)

= (0] L3F*R3 [0) + 0(EScsp — Eiom.cosp) (23)

EéCSD and EéOM_CCSD can be obtained by directly differentiating the energy equa-
tions (1) and (5), respectively. Noting the amplitude equations (2), (6), and (7) and that
({0 LR |0))x = 0,

Ecsp = (0| HT[0) + (0] ¥ |0) (24)

E¥oseocsp = (0| LHYR(0Y + (0] LH |Q) (Q| RT* |0) (25)

where HX = (]:IXeT)C.

Combining (21), (23), (24), and (25) and grouping all terms into four parts we obtain,

EXosecesps =1+ 1T+ IIT 4+ TV
I = (0| LXV R4|0) (26)
II = (0| Ly(V RY + VT, RY) |0) (27)



IIT = (0] Ly(VTYXR1) |0) + (0] (1 — 0)LH |Q) (Q| RTX|0) + 6 (0 HT*|0)  (28)
IV = (0| (1 = 6)LHY R |0) + (0| Ly(VXRy + VXTyRy) |0)

+ (0] LVXR3|0) + (0] Ly FXR3 0) + 6 (0] HX |0) (29)

The terms are grouped such that I depends (directly) only on Lx, 11 depends only on Rx,
III depends only on Tx, and IV depends only on the derivatives of integrals.

Lx and R of course depend in turn on Tx due to the presence of H in their definite
amplitude equations. Thus, we should tackle I and II before moving on to III. To analyze

I, we first define a convenient intermediate, noting that Lx spans only the (G| space,

I = (0| LXV Rs |0) = (0| LXZ |0) (30)

(GI210) = (G| V Ry |0) (31)
We then introduce a definition of LX by differentiating (7),

<O| f/X<H - EEOM—CCSD) |P> = <0| IA/TX(H - EEOM—CCSD) |P> - <0| f/H(X) |P>

+ EXom.cosp (0| L |P) — (0| LH |Q) (Q| T | P) (32)

where now the full |P) space is required due to the fact that while the connected terms of
(0|LH|G) involve (G|H|G) as expected, the disconnected terms involve (0|H|G) as well.
Notionally, one would utilize this definition by applying the inverse of (P| H — Egom.ccsp | P)

to both sides of the equation, yielding (0| LX|P) = (0| X |P) (P|H — Egon.ccsp |P) ™
with X collecting all terms from the R.H.S., which then could be substituted in I giving
(0| X | P) (P| H — Egom.cesp |P) ' (P] £10). Finally, one would then define a new set of am-
plitudes (P| Y |0) defined by the system of equations (P|(H — Egon.cesp) T 0) = (P| £ 0).
However, this plan is hindered by the fact that Fronm.ccsp is an exact eigenvalue of (P| H | P),

and thus the shifted matrix is exactly singular. This problem can be avoided by imposing



an additional condition on LX (and RX): while the normalization condition (0| LR|0) = 1

ensures that (0| LXR|0) + (0| LRX|0) = 0, we can additionally require a biorthogonal form

of intermediate normalization such that (0] LXR|0) = (0| LRX|0) = 0. Thus, the part of

5 parallel to R is not required and can be projected out. Similarly, the fact that L lies in

the null space of (P|(H — Egom.ccsp) |P) implies that each term on the R.H.S. of (32) is

perpendicular to L. Thus, it is sufficient and safe to employ the pseudo-inverse,

(0 LX|P) = (0] LT |P) (1 — (P| }2]0) (0| L| P))

— [{01 LAY |P) = B¥orrcosn (01 L|P)

+ (O] L 1Q) QI T |P)] (P H — Exoxcosp |P)*

- b (P| R(v)]0) (0| L(v) |P)
(P|H — Egom-cesp (1) | P) —; Froscosn(?) — Eromcosn (1)

where the pseudo-inverse satisfies,

|P) (P| H — Egon.cesp | P) (P| H — Egon.cesp |P)T (P =
|P) (P| H — Egon.cesp |P) (P| H — Egom.cosp |P) (P =

|P) (P| = |P) (P| k0) (0| L |P) (P|

The introduction of the pseudo-inverse now allows LX to be substituted into I,

L= (0] LTS |0) — [{0] LAY |P) ~ Eoncosn (01 L |P)
+ (0] LH Q) QI T |P)] (P| H = Exowccso [P (P|£10)
= (0] LSHT10) 4 (0| LAY [0) — Eorpcosp (0] LT 10)
+ (0 LH Q) (@1 TT[0)

(P|5410) = (P|£0) — (P| R|0) (0] L |0)

10
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(34)

(35)

(36)

(37)



where we introduce an excitation operator T spanning |P) as,

(P|(H — Egoncosn) T [0) = — (P| £ ]0) (38)

The portion of T parallel to R is undefined, but it is convenient and numerically stable to
require T be perpendicular to R. In particular, this means that (0| LY |0) = 0. Finally we
note that biorthogonal intermediate normalization is only one choice of uniquely determining
(0] LXR|0) and (0] LEX |0). For example, one could require that (0| BT |0) = 1 which would
still allow the definition of a consistent set of T amplitudes with a modified set of equations
(involving an operator more complicated than the pseudo-inverse). Thus to avoid a loss of
generality we do not assume that (0| LY |0) = 0 or other similar consequences of biorthogonal
intermediate normalization.

For II, we employ a similar strategy, although we may work exclusively in the |G) space,

II = (0| Ly(V RY + VTLRY) |0) = (0| QRX|0) (39)
(0/2|S) = (0] LV |S) (40)
(0]Q|D) = (0 LV |D) (41)

(G| 1210 = = (1= (G| R10) (0] L|G) ) (G| T¥Fz o)
— (G| H — Eron.cosp |G) T [(GI HYR|0)

—EXoaccsp (Gl R10) + (G H Q) (Q RT |0) (42)
Substitution followed by the definition of another set of de-excitation amplitudes II gives,

IT = — (0| Q*TXR|0) — (0| Q|G (G| H — Epon.cesp |G) T
x [(GIAWR0) = Efoy.cesp (G1R10) + (G 7 1Q) QI BT |0)]
= — (0] Q" RT|0) + (0| THY R{0) — EXon.cesp (0] TTR0)

+ (0| I1H |Q) (Q| RT™ |0) (43)
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with IT defined as,
(0| TI(H — Eponm.cosp) |G) = — (0] 2 |G) (44)

Combining I and IT and expanding E¥oy\ccsp Using (25), we arrive at an expression
where the direct dependence on R* and LX has been replaced by dependence on Tx and HX

(via HW),

I+11= [(oy (LS — QLR)TX|0) + (0| LH |Q) (Q| YT |0)
+ (0| TLH |Q) (Q| RT™ |0) — & (0] LH |Q) (Q| RT* |0>]
+ [<0| LECOT|0) + (0| A R|0Y — e (0| LHOR yo>]
=IIT + IV’ (45)

~

e = (0| (TIR + LY) |0) (46)

Note that based on the assumptions above, ¢ = 0. However, we keep ¢ in the following
derivation for completeness.

The additional terms in III' can now be added to III,

I 4TI = (0| LsV RT3 |0) 4 (0| (1 — 6 — &) LH |Q) (Q| RTX |0) + 6 (0| HTX |0)
+ (0] (LS = QP R)TX[0) + (0] LH |Q) (Q| TT* |0)
+ (0| [1H |Q) (Q| RT*|0)
= (0| =7 |0) (47)
(0IZ1G) = (0] LsV Ry |D) + (0] (1 = 6 — &) LH |Q) (Q| R|G) + 6 (0] H |G)
+ (0] (LS = Q*R) |G) + (0] LH |Q) (Q| T|G)

+(0|IIH |Q) (Q| R|G) (48)

Differentiation of the 7" amplitude equations (2) yields an expression for (G| TX|0), where

12



a pseudo-inverse is no longer required due to the fact that while Eccsp = (0| H |0) is an
eigenvalue of (P| H | P), removal of the reference determinant in (G| H — Eccsp |G) prevents

singularity,

(G| TX(0) = — (G| H — Ecosp |G)™ (G| HY |0) (49)

Using this definition we introduce a final set of de-excitation amplitudes Z,

I+ IIT' = — (0| 2|G) (G| H — Ecosp |G) (G| HY |0)

= (0| ZHX |0)
—1V” (50)
(0| Z(H — Eccsp) |G) = — (0| 2|G) (51)

Finally, the remaining terms IV’ and IV” from above can be combined with IV to yield

the total gradient expression,

EXosm.cospr =1V +IV' +IV”
= (0] TLHYR0) + (0| LHYT |o)
+ (=0 ) (0] LHWR0) + (0] (5 + 2) A% [0)
(0] LVXRa10) + (0] La(VX Ry + V¥Ty 1) [0)

+ (0] L3 FX R4 |0) (52)

—ZDP €)X + > TPI(urd)x (53)

pgrs

where €, = fP. The one- and two-particle density matrices D? and I7{ can be then be
constructed from the various amplitudes and then processed using standard techniques such

as in the computation of the CCSD(T) gradient.?">4
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3 Results

The analytic gradients of EOMEE-CCSD* have been implemented for closed-shell refer-
ence determinants in the development version of the CFOUR program package.?® In this
section, we discuss the validation of our implementation and demonstrate the illustrative
application of analytic EOMEE-CCSD* gradients to a set of excited states. In the geometry
optimization, the following convergence thresholds were used, denoted using the relevant
CFOUR keywords: SCF_CONV = 10~!°, CC_CONV = 10—, LINEQ_CONV = 10~%, ESTATE_CONV =
1078, GEO_MAX_STEP = 50 bohr, and GEQ_CONV = 107 Hartree/bohr, except where indicated.
For detailed information about convergence thresholds please refer to the CFOUR manual

(https://cfour.de).

3.1 Validation

The excited states of formaldehyde have been extensively investigated both experimentally ®®
and theoretically.%6%! In addition, its small system size makes it a great candidate for
validating the correctness of our implementation against numerical differentiation. The
1'Ay(n — 7*) valence excited state is investigated here. The ground state geometry is
obtained from the QUEST2 dataset,% which has been optimized at the CC3/aug-cc-pVTZ
level. The computed EOM-CCSD* gradients (with the aug-cc-pVDZ basis%%*) using both
the analytic gradient we implemented and finite differences of energies agree well with each
other. The differences between the numerical and analytic values for the individual gradient
components were, in all cases, less than 1072 a.u. (see Tables S1 and S2 in the Supporting
Information), which confirmed the correctness of our implementation.

It has been established that the 1'A, state exhibits a non-planar equilibrium geom-
etry.?>%661 Consequently, C; symmetry is employed during optimization. The optimized
geometries and adiabatic excitation energies are summarized in Table 1. The optimized ge-

ometries are compared to lower-level EOM-CCSD and higher-level EOM-CCSDT. To facili-
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tate comparison, experimental data are also included.% % As expected, the triple correction
greatly improved the optimized geometries. One finds < 0.012 A (0.025 A) difference in the
C—-0O bond length, as well as 0.1° (0.5°) and 1.1° (5.7°) difference in the HOH angle and
out-of-plane dihedral, respectively, for EOM-CCSD* (EOM-CCSD) in comparison to full
EOM-CCSDT.

TABLE 1. Optimized geometry of n — 7* excited state of formaldehyde with the aug-cc-
pVTZ basis set.

EOM-CCSD EOM-CCSD* EOM-CCSDT Expt.

rco (A) 1.306 1.323 1.331 1.323¢
ren (A) 1.001 1.091 1.093 1.103¢
/non (°) 119.0 118.4 118.5 118.1¢
Out of plane dihedral (°) 30.4 35.0 36.1 34.0%
T, (eV) 3.72 3.35 3.53 3.50°
a) Ref. 66.
b) Ref. 67.

TABLE 2. Harmonic vibrational frequencies (w / ecm™!), infrared intensities (I / km mol 1)
for the n — 7* excited state of formaldehyde with aug-cc-pVTZ. The numbering of normal
modes follows the assignment in the ground state.

EOM-CCSD EOM-CCSD* EOM-CCSDT Expt.®
Mode w I w I w 1 w
wi(A")  3033.8 7.4 3032.7 3.9 3011.5 3.0 2846
wo(A")  1362.6 14 1353.4 7.5 13428 8.2 1293.1
ws(A’)  1300.8 35.0 1229.2 25.2  1198.1 21.7 1183
we(A")  557.0 56.1 639.1 44.1 655.8 40.2 124.5°
ws(A”)  3140.5 0.8 3140.1 0.0 3121.3 0.0 2968.3
we(A”)  916.4 4.8 929.1 5.7 924.9 6.1 904

(w1) C—H stretching; (w2) CHy bending; (w3) C—O stretching; (w4) out-of-plane
bending; (ws) C—H stretching; (wg) CHa rocking.

a) From ref. 65,68. Frequencies without a decimal point are deduced from com-
bination bands and uncorrected for anharmonicity.

b) The out-of-plane bending mode has a shallow double-well potential which is
not well represented by the harmonic model used here.

When examining the computed adiabatic excitation energies, a notable decrease in exci-

tation energy arises when comparing the energy calculated by EOM-CCSD to EOM-CCSD*
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and EOM-CCSDT. The incorporation of triple excitations in the wave function markedly
decreases the adiabatic excitation energies. While the reported experimental T, value lies
between the EOM-CCSD and EOM-CCSD* results, the significantly improved agreement
with full EOM-CCSDT indicates a better treatment of electron correlation and geometric
relaxation, while additional factors such as basis set completeness would be needed to more
closely match experiment.

Harmonic vibrational frequencies and infrared intensities have been obtained by numer-
ical differentiation of analytic energy derivatives and dipole moments at the optimized ge-
ometries and are presented in Table 2. From these results, we can confirm that the optimized
geometry corresponds to a minimum. The frequencies computed using EOM-CCSD* align
closely with those from EOM-CCSDT, displaying a consistent trend converging towards

experimental data.

TABLE 3. Optimized geometry of s-tetrazine 1'Bg, (n — 7*) state with the basis
set cc-pVTZ. Experimental uncertainties in the last significant digit(s) are given in
parentheses.

Parameter TCcH (A) TCcN (A) NN (A) ZHCN (O) Te (eV)
Ground state 1.078 1.336 1.323 116.6
EOM-CCSD 1.077 1.328 1.312 1194 2.513
EOM-CCSD* 1.077 1.330 1.318 119.2 1.899
CASSCF* 1.067 1.329 1.305 121.4
CASPT2* 1.073 1.333 1.321 121.5
Mk-MRCCSD? 1.325 1.309 2.642
Expt.© 1.063 1.324 1.349 123.2 2.136¢
Expt.© 1.358(10) 1.28(2)  118.5(14)
a) Ref. 69
b) Ref. 70
c) Ref. 71
d) In solid benzene, Ref. 72
e) Ref. 73
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3.2 n — 7" states of s-tetrazine

Excited states of s-tetrazine are of great interest in the scientific community, as neatly sum-
marized in the introduction of the work by Angeli. ™ The ground state geometry was obtained
from the QUEST?2 dataset,® which has been optimized at the CC3/aug-cc-pVTZ level. In
this study, we focus on the two lowest excited singlet states of Bs, and By, symmetry. The
B3, n — 7" excited state is predominantly characterized by the configuration where a single
electron is promoted from the highest occupied molecular orbital b3, to the lowest unoccu-
pied molecular orbital a,. Previous research has demonstrated that the first excited state
exhibits Dgy, symmetry,% thus guiding our optimization search to only symmetric struc-
tures. The optimized geometries and adiabatic excitation energies are succinctly presented
in Table 3. Consistent with previous studies, >7%7 the change in geometry upon electronic
excitation is small. While minimal disparities are noted in the optimized geometries between
the EOM-CCSD and EOM-CCSD* calculations, there is a small but consistent elongation in
the aromatic bond lengths when going from EOM-CCSD to EOM-CCSD*, in opposition to
the general contraction of all bonds relative to the ground state. As previously observed, the
inclusion of triple excitations substantially reduces the adiabatic excitation energy by 0.61
eV. For comparison, results from additional theoretical studies and experimental findings
are included in Table 3.

The Byy n — 7" excited state is characterized by a mixed configuration of single exci-
tation 4by, — la, and double excitation 1b1,3b3, — la,la,.™ The optimized geometries
are summarised in Table 4. In contrast to the Bs, excited state where small contractions of
all bonds upon excitation are predicted, the By, excited state relaxes to a geometry with a
>0.13 A elongation of the N—N bond length and a > 0.015 A contraction of the C—N bond
length. The elongation of the N—N bond can be partially explained by the excitation from
bonding 1b,, 7 orbital to the anti-bonding la, 7 orbital. Similar to previous observations,
EOM-CCSD* results in larger aromatic bond lengths compared to EOM-CCSD. The triples

correction reduces the adiabatic excitation energy by 0.745 eV. This larger drop in energy
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upon introduction of triples likely reflects the increased double-excitation character in the
excited state.

TABLE 4. Optimized geometry of s-tetrazine 1'By, (n — 7*) state mixed with double
excitation with basis set cc-pVTZ.

Parameter  rcg (A) rexn (A) ran (A) Zuen () To (eV)
Ground state 1.078 1.336 1.323 116.6
EOM-CCSD 1.081 1.319 1.453 117.2 5.162
EOM-CCSD* 1.081 1.321 1.461 117.1 4.417

3.3 1'A’ state of cytosine

Cytosine, as one of the building blocks of life, has evoked keen interest in multiple areas.™

It has been the motivation of experimental and theoretical efforts to characterize the nature
and the properties of the lowest electronically excited states.!” 782 The lowest bright singly-
excited state, which is of m — 7* character, is of interest in this work. It is recognized that
the optimization of excited states frequently leads to relaxed non-planar geometry. 7683 Thus,
C; symmetry is used during optimization. Cytosine presents a major challenge to numerical
differentiation in terms of computational cost, as it has 33 internal degrees of freedom (and
typically the numerical gradient for all 36 non-translational degrees of is calculated). Here,
the ground state geometry is optimized at the MP2/cc-pVTZ level, while the excited state is
optimized with the smaller cc-pVDZ basis set. The optimized geometries are summarized in
Table 5, and the molecular structure of cytosine is shown in Figure 1. For EOM-CCSD, only
geometries with RMS force convergence below 1075 a.u. are presented, and are constrained
to a planar geometry. Continuous unconstrained optimization results in significant distortion
of the ring structure, making convergence and accurate assignment challenging, particularly
due to mixing with the lowest n — 7* state. For EOM-CCSD*, geometries with RMS force
convergence below 10~7 a.u. are presented. The more facile convergence of EOM-CCSD*
could be due to the more accurate relative energies of the 7 — 7* and n — 7* states which

sensitively controls the strength of the pseudo-Jahn-Teller (PJT) effect and hence the extent
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of electronic mixing.** EOM-CCSD and EOM-CCSD* results show consistent trends in
bond length changes. While the C¢—N; and Cg—Ng bonds contract, all other bonds exhibit
elongation. Aligning with prior research, 818 the decay of the # — 7* state involves
the carbonyl bond stretching and the pyramidalization of Cyy and Ng. Further frequency
calculation confirmed it as a minimum (see Table S3 in Supporting information). The largest
differences in bond lengths between EOM-CCSD and EOM-CCSD* are on the order of 0.025
A, while bond angles differ by as much as 9.1° (although the bond angle differences are likely

overstated due to the restriction of the EOM-CCSD geometry to planar).

O

FIGUuRE 1. Cytosine structures. (A) Cytosine structure labeled with atom indices. (B)
The geometric comparison between the ground state (blue) and optimized excited state with
EOM-CCSD* (orange), molecules are in the same orientation as shown in A.

4 Conclusion

It has been shown that the effect of triple excitations is important to achieving ~ 0.1 eV
accuracy of transition energies.®? Despite numerous variants that approximately integrate
triples effects into EOM-CCSD which have emerged over the years, the absence of ana-
lytic gradients remains a challenge. In response, this study introduces the formulation and
implementation of analytic nuclear gradients for EOMEE-CCSD*.

We showcase the applicability and efficiency of this advancement through demonstrative
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TABLE 5. Optimized bond lengths (r, A), bond angles (£, °), and dihedral angles (¢, °) of
the cytosine m — 7* state with basis set cc-pVDZ. EOM-CCSD RMS forces are converged
to 1075 a.u., see SI for convergence details; EOM-CCSD* RMS forces are converged to 10~7
a.u.

Parameter Ground state EOM-CCSD EOM-CCSD*

Ty, 1.314 1.417 1.425
TNy 1.354 1.376 1.401
TH, N, 1.000 1.008 1.019
THs N 1.004 1.009 1.020
TCoN, 1.373 1.323 1.314
rO,—Cs 1.218 1.269 1.287
INe—Ce 1.414 1.410 1.410
Py N 1.008 1.015 1.016
rCryoNe 1.351 1.384 1.391
Tty —Cio 1.080 1.089 1.090
T Cra—Cro 1.355 1.436 1.433
T 1.077 1.094 1.096
[N, —Cy—Ns 117.0 112.2 112.8
LCy—Ny—Hy 121.8 122.0 112.9
LGy Ny—Hs 118.0 117.8 110.0
LCy—N,—Cs 120.0 116.1 115.7
[N, —Co—0r 125.2 123.5 123.7
/N, —Cg—Ng 116.1 123.6 123.6
£ Cy—Ng—Hy 115.0 115.5 115.4
£ Cy—Ng—Cro 123.8 121.8 119.7
/Ng—Cio—Hus 117.0 118.7 118.8
/Ng—Cio—Cra 119.8 115.9 115.7
£ Cro—Cia—His 121.4 119.1 119.5
DN, —CyNa—H,s 180.0 180.0 153.7
DNy —Cy—Na—Hs 0.0 0.0 30.1
B N1 —Cy Ny 180.0 180.0 164.7
DCy—Ny—Co—Or 180.0 180.0 -178.8
BCy—Ny—Co—Ny 0.0 0.0 2.3
DN, —Co—Na—Ho 180.0 180.0 177.3
DN, —Co—Na—Cro 0.0 0.0 16.4
B Ce—Na—Cro—His 180.0 180.0 160.7
¢CG_N8_CIO—CIQ 0.0 0.0 -21.1
ONg—Cro—Cratls 1800 180.0 -170.9
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applications on formaldehyde, s-tetrazine, and cytosine systems.

By streamlining the development and implementation of analytic gradient theory for
this method, our work not only facilitates in-depth investigations with better accuracy but
also substantially broadens the horizons for formulating analytic gradients and consistent
properties for complex electronic structure methods spanning both the ground and excited

states.
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