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Abstract

Coupled cluster theory has had a momentous impact on the ab initio prediction of

molecular properties, and remains a staple ingratiate in high-accuracy thermochemical

model chemistries. However, these methods require inclusion of at least some connected

quadruple excitations, which generally scale at best as O(N9) with the number of basis

functions. It is very difficult to predict, a priori, the effect correlation past CCSD(T) has

on a given reaction energy. The purpose of this work is to examine cost-effective quadru-

ple corrections based on the factorization theorem of many-body perturbation theory

that may address these challenges. We show that the O(N7), factorized CCSD(TQf)

method introduces minimal error to predicted correlation and reaction energies as com-

pared to the O(N9) CCSD(TQ). Further, we examine the performance of Goodson’s

continued fraction method in the estimation of CCSDT(Q)Λ contributions to reaction

energies, as well as a “new” method related to %TAE[(T)] that we refer to as a scaled

perturbation estimator. We find that the scaled perturbation estimator based upon

CCSD(TQf)/cc-pVDZ is capable of predicting CCSDT(Q)Λ/cc-pVDZ contributions to
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reaction energies with an average error of 0.07 kcal mol−1 and an L2D of 0.52 kcal mol−1

when applied to a test-suite of nearly 3000 reactions. This offers a means by which to

reliably “ballpark” how important post-CCSD(T) contributions are to reaction energies

while incurring no more than CCSD(T) formal cost and a little mental math.
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Introduction

Coupled cluster (CC) theory provides a systematically improvable route toward capturing

the instantaneous electron correlation of small to medium-sized molecules. By modulating

the maximal rank of the cluster operator according to calculation affordability and/or the

desired accuracy, a hierarchy of CC methods are available albeit using algorithms that scale

as increasingly high-order polynomials. This feature of CC theory has made it the method

of choice for so-called composite model chemistries, which describe procedures by which to

predict experimental measurements of molecular properties such as bond energies or vibra-

tional frequencies to a given degree of accuracy/precision/trueness via computed, or easily

obtained, values.1 The exact details of which coupled-cluster contributions are included with

which basis sets depends on the goals of the model chemistry in question. High-accuracy

model chemistries, which seek to determine molecular enthalpies of formation to within 1

kJ mol−1, such as HEAT,2–5 Wn,6–11 FPA,12–16 FPD,17–23 and others (see Ref. 1), gen-

erally include not just CCSD(T)24,25 with a sizeable basis set, but also some amount of

instantaneous four-electron correlation via CCSDT(Q), 26–28 CCSDTQ,29 or, more recently,

CCSDT(Q)Λ,28,30 typically in a cc-pVDZ basis set. On the other hand, model chemistries

that seek chemical accuracy (one kcal mol−1 within experimental measurements), such as

G-n31–35 and CBS,36–41 among others,1 generally stop at CCSD(T) with a relatively small

basis set, as they target systems for which CCSD(T) itself is already an expensive calcu-

lation. While it is recognized that the neglect of post-(T) corrections, often referred to as

higher-level correlation (HLC) corrections, in multireference systems is dangerous, it is also

true that the absence of these terms in a model chemistry aiming for chemical accuracy

introduces errors that, even for well behaved species, may put the goal of sub-kcal mol−1

accuracy in danger when combined with other approximations that must be made to reduce

cost. Further, it is difficult to tell, quantitatively, when this will be the case a priori. The

purpose of this work is to investigate some routes towards estimating the size of this post-

CCSD(T), non-relativistic electron correlation, without incurring any increase in formal cost
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beyond O(N7) already expended in CCSD(T).

This effort naturally begins with perturbation theory. Initial attempts to increase the

accuracy of CCSD24 centered on accounting for the effect of the T3 triple electron exci-

tation operator, either perturbatively24,25,42–45 or iteratively.46–48 These efforts eventually

culminated in the O(N8) CCSDT method.49 Pursuit of increasingly accurate calculations

lead to similar attempts at incorporating quadruple electron excitations into the underlying

CC framework.26–28,50,51 The groundwork for perturbative treatment of quadruple excitation

operators like [Q], (Q), and (Q)Λ was originally postulated by Kucharski and Bartlett, 27,30

which naturally lead to the O(N10) CCSDTQ method.29,52 A later derivation by Bomble

and Stanton used Löwdin’s partitioning on a CCSDT reference to derive the versions of

CCSDT(Q) and CCSDT(Q)Λ that have been employed in high-accuracy thermochemistry,

and resolved ordering issues similar to those that plague the definitions and performance

of +T, [T], and (T).3,28 Of particular note is that perturbative triple corrections like [T] or

(T), and perturbative quadruple corrections like [Q] or (Q), are O(N) cheaper than their

counterparts that are complete through a given cluster operator rank. An important conse-

quence of this reduced scaling is the capability not only to address larger molecular systems,

but also to employ larger atomic basis sets in higher-level correlation calculations of small

systems when exceedingly high accuracy is called for. 53,54

However, in spite of the order O(N) in savings afforded by using methods like CCSDT(Q)Λ

(which scales as O(N9)) as compared to full CCSDTQ, this is a far cry from the O(N7) cost

of CCSD(T). The first step to reduce this cost is to remove the need to perform the itera-

tive CCSDT component of these methods (an O(N8) procedure), typically by replacing the

converged T3 CC amplitudes with a denominator-weighted contraction of T2 with the Hamil-

tonian, as is done in CCSD(T). The remaining cost then arises from contractions with the

Fock denominator, D4—in this case, a 8-index tensor—used to construct an approximation

to the T4 operator. These methods are typically referred to as CCSD(TQ). 30 A reasonable

way to reduce the algorithmic scaling, and the central point of this manuscript, focuses on
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eliminating the 8-index, T4 denominator by invoking the factorization theorem of MBPT. 55,56

This allows for the elimination of the D4 denominator in exchange for a product of two, 4-

index denominators (e.g. DA
2 D

B
2 ), which is the idea used to define the Qf correction57–59

that facilitates an estimate of connected quadruples excitations at O(N7) cost. Initial stud-

ies of these factorized methods focused on a small selection of molecules, with the general

conclusion being that negligible error was introduced into the calculation by adopting the

Qf method over analogous, but more expensive quadruple corrections. 30,42,60–63 Later bench-

marks studied the performance of a variety of methods in the prediction of ground state

correlation energies.64,65 However, a robust analysis of these factorized approaches centered

in the realm of accurate thermochemistry remains largely unexplored.

After establishing the accuracy and characteristics of this factorization approximation,

this work will investigate how a low-order approximation of the importance of the T4 oper-

ator might be correlated with the size of post-CCSD(T) contributions of the more complete

CCSDT(Q)Λ method,27,28,30 which has recently been demonstrated as a very accurate higher-

level correlation approximation.11,54,66–69 Although several indices have been proposed to in-

dicate a strong deficiency in the zeroth-order approximation to the wavefunction 70–84, which

usually coincides with large HLC corrections, there are limited means by which to correlate

these metrics with a quantitative estimate of post-CCSD(T) contributions in thermochem-

istry. This is further complicated by the fact that many multireference indices do not display

a strong statistical correlation with the size of the higher-level correlation (HLC) terms in

model chemistries, see Ref. 82 and references therein. A notable exception to this statement

are several “energy-based” diagnostics such as Martin’s %TAE[(T)] 8,66 and DFT-based diag-

nostics.82,83 Additionally, approaches based on Goodson’s continued fraction formalism have

seen some success in the prediction of post-CCSDTQ correlation. 85–87

The remainder of this manuscript is organized as follows. First, we briefly introduce the

theory behind the CCSD(T)-scaling methods that are the focal point of this work. We then

describe how these methods are benchmarked against a subset of the W4.17 dataset, 88 and
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how this dataset is expanded to included several thousand chemical reactions. We then use

these test-suites to analyze the errors incurred by factorizing the quadruple excitation con-

tributions of these CCSD(T)-scaling methods, along with the size of the correlation missing

between these methods and CCSDT(Q)Λ, in the context of both raw correlation energies

and reaction energies. Finally, we present a novel predictor of post-CCSD(T) higher-level

correlation based upon these factorized quadruples methods that serves as a reliable guide

as to when HLC effects need to be accounted for in a model chemistry.
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Theory

Coupled Cluster Theory and Perturbative Quadruples Corrections

Coupled cluster theory is an exponential parametrization of the wavefunction

|Ψ⟩ = eT |0⟩ (1)

for some single reference Slater determinant |0⟩. The cluster operator, T , is expressed in

terms of a sum of individual operators responsible for single, double, · · · , up to n-fold

electron excitations

T = T1 + T2 + · · ·+ Tn (2)

In the limit where the cluster operator is left untruncated, the FCI wavefunction is rigorously

recovered. Otherwise, a truncation point is chosen to include up to a maximal rank cluster

operator, Tk defined as

Tk = (k!)−2
∑

tab···ij··· a
†b† · · · ji (3)

The definition for the normal-ordered Hamiltonian is

HN =
∑
pq

fpq{p†q}+
1

4

∑
pqrs

⟨pq||rs⟩ {p†q†sr} (4)

= fN +WN (5)

which is expressed in terms of one and two body integrals. In this work we assume a

canonical (Hartree–Fock) reference determinant such that fpq = δpqϵp, with ϵp being the

orbital energies.

As there is some ambiguity in the literature, we wish to define the pertinent quadruple
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corrections that are the focal point of this study in the interest of clarity. We adopt the

nomenclature [Q] to mean the energy correction associated with quadruple excitations correct

through fifth-order in MBPT,42 given by

∆E
[5]
[Q] = ⟨0|T †

2WNT
[3]
4 |0⟩ (6)

where the approximation to T4 is correct through third-order in MBPT and only includes

connected (C) diagrams

T
[3]
4 = R4

(
WN

T 2
2

2
+WNT3

)
C

(7)

The resolvent operator, Rn, is defined as

Rn(X) = (n!)−2
∑ ⟨Φab···

ij··· |X|0⟩
ϵi + ϵj + · · · − ϵb − ϵa

a†b† · · · ji (8)

and is used to enforce the projection of a pure excitation operator onto the proper subspace.

For example, with the double excitation cluster operator T2 represented as a graphical frag-

ment with external indices A = {a, b, i, j}, then R2(T2) =
1
4

∑
abij

tabij
ϵi+ϵj−ϵb−ϵa

a†b†ji, which is

the same operator with amplitudes divided by denominators DA
2 = ϵi + ϵj − ϵb − ϵa. Infor-

mally, we can also write the action of the resolvent as, for example, R2(T2) = D−1
2 T2, and

similarly, with a modified definition, the resolvent can be applied to de-excitation operators

such as R2(T2)
† = T †

2D
−1
2 .

At this point, it is prudent to briefly review the tenets of the factorization theorem in

MBPT. We first note that the first-order approximation of T2 is

T2 ≈ T
(1)
2 = R2(WN) = D−1

2 WN (9)
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This allows (6) to be rewritten through fourth order as

⟨0|WND
−1
2 WNT

[3]
4 |0⟩ (10)

The two WN operators must be disconnected since they only contain double de-excitation

components. Thus, the external indices spanned by the quadruple excitation fragment T
(3)
4

can be split into two doubly-excited parts, as can the associated orbital energy denominator,

D4 = ϵi+ ϵj+ ϵk+ ϵl− ϵa− ϵb− ϵc− ϵd = (ϵi+ ϵj− ϵa− ϵb)+(ϵk+ ϵl− ϵc− ϵd) = DA
2 +DB

2 . The

index groups A and B are associated with the two WN fragments. Due to the symmetry of

T4, however, we can associate the index groups to the fragments in either order. Finally, we

introduce the identity as D−1
4 D4. This leads directly to the factorization

⟨0|T (1)†
2 WNT

[3]
4 |0⟩ = 1

2
⟨0|

(
WA

N (D
A
2 )

−1WB
ND−1

4 D4T
[3]
4 + (11)

WB
N (DB

2 )
−1WA

ND
−1
4 D4T

[3]
4

)
C
|0⟩ (12)

=
1

2
⟨0|

(
WA

N (D
A
2 )

−1WB
N (DB

2 )
−1D4T

[3]
4

)
C
|0⟩ (13)

=
1

2
⟨0|T (1)†

2 T
(1)†
2

(
WN

T 2
2

2
+WNT3

)
C

|0⟩ (14)

where the factor of 1/2 arises because of the two equivalent orderings, and we have used the

fact that D4 = DA
2 +DB

2 . From (7), the application of D4 to T
(3)
4 “undoes” the four-electron

resolvent and removes the denominator coupling of the eight external indices. Kucharski

and Bartlett used this transformation as a basis to propose what they referred to as the (Qf)

correction,57,58 which is given to be

E
[5]
(Qf )

=
1

2
⟨0|T †

2T
(1)†
2

(
WN

T 2
2

2
+WNT3

)
C

|0⟩ . (15)

where the reintroduction of the full T †
2 provides additional higher-order terms. It should be

noted that despite the notation (Qf) is a factorized version of the [Q] (“bracket Q”) correction
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in (6), rather than the (Q) (“parentheses Q”) correction described below. An overview of the

factorization theorem as it pertains to coupled-cluster theory is discussed elsewhere. 89

What we refer to as the (Q) correction includes an additional term to those of (6). This

is shown to be27,28,30

∆E(Q) = ∆E[Q] + ⟨0|T †
3WNT

[3]
4 |0⟩ (16)

with T
[3]
4 given by (7). The distinction between these methods is shown diagramatically in

Fig. 1. Note that this extra term would show up as a sixth-order correction to the energy if

taking an expectation value coupled cluster (XCC) viewpoint. 50,90,91 Additionally, this term

is not factorizable—meaning there is no way to improve the O(N9) scaling of the second

term in (16) which is shown diagramatically in Fig. 1C. A final non-iterative quadruples

correction is given by28

∆E(Q)Λ = ⟨0|Λ2WNT
[3]
4 |0⟩+ ⟨0|Λ3WNT

[3]
4 |0⟩ (17)

where Λ are the left-hand wavefunction components of the coupled cluster ground state.

The complete coupled cluster methods and total correlation energies defined by these

various approximation, as used in this work, are CCSD(TQ) (ECCSD(TQ) = ECCSD(T)+∆E[Q]),

CCSD(TQf) (ECCSD(TQf) = ECCSD(T) +∆E(Qf)), CCSDT[Q] (ECCSDT[Q] = ECCSDT +∆E[Q]),

CCSDT(Q) (ECCSDT(Q) = ECCSDT + ∆E(Q)), and CCSDT(Q)Λ (ECCSDT(Q)Λ = ECCSDT +

∆E(Q)Λ). All of the coupled cluster methods used here have been previously published,

and we urge readers to review the original work for the full working equations and other

details.26–28,30,42,50,57–63

Higher-Level Correlation Predictors

This work attempts to provide a quantitative means by which to estimate the correlation en-

ergy missing at the conclusion of a CCSD(T) calculation. As recent work has demonstrated
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Figure 1: Comparison of the pertinent diagrams defining various, perturbative approxima-
tions targeting quadruple excitations. Red, horizontal lines indicate denominators. A) The
two diagrams defining the (Qf) approximation. B) The two diagrams defining the [Q] approx-
imation. C) These two diagrams in addition to those in B) define the (Q) approximation.
In the (Q)Λ approximation the top T † vertices in (Q) are replaced by Λ.
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the capabilities of CCSDT(Q)Λ to act as a second Pauling point in the CC expansion (the

“platinum standard” in comparison to CCSD(T)’s “gold standard”), we will define the resid-

ual higher-level correlation (HLC) as ∆EHLC = ECCSDT(Q)Λ − ECCSD(T).11,53,54,68,69 Previous

diagnostics of the multi-reference nature of a given molecule are not generally correlated

with a quantifiable prediction of the influence of HLC effects on, say, a bond energy. An

exception to this, however, is the work of Goodson in 2002, 85 which was later extended by

Schröder and coworkers in 201592 and made use of in some FPD model chemistries.87,93,94

Goodson used continued fractions and truncated Padé approximants to derive three for-

mulas for predicting the post-CCSD(T) electron correlation energy ∆EHLC:

∆Ecf =
E2

CCSD

E0

+
∆E2

(T)

ECCSD
+ 2

ECCSD∆E(T)

E0

(18)

∆ER =
∆E2

(T)

ECCSD
+

∆E3
(T)

E2
CCSD

(19)

∆EQ = 2
∆E2

(T)

ECCSD
+ 5

∆E3
(T)

E2
CCSD

(20)

where E0 is the SCF reference energy, ECCSD is the CCSD correlation energy, and ∆E(T)

is the perturbative triples contribution from CCSD(T). We will refer to these methods, in

order, as CF, R, and Q. In this work, we will also apply these approximations to CCSD(TQf),

in which case we define ∆E(TQf) ≡ ECCSD(TQf) − ECCSD = ∆E(T) + ∆E(Qf) and use that in

place of ∆E(T).

It should be noted that Goodson’s continued fraction formula (18) could be extended to

take the (Qf) correction as a separate contribution in a similar manner to Schröder et al., 92

although we have not done so here.

A better-known alternative to Goodson’s continued fraction approach is the %TAE[(T)]

metric of Martin.8,66 Specifically devised in the context of total atomization energies—which,

at the time, were the primary means of determining ab initio predictions of enthalpies of

formation of small molecules—the %TAE[(T)] is determined by calculating the contribution
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of the perturbative triples portion of CCSD(T) to an atomization energy of some species X,

%TAE[(T )](X) ≡
NC∆E(T)(C) +NN∆E(T)(N) +NO∆E(T)(O) + · · · −∆E(T)(X)

NHESCF (H) +NCECC(C) +NNECC(N) + · · · − ECC(X)
, (21)

where NH , NC , NN , NO are the number of hydrogen, carbon, nitrogen, and oxygen atoms in

the species X, ∆E(T)(X) is the perturbative triples contribution to the energy of a given

species (as above), and ECC(X) is the full CCSD(T) energy (both SCF and correlation)

of a given species. This method has been demonstrated to be a good predictor of when

electron correlation beyond CCSD(T) is important in model chemistries based upon total

atomization energies,8 but is not usually extended to general chemical reactions, a point that

will be addressed later in this manuscript.
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Methods

Chemical Test-Suite

In order to benchmark the errors associated with the factorization of the D4 denominator

via CCSD(TQf), we have constructed two test-suites drawn from the singlet species of the

W4.17 dataset88 containing the atoms H, B, C, N, O, and F. These species span a range

of chemical properties and bonding—from those well described by single reference methods,

such as water, to those of decidedly multi-reference character, such as BN and C2—and total

93 individual molecules. The first test-suite is composed of the absolute correlation energies

of these compounds. This metric contains information about the trueness 95 of the quantum

chemical methods applied to correlation energies without fortuitous or designed cancellation

of errors, but is applied to properties of molecules that cannot be determined experimentally.

The second test-suite, the “reaction” suite, is constructed by extending the ANL-n scheme

for determining enthalpies of formations of molecules. 96 In that work, the enthalpy of for-

mation of a molecule containing only H, C, N, and O atoms was obtained by balancing a

chemical reaction where the reactants (LHS) contains the species of interest, the products

(RHS) contains an appropriate number of CH4, NH3, and H2O as “reference species” to bal-

ance the atom count of the LHS, and additional H2 molecules are added to the reactants

or products in order to balance the remaining H atoms. This work extends this scheme in

two ways. First, we add B2H6 and HF as reference species for the B and F atoms. Second,

we extend the scheme to include non-reference molecules in not just the reactants, but also

in the products of the chemical reaction, which are then balanced with the species of the

reference set (H2, B2H6, CH4, NH3, H2O, and HF). By considering all unique pairs of non-

reference molecules as reactants/products, this test-suite is expanded from a comparatively

small number of species to a much more significant number of chemical reactions (93 species

and 2859 reactions in the case of the cc-pVDZ basis set,97 and 73 species and 1600 reactions

in the case of the cc-pVTZ basis set97). The reactions contained within span a considerable
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range of chemical space, from simple decompositions such as H2CCH2 → HCCH + H2 to

complicated reactions such as BF3 +NH3 → BN+3 HF, which preserve little-to-no bonding

from the products to reactants. The species, reactions, and raw energetic data for all results

presented below may be generated from the data and scripts in the Electronic Supplementary

Information.

It should be noted that great care must be applied to the training or fitting of any model

to the information contained within this reaction energy test-suite. The reaction energies

contained within will be significantly, though subtly, influenced by the set of reference species

chosen to balance the left and the right hand side of the chemical reactions. That is, a great

majority of the reactions in this reaction energies suite will be connected to a subset of

reference molecules containing only six species, and any model trained to minimize errors

in the chemical behavior may fall dangerously close to overfitting any information that

correlates with features of these six molecules. In the language of machine learning, we

would term the absolute energy test-suite as the “training” set, and the reaction test-suite

as the “validation” set.98 It is perhaps informative that the former in our case is far smaller

than the latter; indicative of our desire to remain as ab initio as possible in our approach

and to avoid (or at least minimize) the aforementioned dangers of fitting the specific reaction

scheme utilized.

Software

The closed-shell data generated in this work was obtained via the NCC module of the

CFOUR quantum chemistry package,99 using the current development version. All calcu-

lations were sufficiently converged such that numerical noise is several orders of magnitude

below the statistics presented here. The (Qf) contributions for the open-shell atoms were

determined using a Python package designed for rapid prototyping of coupled cluster meth-

ods,100 which in turn relies on an interface to PySCF for one and two-body integrals.101 The

open-shell CCSDT(Q)Λ calculations were performed using the general CC code, MRCC, of
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Kállay and coworkers.102 All post-SCF calculations include only valence correlation.

Basis Sets

The basis sets tested include Dunning’s cc-pVDZ and cc-pVTZ, 97 with the majority of the

results obtained using the small cc-pVDZ basis set. This is a result of three independent

considerations. First, the effects of quadruple excitations in the majority of high-accuracy

model chemistries are determined using this basis set, even if the increment from CCSD(T)

to CCSDT is often treated with a cc-pVTZ or larger basis. Second, the purpose of this work

is not to replace the HLC terms of these model chemistries, but rather to demonstrate that

the magnitude and sign of these corrections can be estimated using perturbation theory, and

cc-pVDZ is sufficient for this purpose. Third, it has been previously reported that CCSDT[Q]

displays basis-set dependence discordant with that of CCSDT(Q) and CCSDT(Q)Λ, accu-

mulating undesirable errors with basis sets larger than cc-pVDZ. 28 This may need to be

accounted for if one were to attempt to include the fifth-order (Qf) and [Q] corrections in

a model chemistry, but as our purpose is simply to provide guidelines for estimating HLC

contributions, we will put this issue aside.

Analysis

The statistical analysis of the absolute and reaction energy test-suites discussed above was

performed with the R language,103 with scripts available in the SI. Each statistical measure-

ment reported below was further characterized by BCa (bias-corrected and accelerated) 104,105

analysis of ten-thousand bootstrap replicas106 in order to establish 95% confidence intervals,

all performed using the boot package105,107 in R version 4.3.3 (2024-02-29). As we are most

interested in the “trueness” 95 of the methods investigated here, we define a new error measure
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as the (bias corrected) l2 norm of the deviations xi (denoted L2D),

L2D =

√∑N
i=1 x

2
i

N − 1
, (22)

which is also identical to the usual standard deviation formula with the average measurement

x̄ taken as zero.
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Results and Discussion

Factorization Error: CCSD(TQ) vs CCSD(TQf)

To characterize errors that might arise by factorizing the D4 denominator as in the CCSD(TQf)

method, our initial results focus on the raw correlation energy differences between the fifth-

order [Q] and [Qf] corrections. The top panel of Fig. 2 displays a histogram of the difference

between the fifth-order [Q] and (Qf) correlation energies applied to the absolute energy

test-suite calculated with the cc-pVDZ basis set. As shown by the histogram itself, the

CCSD(TQf) and CCSD(TQ) energies coincide to a remarkable degree. This analysis is

corroborated in Table 1, which records an average error of 4.2 µEH, with an asymmetric

95% confidence interval that skews toward (Qf) slightly under-predicting [Q]. The reported

L2D value of 24.9 µEH is exceedingly small, and the only outliers are BN and C2, which

are particularly nasty species in this test-set. These results corroborate previous findings

in the literature, which demonstrated small errors incurred by this factorization in smaller

datasets.42,58,62

This trend continues when analyzing the impact of these quadruples’ corrections to re-

action energies of the reaction energy test-suite calculated with the cc-pVDZ basis, as illus-

trated in the bottom panel of Fig. 2. Here, we again find a tight error distribution centered

around a mean value -1.5 cal mol−1, with outliers corresponding to reactions containing C2

and BN. As shown in Table 1, the 95% confidence interval is very tight, with an L2D of 28.1

cal mol−1—entirely negligible on the scale of chemical accuracy (1 kcal mol−1).

Results for the smaller cc-pVTZ test-suites for molecular correlation energies and reaction

energies track with those found at the cc-pVDZ level. We find that (Qf)/cc-pVTZ tends to

underestimate both raw correlation and reaction energies. Table 1 documents the mean

error in the prediction of raw correlation energies to be 7.95 µEH using the larger cc-pVTZ

basis set, with a L2D of 22.9 µEH. Reaction energies determined using the cc-pVTZ basis

set tend to slightly increase the mean error to -2.6 cal mol−1 and decrease the L2D to 22.4
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cal mol−1, compared to cc-pVDZ. There is virtually no impact in L2D between the cc-pVDZ

and cc-pVTZ basis sets, which seems to indicate that the factorization of [Q] into (Qf) is not

a highly basis-set dependent approximation, even if the [Q] correction itself is.

In summary, we find that the errors arising from the factorization of D4 in CCSD(TQ)

to be manifestly negligible in both the description of correlation energy and in correlation

energy contributions to reaction energies.
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Figure 2: Histogram of the error incurred by factorizing the D4 denominator in
CCSD(TQ)/cc-pVDZ correlation energies (top) and contributions to reaction energies (bot-
tom). Outliers on the left and right hand side of the x-axis are BN and C2 (top) and reactions
involving these species (bottom).

Scaled-Perturbation Estimators of Higher-Level Correlation

Having determined that the factorization approximations in CCSD(TQf) introduce no sig-

nificant errors on the scale of kcal mol−1 accuracy, we may being to consider what role these

methods might play in model chemistries. To this end, Fig. 3 displays histograms of the

difference between CCSDT(Q)Λ (our “platinum standard” method for post-CCSD(T) cal-

culations) and CCSD(T)/CCSD(TQf) in the context of cc-pVDZ contributions to reaction
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Table 1: Mean signed error (MSE), L2D, and max absolute error (MAXE) values incurred
by the factorization of the D4 denominator in CCSD(TQf) for both absolute correlation
energies and the test-suite of reaction energies. Subscripts and superscripts correspond to
95% confidence intervals determined via BCa analysis of 10,000 bootstrap samples.

Absolute Energy (µEH)
cc-pVDZ cc-pVTZ

MSE 4.2+4.5
−7.0 8.0+5.4

−4.5

L2D 24.9+19.2
−14.4 22.9+16.3

−9.1

MAXE 154.2 129.9

Reaction Energy (cal mol−1)
cc-pVDZ cc-pVTZ

MSE −1.5+1.4
−1.3 −2.6+1.1

−1.1

L2D 28.1+4.6
−3.9 22.4+2.7

−2.5

MAXE 227.5 168.9

energies. The mean signed error, L2D, and max absolute errors are also tabulated in Ta-

ble 3 (under the “None” column, indicating that no additional correction or extrapolation is

applied). In general, we find that CCSD(T) displays smaller mean HLC contributions than

CCSD(TQf) (0.05 vs 0.10 kcal mol−1), along with reduced L2D (0.66 vs 0.77 kcal mol−1)

of the missing HLC, but with larger maximum errors (5.53 vs 4.00 kcal mol−1). While

CCSD(TQ) has been shown to improve the treatment of total correlation energies 42,58,62 (a

result we have also observed in the process of performing this study), the inclusion of fifth-

order quadruples corrections at the CCSD level of theory does not improve the prediction of

reaction energies, and in fact harms it.

However, a more prescient application of CCSD(TQf) is not as a direct substitute for more

complete theories such as CCSDT(Q)Λ, but rather as a predictor of them. For instance,

we may ask the following question: “given just a CCSD(T)-cost calculation, might it be

possible to estimate the size of the missing HLC terms to, say, one or two kcal mol−1”?

Tacit within our attempt to address this question are three critical approximations: that the

cc-pVDZ basis set is sufficient to represent post-CCSD(T) correlation (model chemistries

aiming for kcal mol−1 accuracy may find this cumbersome and model chemistries aiming for
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CCSD(TQf)/cc-pVDZ (right) for reaction energies.

kJ mol−1 accuracy may find this insufficient), that CCSDT(Q)Λ is a sufficient representation

of correlation effects after CCSD(T) (evidence indicates that this is true for well-behaved

species, but it may not be sufficient for multireference molecules such as C2 and BN, see Refs.

11,53,54,66), and that core-valence correlation beyond CCSD(T) may be be safely neglected

for accuracy on the scale of one to two kcal mol−1 (which is certainly true for molecules

containing atoms Z ≤ 10, but not so obviously true for heavier atoms).

Related versions of this question have been asked before, specifically in the pursuit of

so-called multi-reference indices (MRI).70–84 But, while these indices are useful guides to the

degree of complexity in the electronic wavefunction, it is not always obvious how to translate

this into quantitative prediction of HLC effects. This is demonstrated in Fig. 4, where the

often quoted MRI, the max CCSD T2, is plotted on the x-axis and the missing HLC of

CCSD(TQf)/cc-pVDZ is plotted on the y-axis. Despite the fact that this index certainly

contains some information about the suitability of the CCSD wavefunction to address these

molecular correlation energies, this index does not track in a particularly quantitative manner

with extent of correlation missing in CCSD(T). Quantitative correlation is certainly improved

by using Martin’s %TAE[(T)], displayed in the central panel of Fig. 4, which show a generally
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linear relationship between the fraction of the TAE that is accounted for by the perturbative

triples correction and the extent of the the HLC corrections. The agreement is not perfect—

the trend appears to break down for particularly large %TAE[(T)]—and it is not generalized

to arbitrary molecular reactions, but it is certainly an improvement. We can, however,

go further. The right-most panel of this figure employs a different type of metric that

is intimately related to the %TAE[(T)] of Martin. However, instead of taking a fraction

of an atomization energy (a quantity which blends features of the absolute and reaction

energy measures), we display the relationship between post-CCSD(TQf) correlation energy

and simply the difference between CCSD(TQf) and CCSD in a cc-pVDZ basis set. Said

otherwise, rather than examining the fraction of an atomization energy that is accounted

for by perturbative triples, we examine the total of a molecule’s correlation energy that

is accounted for by perturbative triples and quadruples. This approach reveals a linear

relationship between the HLC correction to CCSD(TQf) and the (TQf) correction to CCSD,

and may thus be modeled as by a simple equation of the form y ≈ b ∗ x, where b is the slope

obtained by least squares fit to the data in the rightmost panel of Fig. 4.
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Figure 4: Max T2 (left) and %TAE[(T)] (middle, fractional form) multireference diagnostics
as predictors of higher-level correlation, compared against the (TQf) perturbative corrections
(right) suggested in this work.

This has a particularly intuitive interpretation. Let us begin by writing out an expression
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for the approximation of CCSDT(Q)Λ using this linear fit (assuming all terms are evaluated

with the same basis set).

ECCSDT(Q)Λ ≈ ECCSD(TQf) + b(ECCSD(TQf) − ECCSD) (23)

≈ ECCSD + (1 + b)∆E(TQf) (24)

The above equation claims that the difference between CCSD and CCSDT(Q)Λ may be cap-

tured by the leading-order perturbative treatment of T3 and T4 from CCSD(TQf) multiplied

by a scaling factor (hopefully) close to unity. We thus term this approach as a “scaled per-

turbation estimator”, or SPE for short, and will examine its application in the remainder

of this manuscript. Importantly, the SPE scaling factor is not fit to data from the reaction

energies, but to the correlation energies of individual molecules.

Fig. 5 displays two variations of this SPE using either CCSD(T) or CCSD(TQf) as the

“base” method. It also displays the relationship of the HLC of CCSD(T) and CCSD(TQf)

with Goodson’s CF approximation, which we find also scales roughly linearly with the size of

higher-level correlation contributions to molecular energies. It should be noted that we also

tested Goodson’s R and Q metrics, but found them inferior to Goodson’s CF method. The

point of these plots is that the location of each black point on the x-axis can be determined

at O(N7) cost, while the y-value requires O(N9). Thus, a linear fit of the form y ≈ b ∗ x to

any of these plots could potentially be used as a HLC estimator at a cost no greater than

CCSD(T). The coefficients of the linear fits of these trends are displayed in Table 2, and are

portrayed by the red lines in Figure 5.

We then examine the performance of six of these models in the prediction of cc-pVDZ

HLC in the reaction energies test-suite:

• HLC of CCSD(T) predicted by linear fit of (T),

• HLC of CCSD(T) predicted by Goodson CF of CCSD(T),
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Figure 5: Trends of CCSD(T)-scaling methods vs their HLC corrections in a cc-pVDZ basis
set applied to molecular correlation energies. The top row uses CCSD(T) as the base method,
and the bottom row uses CCSD(TQf) as the base method. The red line indicates a linear fit
with zero intercept.

Table 2: Parameters of linear fits (y ≈ b∗x) to CCSD(T) and CCSD(TQf) HLC corrections in
a cc-pVDZ basis set, determined from molecular correlation energies using either the “scaled
perturbation estimator” (SPE) or Goodson’s continued fraction (CF) method. 85

Base Method SPE Goodson CF
b b

CCSD(T) Best Fit 0.1235 0.8786

Std. Err. 0.0035 0.0336

CCSD(TQf)
Best Fit 0.1012 0.7309

Std. Err. 0.0025 0.0247
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• HLC of CCSD(T) predicted by linear fit of Goodson CF of CCSD(T),

• HLC of CCSD(TQf) predicted by linear fit of (TQf),

• HLC of CCSD(TQf) predicted by Goodson CF of CCSD(TQf),

• HLC of CCSD(TQf) predicted by linear fit of Goodson CF of CCSD(TQf).

These results are summarized in Fig. 6 and Table 3, the latter of which also includes the

HLC errors accrued in model chemistries that ignore higher-level correlation altogether in

the “None” column. It is immediately obvious that the fairly reasonable fits in molecular

correlation energies do not necessarily translate to even qualitatively accurate predictions

of HLC contributions to reaction energies. Take for example Goodson’s continued fraction

method applied to CCSD(T) (top right panel of Fig. 6). Not only does the method itself

show no trend with the actual size of the HLC contributions to reaction energies (reflected

in a large L2D of 1.79 kcal mol−1 and max absolute error of 8.70 kcal mol−1), the linear fit of

this metric to the molecular correlation energies does not even qualitatively track the true

data in the reaction energies. This is an unfortunately common theme in computational

thermochemistry : approximate methods that are reasonable for raw correlation energies

are not guaranteed to be reasonable for reaction energies. The SPE approaches based off

CCSD(T) and CCSD(TQf) perform markedly better, with L2D of 0.61 and 0.52 kcal mol−1,

respectively. We also observe some trends that indicate that correct physics is being ac-

counted for in these approaches: the sign of the perturbative correction to CCSD generally

corresponds to the sign of the missing HLC (hence the diagonal slant to this data). Perhaps

most surprising is that CCSD(TQf), which is a less accurate treatment of correlation in the

determination of reaction energies than CCSD(T), performs significantly better than any of

the other methods considered here when used to inform a simple linear regression. This is

particularly reflected in the maximum error exhibited by the CCSD(TQf)-based SPE, which

is nearly 2 kcal mol−1 smaller than the nearest competitor. Visually, we also see that the

inclusion of these fifth-order quadruples corrections in CCSD(TQf) tightens (makes more
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diagonal) the relationship between the perturbative treatments of T3 and T4 and the higher-

level correlation correction, even if the spread of said HLC contributions is larger. That the

factorized, fifth-order quadruple corrections in CCSD(TQf) play such an important role in

these predictions has, to the best of our knowledge, not been observed in the extant liter-

ature. It also suggests that the claims of equation (23) are not unfounded, and that the

scaled perturbation of CCSD by (TQf) may be made into a reasonable estimate for the more

rigorous treatment of T3 and T4 in CCSDT(Q)Λ.

That this simple, empirical scaling works so well is a bit surprising, but nonetheless

provides a means by which to reasonably estimate the size and sign of HLC contributions

in chemical reactions with nothing more than values that may be routinely calculated at

CCSD(T)-cost and a little bit of mental math. The answer to the above question: “Is

it possible to estimate higher-level correlation effects to one or two kcal mol−1 using just

CCSD(T)-cost methods?” seems to have been answered in the affirmative (even accounting

for the factor of two increase in the L2D that would better align these values with a 95%

confidence interval), at least for the reactions within the current test-suite.

It should be reiterated that these models are not necessarily intended to be used as re-

placements for higher-level correlation in thermochemical recipes, especially not in anything

that aims for accuracy on the order of a kcal mol−1. Such an application would need to be

carefully studied in the context of the individual model chemistry under examination, and

would require further developments to reduce the L2D of the SPE predictions of higher level

correlation. While the (TQf)-based SPE developed in this work is the best predictor of HLC

that we know of, a prediction of a HLC contribution to a reaction energy on the order of

2 kcal mol−1 should probably be taken as no more than an indication that a more rigorous

treatment of post-CCSD(T) correlation is in order if kcal mol−1 accuracy is desired.
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Figure 6: Relationship of CCSD(T) and CCSD(TQf) vs their HLC corrections with a cc-
pVDZ basis set applied to reaction energies. The top row uses CCSD(T) as the base method,
and the bottom row uses CCSD(TQf) as the base method. Red dots indicate the values ob-
tained using the linear fits derived from molecular correlation energies, obtained at CCSD(T)
cost.

Table 3: Mean signed error (MSE), L2D, and max absolute errors (MAXE) of various
CCSD(T)-cost predictors of higher-level correlation contributions to reaction energies, as
described in the main text. Values in subscripts and superscripts correspond to 95% con-
fidence intervals determined via BCa analysis of the reported predictor applied to 10,000
bootstrap samples of the reaction test-suite, respectively. All values are in kcal mol−1

.

Base Method None SPE Linear CF Goodson CF

CCSD(T)
MSE 0.05+0.02

−0.02 0.06+0.02
−0.02 0.02+0.06

−0.06 0.02+0.06
−0.07

L2D 0.66+0.04
−0.04 0.61+0.06

−0.05 1.58+0.06
−0.05 1.79+0.06

−0.06

MAXE 5.53 5.04 7.80 8.70

CCSD(TQf)
MSE 0.10+0.03

−0.03 0.07+0.02
−0.02 0.08+0.04

−0.05 0.06+0.06
−0.06

L2D 0.77+0.04
−0.04 0.52+0.02

−0.02 1.21+0.04
−0.04 1.64+0.05

−0.05

MAXE 4.00 2.97 5.57 7.78

Connection to Martin’s %TAE

Finally, it is worth commenting on the connection between these scaled perturbation esti-

mators and the percent-(T) TAE based methods that are commonly employed. In Karton
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et al., 2006,8 it was found that the percentage of connected T4 and T5 contribution to total

atomization energies post-CCSD(T) was reasonably correlated with contribution from (T):

%TAE[T4 + T5] ≈ 0.126 × %TAE[(T )]. Note that the factor of ∼0.126 has been obtained

by fitting to a set of atomization energies, but is rather similar to the ∼0.123 we obtain for

the fit of the SPE fit of HLC based on CCSD(T).

Now, this may be simplified to better compare to the methods presented in this work. If

we insert the definition of %TAE[X] (21), the denominators may be cancelled such that

NC∆EHLC(C) +NN∆EHLC(N) + · · · −∆EHLC(X)

≈ 0.126×
(
NC∆E(T)(C) +NN∆E(T)(N) + · · · −∆E(T)(X)

)
, (25)

where ∆EHLC indicates the high-level correlation correction from T4 and T5. Then we may

determine an estimate of the HLC contributions for a given reaction, for example, the iso-

merization of HCN to HNC,

∆Erxn
HLC(HCN → HNC) = ∆ETAE

HLC (HCN)−∆ETAE
HLC (HNC)

≈ 0.126
(
Eatoms −∆E(T)(HCN)

)
− 0.126

(
Eatoms −∆E(T)(HNC)

)
= 0.126

(
∆E(T)(HNC)−∆E(T)(HCN)

)
, (26)

where Erxn
HLC(HCN → HNC) is the contribution of HLC to the reaction energy and Eatoms is a

shorthand for sum of the ∆E(T) for the H, C, and N atoms. Thus, the %TAE[(T)] metric may

actually be used in a nearly identical manner to the scaled perturbation estimators developed

in this work, though the fit of the scaling parameters in that context are determined from

percentages of atomization energies rather than absolute correlation energies, which can have

significant consequences for the accuracy of the resulting model. The main contributions of

this work, then, are the theoretical justification of performance of these scaled perturbation
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estimators and/or %TAE[(T)] metrics, the determination and benchmarking of these scaling

factors for a set of 93 molecules and 2859 reactions containing atoms H, B, C, N, O and

F in a cc-pVDZ basis set, and the demonstration that the factorization of the CCSD(TQf)

method both incurs negligible error for the vast majority of species/reactions contained in

these test-suites and noticeably improves the performance of SPE methods for estimating

higher-level correlation.
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Conclusions

The development of new tools and methodologies which circumvent the sometimes unaf-

fordable computational cost associated with high-level coupled cluster theory is particularly

important in the domain of thermochemistry targeting chemical accuracy. However, there

are currently only limited means in which to evaluate the importance of post-CCSD(T) cor-

rections to correlation energies of molecules or reactions a priori. Furthermore, the viability

of cheaper quadruples corrections like (Qf) has not been holistically assessed in the domain

of thermochemistry. The current work takes steps to address these two gaps in the liter-

ature. We find that factorizing the fifth-order [Q] diagrams of CCSD(TQ), leading to the

(Qf) correction and CCSD(TQf) method, introduces minimal error and a O(N2) reduction

of cost in applications to thermochemistry, even when applied to significantly multireference

species such as C2 and BN.

We then examined the use of these methods in the context of higher-level correlation

corrections in chemical reaction thermodynamics. While we find that CCSD(TQf) on its own

is not sufficient to account for HLC effects in reaction energies, we demonstrate that these

factorized quadruples methods can play an important role in the estimation of post-CCSD(T)

correlation energies such as CCSDT(Q)Λ. In particular, we investigate two potential HLC

estimators; Goodson-style continued faction methods and a method we refer to as scaled

perturbation estimators. While we did not find the first to be a reasonable route to estimating

HLC effects, we do find that a simple linear regression of the leading-order perturbative

corrections to CCSD in CCSD(TQf) reliably predicts the size of post-CCSD(TQf) correlation

in a cc-pVDZ basis set, with a mean error of 0.07 kcal mol−1, a L2D of 0.52 kcal mol−1, and

a maximum error of 2.97 kcal mol−1. These results improves upon the CF method applied to

this same dataset by a factor of more than three. Importantly, we also find that the maximum

absolute errors of these predictors are dramatically reduced by the inclusion of the factorized

quadruples terms. We conclude by showing the connection between these methods and the

%TAE[(T)] that is commonly used as a multireference index. Given their low cost, these
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scaled perturbation estimates may be a viable means by which to “ballpark” the importance

of post-CCSD(T) contributions to reactions energies in other studies without expending

more than CCSD(T)/cc-pVDZ effort. This provides a useful guide for electronic-structure

practitioners who are uncertain if these higher-level effects are of particular relevance in a

given reaction.
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