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Securing Distributed Network Digital Twin Systems
Against Model Poisoning Attacks
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Abstract—In the era of 5G and beyond, the increasing com-
plexity of wireless networks necessitates innovative frameworks
for efficient management and deployment. Digital twins (DTs),
embodying real-time monitoring, predictive configurations, and
enhanced decision-making capabilities, stand out as a promis-
ing solution in this context. Within a time-series data-driven
framework that effectively maps wireless networks into digital
counterparts, encapsulated by integrated vertical and horizontal
twinning phases, this study investigates the security challenges
in distributed network DT (NDT) systems, which potentially
undermine the reliability of subsequent network applications,
such as wireless traffic forecasting. Specifically, we consider a
minimal-knowledge scenario for all attackers, in that they do not
have access to network data and other specialized knowledge,
yet can interact with previous iterations of server-level models.
In this context, we spotlight a novel fake traffic injection
attack designed to compromise a distributed NDT system for
wireless traffic prediction. In response, we then propose a defense
mechanism, termed global-local inconsistency detection (GLID),
to counteract various model poisoning threats. GLID strategically
removes abnormal model parameters that deviate beyond a
particular percentile range, thereby fortifying the security of
network twinning process. Through extensive experiments on
real-world wireless traffic data sets, our experimental evaluations
show that both our attack and defense strategies significantly
outperform existing baselines, highlighting the importance of
security measures in the design and implementation of DTs for
5G and beyond network systems.

Index Terms—Digital twin (DT), distributed learning, poison-
ing attack, security, traffic prediction, wireless networks.

I. INTRODUCTION

IN THE realm of telecommunications, wireless networks
are experiencing a paradigm shift, primarily driven by

the advent of edge computing, spectrum sharing, and
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millimeter-wave communication technologies in the 5G era.
These technological advancements are foundational to a mul-
titude of novel applications and services, notably enhancing
mobile broadband and facilitating the seamless integration
of the Internet of Things (IoT) [1], [2], autonomous trans-
portation [3], smart urban infrastructure [4], and remote
healthcare delivery [S5]. Further, the nascent stages of 6G
research are indicative of potential revolutionary leaps in
hybrid physical-virtual network technologies, paving the way
for ubiquitous and intelligent connectivity worldwide. Parallel
to these advancements, the concept of digital twin (DT) has
surfaced as a significant technological breakthrough in the
mixed reality era [6], [7], [8]. The DTs embody intricate
virtual representations of physical entities or systems and gain
traction in the context of the Fourth Industrial Revolution.
This concept synergistically harnesses the capabilities of
IoT, machine learning, and big data analytics, meticulously
constructing a comprehensive digital model that mirrors the
physical attributes, processes, interconnection, and dynamics
of its real-world counterpart. Such models play a pivotal role in
facilitating predictive simulations, what-if analysis, and system
optimizations within a virtual environment, thereby offering
tangible insights into operational challenges and maintenance
requirements [9], [10], [11].

While DTs offer a wide range of benefits and appli-
cations, ensuring their security remains a critical concern
that necessitates a comprehensive understanding and robust
countermeasures. Common security threats to DTs include
data breaches, unauthorized access, and cyber-attacks, which
can disrupt the seamless interaction between the physical
and virtual systems [12]. In the realm of wireless networks,
these DTs face additional challenges, such as Byzantine
attacks, man-in-the-middle attacks, and signal interference,
which can severely impact their availability and reliability.
Furthermore, robust countermeasures, including encryption
techniques and secure communication protocols, are needed to
protect DTs from potential adversarial attacks in open wireless
environments [13]. As DTs are increasingly integrated into
the metaverse applications [14], addressing the security and
privacy challenges becomes paramount to ensure a trustworthy
user interface [15]. In particular, trust evaluation schemes, such
as in [16], have been proposed for using federated learning
(FL) in DT systems, aiming to enhance data usage security by
evaluating the trustworthiness of participating network entities.
In the realm of wireless networks, FL leverages its decen-
tralized nature to facilitate multiple network services. With
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Fig. 1. Distributed NDT framework for WTP.

the exponential growth in the number of connected devices
and the ever-increasing demand for data-intensive applica-
tions like streaming and IoT services, constructing precise
network DTs (NDTs) accurately becomes vital for ensuring
various downstream forecasting tasks, such as wireless traffic
prediction (WTP) [17], [18], [19]. Despite distributed learn-
ing’s potential in accuracy, efficiency, and privacy preservation,
its integration into NDT creation and operation is not devoid
of challenges. Notably, Byzantine attacks, particularly model
poisoning attacks, pose significant threats to the effectiveness
and trustworthiness of NDT systems.

In a model poisoning attack, malicious network entities
introduce adversarial modifications to the model parame-
ters during the mapping process of NDTs. This tampering
results in a compromised server-level twin, i.e., global twin
model, when aggregated at the central network controller,
subsequently producing incorrect operations on the physical
infrastructure. Such inaccuracies lead to the risk of network
inefficiencies and even severe service disruptions, especially
in real-time applications like autonomous driving systems. In
more extreme scenarios, these attacks may serve as gateways
to further malicious network intrusions, instigating broader
security and privacy concerns as illustrated in [20] and [21].
The grave implications of model poisoning attacks underscore
the pressing need for robust security measures to ensure
the integrity, reliability, and resilience of distributed NDT
systems against Byzantine failures, thereby safeguarding the
overarching network infrastructure and the services reliant on
it. While most existing DT mapping algorithms and their
associated security strategies are typically assessed within the
context of classification problems [22], [23], scant attention
has been paid to the regression problems, as observed in
examined WTP scenarios within NDTs, introducing distinct
challenges related to data distribution, model complexity, and
evaluation metrics. The distinction between data manipulation
strategies in regression and classification problems, as well
as their detection methodologies, underscores the nuanced
challenges in safeguarding twin models against emerging
adversarial attacks. For instance, in a regression-based DT-
assisted WTP problem, attackers typically target the model’s
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continuous output by altering the distribution or magnitude
of input time-series data, intending to steer predictions in a
specific direction. This differs from classification tasks, where
the manipulation revolves around modifying input features
to induce misclassification without noticeably changing the
input’s appearance to human observers.

To bridge this gap, we make the first attempt to intro-
duce a novel attack centered on injecting disruptive traffic
data from malicious NDTs into wireless networks. Existing
model poisoning attacks have predominantly depended on
additional access knowledge and direct intrusions on physical
base stations (BSs) [22], [24], [25]. However, in a practical
cellular network system, BSs have exhibited a commendable
level of resilience against attacks, making the extraction of
training data from them a challenging endeavor. In contrast,
the cost of deploying fake NDTs that mimic their behaviors is
comparatively lower than the resources required for compro-
mising authentic BSs [26]. This assumption asserts that these
compromised NDTs lack insight into the training data and
only have access to the initial and current global twin models,
aligning with the practical settings studied in [26]. Importantly,
other information, such as data aggregation rules and model
parameters from benign NDTs or BSs, remains inaccessible
to these compromised NDTs. In this work, we consider a
distributed DT-assisted network architecture as depicted in
Fig. 1, where wireless traffic data collected from BSs is
mapped into local NDTs to establish an initial and private
NDT for each BS. Within each cluster, a cluster-level NDT (C-
NDT) is constructed by aggregating these local twin models.
Subsequently, at the backend, a global twin model (G-NDT)
is established by merging the C-NDT model parameters
during each iterative phase. This global twin model is then
synchronized with each local NDT, serving as a foundation for
predictive analysis and enabling specific applications for each
BS and its associated NDTs. In this situation, our threat model
envisions a minimum-knowledge scenario for an adversary.
First, we propose fake traffic injection (FTI), a methodology
designed to create undetectable fake NDTs with minimal prior
knowledge. Each fake NDT employs both its initial model
and current global information to determine the optimizing
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trajectory of the twinning process, as shown in Fig. 4. These
malicious participants aim to subtly align the global model
toward an outcome that undermines the integrity and reliability
of the NDT system. Numerous numerical experiments are
conducted to validate that our FTT demonstrates efficacy across
various state-of-the-art model aggregation rules, outperforming
other poisoning attacks in terms of vulnerability impacts.

On the contrary, we propose an innovative defensive strategy
known as global-local inconsistency detection (GLID), aimed
at neutralizing the effects of model poisoning attacks on NDT
systems. This defense scheme involves strategically removing
abnormal model parameters that deviate beyond a specific
percentile range estimated through statistical methods in each
dimension. Such an adaptive approach allows us to trim
varying numbers of malicious model parameters instead of
a fixed quantity [27]. Next, a weighted mean mechanism
is employed to update the global twin model parameter,
subsequently disseminated back to each NDT. Our extensive
evaluations, conducted on real-world data sets, demonstrate
that the proposed defensive mechanism substantially mitigates
the impact of model poisoning attacks on NDT systems,
thereby showcasing a promising avenue for securing dis-
tributed NDT systems with trustworthiness. This article is an
extended version of our previous work in [28], where we
expand upon it by adapting the proposed attack and defense
strategies from traditional FL settings to the practical NDT
system.

The contributions are briefly summarized into three folds:
1) we present a novel model poisoning attack, employing fake
NDTs for traffic injection into distributed NDT systems under
a minimum-knowledge scenario; 2) conversely, we propose
an effective defense strategy tailored to counteract various
model poisoning attacks, which proactively trims an adaptive
number of twin model parameters by leveraging the per-
centile estimation technique; and 3) finally, we evaluate both
the proposed poisoning attack and the defensive mechanism
using real-world traffic data sets from Milan City, where the
results demonstrate that the FTI attack indeed compromises
distributed NDT systems, and the proposed defensive strategy
proves notably more effective than other baseline approaches
in mitigating various attacks.

II. RELATED WORKS AND PRELIMINARIES
A. Distributed Network Digital Twin Systems

The integration of DTs into the realm of wireless
networking represents a significant leap forward in this
rapidly evolving field. As outlined in [29], the use of DTs
involves the creation of detailed virtual replicas of network
components and infrastructure. This approach enables real-
time analytics and optimization, providing deep insights into
network behavior under various scenarios. Such strategies are
crucial for predictive maintenance and performance moni-
toring, greatly enhancing network reliability and efficiency.
Furthermore, Wang et al. [30] introduced the use of Graph
Neural Networks to enhance DTs in network slicing, aimed
at predicting network performance and optimizing resources
in high-bandwidth and low-latency scenarios. Additionally,
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the application of DTs in vehicular networks is detailed
in [31], showcasing DTs’ ability to model and control
software-defined vehicular networks, thereby improving the
effectiveness and reliability of vehicular communications.
Moreover, Yin et al. [32] proposed a DT-assisted security
scheme for multiresource heterogeneous RANs in space-air-
ground integrated networks. Despite various explorations into
DT applications within wireless networks, there is a gap in the
literature regarding the development and mapping of NDTs,
which our research seeks to address.

At the forefront of DTs, distributed learning emerges as
a revolutionary approach, especially for large-scale networks
and the Industrial IoT. The combination of these technologies
not only enhances system efficiency but also transforms data
handling capabilities. Zhang et al. [33] proposed a Joint
Vertical and Horizontal Learning-based digital twinning strat-
egy to perform a precise mapping from physical networks
to DTs. Zhang et al. [34] exemplified their potential in
reliable edge caching and real-time data-driven optimization.
Additionally, addressing the challenge of efficient data com-
munication in distributed learning systems, Lu et al. [35]
and [36] proposed strategies to enhance data exchange and
processing—crucial for scaling up applications with massive
access.

B. Poisoning Attacks on Distributed Systems

The decentralized architecture of distributed DT systems
renders them vulnerable to Byzantine attacks, as explored in
previous study [22], [23], [24], [26], [37], [38]. In these scenar-
ios, adversaries can compromise BSs and their corresponding
NDT models to undermine the entire distributed DT system.
These malicious BSs may tamper with their local training data
or directly modify their local twin models to negatively impact
the global twin model. For example, the Trim attack [22]
involves malicious BSs deliberately distorting their local twin
models to create a significant discrepancy in the aggregated
model post-attack compared to its preattack state. The MPAF
attack [26] sees each compromised BS applying a negative
scalar to the global twin model update before forwarding
this tampered update to the server-level twin. In the Random
attack [22], malicious DTs generate and send a random vector,
drawn from a Gaussian distribution, to the server as their
update. Furthermore, a recent study by [24] introduced specific
poisoning attacks targeting distributed DT systems. Here, an
attacker manipulates some BSs under their control, each with
its local training data set. These DTs adjust their local models
using this data and then scale their model updates by a factor
before dispatching these altered updates to the server. These
strategies highlight the critical challenge of securing the entire
system against various forms of data and model tampering
attacks, underscoring the need for robust defense mechanisms.

Existing attacks in our considered setting suffer from the
following limitations. In the MPAF attack, model updates
from fake NDTs are exaggerated by a factor, such as 1 x
10%. However, this approach is impractical because the server
can easily identify these excessive updates as anomalies and
discard them. Furthermore, such blatant manipulation lacks
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subtlety, making it easy to detect and counter. On the other
hand, our method involves carefully crafting model updates on
fake clients by solving an optimization problem. This ensures
that the server is unable to differentiate these fake updates from
benign ones, allowing the attacker to simultaneously breach
the integrity of the system without detection. Our approach
maintains the updates within a plausible range, avoiding the
pitfalls of easily detectable anomalies. The attack described
in [24] is not feasible because it is based on the unrealistic
assumption that an attacker can easily take control of authentic
BSs or DTs. In reality, it is highly challenging for an attacker
to gain such influence over existing, authentic facilities.
Moreover, this attack does not consider the sophisticated
security measures typically in place to protect these systems.
Our research, however, focuses on developing more realistic
attack scenarios that account for the complexities and security
protocols of modern distributed DT systems, ensuring a more
accurate assessment of their vulnerabilities.

C. Byzantine-Robust Aggregation Rules

In environments free from adversarial intentions, server-
level twins typically aggregate incoming local twin model
updates through a simple averaging process [39]. However,
recent studies [28], [40] have revealed vulnerabilities in this
averaging method of aggregation, particularly its susceptibility
to poisoning attacks. In such attacks, a single malicious local
twin model can significantly alter the aggregated result. To
counter these vulnerabilities, the literature offers a range of
Byzantine-resistant aggregation algorithms [27], [40], [41],
[42], [43], [44], [45]. For instance, the Krum method [40]
assesses each local twin’s update by calculating the sum of
Euclidean distances to updates from other twin models, select-
ing the update with the smallest sum for global aggregation.
The Median aggregation strategy [27] involves the server-level
twin computing median values across each parameter from
all local updates, improving resistance to outlier manipula-
tions. These strategies introduce robustness against adversarial
actions, ensuring the integrity of the aggregated twin model
in distributed systems.

III. CREATION AND SYNCHRONIZATION OF NETWORK
DIGITAL TWINS FOR WIRELESS TRAFFIC PREDICTION

This section introduces a novel framework for creating
and synchronizing NDTs specifically designed for WTP.
The framework is structured around three main stages: 1)
dynamic connectivity segmentation (DCS); 2) vertical twin-
ning (V-twinning); and 3) horizontal twinning (H-twinning).
The overall framework is shown in Fig. 1. The primary
objective of the NDTs is to minimize prediction errors across
all BSs for a better understanding of the physical network.
This can be formulated as an optimization problem

M

1 :
a*zargrrgnEZZF(f(rfma),s%) (1)

m=1 n=1

where F is the quadratic loss function, M is the number of
NDTs, z is the number of data points, r), is the input traffic
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Fig. 2. Process of model poisoning attack and secure aggregation defense.

sequence, and s, is the corresponding output traffic prediction.
The optimization problem is resolved through FL with dis-
tributed NDTs, following the synchronization, local updating,
and model aggregation process. This single-level mapping
approach utilizes a classical FL strategy to aggregate multiple
local twin models, serving as the baseline for comparing with
our proposed joint vertical-horizontal mapping scheme.

Specifically, (1) can be resolved in a distributed fashion in

traditional FL settings with the following three steps in each
global training round ¢, as shown in Fig. 2.

1) Step I (Local Twin Update): Each NDT i € [n]
utilizes its private time-series training data along with
the current global model to refine its own local model,
then transmits the updated local model @} back to a
central server.

2) Step II (Local Twin Manipulation/Model Poisoning
Attack): Each malicious NDT utilizes its knowledge to
modify or create local twin models, and then send these
malicious twin models to the server.

3) Step 11l (Aggregation of Local Twin Models): The central
server leverages the aggregation rule (AR) to merge the
n received local models and subsequently updates the
global model as follows:

0"t = AR{67,65,....6"). )

The commonly used aggregation rule 1is the
FedAvg [39], where the server simply averages the
received n local models from distributed NDTs, i.e.,
AR{0,05,....00) = (1/n) Y1 0L

4) Step IV (Synchronization): The central server sends the

current global model @' to all NDTs.

Specifically, our multilevel mapping framework encom-
passes a central DT, named global NDT (G-NDT),
coordinating with a network of M NDTs, and multiple
cluster NDT (C-NDT). Each NDT, denoted as m in the
set [M], independently holds a proprietary data set d,, =
{d),d2,...,d5}). In this data set, L indicates the total num-
ber of time intervals, and d’, represents the traffic load at
NDT m during the Ith interval, where [ ranges over [L].
The NDT involves constructing input—output predictive traffic
sequences locally, denoted as {r,, si}°_,, for each NDT to
generate future traffic predictions. Here, ), is a suNDTet
of historical traffic data corresponding to the output s? =
{df,:l,...,dﬁ,;“,dfn_pl,..., ""PPy The parameters a and b
represent sliding windows that capture immediate and cyclical
temporal dependencies, respectively, while p reflects inherent
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periodicities in the network, which might be influenced by
user activity patterns or application service demands.

The first stage, DCS, is employed periodically to ensure
effective clustering of NDTs with similar communication
characteristics and networking configurations. This clustering
step is integral to the efficient creation and updates of
multiple distributed NDTs, i.e., C-NDTs, which demonstrate
distinct behaviors and perform parallel synchronization with
the G-NDT. The DCS algorithm clusters the NDTs based on
attributes, such as geological distances, capacity of backhaul
links, coverage area overlaps, and similarity of frequency of
occurrence distribution. The relationship between two NDTs,
ny and ny, is quantified by a metric ®,, ,,

w
8
Dy =
8ny.ng

+ wy - knl,nz + wg - ﬂnl,nz + wr - Ty (3)

where o represents the weights for each attribute. This
dynamic clustering enhances the twinning performance in real
time and forms the basis for accurate WTP by grouping NDTs
with similar traffic patterns.

In the V-Twinning stage, initial NDTs are created with
historical data on caching requests and their frequency. It
employs an FL strategy, where model parameters are shared
among NDTs instead of raw data, enabling collaborative
training of a global model. This approach efficiently distributes
twinning tasks across NDTs while ensuring content data pri-
vacy. Specifically, the V-Twinning stage initializes a concrete
G-NDT and synchronizes C-NDTs with the G-NDT after the
twinning aggregation process. The aggregation of C-NDTs to
form the G-NDT is given by

1
=) 4)

where a. represents the model parameters of the C-NDT for
cluster ¢ at time ¢ and C is the number of clusters. This stage
is crucial for initializing the NDTs with historical traffic data,
which serves as a foundation for future traffic prediction.

The H-Twinning stage is designed to periodically synchro-
nize the physical network and NDTs with real-time data. It
adopts an asynchronous FL approach to update with dynamics
from the physical network, providing a scalable and flexible
solution for wireless networks composed of multiple clusters.
This stage updates the twins regularly, ensuring that all NDTs
remain relevant and accurately simulate and predict wireless
traffic patterns. The update rule for the G-NDT based on the
deviation € between a C-NDT and the current G-NDT is as
follows:

1 ~C ]

1 _ 525210527 ife >y 5

ot =1C . 5)
o, otherwise

where 1 is a predefined threshold, and ¢ = (&l — a)?
measures the deviation between the C-NDT and the G-NDT.
This stage is critical for incorporating real-time traffic data
into the NDTs, enabling them to adapt to changing network

conditions and improve traffic prediction accuracy.
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IV. THREAT MODEL FOR DISTRIBUTED NETWORK
DIGITAL TWINS

Built upon the constructed distributed NDT system, this
section discusses the threat model and explores a novel attack
that poses a security breach to system functionality and
network operations.

A. Objective of the Attacker

The fundamental aim of an attacker targeting a distributed
NDT system is to impair the performance of the composite
global twin model significantly. Such impairment directly
undermines the precision of real-time traffic forecasts, which
is crucial for effective network management and resource dis-
tribution. The ramifications of compromised traffic predictions
include network congestion, diminished service quality, and
suboptimal resource utilization, presenting considerable opera-
tional hurdles for network operators. This disturbance extends
beyond the service providers, affecting end-users dependent
on stable and efficient network services.

B. Capabilities of the Attacker

To achieve their goal, attackers introduce counterfeit NDT
models into the system, as illustrated in Fig. 3. These fab-
ricated NDTs can replicate the functionality of legitimate
NDTs with minimal investment and effort. This tactic, which
entails deploying fake BSs and NDTs using readily available
open-source tools or emulators [26], [46], [47], [48], presents
a low-barrier, high-feasibility threat vector distinct from the
strategies like those in [24] that require compromising actual
NDTs. Given the stringent security measures of contemporary
networks, which complicate the direct manipulation of authen-
tic twin models, this approach of deploying spurious BSs and
NDTs emerges as a notably viable method for attack.

C. Knowledge of the Attacker

The attacker’s limited understanding of the intricacies of
the targeted distributed NDT system adds to the challenge
of mounting a successful attack. In many practical scenarios,
acquiring comprehensive knowledge about the aggregation
algorithms or details of legitimate NDTs proves exceedingly
difficult due to robust security measures and encryption.
Consequently, an attack necessitating minimal specialized
knowledge and training data not only appears more feasible
but also carries a lower risk of detection. The operation of the
counterfeit NDTs—receiving the global model and dispatching
malicious updates—demands only basic intelligence, effec-
tively lowering the threshold for entry for would-be attackers.
This characteristic of the threat model heightens its potential
danger, broadening the pool of possible adversaries to include
those with scant technical skills or resources.

D. Fake Traffic Injection Attack

The proposed Algorithm 1, named the FTI Algorithm,
presents a strategy for a Byzantine model poisoning attack
aimed at compromising the prediction accuracy of an NDT
system under specific assumptions.
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Algorithm 1 FTI

Require: Current global twin model 6’, base model 0, n
benign NDTs, m fake NDTs, n
Ensure: Fake models 0%,i € [n+ 1,n+ m]

1: step <—n

2: PreDist < —1

3: forr=1,2,...,R do

4 for each fake NDT i do
s: 0" —nb— (n— 10’
6: end for

7. Dist < 67— 6],

8 if PreDist < Dist then
9: n<n+ step

10: else

11: n<n-— St%

12: end if

13: step < S%

14: PreDist < Dist

15: end for

16: return 0%, i € [n+ 1,n+m]

At the core of the FTI attack is an iterative procedure. In
each iteration, the current global twin model 0" and the base
model 6 undergo a detailed examination. For each fake BS
i, a malicious local model ! is constructed by blending the
global model 8" with the base model 0 in a weighted manner,
as delineated in line 5 of Algorithm 1. Subsequent to the
formation of @}, its deviation from the global model is assessed
using the Euclidean norm, as depicted in line 7. The algorithm
then evaluates whether this distance has increased compared to
the previous measurement, denoted as PreDist. If an increase
is observed, indicating that the malicious local model 0; is
diverging further from the global model 6’, the value of 7 is
incremented. Conversely, if no increase in distance is detected,
n is decremented. The adjustment of 7 is executed in half-steps
of its initial value, as outlined in lines 8 to 12.

The algorithm aims to steer the global model toward
greater alignment with a predefined base model in each round.
Specifically, during the tth round, fake NDTs compute the
direction of local model updates, determined by the difference
between the current global twin model and the base model,
denoted as H = @ — @'. Progressing in this direction signifies
that the global model is becoming more akin to the base model.
A straightforward method to obtain the local model of a fake
BS involves scaling H by a factor n. However, this direct
approach yields suboptimal attack performance.

Assuming n represents the number of benign NDTs, and
the attacker intends to inject m fake NDTs into the system,
we propose a method for calculating @} for each fake NDT
ien+1,n+m]

0' =nb — (n — 1" (6)
In such scenarios, an attacker tends to opt for a higher 75 to

ensure the sustained effectiveness of the attack, as illustrated
in Fig. 4 with an initial  of 10. This remains valid even after
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the server amalgamates the manipulated local updates from
fake NDTs with legitimate updates from benign NDTs.

V. GLOBAL-LOCAL INCONSISTENCY DETECTION

The defense against model poisoning attacks is founded on
an aggregation protocol designed to identify malicious NDTs,
termed the GLID method, as elaborated in Algorithm 2. In
each global round #, GLID primarily examines anomalies
present in each dimension of the model parameters 8}, aiding
in the identification of potentially malicious entities, where i €
[1, n+m] and n+ m denotes the total number of NDTs in the
system. This robust and versatile approach enables the system
to adapt to various operational contexts without necessitating
intricate similarity assessments. Then, choosing the parameter
for the percentile range when trimming outliers for secure
aggregation becomes crucial, as it directly influences the
model’s balance between robustness and accuracy. Typically,
a narrow percentile range might exclude legitimate variations
in data, reducing the model’s accuracy and potentially leading
to biased or incomplete representations. Conversely, a broad
percentile range may fail to eliminate malicious or anomalous
data contributions, compromising the model’s security by
allowing adversarial inputs to skew the aggregation process.
Therefore, selecting an appropriate percentile range ensures
that most benign data points are retained while effectively
filtering out outliers or adversarial inputs. This balance is
essential for maintaining both the performance and security of
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Algorithm 2 GLID

Require: Local models 01, e, 0; 4+m» current global
model ', k
Ensure: Aggregated global model §'+!
1: for gltz 1,2,...,D do
2 0y Z;’*{"o’
~t
R L DRI e
4. percentile!, < (g(éfi —k- oé), g(éfi +k- O'é))
5: Identify malicious NDTs based on percentile pairs
6: for each NDT i do
7: if @, ; is benign then
8 a” « %
' T
9: else
10: ag; <0
11: end if
12: end for S g
1+1 iVd,i
13: 0" « —7+|'”dad,-
14: end for ’
. g+l +1 i+l +1
150 [ort 05 0]

16: return 91!

DT models, protecting against data poisoning attacks without
sacrificing the overall quality and representativeness of the
aggregated twinning data.

Specifically, the GLID approach enhances the detection of
potential malicious activities within the network by employing
percentile-based trimming on each dimension of the model
parameters. To establish an effective percentile pair for iden-
tifying abnormalities, four statistical methods can be adopted:
1) standard deviation (SD); 2) interquartile range (IQR); 3) z-
scores; or 4) one-class support vector machine (One-class
SVM).

Suppose the total count of dimensions of the model param-
eter is D. For the default SD method, the percentile pair for
each dimension d can be calculated as follows:

percentile pair’, = (g(éi, —k- O’é), g(é; +k- cré)) (7)

where 6_?; is the mean of the dth dimension across all models in
the rth global training round, ¢} is the SD of the dth dimension,
and k is a predefined constant dictating the sensitivity of outlier
detection. g(-) is the interpolation function based on the SD
bound to estimate percentile pairs, defined as

<P(x) — 0.5)
gx)=————) x 100 (8)
n+m

where P(x) is the position of x in the sorted data set. We
use k = 3 for general purposes. Given that different tasks
may require varied percentile bounds, a precise estimation
method is crucial for generalizing our defense strategy. The
detailed percentile estimation methods are discussed later in
this section. In the FL-based WTP system, model parameters
in the dth dimension exceeding these percentile limits are
flagged as malicious, and their weights «! are assigned as

0. The other benign values in this dimension are aggregated

IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 21, 1 NOVEMBER 2024

using a weighted average rule, where the weights a;l are
inversely proportlonal to the absolute deviation of each value
0;1 from the mean 0 4> and normalized by the SD crd It can
be represented as follows:

t
%d

t ot |’
di od

o, ©)

i =
s

These weights of the dth dimension are then normalized and
applied to aggregate each BS’s local model 6! into a global

model 87!, which can be represented as follows in the view
of each dimension:
Z’.’Jrlm ! ..0’ .
t+1 _ i d,i
0 = S (10)
Zl 1 aa’ i

Subsequently, the server broadcasts this aggregated global
model parameter "' back to all NDTs for synchronization.

There are three additional percentile estimation strategies
listed below. Based on the upper and lower bound computed
below, we can get a final percentile estimation decision to
detect abnormal values in each dimension.

1) IQR: The IQR method calculates the range between the
first and third quartiles (25th and 75th percentiles) of the
data, identifying outliers based on this range. For each
dimension d, the outlier bounds are

lower bound;; jor = Qly — kigr - IQR; (1)

upper bound;; jor = 03, + kigr - IQRy;  (12)

where Q1% and Q3! are the first and third quartiles, and
kigr adjusts sensitivity.

2) Z-Scores: The Z-score method measures how many SDs
a point is from the mean. For each dimension d, the
normal range bounds are

g(é; — kg afi) (13)

g(é:g + kz - 05)
where kz is the number of SDs for the normal range.

3) One-Class SVM: One-class SVM constructs a decision
boundary for anomaly detection. The decision function
for each dimension d is

nsv
£4(6) = sign (Z " K(O’S\,l_’d, 0) — p> (15)
i=1

where

t _
lower boundd’z_score =

upper bound}; ; .. = (14)

otsv,-, 4 are the support vectors
y; are the Lagrange multipliers
K(-, -)is the kernel function, and

pis the offset.

A point 0 is an outlier if f}(8) < 0.

In essence, this defense mechanism is a strategic amalgama-
tion of direct statistical trimming and aggregation, targeting the
preservation of the global model’s integrity against poisoning
attacks. By accurately isolating and excluding malicious NDTs
prior to aggregation, it significantly diminishes the likelihood
of adversarial disruption in the FL framework. Additionally,
its capacity to accommodate various dimensions and adapt
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to different inconsistency metrics and aggregation protocols
considerably extends its applicability across a broad spectrum
of distributed wireless network scenarios.

VI. EXPERIMENTAL EVALUATION

In this section, we present an extensive evaluation of our
proposed FTT poisoning attack and the GLID defense mecha-
nism. We provide extensive results across various performance
metrics to demonstrate their effectiveness in multiple dimen-
sions.

A. Experimental Setup

1) Data Sets: To assess our methods, we employ real-world
data sets from Telecom Italia [49]. The Milan wireless traffic
data set is partitioned into 10000 grid cells, each served by
an NDT covering an area of approximately 235 m squared.
The data set comprises three subsets: 1) ‘“Milan-Internet;”
2) “Milan-SMS;” and 3) “Milan-Calls,” which capture diverse
wireless usage patterns. Our primary focus is on the “Milan-
Internet” subset, which facilitates a detailed analysis of urban
telecommunications behavior.

2) Baseline Schemes: We benchmark our FTI attack
against several state-of-the-art model poisoning attacks to
underscore its effectiveness. Additionally, we employ these
baseline attacks to demonstrate the efficacy of our GLID
defense strategy.

1) Trim Attack [22]: Processes each key in a model
dictionary, using extremes in a specific dimension to
determine a directed dimension. Model parameters are
then selectively zeroed or retained to influence the
model’s behavior.

2) History Attack [26]: Iterates over model parameters,
replacing current values with historically scaled ones to
warp the model parameters using past data and misguide
the aggregation process.

3) Random Attack [26]: Disrupts the model by replacing
parameters with random values drawn from a normal
distribution, scaled to maintain a semblance of legiti-
macy and inject controlled chaos into the aggregation
process.

4) MPAF [26]: Calculates a directional vector from the dif-
ference between initial and current parameters, adjusting
model values to intentionally diverge from the original
trajectory and introduce adversarial bias. Fake NDTs are
then injected into the system.

5) Zheng Attack [24]: Inverts the direction of model
updates by incorporating the negative of previous global
updates, refined through error maximization to generate
a poison that is challenging to detect due to its alignment
with the twin model’s error landscape.

Furthermore, we consider several baseline defensive mech-
anisms to evaluate the robustness of our proposed attack and
defense.

1) Mean [39]: Calculates the arithmetic mean of updates in
each dimension, assuming equal trustworthiness among
all NDTs. This method is susceptible to the influence of
extreme values.
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2) Median [27]: Identifies the median value in each
dimension for each parameter across updates, discarding
extreme contributions to enhance robustness against
outliers.

3) Trim [27]: Discards a specified percentage of the highest
and lowest updates before computing the mean in each
dimension, reducing the influence of anomalous or
malicious updates on the aggregate model.

4) Krum [40]: Scores each NDT’s update based on the sum
of Euclidean distances to other NDTs’ updates, selecting
the update from the NDT with the minimum score for
the global update.

5) FoolsGold [42]: Calculates a cosine similarity matrix
among all NDTs and adjusts the weights for each NDT
based on these similarities, aggregating the weighted
gradients to form a global model.

6) FABA [50]: Computes the Euclidean distance for each
NDT’s model from the mean of all received models,
excluding a specific percentage of the most distant mod-
els to filter out potential outliers or malicious updates.

7) FLTrust [41]: Calculates cosine similarity between the
server’s current model and each NDT’s model to gener-
ate trust scores, which are then used to weigh the NDT’s
contribution to the final aggregated model.

8) FLAIR [43]: Each NDT calculates “flip-scores” from
the changes in gradient directions and ““suspicion-scores”
based on historical behavior, using these scores to adjust
the weights assigned to each NDT’s contributions to the
global twin model.

3) Experimental Settings and Performance Metrics: For
our experiments, we randomly select 100 BSs and their cor-
responding NDTs to evaluate the impact of poisoning attacks
and the effectiveness of defense mechanisms. We primarily
report results on the Milan-Internet data set. Model training
is configured with a learning rate of 0.001 and a batch size
of 64. We inject a 20% percentage of fake NDTs to simulate
benign ones in the system for the FTI attack and assume a
scenario where 20% of the NDTs are compromised for other
baseline attacks. Our proposed FTT attack employs a parameter
n = 10, while other attacks utilize a scaling factor of 1000.
For the Trim aggregation rule, we discard 20% of the twin
model parameters from all NDTs. In our GLID defense, we
use the SD method as the default percentile estimation method.
We adopt mean absolute error (MAE) and mean squared error
(MSE) as the primary metrics for performance evaluation,
with larger MAE and MSE values indicating better attack
effectiveness.

B. Numerical Results

1) Performance of Proposed Methods: Tables I and II
demonstrate the significant vulnerabilities introduced by the
proposed FTI Attack across various aggregation methods
within our NDT construction. It is observed that under our
FTT Attack, the Mean Rule is completely compromised over
both the V-twinning and H-twinning stages, as reflected by
their MAE and MSE values reaching over 100.0 (values
exceeding 100 are capped at 100). This result denotes a
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TABLE I
PERFORMANCE EVALUATION WITH MILAN-INTERNET DATA SET DURING V-TWINNING STAGE

. . Attack
Aggregation Rule | Metric NO Trim History Random MPAF Zheng FIT
Momn MAE 0281 100.0 100.0 100.0 100.0 0.768 100.0
MSE 0.106 100.0 100.0 100.0 100.0 0314 100.0
Modion MAE 0281 0283 0.281 0282 0281 0287 100.0
MSE 0.106 0.106 0.107 0.106 0.106 0.115 100.0
— MAE 0281 0282 0282 0281 0282 0.300 100.0
MSE 0.106 0.107 0.109 0.106 0.108 0.126 100.0
- MAE 0.291 0295 100.0 0295 100.0 0295 100.0
MSE 0.111 0.113 100.0 0.114 100.0 0.114 100.0
FoolsGold MAE 0283 100.0 100.0 100.0 100.0 1.004 100.0
MSE 0.115 100.0 100.0 100.0 100.0 0.627 100.0
FABA MAE 0.289 100.0 0297 0.289 100.0 0.693 100.0
MSE 0.109 100.0 0.105 0.101 100.0 0.269 100.0
— MAE 0312 0304 100.0 0310 100.0 3252 100.0
MSE 0.114 0.112 100.0 0.114 100.0 1278 100.0
FLAIR MAE 0.286 0.298 100.0 100.0 100.0 0320 100.0
MSE 0.114 0.108 100.0 100.0 100.0 0.116 100.0
GLID MAE 0.281 0.281 0282 0.281 0.281 0.282 72.453
MSE 0.106 0.107 0.106 0.106 0.107 0.106 27.548
TABLE Il
PERFORMANCE EVALUATION WITH MILAN-INTERNET DATA SET DURING H-TWINNING STAGE
. . Attack
Aggregation Rule | Metric NO THm History | Random | MPAF Zheng FIT
Mean MAE 0.266 100.0 100.0 100.0 100.0 0.753 100.0
MSE 0.101 100.0 100.0 100.0 100.0 0.309 100.0
Modion MAE 0.296 0.298 0.296 0297 0.296 0302 100.0
MSE 0.101 0.102 0.102 0.105 0.101 0.110 100.0
. MAE 0.296 0297 0297 0.296 0297 0294 100.0
MSE 0.101 0.102 0.104 0.101 0.108 0.121 100.0
o MAE 0276 0.280 100.0 0280 100.0 0.280 100.0
MSE 0.106 0.108 100.0 0.109 100.0 0.109 100.0
ool Gold MAE 0.268 100.0 100.0 100.0 100.0 0.089 100.0
MSE 0.110 100.0 100.0 100.0 100.0 0.622 100.0
FABA MAE 0274 100.0 100.0 100.0 100.0 0.678 100.0
MSE 0.104 100.0 100.0 100.0 100.0 0.264 100.0
— MAE 0297 0.289 100.0 0295 100.0 3237 100.0
MSE 0.109 0.107 100.0 0.109 100.0 1223 100.0
FLAIR MAE 0271 0283 100.0 100.0 100.0 0305 100.0
MSE 0.109 0.103 100.0 100.0 100.0 0.111 100.0
GLID MAE 0.266 0.266 0267 0.266 0.266 0.267 72.458
MSE 0.101 0.102 0.101 0.101 0.102 0.101 27.543

total breakdown in their WTP functionality. The Median Rule
further emphasizes the severity of the FTT Attack, with both
its MAE and MSE escalating from modest baseline figures to
100. This sharp contrast highlights the FTI attack’s reliable
performance against other defenses, such as the trim attack
against the median rule, where the increase in MAE and
MSE is relatively minor at 0.283 and 0.106 for V-twinning,
respectively. Additionally, the Trim Rule, typically considered
robust, exhibits a drastic increase in MAE to over 100.0, a
significant rise from its baseline without any attack (denoted
as NO in Tables I and II) of 0.281. This surge underscores the
Trim Rule’s vulnerability to the FTI Attack, marking a notable
departure from its typical resilience. Similar results can also
be found in other aggregation rules under FTI attacks, such
as Krum, FoolsGold, FABA, FLTrust, and FLAIR, where the
FTI attack demonstrates the best overall performance against
the given defenses. The Zheng Attack, however, presents a
distinct pattern of disruption. When subjected to this attack,
FLTrust, which typically exhibits lower error metrics, shows a
significant compromise, evidenced by the dramatic increase in

its MAE to 3.252 and MSE to 1.278. Such a tailored nature
of the Zheng Attack appears to target specific vulnerabilities
within FLTrust, which are not as apparent in other scenarios,
such as the trim attack, where the rise in MAE and MSE
for FLTrust is relatively modest. Regarding the MPAF Attack,
most aggregation rules in the table do not show a convincing
defense, except for a few like Median, Trim, and GLID.

During the H-twinning stage, most baseline schemes
demonstrate a similar performance under attacks. However,
although the Median and Trim Rules could protect the NDT
systems from being attacked, they do not perform well in
maintaining a precise NDT after a valid initial construction,
i.e., the V-twinning stage. For instance, the MAE and MSE
values of Median Rule under NO attacks are 0.281 and 0.106,
respectively. These performance metrics increase to 0.296 and
0.101 after a period of maintenance, which leads to inaccurate
predictions compared to the initial twin models. This is due to
the heterogeneous nature of data distribution, with the Median
and Trim Rules trimming out too many participants during the
twin model aggregation process.
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From the defender’s standpoint, the proposed GLID aggre-
gation method demonstrates consistent performance stability
across various attacks. Both its MAE and MSE values remain
close to their baseline levels. Even in the case of our
FTI attack, GLID manages to keep errors below 100, with
MAE and MSE values of 72.453 and 27.548, respectively.
This stability is particularly noteworthy, especially when
compared to other rules, such as FLAIR, which exhibit a
significant deviation from their nonattacked baselines under
the same adversarial conditions. GLID’s ability to sustain
its performance in the face of diverse and severe attacks
underscores its potential as a resilient aggregation methodol-
ogy. Other rules, such as FABA, also experience inconsistent
defense performance during the V-twinning and H-twinning
stages. FABA maintains good performance under History
and Random attacks during the V-twinning process but is
degraded to over 100.0 during the H-twinning process. Such
performance is led by the various data distribution and sample
sizes from the real-time data stream. In later evaluations, we
focus on the entire twinning process, combining V-twinning
and H-twinning, to evaluate the effects of other parameters on
our proposed poisoning attacks and defense mechanisms for
NDT systems.

2) Evaluation on the Impact of n: The step size n in our
proposed FTI attack (see Algorithm 1) serves as a dynamic
scaling factor, and its initial value significantly influences
the NDT’s performance metrics. This impact is illustrated in
Fig. 5, where the Median aggregation rule is employed as the
baseline defense strategy. A notable observation is the correla-
tion between increasing values of 1 and the corresponding rise
in MAE and MSE of twin models. For example, at n = 1, the
MAE and MSE are relatively low, recorded at 0.517 and 0.215,
respectively. However, increasing n to higher values, such as
10 or 20, results in a dramatic surge that reaches the maximum
error rate. This increase suggests a significant compromise
in the twin models, surpassing the predefined threshold for
effective detection of the attack. The rationale behind this
analysis emphasizes the pivotal role of n in determining the
strength of a poisoning attack. An increased initial 7 tends
to degrade model performance, deviating significantly from
its expected operational state. Simultaneously, a higher n also
raises the risk of the attack’s perturbations being detected and
eliminated during the defense process.
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TABLE III
IMPACT OF PERCENTAGES OF FAKE NDTs
. Attack
Pet. | Metric - — T Rand | MPAF | Zhe. | FTI
5% MAE | 0.276 | 0270 [ 0274 | 0270 | 0.268 | 0.284
MSE 0.093 | 0.094 | 0.093 | 0.093 | 0.093 | 0.094
10% | MAE 10275 [70268 | 0273 | 0268 | 0.269 [ 0.313
MSE 0.092 | 0.095 | 0.093 | 0.095 | 0.101 | 0.109
20% | MAE [ 0278 170273 [ 0273 [ 0271 0.324 | 100.0
MSE 0.092 | 0.101 | 0.092 | 0.097 | 0.141 | 100.0
20% | MAE 100.0 | 100.0 | 100.0 100.0 | 6.045 | 100.0
MSE 100.0 | 100.0 | 6.146 100.0 1.159 | 100.0
40% | MAE 100.0 | 100.0 | 100.0 100.0 100.0 | 100.0
MSE 100.0 | 100.0 | 100.0 100.0 100.0 | 100.0
TABLE IV
IMPACT OF PERCENTILE ESTIMATION METHODS
. Attack
Method | Metric |G Hist | Rand | MPAF | Zhe. | FIT
D MAE | 0.274 | 0.274 | 0.274 | 0.273 | 0.274 | 0.274 | 72.43
MSE | 0.092 | 0.092 | 0.092 | 0.092 | 0.092 | 0.092 | 27.53
IR MAE | 0.274 | 0.275 | 0.275 | 0.274 | 0.265 | 0.273 | 100.0
MSE | 0.092 | 0.092 | 0.092 | 0.092 | 0.092 | 0.093 | 100.0
Z-scores | MAE [0.274 10274 10.274 [ 0274 | 0275 [ 1.102 | 100.0
MSE | 0.092 | 0.092 | 0.093 | 0.092 | 0.092 | 0.416 | 100.0
SVM MAE | 0.274 | 100.0 | 100.0 | 0.275 | 100.0 | 0.768 | 100.0
MSE | 0.092 | 100.0 | 100.0 | 0.092 | 100.0 | 0.290 | 100.0

3) Evaluation on Percentage of Fake NDTs: The degree
of compromise in NDTs significantly influences the model’s
performance, as evidenced in Table III. By adopting the
Median aggregation as the defensive approach, the model
first exhibits resilience at lower compromise levels, such as
with only 5%-10% fake NDTs in the scenario. However,
a noticeable decline in performance is observed as the per-
centage of fake NDTs increases to 20% or higher. This
deterioration is evident as the MAE and MSE values reach
100.0 in all categories, signaling a complete model failure. The
underlying principle behind this trend suggests the model’s
limited tolerance to malicious interference. More precisely,
the network system can withstand below 20% compromise
without significant performance degradation. However, beyond
this threshold, the model’s integrity is severely undermined,
resulting in a complete system breakdown. This observation
highlights the critical importance of implementing robust
security measures to prevent excessive compromise of NDTs,
ensuring the model’s reliability and effectiveness.

4) Evaluations on Percentile Estimation Methods: The
dynamic trimming of an adaptive number of model parameters
through percentile estimation, which is adapted in GLID,
proves to be an effective defense strategy against various
model poisoning attacks. In the comparative analysis of vari-
ous estimation methods, as shown in Table IV, SD estimation
emerges as the best technique, exhibiting marked consistency
and robustness across a spectrum of estimation approaches.
This is evidenced by the consistently low MAE and MSE
values for SD across these approaches, at 0.219 and 0.087,
respectively. In contrast, other methods have varying degrees
of inconsistency and vulnerability. For instance, One-class
SVM exhibits pronounced variability, with MAE and MSE val-
ues reaching the maximal error level of over 100.0 under Trim,
History, and MPAF attacks. Such a disparity in performance,
particularly the stably lower error rates of SD compared to the
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Fig. 6.
AR w.r.t. MSE. (c) GLID AR w.rt. MAE. (d) GLID AR w.r.t. MSE.

significant fluctuations in other estimation methods, positions
SD as a reliable and effective percentile estimation technique
in GLID.

5) Evaluations on the Impact of NDT Density: Given a
20% proportion of fake NDTs, Fig. 6(a)-(d) compare the
Median and GLID rules with varying densities of NDTs in
the network scenario. The total number of NDTs does not
significantly impact the performance of any attack and defense
mechanisms, especially for our FTI and GLID strategies,
which is consistent with traditional FL settings [28]. Under
Median aggregation, FTI consistently shows maximal errors,
with MAE and MSE exceeding 100 across different NDT
densities, indicating the failure of the defense. This consistency
of performance across varying participants in the distributed
NDT system suggests that the total number of NDTs does
not substantially influence the effectiveness of the attack and
defense strategies.

6) Evaluations on the Percentile Range of GLID: Table V
presents an evaluation of performance across a variety of per-
centile pairs used in the proposed GLID method on different
attack methods. The configuration of the percentile pair guides
the GLID method in identifying and eliminating outliers. For
example, specifying a percentile pair of [10, 70] means that
values below the tenth percentile and above the 70th percentile
are trimmed away, focusing the analysis on the data within
these bounds. It is observed that, when the percentile pair is
set at [10, 70], most methods, except for the Zheng Attack,
register a metric over 100.0, suggesting the models are fully
attacked. Similarly, the percentile pair of [10, 90] yields a
value over 100 for all methods except the Zheng Attack.
The Zheng attack consistently records low metrics across all
settings, such as 0.880 and 0.346 for the pair [10, 70], raising
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TABLE V
IMPACT OF DIFFERENT PERCENTILE PAIRS
. . Method
Pair | Metric | e T Rand | MPAF | Zhe. | FIT
10,70 | MAE | 1000 | 1000 | 100.0 | 1000 | 0850 | 100.0
: MSE | 100.0 | 100.0 | 1000 | 1000 | 0.346 | 100.0
0,70 | MAE | 0266 | 0.265 | 0269 | 0268 | 0267 | 100.0
: MSE | 0.102 | 0.106 | 0.104 | 0.101 | 0.106 | 100.0
0,70 | MAE | 0269 [ 0271 | 0272 | 0266 | 0268 | 79.634
: MSE | 0.112 | 0.109 | 0.110 | 0.106 | 0.109 | 29.849
[10.50] | MAE | 1000 | 1000 | 1000 | 1000 | 0853 | 100.0
: MSE | 1000 | 1000 | 1000 | 1000 | 0340 | 100.0
o0.s0] | MAE | 0268 | 0266 | 0269 | 0265 | 0.267 | 76.468
: MSE | 0.106 | 0.102 | 0.104 | 0.101 | 0.106 | 28.776
o0.s0) | MAE | 0271 | 0269 [ 0271 | 0267 | 0268 | 75411
: MSE | 0.109 | 0.110 | 0.106 | 0109 | 0.112 | 28.619
10.50; | MAE | 1000 [ 1000 | 1000 | 1000 | 0854 | 100.0
: MSE | 1000 | 1000 | 1000 | 100.0 | 0.339 | 100.0
0.90; | MAE | 0266 [ 0268 [ 0269 | 0267 | 0.265 | 100.0
. MSE | 0.109 | 0.106 | 0.105 | 0110 | 0.106 | 100.0
0.00; | MAE | 0268 [ 0.269 [ 0271 | 0267 | 0.266 | 100.0
: MSE | 0.106 | 0.109 | 0.110 | 0.105 | 0.109 | 100.0

questions about its attack efficacy. On the other hand, the FTI
attack shows varied performance; it achieves over 100.0 for
most percentile pairs like [10, 70] and [20, 90] but drops
to 79.634 and 29.849 for the pair [30, 70]. These results
underscore the importance of fine-tuning the percentile pair
parameters in the GLID method. Proper parameter selection
can effectively trim outliers without significantly impacting
overall network performance.

VII. CONCLUSION AND FUTURE WORK

In this study, we introduced a novel approach to perform
model poisoning attacks on NDTs through FTI. Operating
under the assumption that real-world BSs are challenging
to attack, we inject fake traffic distribution within NDTs
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with minimum knowledge that disseminates malicious model
parameters into distributed network systems. Furthermore,
we presented an innovative GLID mechanism, designed to
safeguard the NDT systems. It employs an adaptive trim-
ming strategy, relying on percentile estimations that preserve
accurate model parameters while effectively removing outliers.
Extensive evaluations demonstrate the effectiveness of our
attack and defense, outperforming existing baselines.

With the advent of the digitalization era, the develop-
ment of an effective security framework for NDT systems
presents numerous opportunities for future research and
development. Future work could focus on enhancing the
capabilities of secure NDT to incorporate real-time data
streams and predictive analytics, enabling proactive security
management and optimization. Additionally, exploring the
integration of explainable artificial intelligence to elucidate
model aggregation decisions, detect biases, and ensure the
reliability and trustworthiness of the models is a crucial area of
research. Further, investigating the application of secure DTs
in emerging technologies, such as the IoT and 6G cellular
systems, offers promising avenues for integrated intelligence
and autonomy.
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