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Abstract—In this paper, we revisit one of the simplest problems
in data structures: the task of inserting elements into an open-
addressed hash table so that elements can later be retrieved with
as few probes as possible. We show that, even without reordering
elements over time, it is possible to construct a hash table that
achieves far better expected search complexities (both amortized
and worst-case) than were previously thought possible. Along the
way, we disprove the central conjecture left by Yao in his seminal
paper “Uniform Hashing is Optimal”.

I. INTRODUCTION

In this paper, we revisit one of the simplest problems in
data structures: the task of inserting elements into an open-
addressed hash table so that elements can later be retrieved
with as few probes as possible. We show that, even without
reordering elements over time, it is possible to construct a
hash table that achieves far better expected probe complexities
(both amortized and worst-case) than were previously thought
possible. Along the way, we disprove the central conjecture left
by Yao in his seminal paper “Uniform Hashing is Optimal”
[1].

a) Background: Consider the following basic problem
of constructing an open-addressed hash table without re-
ordering. A sequence x1, x2, . . . , x(1→ω)n of keys are inserted,
one after another, into an array of size n. Each xi comes
with a probe sequence h1(xi), h2(xi), . . . → [n]↑ drawn
independently from some distribution P . To insert an element
xi, an insertion algorithm A must choose some not-yet-
occupied position hj(x) in which to place the element. Note
that insertions cannot reorder (i.e., move around) the elements
that were inserted in the past, so the only job of an insertion is
to select which unoccupied slot to use. The full specification
of the hash table is given by the pair (P,A).

If xi is placed in position hj(xi), then xi is said to have
probe complexity j. This refers to the fact that a query could
find xi by making j probes to positions h1(xi), . . . hj(xi).
Note that this does not factor in the insertion probe complex-
ity, or the number of probes that an insertion can make (more
on this later). The goal is to design the hash table (P,A) in a
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way that minimizes the amortized expected probe complexity,
i.e., the expected value of the average probe complexity across
all of the keys x1, x2, . . . , x(1→ω)n.

The classic solution to this problem is to use uniform
probing [2]: the probe sequence for each key is a random
permutation of {1, 2, . . . , n}, and each insertion xi greedily
uses the first unoccupied position from its probe sequence. It
is a straightforward calculation to see that random probing has
amortized expected probe complexity !(log ω→1).

Ullman conjectured in 1972 [3] that the amortized expected
probe complexity of !(log ω→1) should be optimal across all
greedy algorithms, i.e., any algorithm in which each element
uses the first unoccupied position in its probe sequence. This
conjecture remained open for more than a decade before it
was proven by Yao in 1985 [1] in a celebrated paper titled
“Uniform Hashing is Optimal”.

The classical way to get around Yao’s lower bound is to
consider a relaxation of the problem in which the insertion
algorithm is permitted to perform reordering, i.e., moving
elements around after they’re inserted. In this relaxed setting,
it is possible to achieve O(1) amortized expected probe
complexity even when the hash table is completely full [4]–
[6]. What is not clear is whether this relaxation is necessary.
Could a non-greedy algorithm potentially achieve o(log ω→1)
amortized expected probe complexity, without reordering?
Or is reordering fundamentally necessary to achieve small
amortized probe complexity?

Question 1. Can an open-addressed hash ta-
ble achieve amortized expected probe complexity
o(log ω→1) without reordering elements after they
are inserted?

A closely related problem is that of minimizing worst-case
expected probe complexity. A worst-case bound on expected
probe complexity must apply to each insertion individually—
even to the insertions that are performed when the hash
table is very full. Uniform probing achieves a worst-case
expected probe complexity of O(ω→1). It has remained an
open question, however, whether this bound is asymptotically
optimal without the use of reordering.
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Question 2. Can an open-addressed hash table
achieve worst-case expected probe complexity
o(ω→1) without reordering?

This second question, somewhat notoriously [1], [3], [7]–
[10], remains open even for greedy open-addressed hash tables.
Yao conjectured in 1985 [1] that uniform probing should be
nearly optimal in this setting, that is, that any greedy open-
addressed hash table must have worst-case expected probe
complexity at least (1↑o(1))ω→1. Despite its simplicity, Yao’s
conjecture has never been settled.

b) This paper: Tight bounds for open addressing with-
out reordering: In Section II, we give a single hash table
that answers both of the above questions in the affirmative.
Specifically, we show how to achieve an amortized bound of
O(1) and a worst-case bound of O(log ω→1) on the expected
probe complexity in an open-addressed hash table that does
not make use of reordering.
Theorem 1. Let n → N and ω → (0, 1) be parameters
such that ω > O(1/n) and ω→1 is a power of two. It
is possible to construct an open-addressing hash table that
supports n↑↓ωn↔ insertions in an array of size n, that does not
reorder items after they are inserted, and that offers amortized
expected probe complexity O(1), worst-case expected probe
complexity O(log ω→1), and worst-case expected insertion
time O(log ω→1).

We refer to our insertion strategy as elastic hashing,
because of the way that the hash table often probes much
further down the probe sequence before snapping back to the
position it ends up using. That is, in the process of deciding
which slot hi(x) to put a key x in, the algorithm will first
examine many slots hj(x) satisfying j > i. This non-greedy
behavior is essential, as it is the only possible way that one
could hope to avoid Yao’s lower bound [1] without reordering.

Our bound of O(1) on amortized expected probe complexity
is, of course, optimal. But what about the bound of O(log ω→1)
on worst-case expected probe complexity? We prove that this
bound is also optimal: any open-addressing hash table that
does not use reordering must have worst-case expected probe
complexity at least ”(log ω→1).

Next, in Section III, we turn our attention to greedy open-
addressed hash tables. Recall that, in this setting, Question 1
has already been resolved – it has been known for decades
that uniform probing is asymptotically optimal [1]. Question
2, on the other hand, remains open – indeed, this is the
setting where Yao conjectured uniform probing to be optimal
[1], [3], [7]–[10]. Our second main result is a simple greedy
open-addressed strategy, which we call funnel hashing, that
achieves O(log2 ω→1) worst-case expected probe complexity:
Theorem 2. Let n → N and ω → (0, 1) be parameters such that
ω > O(1/no(1)). There is a greedy open-addressing strategy
that supports n↑↓ωn↔ insertions in an array of size n, and that
offers worst-case expected probe complexity (and insertion
time) O(log2 ω→1). Furthermore, the strategy guarantees that,
with probability 1 ↑ 1/ poly(n), the worst-case probe com-

plexity over all insertions is O(log2 ω→1 + log log n). Finally,
the amortized expected probe complexity is O(log ω→1).

The bound of O(log2 ω→1) = o(ω→1) on worst-case ex-
pected probe complexity is asymptotically smaller than the
!(ω→1) bound that Yao conjectured to be optimal. This means
that Yao’s conjecture is false, and that there is a surprisingly
strong sense in which uniform probing is sub-optimal even
among greedy open-addressed strategies.

Finally, observe that Theorem 2 also gives a high-probability
bound on the worst-case probe complexity over all elements
in the hash table. This bound may seem a bit odd at first
glance, but it turns out to be tight. Indeed, our final result is
a matching lower bound of ”(log2 ω→1 + log log n) for any
open-addressing algorithm that does not perform reorderings
(including non-greedy strategies).

c) Additional problem history and related work: We
conclude the introduction by briefly giving some additional
history of the problems and models studied in this paper.

The idea of studying amortized expected probe complexity
appears to have been first due to Knuth in his 1963 paper
on linear probing [11]. Knuth observed that, when a linear-
probing hash table is 1 ↑ ω full, then even though the
expected insertion time is O(ω→2), the amortized expected
probe complexity is O(ω→1). Knuth would later pose a weaker
version of Ullman’s conjecture [12], namely that uniform
probing is optimal out of a restricted set of greedy strategies
known as single-hashing strategies. This weaker conjecture
was subsequently proven by Ajtai [13], whose techniques
ended up serving as the eventual basis for Yao’s proof of the
full conjecture [1]. As noted earlier, Yao conjectured that it
should be possible to obtain a stronger result, namely that the
worst-case expected probe complexity in any greedy open-
addressing hash table is ”(ω→1). This conjecture remained
open [7]–[10] until the current paper, which disproves it in
Theorem 2.

Although we do not discuss key-value pairs in this paper,
most applications of open-addressing associate a value with
each key [2]. In these settings, the job of a query is not
necessarily to determine whether the key is present (it is often
already known to be), but instead to recover the corresponding
value. This distinction is important because both probe com-
plexity and amortized probe complexity are notions that apply
only to keys that are present. Minimizing amortized expected
probe complexity, in particular, corresponds to minimizing
the expected time to query a random element out of those
present. There is no similar notion for negative queries—
when querying an element not present, there is no interesting
difference between querying an arbitrary element versus a
random one.

For worst-case expected probe complexity, on the other
hand, one can in some cases hope to extend one’s results to
negative queries. For greedy algorithms, in particular, negative
query time is the same as insertion time (both stop when they
encounter a free slot) [2]. Thus the guarantee in Theorem
2 extends to imply an O(log2 ω→1) expected time bound for
negative queries.
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Finally, one can also extend the study of open-addressing
without reordering to settings that support both insertions
and deletions over an infinite time horizon [14]–[16]. In this
setting, even very basic schemes such as linear probing [14]
and uniform probing [15] have resisted analysis—it is not
known whether either scheme achieves expected insertion
times, probe complexities, or amortized probe complexities
that even bounded as a function of ω→1. It is known, however,
that the optimal amortized expected probe complexity in this
setting is ω→!(1) (see Theorem 3 in [15]), meaning that results
such as Theorems 1 and 2 are not possible.

II. ELASTIC HASHING

In this section, we construct elastic hashing, an open-
addressed hash table (without reordering) that achieves O(1)
amortized expected probe complexity and O(log ω→1) worst-
case expected probe complexity.
Theorem 1. Let n → N and ω → (0, 1) be parameters
such that ω > O(1/n) and ω→1 is a power of two. It
is possible to construct an open-addressing hash table that
supports n↑↓ωn↔ insertions in an array of size n, that does not
reorder items after they are inserted, and that offers amortized
expected probe complexity O(1), worst-case expected probe
complexity O(log ω→1), and worst-case expected insertion
time O(log ω→1).

Our construction will make use of a specific injection ε :
Z+

↗ Z+
↘ Z+.

Lemma 1. There exists an injection ε : Z+
↗Z+

↘ Z+ such
that ε(i, j) ≃ O(i · j2).

Proof. Take i’s binary representation a1 ⇐ a2 ⇐ · · · ⇐ ap and j’s
binary representation b1 ⇐ b2 ⇐ · · · ⇐ bq (here, a1 and b1 are the
most significant bits of i and j, respectively), and construct
ε(i, j) to have binary representation

1 ⇐ b1 ⇐ 1 ⇐ b2 ⇐ 1 ⇐ b3 ⇐ · · · ⇐ 1 ⇐ bq ⇐ 0 ⇐ a1 ⇐ a2 ⇐ . . . ⇐ ap,

where again the digits read from most significant bit to least
significant bit. The map ε(i, j) is an injection by design since
one can straightforwardly recover i and j from ε(i, j)’s binary
representation. On the other hand,

log2 ε(i, j) ≃ log2 i+ 2 log2 j +O(1),

which means that ε(i, j) ≃ O(i · j2), as desired.

a) The algorithm: We now describe our insertion al-
gorithm. Break the array A of size n into disjoint arrays
A1, A2, . . . , A↓logn↔ satisfying |Ai+1| = |Ai|/2± 1.1

We will simulate a two-dimensional probe sequence {hi,j},
where probe hi,j(x) is a random slot in array Ai. In particular,
we map the entries of the two-dimensional sequence {hi,j} to
those of a one-dimensional sequence {hi} by defining

hε(i,j)(x) := hi,j(x),

1The ±1’s are needed so that it is possible to satisfy |A1|+ |A2|+ · · ·+∣∣A→logn↑
∣∣ = n. Note that, in this context, a±1 means one of a→1, a, a+1.

where ε is the map from Lemma 1. This means that the probe
complexity of an element x placed in slot hi,j(x) is O(i · j2).

We break the n ↑ ↓ωn↔ insertions into batches
B0,B1,B2, . . .. Batch B0 fills array A1 to have
⇒0.75|A1|⇑ elements, where each element x is inserted
using the first available slot in the probe sequence
h1,1(x), h1,2(x), h1,3(x), . . .. For i ⇓ 1, batch Bi consists of

|Ai|↑ ↓ω|Ai|/2↔ ↑ ⇒0.75 · |Ai|⇑+ ⇒0.75 · |Ai+1|⇑ (1)

insertions, all of which are placed in arrays Ai and Ai+1. (The
final batch may not finish, since we run out of insertions.)
For i ⇓ 0, the guarantee at the end of the batch Bi is that
each Aj satisfying j → {1, . . . , i} contains exactly |Aj | ↑

↓ω|Aj |/2↔ elements, and that Ai+1 contains exactly ⇒0.75 ·

|Ai+1|⇑ elements. Note that this guarantee forces the batch size
to be given by (1). Additionally, because the total number of
insertions is n↑↓ωn↔, and because each batch Bi leaves at most
O(n/2i) + ωn/2 remaining free slots in the full array A, the
insertion sequence is guaranteed to finish within O(log ω→1)
batches.

Let c be a parameter that we will later set to be a large
positive constant, and define the function

f(ϑ) = c ·min(log2 ϑ→1, log ω→1).

We now describe how to implement the insertion of an element
x during a batch Bi, i ⇓ 1. Suppose that, when the insertion
occurs, Ai is 1 ↑ ϑ1 full and Ai+1 is 1 ↑ ϑ2 full. There are
three cases:

1) If ϑ1 > ω/2 and ϑ2 > 0.25, then x can go in either of Ai

or Ai+1 and is placed as follows: if any of the positions

hi,1(x), hi,2(x), . . . , hi,f(ϑ1)(x)

are free in Ai, then x is placed in the first such free slot;
and, otherwise, x is placed in the first free slot from the
sequence of positions

hi+1,1(x), hi+1,2(x), hi+1,3(x), . . . .

2) If ϑ1 ≃ ω/2, then x must be placed in Ai+1, and x is
placed in the first free slot from the sequence of positions

hi+1,1(x), hi+1,2(x), hi+1,3(x), . . . .

3) Finally, if ϑ2 ≃ 0.25, then x must be placed in Ai, and
x is placed in the first free slot from the sequence of
positions

hi,1(x), hi,2(x), hi,3(x), . . . .

We refer to the final case as the expensive case since x is
inserted into a potentially very full array Ai using uniform
probing. We shall see later, however, that this case is very
rare: with probability 1 ↑ O(1/|Ai|

2), the case never occurs
during batch Bi.

Note that Cases 2 and 3 are disjoint (only one of the two
cases can ever occur in a given batch) by virtue of the fact
that, once ϑ1 ≃ ω/2 and ϑ2 ≃ 0.25 hold simultaneously, then
the batch is over.
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b) Bypassing the coupon-collector bottleneck: Before we
dive into the analysis, it is helpful to understand at a very
high level how our algorithm is able to bypass the “coupon-
collector” bottleneck faced by uniform probing. In uniform
probing, each probe can be viewed as sampling a random
coupon (i.e., slot); and standard coupon-collector lower bounds
say that at least ”(n log ω→1) probes need to be made if a
(1↑ ω)-fraction of coupons are to be collected. This prohibits
uniform probing (or anything like uniform probing) from
achieving an amortized expected probe complexity better than
O(log ω→1).

A critical feature of our algorithm is the way in which
it decouples each key’s insertion probe complexity (i.e., the
number of probes made while inserting the key) from its
search probe complexity (i.e., the number of probes needed
to find the key). The latter quantity, of course, is what we
typically refer to simply as probe complexity, but to avoid
ambiguity in this section, we will sometimes call it search
probe complexity.

The insertion algorithm will often probe much further down
the probe sequence than the position it ends up using. It might
seem unintutive at first glance that such insertion probes could
be useful, but as we shall see, they are the key to avoiding the
coupon-collecting bottleneck—the result is that most coupons
contribute only to the insertion probe complexity, and not to
the search probe complexity.

To see the decoupling in action, consider an insertion in
batch B1 in which A1 is, say, a (1↑2ω→1)-fraction full, and A2

is, say, a 0.6-fraction full. The insertion makes !(f(ω→1)) =
!(log ω→1) probes to A1, but most likely they all fail (each
probe has only an O(ω) probability of success). The insertion
then looks in A2 for a free slot, and most likely ends up
using a position of the form hε(2,j) for some j = O(1),
resulting in search probe complexity O(ε(2, j)) = O(1). So,
in this example, even though the insertion probe complexity
is !(log ω→1), the search probe complexity is O(1).

The coupon-collector bottleneck is also what makes worst-
case expected insertion (and search) bounds difficult to
achieve. We know that !(n log ω) total coupons must be
collected, and intuitively it is the final insertions (i.e., those
that take place at high load factors) that must do most of the
collecting. After all, how can insertions at low load factors
make productive use of more than a few coupons? This is
what dooms algorithms such as uniform probing to have a
worst-case expected insertion time of O(ω→1).

Our algorithm also circumvents this bottleneck: even though
!(n log ω→1) total coupons are collected, no insertion has an
expected contribution of more than O(log ω→1). This means
that even insertions that take place at low load factors need
to be capable of ‘productively’ making use of !(log ω→1)
probes/coupons. How is this possible? The key is that a
constant-fraction of insertions x have the following experi-
ence: when x is inserted (in some batch Bi), the array Ai is
already almost full (so x can productively sample O(log ω→1)
probes/coupons in that array), but the next array Ai+1 is not
very full (so x can go there in the likely event that none of

the O(log ω→1) probes/coupons in Ai pay off). This is how
the algorithm is able to spread the coupon collecting (almost
evenly!) across !(n) operations.

c) Algorithm Analysis: We begin by analyzing the prob-
ability of a given batch containing insertions in the expensive
case.
Lemma 2. With probability at least 1 ↑ O(1/|Ai|

2), none of
the insertions in batch Bi are in the expensive case (i.e., Case
3).

Proof. Let m denote the size of array Ai. We may assume
that m = ϖ(1), since otherwise the lemma is trivial. For
j → {2, 3, . . . , ⇒log ω→1

⇑}, let Tj be the time window during
batch Bi in which Ai goes from having ↓m/2j↔ free slots to
max(↓m/2j+1

↔, ↓ωm/2↔) free slots.
Each insertion during Tj is guaranteed to be in one of Cases

1 or 3, so the insertion makes at least f(2→j) probe attempts in
Ai, each of which has at least 2→(j+1) probability of succeed-
ing. If f(2→j) > 100 ·2j , then each insertion during time win-
dow Tj has probability at least 1↑ (1↑ 1/2j+1)100·2

j

> 0.99
of being placed in array Ai. Otherwise, if f(2→j) < 100 · 2j ,
then the insertion has a !(f(2→j)/2j) probability of being
placed in array Ai. Thus, in general, each insertion in Tj uses
array Ai with probability at least

min(0.99,!(f(2→j)/2j)). (2)

It follows that:

E[|Tj |] ≃
m/2j+1

min(0.99,!(f(2→j)/2j))
+O(1)

≃ !

(
m

f(2→j)

)
+ 1.02 ·m/2j+1 +O(1).

Since (2) holds for each insertion in Ti independently of
how the previous insertions behave, we can apply a Chernoff
bound to conclude that, with probability at least 1↑ 1/m3,

|Tj | ≃ E[|Tj |] +O(
√

m logm)

≃ O

(
m

f(2→j)

)
+ 1.02 ·m/2j+1 +O(

√
m logm).

(3)

With probability at least 1 ↑ O(1/m2), (3) holds for every
window Tj .

Thus, treating c as a parameter (rather than a constant), we
have that

∑

j

|Tj | ≃

↓log ω→1↔∑

j=2

O

(
m

f(2→j)

)

+

↓log ω→1↔∑

j=2

1.02 ·m/2j+1

+

↓log ω→1↔∑

j=2

O(
√

m logm)

(4)
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Observe that:
↓log ω→1↔∑

j=2

O

(
m

f(2→j)

)

= m ·O




↓log ω→1↔∑

j=2

1

f(2→j)





= m ·O




↓log ω→1↔∑

j=2

1

cmin(j2, log ω→1)





≃
m

c
·O




↑∑

j=2

1

j2
+

↓log ω→1↔∑

j=2

1

log ω→1





≃
m

c
·O(1).

(5)

Furthermore, since
∑↑

j=2 1/2
j+1 = 1/4 = 0.25, we have

that
↓log ω→1↔∑

j=2

(
1.02 ·m/2j+1 +O(

√
m logm)

)

≃ 1.02 · 0.25 ·m+ o(m)

≃ m · (0.26 + o(1))

(6)

By (4), (5), and (6), we have that
∑

j

|Tj | ≃ m · (0.26 + o(1) +O(1/c)).

If we set c to be a sufficiently large positive constant, then
it follows that

∑
j |Tj | < m · (0.27+ o(1)). However, the first

0.27 · m insertions during batch Bi can fill array Ai+2 to at
most a 0.54 + o(1) < 0.75 fraction full (recall, in particular,
that we have m = ϖ(1) without loss of generality). This means
that none of the insertions during time windows T1, T2, . . . are
in Case 3 (the expensive case). On the other hand, after time
windows T1, T2, . . . are complete, the remaining insertions in
the batch are all in Case 2. Thus, with probability at least
1↑O(1/m2), none of the insertions in the batch are in Case
3.

Next, we bound the expected search probe complexity for
a given insertion within a given batch.
Lemma 3. The expected search probe complexity for an
insertion in batch Bi is O(1 + i).

Proof. Insertions in batch 0 have search probe complexities
of the form ε(1, j) = O(j2) where j is a geometric random
variable with mean O(1). They therefore have expected probe
complexities of O(1). For the rest of the proof, let us assume
that i > 0.

Let x be the element being inserted. Let Cj , j → {1, 2, 3}, be
the indicator random variable for the event that x’s insertion is
in Case j. Let Dk, k → {1, 2} be the indicator random variable
for the event that x ends up in array Ai+k→1. Note that C3 is
the indicator for the expensive case, and note that C2 implies
D2 (since case 2 requires an insertion into Ai+1). Finally, let

Q be the search probe complexity of x. We can break E[Q]
into

E[Q] = E[QC1D1] + E[QC1D2] + E[QC2] + E[QC3] (7)
≃ E[QC1D1] + E[QD2] + E[QC3], (8)

where the final inequality uses the fact that C2 implies D2

and thus that E[QC1D2] + E[QC2] ≃ E[QD2].
To bound E[QC1D1] (Case 1 and inserting into A1), ob-

serve that

E[QC1D1] ≃ E[QD1 | C1] (9)
= E[Q | D1, C1] · Pr[D1 | C1] (10)

Suppose that, when x is inserted, array Ai is 1↑ϑ full and that
x uses Case 1. By the definition of Case 1, the only positions
that x considers in Ai are hi,1, . . . , hi,f(ϑ). The probability that
any of these positions are free is at most O(f(ϑ) · ϑ). And, if
one is free, then the resulting search probe complexity Q will
be at most ε(i, f(ϑ)) ≃ O(i(f(ϑ))2). Thus (10) satisfies

E[Q | D1, C1] · Pr[D1 | C1]

≃ O(i(f(ϑ))2) ·O(f(ϑ) · ϑ)

≃ O(iϑ(f(ϑ))3)

≃ O(iϑ log6 ϑ→1)

≃ O(i).

To bound E[QD2], recall that D2 can only occur if Ai+1 is
at most a 0.75 fraction full. Thus, if D2 occurs, then x will
have search probe complexity ε(i+1, j) where j is at most a
geometric random variable with mean O(1). We can therefore
bound E[QD2] by

E[QD2] ≃ E[Q | D2] ≃ E[ε(i+ 1, j)],

where j is a geometric random variable with mean O(1). This,
in turn, is at most

O(E[i · j2]) = O(i).

Finally, to bound E[QC3], observe that

E[QC3] = E[Q | C3] · Pr[C3]. (11)

By Lemma 2, we have Pr[C3] = O(1/|Ai|
2). Since Case 3

inserts x into Ai using the probe sequence hε(i,1), hε(i,2), . . .,
the search probe complexity of x will end up being given by
ε(i, j) = O(i · j2) where j is a geometric random variable
with mean O(|Ai|). This implies a bound on E[Q | C3] of
O(i · |Ai|

2). Thus, we can bound (11) by

E[Q | C3] · Pr[C3] ≃ O(i · |Ai|
2/|Ai|

2) = O(i).

Having bounded each of the terms in (8) by O(i), we can
conclude that E[Q] = O(i), as desired.

Finally, we bound the worst-case expected insertion time by
O(log ω→1).
Lemma 4. The worst-case expected time for an insertion is
O(log ω→1).
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Proof. Insertions in batch 0 take expected time O(1), since
they make O(1) expected probes into A1. Now consider an
insertion in some batch Bi, i ⇓ 1. If the insertion is in either
of Cases 1 or 2, then the insertion makes at most f(ω→1)
probes in Ai and at most O(1) expected probes in Ai+1. The
expected insertion time in each of these cases is therefore
at most f(ω→1) = O(log ω→1). Finally, each insertion has
probability at most 1/|Ai|

2 of being in Case 3 (by Lemma
2), and the expected insertion time in Case 3 can be bounded
by O(|Ai|) (since we probe repeatedly in Ai to find a free
slot). Therefore, the contribution of Case 3 to the expected
insertion time is at most O(1/|Ai|) = O(1).

Putting the pieces together, we prove Theorem 1

Proof. By Lemma 3, the insertions in Bi each have expected
search probe complexity O(i). Since there are O(log ω→1)
batches, this implies a worst-case expected search probe com-
plexity of O(log ω→1). And, since the |Bi|s are geometrically
decreasing, the amortized expected search probe complexity
overall is O(1). Finally, by Lemma 4, the worst-case expected
time per insertion is O(log ω→1). This completes the proof of
the theorem.

III. FUNNEL HASHING

In this section, we construct a greedy open-addressing
scheme that achieves O(log2 ω) worst-case expected probe
complexity, and high-probability worst-case probe complexity
O(log2 ω + log log n). As we shall see, the high-probability
worst-case bound is optimal.
Theorem 2. Let n → N and ω → (0, 1) be parameters such that
ω > O(1/no(1)). There is a greedy open-addressing strategy
that supports n↑↓ωn↔ insertions in an array of size n, and that
offers worst-case expected probe complexity (and insertion
time) O(log2 ω→1). Furthermore, the strategy guarantees that,
with probability 1 ↑ 1/ poly(n), the worst-case probe com-
plexity over all insertions is O(log2 ω→1 + log log n). Finally,
the amortized expected probe complexity is O(log ω→1).

Proof. Throughout the section, we assume without loss of
generality that ω ≃ 1/8. Let ϱ =

⌈
4 log ω→1 + 10

⌉
and

ς =
⌈
2 log ω→1

⌉
.

The greedy open-addressing strategy that we will use in this
section is as follows. First, we split array A into two arrays,
A↗ and a special array denoted Aϖ+1, where ↓3ωn/4↔ ⇓

|Aϖ+1| ⇓ ⇒ωn/2⇑ , with the exact size chosen so that |A↗
|

is divisible by ς. Then, split A↗ into ϱ arrays A1, . . . , Aϖ

such that |Ai| = ςai, satisfying ai+1 = 3ai/4 ± 1. That is,
the size of each array is a multiple of ς and they are (roughly)
geometrically decreasing in size. Note that, for i → [ϱ↑ 10],
∑

j>i

|Aj | ⇓ ((3/4) + (3/4)2 + · · ·+ (3/4)10) · |Ai| > 2.5|Ai|.

Each array Ai with i → [ϱ] is further subdivided into arrays
Ai,j , each of size ς. We define an attempted insertion of a
key k into Ai (for i → [ϱ]) as follows:

1) Hash k to obtain a subarray index j →
[
|Ai|
ϱ

]
.

2) Check each slot in Ai,j to see if any are empty.
3) If there is an empty slot, insert into the first one seen,

and return success. Otherwise, return fail.

To insert a key k into the overall data structure, we perform
attempted insertions on each of A1, A2, . . . , Aϖ, one after
another, stopping upon a successful attempt. Each of these
ϱ = O(log ω→1) attempts probes up to ς = O(log ω→1) slots.
If none of the attempts succeed, then we insert k into the
special array Aϖ+1. The special array Aϖ+1 will follow a
different procedure than the one described above—assuming
it is at a load factor of at most 1/4, it will ensure O(1)
expected probe complexity and O(log logn) worst-case probe
complexity. Before we present the implementation of Aϖ+1,
we will first analyze the behaviors of A1, A2, . . . , Aϖ.

At a high level, we want to show that each Ai fills up to
be almost full over the course of the insertions. Critically, Ai

does not need to give any guarantees on the probability of
any specific insertion succeeding. All we want is that, after
the insertions are complete, Ai has fewer than, say, ω|Ai|/64
free slots.

Lemma 5. For a given i → [ϱ], we have with probability 1↑
n→ς(1) that, after 2|Ai| insertion attempts have been made in
Ai, fewer than ω|Ai|/64 slots in Ai remain unfilled.

Proof. Since each insertion attempt selects a uniformly ran-
dom Ai,j to use, out of |Ai|/ς options, the expected number
of times that a given Ai,j is used is 2ς. Letting the number
of attempts made to insert into Ai,j be Xi,j , we have by a
Chernoff bound that

Pr[Xi,j < ς] = Pr[Xi,j < (1↑ 1/2)E[Xi,j ]]

= e→22ϱ/2

≃ e→4 log ω→1

= ω4

≃
1

128
ω.

Note that, since we always insert into the subarray we
choose if it has empty slots, the only scenario in which Ai,j re-
mains unfilled is if Xi,j < ς. Therefore, the expected number
of subarrays that remain unfilled is at most 1

128ω
(

|Ai|
ϱ

)
, and,

consequently, the expected number of subarrays that become
full is


1↑ 1

128ω
 ( |Ai|

ϱ

)
.

Define Yi,k to be the random number in [|Ai|/ς] such that
the kth insertion attempt into Ai uses subarray Ai,Yi,k . Let
f(Yi,1, . . . , Yi,2|Ai|) denote how many subarrays Ai,j remain
unfilled after 2|Ai| insertion attempts have been made. Chang-
ing the outcome of a single Yi,k changes f by at most 2—one
subarray may become unfilled and one may become filled.
Also, by the above, E[f(Yi,1, . . . , Yi,2|Ai|)] = 1

128ω
(

|Ai|
ϱ

)
.
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Therefore, by McDiarmid’s inequality,

Pr


f(Yi,1, . . . , Yi,2|Ai|) ⇓

1

64
ω

(
|Ai|

ς

)

≃ exp



↑

2
(

1
128ω

|Ai|
ϱ

)2

2|Ai|





= exp

↑|Ai|O(ω2/ς2)


.

Since |Ai| = n poly(ω) and ω = n→o(1), we have that

|Ai|O(ω2/ς2) = n1→o(1),

so the probability that more than a ω
64 -fraction of the subarrays

in Ai remain unfilled is exp(↑n1→o(1)) = 1/n→ς(1). All
subarrays are the same size, so, even if these unfilled subarrays
remain completely empty, we still have that 1

64ω of the total
slots remain unfilled, as desired.

As a corollary, we can obtain the following statement about
Aϖ+1:
Lemma 6. With probability 1 ↑ n→ς(1), the number of keys
inserted into Aϖ+1 is fewer than ω

8n.

Proof. Call Ai fully explored if at least 2|Ai| insertion at-
tempts are made to Ai. By Lemma 5, we have with probability
1↑ n→ς(1) that every fully-explored Ai is at least (1↑ ω/64)
full. We will condition on this property for the rest of the
lemma.

Let φ → [ϱ] be the smallest index such that Aφ receives
fewer than 2|Ai| insertion attempts (or φ = ϱ + 1 if no such
index exists). We will handle three cases for φ.

First, suppose that φ ≃ ϱ↑10. By definition, we know that,
for all φ < i → [ϱ], Ai is fully explored, and therefore that
Ai contains at least |Ai|(1↑ ω/64) keys. The total number of
keys in Ai, i > φ, is therefore at least

(1↑ ω/64)
ϖ∑

i=φ+1

|Ai| ⇓ 2.5(1↑ ω/64)|Aφ|,

contradicting the fact that at most 2|Aφ| insertions are made
in total for all arrays Ai with i ⇓ φ (recall by the construction
of our algorithm that we must first try [and fail] to insert into
Aφ before inserting into Ai for any i ⇓ φ). This case is thus
impossible, and we are done.

Next, suppose that ϱ↑10 < φ ≃ ϱ. In this case, fewer than
2|Aϖ→10| < nω/8 keys are attempted to be inserted into any
Ai with i ⇓ φ, including i = ϱ+ 1, and we are done.

Finally, suppose that φ = ϱ + 1. In this case, Ai has at
most ω|Ai|/64 empty slots, for every i → ϱ. Therefore, the
total number of empty slots at the end of all insertions is at
most

|Aϖ+1|+
ϖ∑

i=1

ω|Ai|

64
= |Aϖ+1|+

ω|A↗
|

64
≃

3nω

4
+

nω

64
< nω,

which contradicts the fact that, after n(1↑ ω) insertions, there
are at least nω slots empty. This concludes the proof.

Now, the only part left is to implement the ≃ ωn/8
insertions that reach Aϖ+1. We must do so with O(1) expected
probe complexity and with O(log logn) worst-case probe
complexity, while incurring at most a 1/ poly(n) probability
of hash-table failure.

We implement Aϖ+1 in two parts. That is, split Aϖ+1 into
two subarrays, B and C, of equal (±1) size. To insert, we
first try to insert into B, and, upon failure, we insert into
C (an insertion into C is guaranteed to succeed with high
probability). B is implemented as a uniform probing table,
and we give up searching through B after log log n attempts.
C is implemented as a two-choice table with buckets of size
2 log log n.

Since B has size |Aϖ+1|/2 ⇓ ωn/4, its load factor never
exceeds 1/2. Each insertion into Aϖ+1 makes log logn ran-
dom probes in B, each of which has at least a 1/2 probability
of succeeding. The expected number of probes that a given
insertion makes in B is therefore O(1), and the probability
that a given insertion tries to use B but fails (therefore moving
on to C) is at most 1/2log logn

≃ 1/ log n.
On the other hand, C is implemented as a two choice

table with buckets of size 2 log log n. Each insertion hashes
to two buckets a and b uniformly at random, and uses a probe
sequence in which it tries the first slot of a, the first slot of b,
the second slot of a, the second slot of b, and so on. The effect
of this is that the insertion ends up using the emptier of the
two buckets (with ties broken towards a). If both buckets are
full, our table fails. However, with high probability, this does
not happen, by the following classical power-of-two-choices
result [17]:
Theorem 3. If m balls are placed into n bins by choosing two
bins uniformly at random for each ball and placing the ball
into the emptier of the two bins, then the maximum load of
any bin is m/n+log log n+O(1) with high probability in n.

Applying this theorem to our setting, we can conclude that,
with high probability in |Aϖ+1|/ log logn, and therefore with
high probability in n, no bucket in C ever overflows. This
ensures the correctness of our implementation of Aϖ+1.

Since each insertion in Aϖ+1 uses C with probability at
most 1/ log n, and there are at most 2 log log n slots checked
in C, the expected time that each insertion spends in C is
at most o(1). Thus, insertions that reach Aϖ+1 take expected
time O(1) and worst-case time O(log logn).

Since we only attempt to insert into ς slots for each Ai

(a single bucket), the probe complexity of a given insertion
is at most ςϱ + f(Aϖ+1) = O(log2 ω→1 + f(Aϖ+1)), where
f(Aϖ+1) is the number of probes made in Aϖ+1. This implies
a worst-case expected probe complexity of O(log2 ω→1) and a
high-probability worst-case probe complexity of O(log2 ω→1+
log log n).

We now only have left to prove the amortized expected
probe complexity. The expected number of probes we make
into each subarray is at most c log ω→1 for some constant c
(including for Aϖ+1), and we first insert into A1, then A2,
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and so on. Thus, the total expected probe complexity across
all keys is at most

|A1|·c log ω
→1+|A2|·2c log ω

→1+· · ·+|Aϖ+1|·(ϱ+1) log ω→1.

Since the Ai’s are geometrically decreasing in size with the
exception of Aϖ+1, which itself is only O(nω) in size, the
above sum is dominated (up to a constant factor) by its first
term. The total expected probe complexity across all keys
is thus O(|A1| log ω→1) = O(n log ω→1), implying that the
amortized expected probe complexity is O(n log ω→1/(n(1 ↑
ω))) = O(log ω→1), as desired. This completes the proof of
Theorem 2.

IV. LOWER BOUNDS

In this section, we provide proofs of lower bounds for open-
addressed hash tables that do not perform reordering. Our
first result will be a lower bound of ”(log ω→1) on worst-
case expected probe complexity. Our second result will be a
lower bound of ”(log2 ω→1 + log log n) on (high-probability)
worst-case probe complexity.

For the following proofs, we assume that the probe se-
quences for keys are iid random variables. This is equivalent
to assuming that the universe size is a large polynomial and
then sampling the keys at random (with replacement); with
high probability, such a sampling procedure will not sample
any key twice.

A. Common Definitions
Both lower bounds will make use of a shared set of

definitions:
• Let m = n(1↑ ω).
• Let k1, k2, . . . , km be the set of keys to be inserted.
• Let Hi(kj) be i-th entry in the probe sequence for kj .

Because the distribution of Hi(kj) is the same for all kj ,
we will sometimes use Hi as a shorthand. We will also
use hi to refer to a (non-random) specific outcome for
Hi.

• Let Hc(kj) = {Hi(kj) : i → [c]} denote the set consisting
of the first c probes made by kj . Again, because Hc(kj)
has the same distribution for all kj , we will sometimes
use Hc as a shorthand.

• For i → [m], let Si ⇔ [n], |Si| = n ↑ i be a random
variable denoting the set of unfilled slots in the array after
i keys have been inserted (with the distribution derived
from the hashing scheme).

• For i → [m] and j → N, let Xi,j be a random variable
indicating whether the slot indexed by Hj(ki) is empty
at the time that ki is inserted.

• Let Yi be the position in the probe sequence that ki uses.
In other words, ki is placed in the slot HYi(ki). We will
also use yi to refer to a (non-random) specific outcome
for Yi. Note that the slot must be empty, so Yi → {r :
Xi,r = 1} (in a greedy algorithm, the first available slot
is taken—in this case, Yi = min{r : Xi,r = 1}—but
we make no assumptions as to whether the algorithm is
greedy or not).

• Let Li be the random variable denoting the location in
the array in which the ith key is inserted.

B. Worst Case Expected Probe Complexity
In this section, we prove the following theorem:

Theorem 4. In any open-addressing scheme achieving load
factor 1↑ω without reordering, the worst case expected probe
complexity must be ”(log ω→1). In particular, there exists
some i → [m] for which E[Yi] = ”(log ω→1).

At a high level, we want to reverse the idea of the upper
bound algorithms. Rather than partitioning our array into
subarrays with exponentially decreasing size, we show that,
at minimum, such a construction arises naturally. Given an
upper bound c on worst-case expected probe complexity,
we will show that there must exist disjoint groups of slots
v1, v2, . . . , v”(log ω→1), of exponentially decreasing sizes, with
the property that, for each i, E[|H2c ↖ vi|] ⇓ ”(1). This, in
turn, implies that 2c ⇓ E[|H2c|] ⇓ ”(log ω→1). As we shall
see, the tricky part is defining the vis in a way that guarantees
this property.

Proof. Let c be any upper bound for E[Yi] that holds for all i.
We want to prove that c = ”(log ω→1). Note that, by Markov’s
inequality, Pr[Yi ≃ 2c] ⇓ 1

2 for any i → [m].
Let

ϱ =


log ω→1

3


→ ”(log ω→1).

For i → [ϱ] , let ai = n

1↑ 1

23i


. Note that ai ≃ alog ω→1/3 ≃

n
(
1↑ 1

23 log ω→1/3

)
= n(1↑ω) = m. Further note that |Sai | =

n ↑ ai =
n
23i , since Si represents the slots still unfilled; and

note that the sizes |Sai |, for i = 1, 2, . . . form a geometric
sequence with ratio 1/23 = 1/8. It follows that, for any sai ↙

Sai , sai+1 ↙ Sai+1 , . . ., saε ↙ Saε , even if the sai ’s are not
compatible with each other (i.e., even if sai+1 ∝′ sai ), we have

sai+1 ∞ sai+2 ∞ · · · ∞ saε

 ≃
∑

j↘i+1

|saj | ≃ |sai |/7.

Since Pr[Yi ≃ 2c] ⇓ 1
2 , we have that, for any t < 2m↑ n =

n(1↑ 2ω),

E[|{i : Yi ≃ 2c and t < i ≃ m}|] ⇓
m↑ t

2
⇓

n↑ t

4
=

|St|

4
.

Therefore, for each j → [ϱ↑ 1], there is some saj ′ [n] such
that

E

|{i : Yi ≃ 2c, aj < i ≃ m}|

Saj = saj


⇓

|saj |

4
. (12)

That is, we find some concrete instance saj of the random
variable Saj that sets the number of expected “small” values
of Yi, with i > aj and given Saj = saj , to at least the overall
expected number. It is important to note that the sa1 , sa2 , . . .
may have an arbitrary relationship to one another; they need
not be mutually compatible as values for Sa1 , Sa2 , . . .. Perhaps
surprisingly, even despite this, we will still be able to reason
about the relationships between the sais. In particular, we will
show by the end of the proof that, for each j and for each
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insertion, the expected number of probes out of the first 2c
that probe a position in saj \


k>j sak is ”(1). This will

allow us to deduce that, in expectation, the first 2c entries in
the probe sequence contain at least ”(log ω→1) distinct values,
implying that c = ”(log ω→1).

Let

Lj = {Li : m ⇓ i > aj and Yi ≃ 2c}

Saj = saj

be the (random variable) set of positions that are used by the
“fast” insertions (i.e., those satisfying Yi ≃ 2c) that take place
at times i > aj , given that the set of set of unfilled slots (at
time aj) is saj . Note that

E[|Lj |] ⇓
|saj |

4
,

by (12). Observe that Li ′ saj , since all slots filled starting
with saj as the set of empty slots must come from saj . We will
now argue that, because E[|Lj |] is so large, we are guaranteed
that E[|Lj \


k>j sak |] is also large, namely, ”(|saj |).

Define

tj =


k>j

sak ,

vj = saj \ tj .

and note that the vjs are disjoint:
Claim 7. vj ↖ vk = ∈ for all j ∝= k. That is, all the vj’s are
mutually disjoint.

Proof. Without loss of generality, suppose j < k. By the
definition of tj , sak ′ tj . By the definition of vk, vk ′ sak ,
implying vk ′ tj . Finally, by the definition of vj , vj ↖ tj = ∈.
Therefore, vj ↖ vk = ∈.

As we saw earlier, |tj | = |saj+1 ∞ · · · ∞ saε | ≃ |saj |/7.
Since Li ′ saj ′ vj ∞ tj , we have that

saj


4

≃ E [|Li|]

= E [|Li ↖ vj |] + E [|Li ↖ tj |]

≃ E [|Li ↖ vj |] +

saj


7

.

Subtracting, we get that

E [|Li ↖ vj |] ⇓

saj


4

↑

saj


7

⇓

saj


16

. (13)

The high-level idea for the rest of the proof is as follows.
We want to argue that the vj’s are disjoint sets that each have a
reasonably large (i.e., ”(1)) probability of having an element
appear in the first 2c probes H2c of a given probe sequence.
From this, we will be able to deduce that c is asymptotically
at least as large as the number of vj’s, which is ”(log ω→1).

Let

pi,j = Pr[Yi ≃ 2c and Li → vj ],

qj = Pr[H2c ↖ vj ∝= ∈].

We necessarily have pi,j ≃ qj , since, for Yi ≃ 2c and Li → vj ,
we must have that at least some hash function in the first 2c
outputted an index in vj . We thus have that

|saj |

16
≃ E[|Lj ↖ vj |]

=
m∑

i=aj+1

pi,j

≃

m∑

i=aj+1

qj

= qj(m↑ aj)

≃ qj(n↑ aj)

= qj |saj |.

From this, we conclude that qj ⇓
1
16 for all j → [ϱ ↑ 1].

Therefore,

2c = |{Hi : i → [2c]}|

= |{Hi : i → [2c]} ↖ [n]|

= E[|{Hi : i → [2c]} ↖ [n]|]

⇓

ϖ→1∑

j=1

E[|{Hi : i → [2c]} ↖ vj |]

⇓

ϖ→1∑

j=1

qj

⇓
1

16
(ϱ↑ 1)

= ”(log ω→1),

and we are done.

C. High-Probability Worst-Case Probe Complexity
To prove the high probability lower bounds, we will use

a similar set construction to that in the previous proof. The
one difference is that we now have a cap on the maximum
probe complexity. In terms of the variables used in the proof
of Theorem 4, this one extra constraint allows us to obtain
a stronger bound on E[H2c ↖ vj ]—namely our bound on this
quantity will increase from ”(1) to ”(log ω→1).

The main idea is that, since we now have a worst-case upper
bound c on how many probes an insertion can use, we can
more explicitly analyze the actual probability that a particular
slot ever gets probed. As will show, for a slot to be seen
with probability greater than 1 ↑ ω (which is necessary for a
(1 ↑ ω)-fraction of slots to get filled), it must appear in Hc

with probability at least ”(log ω→1/n). Integrating this into
our analysis, we will be able to pick up an extra ”(log ω→1)
factor compared to the proof of Theorem 4.
Theorem 5. In any open-addressing scheme that does not per-
form reordering, with probability greater than 1/2, there must
be some key whose probe complexity ends up as ”(log2 ω→1).
In other words,

Pr [Yi ≃ c ∋i → [m]] ≃
1

2
,
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for all c → o(log2 ω→1).

Proof. Suppose that some open-addressing scheme that does
not perform reordering exists such that, for some c → N, the
probe complexity of all keys is at most c with probability
greater than 1/2. We will show that c = ”(log2 ω→1).

By definition, we have that

Pr[Yi ≃ c ∋i → [m]] >
1

2
. (14)

Therefore, for each i → {0, 1, . . . ,m}, there must be some
si ′ [n] of size n↑ i such that

Pr


Yi ≃ c ∋i → [m]

Si = si


>

1

2
.

Otherwise, by the definition of conditional probability, we
would contradict (14).

Claim 8. For any i < n(1 ↑ 256ω), there must be some set
ri ′ si ′ [n] with |ri| >

n→i
2 = |si|

2 such that, for any x → ri,

P [x → Hc] >
1

32

log
(

|si|
nω

)

|si|
.

Proof. A necessary condition for a table to succeed (that is,
for all keys to have a probe complexity of at most c) with a
load factor of 1↑ ω is that

si \ ∞j>iHc(kj)

has size at most ωn. Indeed, these are the set of slots that are
empty after the insertion of ki, and that never get probed by
(the first c probes) of any of the remaining insertions.

Therefore,

Pr






si ↖




m

j=i+1

Hc(kj)






> |si|↑ ωn : Si = si



 >
1

2
.

(15)

Note that the conditioning on Si = si is unnecessary, as the
random variables Hc(kj), j > i, are independent of the event
Si = si.

Let p =
log

(
|si|
nω

)

|si| , and let ti be the set of all slots x → si
such that

Pr[x → Hc] ≃
p

32
.

We will complete the proof of the claim by showing that |ti| <
|si|/2. To do so, we will calculate the number of elements in

ti that are expected to appear in some Hc(kj) with j > i:

E






ti ↖




m

j=i+1

Hc(kj)











=
∑

x≃ti

Pr



x →

m

j=i+1

Hc(kj)





=
∑

x≃ti

1↑ (1↑ Pr [x → Hc])
m→i

(since Hc(kj) is iid across j)

≃

∑

x≃ti

1↑
(
1↑

p

32

)|si|→nω

≃

∑

x≃ti

1↑
(
1↑

p

32

)|si|/2

(since i < n(1↑ 2ω) by assumption)

≃ |ti|↑ |ti|

(
1↑

1

|si|

)log
(

|si|
nω

)
|si|/64

(since (1↑ x/t) ≃ (1↑ 1/t)x if x, t ⇓ 1)

< |ti|↑ |ti|(1/2)
log

(
|si|
nω

)
/8

< |ti|↑ |ti|

(
nω

|si|

)1/8

.

By assumption, i < n(1 ↑ 256ω), so |si| > n ↑ n(1 ↑

256ω) = 256nω. Since |si| > 256nω, we have that
(

nω
|si|

)1/8
<


1

256

1/8
= 1

2 . We thus have that

|ti|↑ |ti|

(
nω

|si|

)1/8

<
|ti|

2
.

For the table insertion process to succeed, we must have that

E






ti ↖




m

j=i+1

Hc(kj)









 ⇓ |ti|↑ nω,

as otherwise more than nω slots are never part of any hash
function output and therefore are guaranteed to be unfilled at
the end. It follows that |ti| < 2nω < |si|/2, as desired.

Let ai = n

1↑ 1

4i


for i → [log ω→1/4]. Observe that, for

any i → [log ω→1/4],


log ω→1/4

j=i+1

saj


≃

log ω→1/4→i∑

j=1

|sai |

4j
≃

|sai |

3
≃

3|sai |

8
.

Let

vi = rai \




log ω→1/4

j=i+1

saj



 ,

for i → [log ω→1/4]. By Claim 8, we have that |rai | ⇓
|sai |
2 ,

so
|vi| ⇓

|sai |

2
↑

3 |sai |

8
=

|sai |

8
.
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Note that vi ↖ vj = ∈ for all i ∝= j with a similar proof to
Claim 7 in the previous subsection. Also, note that

|sai | ⇓ n

(
1

4

)log ω→1/4

= n

(
1

2

)log ω→1/2

= n
△

ω.

We now obtain a lower bound on |Hc| ≃ c by unrolling the
definition of each vi. In particular, assuming without loss of
generality that log ω→1/4 > 256, we have

c ⇓ E[|Hc|] ⇓

log ω→1/4∑

i=1

E[|Hc ↖ vi|]

=

log ω→1/4∑

i=1

∑

x≃vi

E[|{x} ↖Hc|]

=

log ω→1/4∑

i=1

∑

x≃vi

Pr[x → Hc]

⇓

log ω→1/4∑

i=1

∑

x≃vi

1

32

log
(

|sai |
nω

)

|sai |

=
1

32

log ω→1/4∑

i=1

|vi|
log

(
|sai |
nω

)

|sai |

⇓
1

32

log ω→1/4∑

i=1

|sai |

8

log
(

n
⇐
ω

nω

)

|sai |

=
1

32

log ω→1/4∑

i=1

log ω→1

16

(since log(1/
△
ω) = log ω→1/2)

=
1

32
·
1

16
·
1

4
log2 ω→1

= ”(log2 ω→1),

as desired.

We now combine our result above with a known result to
obtain our full lower bound:
Theorem 6. In any open-addressing scheme that does not
support reordering, there must be some key whose probe
complexity ends up as ”(log logn+log2 ω→1) with probability
greater than 1/2, assuming that 1↑ ω = ”(1).

Proof. We only need to prove that some key has probe
complexity ”(log logn), as we already proved there is some
key with probe complexity ”(log2 ω→1) in Theorem 5. Our
proof mirrors the proof of Theorem 5.2 in [15], which in turn
is primarily based on the following theorem in [18]:
Theorem 7 (Theorem 2 in [18]). Suppose m balls are se-
quentially placed into m bins using an arbitrary mechanism,
with the sole restriction that each ball chooses between d bins
according to some arbitrary distribution on [m]d. Then the
fullest bin has ”(log logn/d) balls at the end of the process
with high probability.

Now, suppose we have some arbitrary open-addressing
scheme that does not perform reordering, where, with prob-
ability greater than 1/2, all keys have probe complexity at
most d. We modify our hash table scheme into a balls and
bins process that chooses between at most d bins as follows.

Suppose key ki is inserted into location li = hj(ki). If
j ≃ d, then place ball i into bin hj(ki) mod m. Otherwise,
place ball i into bin hd(ki) mod m, in this way ensuring that
the scheme chooses between at most d bins; the set of possible
choices is {Hj(ki) mod m : j ≃ d}, a set of size (at most) d.
This process also ensures that the fullest bin most likely has
few balls land in it:
Lemma 9. With probability greater than 1/2, the fullest bin
has O(1) balls at the end of the process.

Proof. Suppose that ball i lands in bin Bi. The indices of the
balls that land in the jth bin are thus {i : Bi = j}.

Now, suppose that Bi = Li mod m for all i → [m], and
note that this happens with probability greater than 1/2. Since
each slot can only store one key, Li ∝= Lj for any i ∝= j.
Therefore, {i : Bi = j} ′ {i → [n] : i mod m = j}. Since
1↑ ω = ”(1), we have that m = ”(n), or n = O(m). Thus,
|{i → [n] : i mod m = j}| = O(1) for all i → [m], and the
fullest bin has at most O(1) balls, as desired.

By Theorem 7, the fullest bin has ”(log logn/d) balls at the
end of the process with high probability. If d = o(log logn),
then the fullest bin has ϖ(1) balls in the fullest bin with
high probability, contradicting Lemma 9. Therefore, d =
”(log log n), as desired.
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allocations: the heavily loaded case,” in Proceedings of the Thirty-
Second Annual ACM Symposium on Theory of Computing, ser. STOC
’00. Association for Computing Machinery, 2000, p. 745–754.
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