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Abstract

Modern work on hashing has led to hash tables with extraordinary guarantees. However, these data
structures are too complex to be taught in (even an advanced) data structures course. In this paper, we show
that this need not be the case: using standard machinery that we already teach, one can construct a simple
hash table that o!ers guarantees much stronger than what are classically taught:

• Operations are O(1)-time with high probability;
• The hash table stores n k-bit items in nk +O(n log log n) bits of space;
• The hash table is dynamically resized, so the space bound holds with respect to the current size n at

each time step.

1 Introduction

Since hash tables were introduced in 1953, there has been a vast literature on the question of how to design
space- and time-e!cient hash tables [1, 2, 6–8, 12, 14, 14, 16, 20, 21, 24, 25, 28, 32, 34–36, 38]. Most hash tables that
students are taught o”er the following basic type of guarantee: to store n keys, each of k bits, the hash table
uses space (1+ ω)kn bits and supports insertions/deletions/queries in poly(ω)→1 expected time. Even in advanced
data structures courses, the most sophisticated hash tables that are taught (typically versions of either FKS
hashing [15, 16, 21, 22] or Cuckoo hashing [33, 34]) improve on this guarantee only in terms of query time, which
becomes worst-case rather than expected.1

However, state-of-the-art hash tables [2, 6–8] o”er much stronger of guarantees:

• Time e!ciency: Queries/insertions/deletions run in constant time with high probability,

• Space e!ciency: The space that the hash table uses to store n items, each of k bits, is (1+ o(1))nk bits.2

• Dynamic Resizing: The time/space guarantees are maintained even as n changes dynamically over time.

It is worth appreciating how strong these guarantees are. Even though the hash table is using space (1+ω)nk bits
for some ω = o(1), the operations are still constant time. In fact, they are constant time not just in expectation,
but with high probability 1→ 1/poly(n). As for resizing, the standard approach to keeping a hash table at space
(1 → ω)nk bits, as n changes over time, is to perform #(n)-time rebuilds every $(ωn) operations. So not only is
the hash table avoiding the costs typically associated with insertions/deletions/queries in a fixed-capacity hash
table, it is even avoiding the costs typically associated with resizing.

So why aren’t students taught about these incredible data structures? The issue is that they are too
complicated. The only hash tables in the literature to achieve the full set of guarantees [2, 6–8] are viewed
as technical powerhouses. And even the hash tables that come part of the way (e.g., [12, 14, 28, 36]) can be quite
involved.
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1
Moreover, at least as they are typically taught, these data structures also give up on ω, settling instead for space O(nk) bits.

Cuckoo hashing can be optimized to support an ω, by either using d → 2 hash functions [20] or by using bins of some size h → 1 [18],

and then once again the time per operation becomes a function of ω
→1

.

2
In fact, an even stronger guarantee can be achieved: there are constant-time hash tables with space within a 1 + o(1) factor of

the information-theoretic optimum [2,6–8,28,36]. Indeed, it is now even known what the optimal time/space tradeo! curve is for the

o(1) term [7,27].
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In this paper, we show how to construct a modern hash table using nothing but the standard machinery that is
often already taught in an advanced data structures course. The resulting data structure, which we call partition
hashing, achieves the full guarantee described above: each operation is constant time, with high probability, and
the space usage is nk+O(n log log n) bits, even as n changes over time. The construction is modular so that each
technique can be introduced as its own miniature lesson. And, critically, we believe that the construction is fun
(who would have thought that a B-tree would show up in a constant-time hash table?). The goal is to have a
modern hash table that can easily be integrated into a modern data-structures course.

We emphasize that this paper does not introduce any new techniques. Rather, we extract techniques that
have already appeared as components of much more sophisticated data structures [1, 2, 7, 14, 28], and show how
to simplify/combine them in order to get a single, simple hash table with strong guarantees.

In the rest of the paper, we introduce partition hashing, and prove the following theorem:

Theorem 1.1. Let w be the machine word size, and consider hash tables storing w-bit keys, where the number n
of keys stored satisfies w = $(log n). There is such a hash table that uses nw +O(n log log n) bits of space, even
as n changes over time, while supporting queries in O(1) worst-case time and insertions/deletions in O(1) time
with probability 1→ 1/poly(n).

We remark that, for simplicity, we assume fully random hash functions throughout. However, there is also
a rich literature [13, 17, 19, 30, 31, 37] on how to simulate fully random hash functions in hash tables that we will
not be covering here.

The rest of the paper is structured as followed. Section 2 reviews the background that will be necessary
in our data structure. Sections 3, 4, 5, and 6 then present the partition hash table, starting with a very weak
set of guarantees and adding stronger ones one at a time. Finally, Section 7 provides historical context for the
techniques used in the paper.

In our experience, partition hashing can be taught in 1–3 lectures, depending on what subset one wishes to
cover. Sections 3 and 4 can be covered in a single lecture and already give a hash table with much stronger
guarantees than what is typically taught. From there, each of Sections 5 and 6 can be added optionally (as the
techniques are independent).

2 Preliminaries

We present some basic machinery that will be used in our construction. This is machinery that is often already
taught in an advanced data structures course: it includes basic balls-and-bins analysis [23, 26], exhaustive
subtabulation (a.k.a., the method of four Russians) [3], and two basic types of search trees [4, 5, 10, 11].

2.1 Notation

A hash table is a data structure that maintains a set S under operations Insert(S, x), which adds x to S,
Delete(S, x), which removes x from S, and Query(S, x), which answers True if x ↑ S and otherwise answers
False.

When discussing fixed-capacity hash table, we will use n to denote the maximum capacity. When discussing
resizable hash tables, it will sometimes be helpful to distinguish between the table’s (current) capacity versus the
number of elements that it contains—in this case, we will typically use n̄ for current capacity and n for current
number of elements.

We assume that S ↓ U = [2w], where w = (1+$(1)) log n is the word size of the machine , meaning that
operations on the bits of a word of size w take constant time. We call a hash table space e!cient if it uses
(1 + o(1))nw bits of space.

We define with high probability (w.h.p.) to mean with probability at least 1 → 1/poly(n). In some cases,
the probability guarantees of a data structure may depend on the constants used in the construction. Formally, a
guarantee holds w.h.p if, for every positive constant c, it is possible to instantiate the constants in the construction
so that the guarantee holds with probability at least 1→O(1/nc).

Our ultimate goal will be hash tables that support constant-time operations w.h.p. but along the way it will be
helpful to have several intermediate notions of constant time-ness for insertions/deletions. A data structure is said
to support insertions/deletion in constant amortized expected time if, for any t, the first t insertions/deletions
take total expected time O(t). A data structure is said to support insertions/deletions in constant expected
time if, for any t, the t-th operation takes expected time O(1). Of the three constant-time guarantees (amortized
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expected, expected, and w.h.p.), the weakest guarantee is amortized expected, the next weakest is expected, and
the strongest is w.h.p.

All of the data structures in this paper can be implemented either as key dictionaries (i.e., store a set of keys)
or as key/value dictionaries (i.e., store a set of key/value pairs, so that queries recover the value associated with a
given key). For simplicity, we will typically focus on the key-dictionary version of the problem, but in some cases
(for example, our application of B-trees) we will also use the fact that the data structures can be augmented to
support values as well.

Finally, as noted earlier, we will assume that the hash tables we are constructing have access to fully random
hash functions. This means that the hash table can pick a domain U and a range R, and have a function h that
maps each element from U to an independent uniformly random (but fixed) element of R. One can think of the
hash table as having constant-time oracle access to h, so it can invoke h whenever it wishes, but it does not pay
any space to store h.

2.2 Basic Machinery

Cherno” Bounds. The partition hash table will make use of the following basic Cherno” bound in several
places.

Lemma 2.1. Consider a sum of independent [0, 1]-valued random variables X =
∑

n

i=1 Xi with mean µ = E[X] ↔
log n. Then X ↗ µ+O(

↘
µ log n) with high probability in n.

Corollary 2.1. Consider throwing n balls randomly into m bins, where h = n/m ↔ log n. Then the fullest bin
has at most h+O(

√
(log n)h) balls with high probability in n.

Exhaustive subtabulation. Here, we give a brief introduction to exhasutive subtabulation (a.k.a. the Method
of Four Russians) [3], which can be used to reduce the space or time of certain data structures. The basic idea is
that, if there is a function f that has a relatively small range of inputs—say, the input is specified by (log n)/2
bits—then we can pre-compute f on all 2(logn)/2 =

↘
n possible inputs, we can store those computations in a

lookup table, and then in the future we can use the lookup table to evaluate f in constant-time. We will use this
technique to implement edits to data structures where the portion that we are editing is O(log n) bits.
B-Trees. A B-tree [4,5,10] on n µ-bit keys is a balanced search where each node has up to B +1 children, and
where the depth of the tree is O(logB+1 n). (So, when B = 1, the B-tree becomes a balanced binary search tree.)
The B-tree is designed for block-transfer memory, where a transfer of a block of size $(Bµ) bits takes constant
time. Note that, so long as the tree consists of 2O(µ) nodes (so that pointers between the nodes require O(µ) bits),
then each node in the tree can be stored in 1 block. There are a variety of schemes to keep such a tree balanced—in
short, insertions, deletions, and queries can be implemented in time O(logB+1 n) (in the block-transfer model).
k-Tries. For any power-of-two k, a k-trie [11] on n w-bit keys is a k-ary search tree where the pivots are evenly
spaced in the universe of possible keys. For any key x ↑ [2w] in the tree, the root-to-leaf path for x can be
computed by: using the first (i.e., highest-order) log k bits to navigate the root node, using the next log k bits to
navigate the level-2 node, using the next log k bits to navigate the level-3 node, and so on, for a total of w/ log k
levels. The depth of a k-trie is therefore w/ log k.

Lemma 2.2. A k-trie on n w-bit keys takes time O(w/ log k) per operation and takes space O(nkw2/ log k) bits.
Here, we assume that the arrays used to allocate nodes are already pre-allocated and initialized to zero.

Proof. Operations in each node are constant time, so insertions, deletions and queries take time proportional to
the depth, which is O(w/ log k). We can overestimate the size of the k-trie by charging each of the n items the
full cost of its root-to-leaf path. Each node is O(k) machine words (i.e., O(kw) bits), and the depth is w/ log k,
so the total space is O(nkw2/ log k) bits.

Resizable Arrays. Finally, it will be helpful to know the following folklore trick for how to implement space-
e!cient resizable arrays:

Lemma 2.3. Consider an array A that grows and shrinks over time, supporting both an extension operation (grow
the array by 1) and a shrink operation (shrink the array by 1). If n̄ is the maximum size that the array is allowed
to be, and n is the current size at any given moment, then the array A can be implemented to use n + O(

↘
n̄)

machine words while supporting constant-time operations.
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Proof. We break A into slabs A1, . . . , A↑n/
↓
n̄↔ of size

↘
n̄ each. These slabs are dynamically allocated and freed

so that there are only ≃n/
↘
n̄⇐ at a time. We also keep a smaller array B of size

↘
n̄ whose i-th entry stores a

pointer to slab Ai for each i ↗ ≃n/
↘
n̄⇐.

The only wasted space is the space consumed by B plus the unused space in slab A↑n/
↓
n̄↔. Thus the total

space usage is n+O(
↘
n̄) machine words, as desired. Array operations are trivially implemented in constant time,

since each slab can be accessed through B, and since each growth/shrinkage of the array requires at most one
slab to be allocated/freed.

3 Slow Partition Hash Tables

We begin by constructing a very simple fixed-capacity hash table that has small space, that supports constant-time
insertions (w.h.p.), but that incurs polylogarithmic time per query/deletion.

Define a bucket to be an array of length log3 n+ c log2 n slots, for a constant c > 0. Define a bucket array
to be an array of n/ log3 n buckets. The total size of a bucket array is thus n+ cn/ log n slots.

Our first attempt at a hash table is simply the following: when an item arrives, it is hashed to a random
bucket in the bucket array, and it is placed in an arbitrary empty slot in that bucket. If the bucket is full on
insertion, the entire hash table is rebuilt. When a query is made, it is hashed to a bucket and every slot in the
bucket is examined.

When an insertion is hashed to a bucket, all it needs to do is to find an empty slot. To make this e!cient, we
keep the items in a bucket left justified , i.e., if there are k items in a bucket, they are kept in the first k slots
of the bucket. We can achieve this invariant by maintaining an O(log log n)-bit counter in each bucket that keeps
track of k. Insertions place the item in position k + 1 and increment the counter. Deletions must also keep the
bucket left justified—when an item is deleted from an arbitrary location in a bucket other than k, the rightmost
item is moved to that location, and then the counter k is decremented.

The slow partition hash table can be analyzed with the following lemma.

Lemma 3.1. The slow partition hash table takes O(1) time for insertions, with high probability, and O(log3 n)
worst-case time for deletions and queries. It takes space nw +O(n) bits.

Proof. Recall that w = $(log n), so the n+O(n/ log n) slots in the bucket array take nw +O(n) bits.
Queries/deletions are always O(log3 n) time since they look at a single bucket. Insertions take O(1) time

unless a rebuild is performed. Thus it remains to analyze the probability of rebuilding during a given insertion.
Since there are n/ log3 n buckets and (up to) n elements, the expected number of elements per bucket is at

most log3 n. Corollary 2.1 bounds the probability that any bucket has more than log3 n + c log2 n keys to be
1/poly(n). The probability of a bucket overflowing (causing a rebuild) is therefore also 1/poly(n).

Of course, the only reason that slow partition hash tables are able to support constant-time insertions w.h.p.
is because they are completely neglecting queries/deletions. Next, we will see how to improve the hash table so
that insertions take constant expected time and deletions/queries take worst-case constant time.

4 Constant-Time Queries/Deletions and Constant Expected-Time Insertions

The indexed partition hash table is an extension of the slow partition hash table that supports insertions
in constant expected time and queries/deletions in worst-case constant time. The indexed partition hash table
will be very space e!cient, using (1 + o(1))nw bits, so already we will be achieving a set of guarantees that are
not typically covered in an advanced data structures course. With that said, we will see in later sections how to
improve on such hash tables (adding high-probability guarantees for insertions and dynamic resizing of n).

We will describe the indexed partition hash table in three pieces: first, we describe how to assign all of the
keys x within a given bucket to distinct $(log log n)-bit fingerprints f(x); then we describe a simple per-bucket
data structure, called the query mapper , that maps each fingerprint f(x) to the position k where the key resides
in the bucket; and finally describe how the query mapper is used to implement operations within the bucket.

Our first step is to map the keys within each bucket to distinct fingerprints. We do this with a hash function f
mapping keys to random $(log log n)-bit integers. We will prove that, with probability at least 1→ 1/polylog(n),
all fingerprints within a bucket are di”erent. In the event that the fingerprints in a bucket are not all di”erent,
we reconstruct the fingerprints from scratch using a di”erent hash function (and so on, until we get distinct
fingerprints).
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Lemma 4.1. Consider a set B of O(log3 n) keys, and consider a random hash function f : B ⇒ [log9 n]. With
probability at least 1→O(1/ log3 n), the hashes f(x) are distinct across x ↑ B.

Proof. For a given pair of items x, y ↑ B, the probability of a collision f(x) = f(y) is 1/ log9 n. By a union bound
the probability of any collisions occurring is at most

∑

x ↗=y↘S

Pr[f(x) = f(y)] ↗ |S|2

log9 n
↗ O

(
1

log3 n

)
.

Having mapped the keys within each bucket to distinct fingerprints, our next step is to add what we call a
query mapper to each bucket. The query mapper in each bucket is a data structure that maps each fingerprint
f(x) to the corresponding position i ↑ [O(log3 n)] where the item x is stored in the bucket. Note that both the
fingerprint f(x) and the position i are $(log log n) bits each.

The query mapper might seem like a di!cult data structure to implement. After all, the query mapper, itself,
is a dynamic data structure mapping keys to values (isn’t this the problem we are trying to solve in the first
place?). However, the fact that the keys and values are small turns out to be important, allowing us to make use
of a somewhat unexpected tool: the B-tree!

Lemma 4.2. One can implement a query mapper, mapping $(log log n)-bit keys to $(log log n)-bit values, so
that it supports queries/insertions/deletions in worst-case time O(1) and uses space O(m log log n) bits to store
m = polylog(n) key/value pairs.

Proof. We implement the query mapper as a B-tree with B =
↘
log n. This B-tree is quite unusual: each node

stores up to
↘
log n keys/values of size $(log log n) bits each, along with up to

↘
log n + 1 pointers to children

nodes. Notice that the pointers are also O(log log n) bits each, since the total number of nodes in the tree is
polylog(n).

Thus each node has total size only O(
↘
log n log log n) bits. The fact that each node fits in o(log n) bits means

that we can use exhaustive subtabulation in order to implement node-level operations (queries, modifications,
insertions, deletions) in O(1) time.

Moreover, since the tree contains at most O(log5 n) leaves and has fanout $(
↘
log n), the depth of the tree is

guaranteed to be O(1). Thus, in this context, the B-tree is actually an O(1)-time data structure.

Having constructed the query mapper within each bucket, we can now describe how the query mapper interacts
with operations in the bucket: To insert an item x, a fingerprint f(x) is computed, and then that fingerprint is
queried in the B-tree query-mapper; if the fingerprint is already present, then the index is rebuilt from scratch
using a new fingerprint function; otherwise, the key is placed in the first empty position k and the pair (f(x), k)
is added to the query mapper. To query an item x, we simply use the query mapper to obtain a position i. If
the query mapper fails to find f(x), or if a di”erent item x≃ is in position i, then x is not in the hash table. To
delete an item x, we first perform a query for it, then we remove the item and possibly move one other item x≃

in order to keep the bucket left aligned; finally, we update the query mapper to remove x, and to update the
position stored for x≃.

Notice that, out of the three operations, the only one that is at risk of taking super-constant time is the
insertion, which may need to rebuild the query-mapper in the event of a fingerprint collision. Thus, we can
complete the analysis of the indexed partition hash table as follows:

Lemma 4.3. An indexed partition hash table supports O(1)-time queries and deletions and O(1) expected-time
insertions. It takes nw +O(n log log n) bits of space.

Proof. To establish the time guarantees, it su!ces to show that the expected time per insertion spent rebuilding
the query mapper is O(1). We know from Lemma 4.1 that the probability of a fingerprint collision (and thus a
rebuild) occurring is at most O(1/ log3 n). If a rebuild occurs, it will take O(log3 n) time to reconstruct the bucket
using new fingerprints. These fingerprints could also have a collision (with probability at most O(1/ log3 n)),
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causing yet another rebuild, and so on. For all i > 0, the probability of an i-th rebuild being performed is at most
O(log3 n)→i, and the time to perform the rebuild is O(log3 n). So the expected time spent on rebuilds is

∑

i⇐1

O(log3 n)

O(log3 n)i
= O(1).

Finally, notice that the space consumed by the query mappers is collectively O(n log log n) bits, since each
item uses O(log log n) bits in some query mapper. This establishes the desired space guarantee.

5 Constant-Time Queries and Consant-Time Insertions/Deletions w.h.p.

So far, we have constructed a hash table that supports constant-time queries/deletions and constant expected-
time insertions, with nw +O(n log log n) bits of space. We now show how to improve the insertion time to O(1)
with high probability. In fact, the technique used here, which can be viewed as a simplification of an approach
used in past works [1,2,14], can actually be extended to apply to any hash table (see Appendix A), a result that
to the best of our knowledge has not previously appeared in the literature.

Our new data structure will make use of two
↘
n-tries, each storing up to n1/4 w-bit keys. Since

w = $(log n), the depth of such a
↘
n-trie is O(w/ log

↘
n) = O(1); and the space for such a

↘
n-trie is

O(n1/4 ·
↘
n · w2/ log

↘
n) = O(n0.75 log n) bits.

The two tries have di”erent roles. The growing trie receives new insertion/deletion operations. The
shrinking trie has items removed as they are implemented. For every insertion/deletion operation that is
added to the growing tree, a constant c > 1 amount of time is spent implementing operations from the shrinking
tree in the actual hash table. We will guarantee that, whenever the growing tree reaches size n1/4, the shrinking
tree will have shrunk to size 0—at this point, the two tries swap roles.

The key technical claim that we must prove is that: Any set of n1/4 insertion/deletions can be implemented in
the hash table in O(n1/4) total time, with high probability. If we can prove this, then our approach of performing
O(1) work per operation on the shrinking trie will be su!cient to empty the trie out within n1/4 operations, as
desired.

Lemma 5.1. Any batch Q of n1/4 insertions/deletions can be implemented in total time O(n1/4) with high
probability.

Proof. We assume without loss of generality that the deletions in Q are on di”erent keys than the insertions, since
otherwise, they cancel each other.

Define A1, . . . , An/ log3 n so that Ai is the number of insertions/deletions from Q that get mapped to the i-th

bucket. With high probability, every Ai satisfies Ai ↗ O(log3 n) (as this is true even if we consider all of the
items in the hash table, rather than just the ones in Q). Condition on any fixed outcome of the Ais satisfying
Ai ↗ O(log3 n) for each i, and define random variables X1, . . . , Xn0.9 so that Xi is the amount of time needed to
implement the operations from Ai on the i-th bucket.

We begin by bounding the worst-case value that Xi could take (with high probability). With high probability,
none of the operations in Ai overflow the bucket, so they do not trigger any rebuilds of the entire data structure.
On the other hand, some insertions may take super-constant time, as they may cause fingerprint collisions that
require the bucket to be rebuilt. Observe, however, that each rebuild takes O(log3 n) time, and that the number
of rebuilds triggered by a given insertion is a geometric random variable (each attempt fails with probability
⇑ 1/2). It follows that, with high probability, there will be O(log n) rebuild attempts per insertion, and thus
that each insertion takes O(log4 n) time. Summing over the O(log3 n) insertions in Ai, we can guarantee that
Xi ↗ O(log7 n) with high probability.

Next, we consider the expected value of Xi. This is easy, since each of the |Ai| operations takes O(1) expected
time, so by linearity of expectation we have E[Xi] ↗ O(|Ai|).

Finally, we can complete the proof with a simple Cherno” bound. The Xis are independent since Xi’s
randomness comes from the i-th sub-hash-table, and since we are already conditioning on fixed outcomes for
the Ais, so they are not providing any randomness. Each Xi has expected value E[Xi] = O(Ai) and worst-case
value at most O(log7 n). Thus X =

∑
i
Xi is the sum of independent random variables with total expected value

O(
∑

i
Ai) = O(n1/4), and where each Xi is at most O(log7 n). This means that the quantity X/$(log7 n) is a
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sum of independent [0, 1] random variables with total mean O(n1/4/ log7 n), which by a Cherno” bound (Lemma
2.1) implies that X/$(log7 n) exceeds its mean µ = n1/4/ log7 n by at most O(µ

↘
log n) with high probability.

Unfolding the bound, we get that X exceeds its mean by at most O(n1/8 log6 n) = o(n1/4). Thus X ↗ O(n1/4),
as desired.

6 Resizing Without Hurting Space or Time

Finally, we will show how to add dynamic resizing so that the space-bound becomes nw + O(n log log n) bits,
where n is the current number of items.

We begin by focusing on the case where n stays in the range [n̄/2, n̄] for some parameter n̄. In this regime,
there is a very simple trick that we can use for resizing.

The trick is that, rather than trying to resize the hash table as a single unit, we focus on resizing each of
the buckets. The only modification that we need to make is to allow the size of each bucket to grow/shrink over
time as n grows/shrinks. We can do this by directly applying Lemma 2.3 to each bucket in the hash table: the
bucket, whose capacity is O(log3 n̄), can store k items for any k ↗ O(log3 n̄) using only k + O(log1.5 n̄) machine
words. Collectively over all $(n̄/ log3 n̄) buckets, the buckets waste less than O(n̄/ log1.5 n̄) machine words of
space, which sums to O(n̄/ log0.5 n̄) ↗ O(n̄) bits.

This brings us to the following lemma.

Lemma 6.1. If there are only n ↗ n̄ items stored in a resizable partition hash table, the space used is
nw +O(n̄ log log n̄) bits. If n ↑ [n̄/2, n̄], then this becomes nw +O(n log log n) bits.

Proof. As was the case for non-resizable partition hash tables, the per-bucket query mappers combine to use space
O(n̄ log log n̄) bits. The buckets themselves then use nw +O(n̄) bits of space, as argued above.

Finally, we extend our construction to be space e!cient even if n changes dramatically. Now, the only
constraint on n will be the machine-word size requirement: that the machine word size should be logarithmic in
n, that is, log n = $(logw). This constraint is necessary so that (1) the definition of w.h.p. in n stays the same
over time; and (2) so that the lookup tables used in exhaustive tabulation take a negligible amount of space.

Our approach for allowing n to change dramatically over time will be the standard one: whenever n changes
by a constant factor, we rebuild the hash table according to Lemma 6.1 from scratch using a new n̄ = $(n). We
spread the rebuild over O(n) operations so that each operation spends only O(1) time on it.

We must be careful about space e!ciency, however. As we are migrating elements from the old version of
the hash table to the new one, we must consider the total space consumed by both hash tables. This is where
Lemma 6.1 comes to the rescue:

Corollary 6.1. (Corollary of Lemma 6.1) Consider hash tables H1 and H2 that are each implemented with
Lemma 6.1 using capacities n̄1 and n̄2. Suppose that the hash tables contain n1 and n2 elements, respectively.
Then, collectively, they use space

(n1 + n2)w +O(n̄1 log log n̄1 + n̄2 log log n̄2)

bits.

As we are performing a given resize (spread over O(n) operations), the elements are spread across two tables
(a new and old one, with capacities n̄1 and n̄2 that are both $(n) but that di”er by constant factors). Collectively,
the hash tables contain all n elements, but each element is in at most one of the hash tables. Thus, by Corollary
6.1, the space usage at any given moment is nw +O(n̄1 log log n̄1) +O(n̄2 log log n̄2) = nw +O(n log log n) bits.

To summarize, by rebuilding the hash table every time that n changes by a constant factor, and by spreading
the time spent for the rebuild across $(n) operations, we arrive at the following:

Lemma 6.2. A partition hash can be resized dynamically so that if it has n ↑ [2ωw, 2w] items, where ω is a constant
in (0, 1), it uses space nw+O(n log log n) bits. Its time complexity remains constant time per query and constant
time w.h.p. for insertions and deletions.

Putting the pieces together, we have arrived at our main theorem, restated below:
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Theorem 6.1. Let w be the machine word size, and consider hash tables storing w-bit keys, where the number n
of keys stored satisfies w = $(log n). There is such a hash table that uses nw +O(n log log n) bits of space, even
as n changes over time, while supporting queries in O(1) worst-case time and insertions/deletions in O(1) time
with probability 1→ 1/poly(n).

7 Historical Notes

The basic idea of hashing keys to buckets, and then using an indexing data structure to perform queries, appears
in almost all modern work on space-e!cient hashing [2,6,7,29,36]. Historically, a major obstacle here was how to
design a space- and time-e!cient query-mapping structure [2, 6, 29, 36]. The idea of using exhaustive tabulation
to help implement the query mapper was due to Blelloch and Golovin in their work on history-independent hash
tables [9]. The insight that the query mapper can be implemented using a B-tree [4, 5, 10] is much more recent,
due to Bender et al. [7], although their query mappers are necessarily far more complex than the ones here as
they seek to optimize even the low-order terms in the space usage.

The basic idea of achieving w.h.p. bounds for insertions/deletions in a hash table by (a) queuing
insertions/deletions in an auxiliary bu”er, and (b) spending constant work per operation on emptying that bu”er,
can be attributed to a 1990 paper by Dietzfelbinger and Meyer auf der Heide [14]. Variations on the idea have also
been introduced and analyzed in the context of cuckoo hashing [1, 2]. The idea ends up being especially simple
to describe in the context of partition hash tables because the hash table naturally decomposes into buckets that
can be analyzed individually. Another simplification that we make here is to implement the bu”er directly as a
trie—this means that, unlike in past work, the bu”er itself does not require any novel randomized data structures.
Finally, the observation that the technique can be generalized to apply to arbitrary hash tables appears to be a
new contribution to the literature.

The question of how to perform space-e!cient resizing was left open [2] until relatively recently [6,7,28]. The
local-bin-resizing approach that we take here can be viewed as a variation on the approach that was introduced by
Liu et al. [28] in the context of incremental (i.e., insertion-only) hash tables. Practically speaking, one downside
of this approach is that it adds an extra layer of indirection to the hash table. For an indirection-free approach
to resizing, see waterfall addressing [6].

All of the techniques used in this paper can be viewed as descendants of techniques that have appeared in
past work as components of far more sophisticated data structures. The contribution of this paper is therefore not
to invent new techniques (although we do simplify them), but rather to present a single, simple data structure,
that allows for each of the techniques to be presented with as little extraneous baggage as possible.
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A Deamortizing Insertions in Arbitrary Hash Tables

In this section, we show how to deamortize insertions/deletions in any hash table, so that if they formerly
required O(1) expected time, they now require O(1) worst-case time with high probability.
We begin by considering non-blocking hash tables, defined to be a hash table with the property that queries
can be performed even when insertions or deletions are in the process of executing.

Proposition A.1. A non-blocking hash table with constant worst-case queries and constant expected-time
insertions/deletions can be modified so that it performs queries in worst-case constant time and insertions and
deletions in constant time w.h.p. The total space overhead is o(n) bits.

Our data structure makes use of two
↘
n-tries, exactly as in Section 6. As before, what we need to prove is that:

Any set of n1/4 insertion/deletions can be implemented in the hash table in O(n1/4) total time, with high
probability.
However, in general, this claim may not be true. To make it so, we need to make one more algorithmic
modification to how we use the non-blocking hash table. Rather than storing a single hash table, we keep n0.9

sub-hash-tables, and we hash each key to a random sub-hash-table where it resides. By Corollary 2.1 each
sub-hash-table will have at most n0.1 +O(

√
n0.1 log n) keys at a time, w.h.p.. Since each sub-hash-table can be

implemented to have capacity n0.1 +O(
√
n0.1 log n), the sum of the capacities is n+O(n0.95

↘
log n), and the

excess capacity (beyond n) contributes a space overhead of only o(n) bits.
Now we can analyze the total time needed to implement n1/4 insertions/deletions. This, in turn implies
Proposition A.1

Lemma A.1. Any batch Q of n1/4 insertions/deletions can be implemented in total time O(n1/4) with high
probability.

Proof. Our proof will be very similar to that of Lemma 5.1. The di”erence is that now the sub-hash-tables of
size O(n0.1) will serve the role that formerly was served by the buckets of size O(log5 n).
Without loss of generality, the deletions are on di”erent keys than the insertions, since otherwise they cancel.
Define A1, . . . , An0.9 so that Ai is the number of insertions/deletions from Q that get mapped to the i-th
sub-hash-table. Fix any outcome of the Ais (with Ai ↗ O(n0.1) for each i), and define random variables
X1, . . . , Xn0.9 so that Xi is the amount of time needed to implement the Ai operations on the i-th
sub-hash-table. We will show that we can apply a Cherno” bound to the total work

∑
i
Xi.
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A key observation is that no Xi can be more than O(n0.1 log n). This is because, if the operations on the i-th
sub-table take more than O(n0.1) time, then we can simply rebuild that hash table from scratch (using a new
hash function). With high probability, we will not need to do so more than O(log n) times (since, each time that
we do it, we have at least a, say, 50% chance of succeeding in less than O(n0.1) time). Thus we have
Xi ↗ O(n0.1 log n) for each i, w.h.p..
We can now complete our proof with a Cherno” bound (Lemma 2.1). The Xis are independent, since Xi’s
randomness comes from the i-th sub-hash-table, and since we are already conditioning on fixed outcomes for the
Ais, so they are not providing any randomness. Each Xi has expected value E[Xi] = Ai. Thus X =

∑
i
Xi is the

sum of independent random variables with total expected value O(
∑

i
Ai) = O(n1/4), and where each Xi is at

most O(n0.1 log n). This means that the quantity X/$(n0.1 log n) is a sum of independent [0, 1] random
variables with total mean n0.15, which by a Cherno” bound implies that X/$(n0.1 log n) exceeds its mean by at
most O(

√
(log n)n0.15) w.h.p.. Unfolding the bound, we get that X exceeds its mean by at most

O(log1.5 n0.1+.075) = o(n1/4). Thus X ↗ O(n1/4), as desired.

We now deal with hash tables that can block queries during insertions and deletion. The question that we must
answer is: how can we gradually implement the shrinking bu”er, while still allowing queries to run?
As an insertion/deletion is being performed, there are modifications that it would like to make to the hash
table. To shield the modifications from queries (until the insertion/deletion is complete), we keep a di”-bu”er
that records the di”erences between what the insertion/deletion thinks the hash table looks like and what
queries think it looks like—that is, the di”-bu”er records edits that the insertion/deletion plans to make. We
keep these in a

↘
n-trie, just like the insertion bu”er. Thus, the queries that happen during the

insertion/deletion can read the old hash table, and the insertion/deletion can read bytes by consulting both the
old hash table and the di” bu”er.
Once the insertion/deletion has recorded all its changes, the hash table enters a new state, in which all queries
now consult the hash table and the di” bu”er (so they see the insertion/deletion as having been implemented).
During this phase, changes are removed incrementally from the di” bu”er and applied to the hash table. Once
the di” bu”er is empty, queries can go back to accessing just the hash table, and we are ready to process
another insertion/deletion from the insertion bu”er.
At each point in time, queries see a well-formed hash table, and any currently active insertion/deletion sees the
hash table as it is being incrementally modified. We conclude that:

Theorem A.1. Any hash table that has constant time queries and constant expected time insertions and
deletions can be deamortized to yield constant time queries and constant time insertions/deletion w.h.p. by using
an extra o(n) bits.
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