Check for
Updates

A Nearly Quadratic Improvement for Memory Reallocation

Martin Farach-Colton*
New York University
New York, NY, USA
martin.farach-colton@nyu.edu

Nathan S. Sheffield

Massachusetts Institute of Technology
Cambridge, MA, USA
shefna@mit.edu

ABSTRACT

In the Memory Reallocation Problem a set of items of various
sizes must be dynamically assigned to non-overlapping contiguous
chunks of memory. It is guaranteed that the sum of the sizes of all
items present at any time is at most a (1 — ¢)-fraction of the total
size of memory (i.e., the load-factor is at most 1 — ¢). The allocator
receives insert and delete requests online, and can re-arrange exist-
ing items to handle the requests, but at a reallocation cost defined
to be the sum of the sizes of items moved divided by the size of the
item being inserted/deleted.

The folklore algorithm for Memory Reallocation achieves a cost
of O(¢~1) per update. In recent work at FOCS’23, Kuszmaul showed
that, in the special case where each item is promised to be smaller
than an e*-fraction of memory, it is possible to achieve expected
update cost O(loge™1). Kuszmaul conjectures, however, that for
larger items the folklore algorithm is optimal.

In this work we disprove Kuszmaul’s conjecture, giving an allo-
cator that achieves expected update cost O(¢~1/2 polylog £~!) on
any input sequence. We also give the first non-trivial lower bound
for the Memory Reallocation Problem: we demonstrate an input
sequence on which any resizable allocator (even offline) must incur
amortized update cost at least Q(loge™?).

Finally, we analyze the Memory Reallocation Problem on a sto-
chastic sequence of inserts and deletes, with random sizes in [, 28]
for some §. We show that, in this simplified setting, it is possible to

“This work was supported in part by NSF grants CNS-2118620 and CCF-2106999.
fWilliam Kuszmaul is funded by the Rabin Postdoctoral Fellowship in Theoretical
Computer Science at Harvard University. Large parts of this research were completed
while William was a PhD student at MIT, where he was funded by a Fannie and John
Hertz Fellowship and an NSF GRFP Fellowship. William Kuszmaul was also partially
sponsored by the United States Air Force Research Laboratory and the United States
Air Force Artificial Intelligence Accelerator and was accomplished under Cooperative
Agreement Number FA8750-19-2-1000. The views and conclusions contained in this
document are those of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the United States Air Force or the U.S.
Government. The U.S. Government is authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright notation herein.

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only. Request permissions from owner/author(s).

SPAA °24, June 17-21, 2024, Nantes, France

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0416-1/24/06

https://doi.org/10.1145/3626183.3659965

125

William Kuszmaul
Harvard University
Cambridge, MA, USA
william.kuszmaul@gmail.com

Alek Westover
Massachusetts Institute of Technology
Cambridge, MA, USA
alekw(@mit.edu

achieve O(log e™!) expected update cost, even in the “large-item”
parameter regime (5 > e?).

CCS CONCEPTS

» Theory of computation — Design and analysis of algo-
rithms.

KEYWORDS

Memory Reallocation; Randomized Algorithms

ACM Reference Format:

Martin Farach-Colton, William Kuszmaul, Nathan S. Sheffield, and Alek
Westover. 2024. A Nearly Quadratic Improvement for Memory Reallocation.
In Proceedings of the 36th ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA °24), June 17-21, 2024, Nantes, France. ACM, New York,
NY, USA, 11 pages. https://doi.org/10.1145/3626183.3659965

1 INTRODUCTION

In the Memory Reallocation Problem an allocator must assign
a dynamic set of items to non-overlapping contiguous chunks of
memory. Given an set of items with sizes x1, xg, . .., xp, and given
a memory represented by the real interval [0, 1], a valid allo-
cation of these items to memory locations is a set of locations
Y1,...,Yn € [0,1] so that the intervals (y;,y; + x;) € [0, 1] are
all disjoint. As objects are inserted/deleted over time, the job of
the allocator is rearrange items in memory so that, at any given
moment, there is a valid allocation. The allocator is judged by two
metrics: the maximum load factor that it can support; and the
reallocation overhead that it induces. The allocator is said to sup-
port load factor 1 — ¢ if it can handle an arbitrary sequence of item
insertions/deletions, where the only constraint is that the sum of
the sizes of the items present, at any given moment, is never more
than 1 — ¢; and the allocator is said to achieve overhead (or cost) ¢
on a given insertion/deletion, if the sum of the sizes of the items
that are rearranged is at most a c-factor larger than the size of the
item that is inserted/deleted. We remark that all of the allocators in
this work will be resizable, meaning that if L < 1 — ¢ is the total
size of items present at any time then, then all the items are placed
in the interval [0, L + ¢].

The Memory Reallocation Problem, and its variations, have been
studied in a variety of different settings, ranging from history in-
dependent data structures [5, 9], to storage allocation in databases
[4], to allocating time intervals to a dynamically changing set of
parallel jobs [2, 3, 6]. The version considered here [3, 5, 9] is notable

"5z0¢ L 1dy uo Knuepy uonmusu] VSV Aq A1e1qr [enSiq NV o) WXy PapEo[umo(]


https://doi.org/10.1145/3626183.3659965
https://doi.org/10.1145/3626183.3659965
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626183.3659965&domain=pdf&date_stamp=2024-06-17

SPAA 24, June 17-21, 2024, Nantes, France

for its choice of cost function: if we model the time needed to alloca-
tion/deallocate/move an object of size s as O(s), then an overhead
of O(c) implies that the total time spent moving objects around
is at most an O(c)-factor larger than the time spent simply allo-
cating/deallocating objects. The problem of minimizing movement
overhead is especially important in systems with many parallel
readers, since objects may need to be locked while they are being
moved.

Past Work. Most early work on memory allocation focused on
the setting in which items cannot be moved after being allocated
(i.e., the 0-cost case) [7, 10, 11]. However, it is known that such
allocators necessarily perform very poorly on their space usage —
they cannot, in general, achieve a load factor better than O (1/logn))
[7, 10, 11]. The main goal in studying memory reallocation [4, 5] is
therefore to determine how much item movement is necessary to
achieve a load factor of 1 —¢.

The folklore algorithm [4, 5] for the Memory Reallocation
Problem is based on the observation that whenever an item of size
k must be inserted we can, by the pigeon-hole principle, find an
interval of size O(ke™!) which has k free space. Thus it is possible
to handle inserts at cost O(¢~1) and handle deletes for free.

In recent work at FOCS’23 [5], Kuszmaul shows how to handle
the case where all items have size smaller than ¢* with expected
update cost O(log¢~!). However, Kuszmaul conjectures that, in
general, the O(e™!) folklore bound should be optimal. He proposes,
in particular, that the special case in which objects have sizes in the
range (&, 2¢) should require Q(¢~1) overhead per insertion/deletion.

This Paper: Beating the Folklore Bound. In this work we disprove
Kuszmaul’s conjecture. In fact, we prove a stronger result: that it is
possible to beat the folklore O(¢~!) bound without any constraints
on object sizes.

We begin by considering the specialized setting in which items
have sizes in the range (¢, 2¢)—this, in particular, was the setting
that Kuszmaul conjectured to be hard. We give in Section 3 a rel-
atively simple allocator that achieves O(¢~%/3) amortized update
cost in the case where all items have sizes in (¢, 2¢). Although this
allocator does not solve the full problem that we care about, it
does introduce an important algorithmic idea that will be useful
throughout the paper: the idea of having a special small set of items
stored as a suffix of memory which are each “responsible” for a
large number of items in the main portion of memory. Whenever an
item from the main portion of memory is deleted, it gets “replaced”
with an item that was responsible for it from the small suffix of
memory. By using this notion of responsibility in the right way,
we can imbue enough combinatorial structure into our allocation
algorithm that it is able to beat the folklore O(e~!) bound.

The construction of Section 3 is a good start, but does not imme-
diately generalize to handle arbitrary item sizes. In Section 4 we give
several new ideas to handle the case of items with sizes in [¢, 1].
Then, we show how to combine this allocator with Kuszmaul’s
allocator from [5] to achieve:

COROLLARY 4.10. There is a resizable allocator for arbitrary items
with expected update cost O(e~1/2) = O(¢71/2 polylog e™1).

At a high level, the algorithm in Corollary 4.10 takes the basic
idea from Section 3 (a small suffix of items that take responsibility

126

Martin Farach-Colton, William Kuszmaul, Nathan S. Sheffield, and Alek Westover

for items in the main array), and applies it in a nested structure.
This nested “responsibility” structure is not simply a recursive
application of the technique—rather, it is carefully constructed so
that items of a given size can only appear some levels of the nest.
This ends up being what enables us to beat the folklore bound with
an arbitrary combination of item sizes.

We conclude the paper with two additional results that are of
independent interest. The first is a lower bound, showing that O(1)
update cost is not, in general, possible. And the second is an upper
bound for a special case where the input sequence is generated by
a simple stochastic process.

Until now, the only non-trivial lower bounds for the Memory
Reallocation Problem have been for very restricted sets of allocation
algorithms [5]. In Section 5, we give a lower bound that applies to
any (even offline) allocator. In fact, the update sequence which we
use to establish the lower bound is remarkably simple, involving
just two item sizes.

THEOREM 5.1. There exist sizes s1,s; € O(e!/?) and an update
sequence S consisting solely of items of sizes s1,sy such that any
resizable allocator (even one that knows S) must have amortized
update cost at least Q(loge™!) on S.

Finally, in Section 6, we consider a setting where item arrivals
and departures follow a simple stochastic assumption. Define a
S8-random-item sequence as one where memory is first filled with
items of sizes chosen randomly from [J, 28], and then the allocator
receives alternating deletes of random items and inserts of items
with sizes chosen randomly from [§, 28]. In this setting we are able
to achieve O(log ¢~!) overhead:

THEOREM 6.1. For any § = poly(e), there is a resizable alloca-
tor that handles §-random-item sequences with worst-case expected
update cost O(loge™1).

We note that the algorithm for Theorem 6.1 uses very different
techniques from the other algorithms proposed in the paper. In
fact, because of this, the algorithm in Theorem 6.1 ends up being
quite nontrivial to implement time-efficiently. We give an imple-
mentation that decides which items to move in worst-case expected
time O(e1/2) per update. The time bound is due to a technically
interesting lemma about subset sums of random sets.

2 PRELIMINARIES AND CONVENTIONS

We use [n] to denote the set {1,2,...,n}. For set X and value y we
definey+X ={y+x | xe€ X}andy-X ={yx | x € X}. We use
log to denote log,. We use [I| to denote the size of an item I. The
total size of a set of items is defined to be the sum of their sizes.
We will refer to memory as going from left to right, i.e., the start of
memory is on the left and the end of memory is on the right.

In the Memory Reallocation Problem with free-space param-
eter ¢, an allocator maintains a set of items in memory, which is
represented by the interval [0, 1]. Memory starts empty, and items
are inserted and deleted over time by an oblivious adversary, where
the only constraint on the update sequence is that the items present
at any time must have total size at most 1—¢. The job of an allocator
is to maintain a dynamic allocation of items to memory, that is, to
assign each item to a disjoint interval whose size equals the item’s

"5z0¢ L 1dy uo Knuepy uonmusu] VSV Aq A1e1qr [enSiq NV o) WXy PapEo[umo(]



A Nearly Quadratic Improvement for Memory Reallocation

size. If the allocator moves L total size of items on an update of size
k we say the update is handled at cost L/k.

We construct allocators that give an extra guarantee: If L €
[0, 1—¢] is the total size of items present at any time, then a resizable
allocator guarantees that all the items are placed in the interval
[0,L+¢] € [0,1].

Our analysis is asymptotic as a function of e~. Thus, we may
freely assume that ¢! is at least a sufficiently large constant. We
use the notation O to hide polylog(e™!) factors, and the notation
poly(n) to denote n®(1).

3 AN ALLOCATOR FOR VERY LARGE ITEMS

In this section we describe a simple allocator for a special case of the
Memory Reallocation Problem, disproving a conjecture of Kuszmaul
[5]. We remark that the folklore bound only gives performance
O(¢71) in the regime of Theorem 3.1, i.e., gives no non-trivial bound.

THEOREM 3.1. There is a resizable allocator for items of with sizes
in [¢, 2¢) that achieves amortized update cost O(e72/3).

Theorem 3.1 offers an amortized bound, although, as we shall see
in Section 4, it is also possible to obtain a non-amortized expected
bound. We remark that there are two notions of amortized cost
that one could reasonably consider - if L; denotes the total-size of
items moved to handle the i-th update and k; is the size of the i-th
update, then either of % >y Lifkior ¥, Li/ ¥ ki would be a
reasonable objective function. Fortunately, in this section, because
the k;’s are all equal up to a factor of two, the two objective functions
are the same up to constant factors. In later sections where object
sizes differ by larger factors, we will go with the convention that
guarantees should be worst-case expected rather than amortized.

Proor. We call our allocator SIMPLE. We partition the sizes
[¢, 2¢) into fs_l/ 3] size classes, where the i-th size class consists
of items with size in the range

[e+(i- 1)54/3, e+ i€4/3).

Now we describe the operation of SIMPLE; we give pseudocode in
the full version of our paper on arxiv.

Rebuilds. Every Le~1/3] updates (starting from the first update)
SIMPLE performs a rebuild. Let x; be the number of items of size
class i at the time of this rebuild. In a rebuild operation SIMPLE takes
the min(x;, |_£_1/3J) smallest items from size class i for each i €
[[e~1/31] and groups them into a covering set. SIMPLE arranges
memory so that the items are contiguous, left-aligned (i.e., starting
at 0), and so that the covering set is a suffix of the present items.

Handling inserts. When an item is inserted SIMPLE adds the
item to the covering set and places it directly after the final element
currently in memory.

Handling deletes. Suppose an item I of size class i is deleted.
If I is not part of the covering set SIMPLE finds an item I’ in the
covering set which is also of size class i but with |I’| < |I|. SIMPLE
places I’ at the location where I used to start and logically inflates
item I’ to be of size |I|. That is, SIMPLE will consider item I’ to be
of size |I| until I’ is inflated even further or until the next rebuild.

127

SPAA 24, June 17-21, 2024, Nantes, France

On each rebuild all items are reverted to their actual size. We say
this swap operation introduces waste |I| — |I'| < 43 into memory.
Finally, regardless of whether I was in the covering set, SIMPLE
ends the delete by removing I from memory and compacting the
covering set, i.e., arranging the covering set items to be contiguous,
and left-aligned against the end of the non-covering-set.

LEmMA 3.2. SIMPLE is correct and well-defined.

Proor. To verify correctness we must show that SIMPLE places
items within the allowed space. SIMPLE essentially stores the items
contiguously, except for the waste introduced on deletes. Each
delete creates waste at most £4/3: the maximum possible size differ-
ence between two items of the same size class. SIMPLE performs
a rebuild every Le~1/3] updates. Thus, the total waste in memory
will never exceed

Ls_l/aj B <
Thus, if the total size of items present is L, SIMPLE stores all items
in the memory region [0, L + ¢].

To verify that SIMPLE is well-defined we must argue that on
every delete of an item outside of the covering set SIMPLE can find
a suitable item in the covering set to swap with the deleted item;
all other parts of SIMPLE’s instructions clearly succeed. Fix a size
class i. We consider two (exhaustive) cases for how many items of
size class i were placed in the covering set on the previous rebuild,
and argue that in either case whenever an item I of size-class i
outside the covering set is deleted SIMPLE can find an appropriate
item I’ in the covering set to swap with I.

Case 1: The L£_1/3J smallest items of size class i were placed
in the covering set on the previous rebuild; call this set of items
Si. Then, because SIMPLE performs rebuilds every Le~1/3] updates
and because SIMPLE swaps at most one of the items from S; out of
the covering set on each delete we have that on any delete before
the next rebuild there is always an element of S; contained in the
covering set. The items in S; were chosen to be the smallest items
of size class i at the time of the previous rebuild. Recall that inserted
items are added to the covering set. Thus, we maintain the invariant
that all items I of size class i outside of the covering set have (logical)
size at least the size of any element in S;. Thus, there is always an
appropriate covering set item to swap with any deleted item of size
class i outside of the covering set.

Case 2: If we are not in Case 1, then during the previous re-
build there were fewer than [¢~1/3] total items of size class i, and
SIMPLE placed all of these items in the covering set. This property,
that all items of size class i are contained in the covering set, is
maintained until the next rebuild because inserted items are added
to the covering set. Thus, until the next rebuild there is never a
delete of an item of size class i outside of the covering set: no such
items exist. So the condition we desire to hold on such deletes is
vacuously true.

O

LEmMA 3.3. SIMPLE has amortized update cost 0(572/3).

ProoF. The covering set has size at most 2¢- [6_1/3] -2 |_€_1/3J <
O(sl/ 3). This is because all items have size at most 2¢, the number
of size classes is [e’l/ 31, and the number of items of each size class
in the covering set starts as at most [¢~'/3| and then increases

"5z0¢ L 1dy uo Knuepy uonmusu] VSV Aq A1e1qr [enSiq NV o) WXy PapEo[umo(]



SPAA 24, June 17-21, 2024, Nantes, France

by at most one per update during the Le~1/3] updates between
rebuilds, and hence the number of items of each size class in the
covering set never exceeds 2 le~1/3]. We compact the covering set
on each update and so incur cost 0(81/3/6) < 0(e72/3) per update.
Rebuilds incur cost at most 1/¢, and occur every |_€_1/ 3] steps. Thus,
their amortized cost is at most ¢7/|¢71/3| < O(¢72/3). Overall,
SIMPLE’s amortized update cost is O(e72/3). O

4 AN ALLOCATOR FOR ARBITRARY ITEMS

Theorem 3.1 gives a surprising and simple demonstration that the
folklore bound is not tight in the large items regime. In this section
we will show how to outperform the folklore algorithm for arbitrary
items, which is substantially more difficult than Theorem 3.1. In [5]
Kuszmaul has already shown how to outperform the folklore algo-
rithm in the regime where items are very small. In Section 4.2 we
show that Kuszmaul’s allocator can be combined with any resizable
allocator fairly easily, to even get a resizable allocator. Thus, the
main difficulty we address in this section is extending Theorem 3.1’s
allocator SIMPLE to work on items with sizes in the interval [¢°,1].
There are two major obstacles not present in SIMPLE that arise
when handling items with sizes that can differ by factor of poly(¢).

The first challenge is that SIMPLE compacts the entire covering
set on every delete. The covering set needs to be large enough to
contain a substantial quantity of items of each size class. Large
items, e.g., of size close to '/2 can potentially afford to compact the
covering set each time they are the subject of an update. However,
it would be catastrophic if updates of smaller items, e.g., items of
size &> caused the entire covering set to be compacted each time. In
fact, the situation is even more troublesome: we hope to improve
SIMPLE’s update cost of 0(5_2/3) to 5(6‘_1/2). Thus, even items of
size ©(¢) cannot afford to compact the entire covering set on each
update if the covering set is large. And, in order to make rebuilds
infrequent it seems like we must make the covering set quite large.

The second challenge is that SIMPLE breaks items into size
classes, which are groups of items whose sizes differ by at most
£*/3. The small multiplicative range of item sizes that we assume in
Theorem 3.1 ensures that the number of size classes will be small.
However, we cannot use the same style of size classes once the
item sizes can vary by a factor of ¢°: there would be far too many
size classes. In order to support a larger range of item sizes, we
modify our size classes to be geometric. That is, we define size
classes of the form [8(1 + «)' ™1, 8(1 + «)!] instead of [§ + a(i —
1), d + ai] for some a = poly(¢). However, geometric size classes
cause a major complication absent in the fixed-stride size class
approach of SIMPLE. Namely, with geometric size classes large
items waste more space than small items per delete. Thus, a naive
approach of rebuilding whenever the wasted space exceeds ¢ would
be susceptible to the following vulnerability: a few deletes of large
items could waste a lot of space, but then the rebuild could be
triggered by a small item. But the rebuild is very expensive when
triggered by a small item.

We now introduce a construction to address these issues.

128

Martin Farach-Colton, William Kuszmaul, Nathan S. Sheffield, and Alek Westover

4.1 Handling Items with Sizes in [¢°, 1]

THEOREM 4.1. There is a randomized resizable allocator for items
of size at least € that achieves worst-case expected update costO(e~1/2).

Proor. We call our allocator GEO. GEO labels an item as huge
if it has size at least £1/2/100. Whenever a huge item I is inserted
or deleted GEO rearranges all of memory so that all huge items
are compacted together at the start of memory. The cost of each
such operation is O(e~1/2). Thus, we may assume without loss of
generality that there are no huge items. Assume that £ =1 is a power
of 4. This is without loss of generality up to decreasing ¢ by at most
a factor of 4.

Letf =1+ ¢'/2. GEO classifies the non-huge items into C <
O(e~1/210g ¢~1) size classes. Specifically, an item is classified as
part of the i-th size class if it has size in the interval [¢° i1, £ §7).
GEO builds a sequence of £ = 4.5log e~ covering levels ! - nested
suffixes of memory with geometrically decreasing sizes. In particu-
lar, if an item I is in level j, we also consider I to be in each level
j’ < j.For each j € [£] the mass limit for each size class in level
j is defined to be

mj = 271,
We will ensure the level size invariant: for all j € [¢],i € [C]
the total size of items of size class i in level j is at most 2m;. In
particular, this will mean that the total size of level j is at most
2Cm;j. Note that my = 2¢°: the deepest level can fit only O(1) of
even the smallest items. Also note that

1/2

-1
my :2£’55224.510g8 6‘5:6 )

so level 1 can fit at least Q(1) of even the largest items. For con-
venience we will also define the 0-th level to mean all of memory
with my = 1.

For each i € [C], let s; denote the total number of items of size
class i; this number will change as items are inserted and deleted.
Let b; = £°B': all items of size class i have size smaller than b;. For
each i € [C],j € [£] the number of items of size class i in level j
will always be at most twice the quantity

cij = mj/b;].

For convenience we also define ¢; o = oo for each i € [C].
We now describe GEO.

Level rebuilds. For each i € [C], define j; to be the largest level
Jj € [£] such that¢; j > 1; j; is the deepest level that could feasibly
contain an item of size class i. In fact we will have c; =1 because
the mass limit for any levels j, j + 1 differ by a factor of 2, and
because the mass limit in level ¢ is such that level ¢ fits at most 1 of
any size class. For each i € [C], j € [j}] GEO keeps insert/delete
level rebuild thresholds r; j, rlf’j € [[cij/4]1,cij/31] N N. GEO
initializes the level rebuild thresholds uniformly randomly from
this range.

Updates will sometimes cause level rebuilds. To simplify the
description of our allocator it is also useful to have a concept of a
free rebuild (a type of rebuild). A free rebuild is a “sentinel value”:
it is only a logical operation and has zero cost. At the very start
GEO performs a free rebuild of each level j by each size class i. We
describe a level rebuild caused by an insert; level rebuilds caused

1

!Note that £ € N by our assumption that ¢! is a power of 4.

"5z0¢ L 1dy uo Knuepy uonmusu] VSV Aq A1e1qr [enSiq NV o) WXy PapEo[umo(]



A Nearly Quadratic Improvement for Memory Reallocation

by deletes are completely symmetric. Suppose an item of size class
ig is inserted. For each j € [¢], let t; denote the number of inserts
since the previous time that level j has been rebuilt (including free
rebuilds) by a size class ip item. Let jo be the smallest j € [ jlfko] such
that tj > r;, j (in fact, we will have ¢, = r;, j;)-

GEO then rebuilds level jy. For each j € [£],i € [C] define Ij(i)
to be the min(s;, ¢; j) smallest items of size class i, and define

5= 7"

i€[C]

Define ]_'] to be all items except for items ;. To rebuild, GEO rear-
ranges level jo — 1 to ensure that for all j > jo the items 7; appear

to the right of items 17] This arrangement is well-defined since for
each j we have ;1 C J;. We justify in Lemma 4.2 why GEO can
always find any such 7; as a subset of level jo — 1, and so achieve
this arrangement by rearranging only level jo — 1. GEO labels the
items J; as level j for all j > jo.

Let J be the set of all levels j € [j;] such that t; > r;, ;. To
finish the rebuild of level jo GEO resamples r;, ; randomly from
[[cij/4],[cij/31] NN for each j € J. GEO considers this a free

rebuild for levels j € J \ {jo} by the size class i item.

Handling Inserts. GEO handles inserts as follows: Place inserted
items directly after the current final item in memory. When an
item of size class i is inserted we add it to level ¢. As discussed
earlier, inserts trigger level rebuilds when level rebuild thresholds
are reached.

Handling deletes. Suppose an item I of size class i is deleted. If
item I is not in level j;* GEO finds the item I” of size class i in level
ji which will have |I’| < |I| and swaps I, I’; in Lemma 4.2 we argue
that there is some such item I’. To swap items I and I’ GEO places
item I’ where item I used to be. Next, GEO inflates the size of item
I’ to |I|. That is, GEO will logically consider item I’ to have size |I|
until the next waste recovery step at some later time (or until I’ is
further inflated). We describe the waste recovery procedure after
finishing the description of how GEO handles deletes.

After swapping item I (if necessary) and removing I from mem-
ory GEO compacts level ]l* i.e., arranges the items of level j;‘ to
be contiguous and left-aligned with the final element that is not
part of level j; (or left-aligned with 0 if all elements are part of
the level). As discussed earlier a delete triggers level rebuilds when
level rebuild thresholds are reached.

Implementing waste recovery. When handling deletes GEO per-
forms swaps which cause waste. Suppose GEO swaps items I, I’
both of size class i, and let b; be the maximum size of an item in
size class i. Define w; = ¢!/2b;. Then, |I| - |I| < b; — bi/p < wi.
We say that the swap causes waste w;. GEO’s waste recovery steps
will ensure that the total waste in memory never exceeds ¢. This
will ensure that the total size of gaps introduced by swaps never
exceeds ¢.

We consider GEO to have performed a free waste recovery step
at the beginning (this is a logical operation incurring zero cost,
useful as a sentinel value). At every waste recovery step (and at the
beginning) GEO samples threshold T « (¢/2, ¢) uniformly to de-
termine how much waste to allow before triggering the next waste

129

SPAA 24, June 17-21, 2024, Nantes, France

recovery step. More precisely, (excluding the free waste recovery
step at the beginning) if the waste recovery threshold was T and
the most recent delete would cause the waste introduced since the
previous waste recovery step to be W > T then GEO performs
a waste recovery step. We consider the waste at the start of this
waste recovery step to be W — T that is, waste from the final delete
which caused the waste recovery step overflows to count towards
the next waste recovery step. To perform the waste recovery step
GEO logically reverts all items to their original sizes, arranges the
items to be contiguous and left-aligned with 0, and then rebuilds
level 1.
Now we analyze GEO.

LEMMA 4.2. GEO is well-defined and correct (i.e., allocates items
within the allowed space).

ProoF. First we show that the level size invariant is maintained.
This follows from the following stronger property: for all i €
[C],j € [¢] there are at most 2c; ; items of size class i in level
Jj. First note that this is sufficient to prove the level size invariant
because 2c; j items of size class i take up at most 2m; space. Now we
argue that the rebuild procedure maintains this stronger property.
Foralli € [C],j > j;, whenever an item of size class i is inserted
some level j € [j] is rebuilt, and so no items of size class i can
remain in level j because c; j = 0. For i € [C], j € [Jj]], the insert
level rebuild threshold r; j satisfies r; j < c; j. That is, level j will be
rebuilt before there are more than c; ; inserts of size class i items,
and thus level j can never have more than 2¢; ; size class i items.

To show that GEO is correct, we need to verify that after every
update for every jo € [£],j > jo, items I are contained in level jjo —
1. This is necessary for GEO’s rebuild operation to be well-defined.
Because for each j we have ;1 C 7j it suffices to show that for
each j € [¢] the items ; are contained in level j — 1. Recalling the
definition of 7; our goal is to show that for all i € [C], j € [¢] the
min(s;, ¢; j) smallest items of size class i are contained in level j — 1.
Fix some size class i. First, observe that for j > jI we have ¢; ; =0,
so the claim is vacuously true. We prove the claim for j € [j}] by
induction on j. The claim is clearly true for j = 1: level 0 is all of
memory, so in particular contains the s; smallest items of size class
i. Assume the claim for j € [j; — 1], we prove the claim for j + 1.

Because the claim is true for j we have that whenever level j has
just been rebuilt it will contain the min(s;, ¢; ;) smallest elements
of size class i, because these items were present in level j — 1. We
consider two cases.

Case 1: ¢;j < 3. Then rlf’j =1, ie, level j will be rebuilt every
time a size class i item is updated. By our inductive hypothesis re-
building level j results in the min(s;, ¢; j) > min(s;, ¢; j+1) smallest
size class i items being in level j, so the claim holds here.

Case 2: ¢ j > 3. Then

cij = [cij/31 = [cij/2] = cijur.
Thus, if the smallest c; j items of size class i were placed in level j
on the previous level j rebuild the smallest c; j+1 items of size class
i will still be in level j at all times until the next rebuild. On the
other hand, if the smallest s; items of size class i were placed in
level j on the previous level j rebuild then no items of size class i
can exit level j until the next level j rebuild: there are no size class i
items outside of level j to trigger a swap. Inserts are added to level

"5z0¢ L 1dy uo Knuepy uonmusu] VSV Aq A1e1qr [enSiq NV o) WXy PapEo[umo(]



SPAA 24, June 17-21, 2024, Nantes, France

Jj so they do not break the invariant. This proves the claim for j + 1,
so by induction the claim is true for all j.

In order for deletions to be well-defined, we must also show that
after every update for every size class i with s; > 0, the smallest
element of size class i is in level j;'. This holds because we always
have rlfﬁ =1, so every time level j;k loses the smallest item of size

class i itl will be rebuilt, and when it is rebuilt it must have the
smallest item because level j — 1 always contains items Ij. All
inserted items are inserted to level j, so again insertions cannot
break the invariant.

Now, we argue that GEO always places items within the memory
bounds. If we consider items at their inflated (i.e., logical) sizes
then the items are contiguous. Recall that the total size of gaps
introduced into the array by inflation is bounded by the waste
recovery threshold T < e. Hence, if there is L total size of items
present at some time GEO allocates all items in the memory region
[0, L + ¢]. That is, GEO is resizable.

For completeness we check the fact claimed when defining the
size classes, that C < O(¢~1/2). Indeed,

loge™!

C < O(logg e go(—
(ogp e ) < O\ aar2)

) < 0(6‘_1/2 loge™).
]

Before analyzing GEO’s expected update cost we need two sim-
ple lemmas. The proofs are deferred to the full version of our paper
on arxiv.

LEMMA 4.3. Fixa, bW € R with0 < a < b, and W > 0. Let
X1, X2, ... be uniformly and independently sampled from (W /2, W).
The probability that there exists j with ;< xi € [a,b] is at most
ab-a)/W.

LEMMA 4.4. Fix integersy, N € N. Let x1, x2, . .. be uniformly and
independently sampled from [[N /4], [N/3]] N N. The probability
that there exists j with ;< j x; =y is at most 100/N.

Now we analyze the worst-case expected cost of an update. For
the remainder of the proof we fix an arbitrary update index u € N;
our goal is to show that the expected cost on update u is small. We
break the cost of this update into I}y + I's + I'g, where Iy is the
cost of waste recovery, I's is the cost of swapping elements and
compacting to handle deletes, and Ty, is the cost of rebuilding levels.
We will show E[Tyy + I's + Ig] < 5(5‘1/2).

LEMMA 4.5. The expected cost due to waste recovery on update u
satisfies E[Tyy] < O(e~1/2),

Proor. If update u is an insert then GEO never performs a waste
recovery step on update u. Thus, for the purpose of analyzing
the cost of waste recovery it suffices to consider the case that
update u is a delete. Let update u be the u’-th delete, and let the
corresponding deleted item be of size class i. Let x1,x2,..., be
the sequence of sizes of items that will be deleted. For each k,
let wi be the space wasted by delete k, i.e., the maximum size
difference between items in the size class of the k-th deleted item;
we have wy < O(¢'/2x;). GEO repeatedly samples waste recovery
thresholds Ty, T2, . . . independently from (¢/2, €). A waste recovery
step occurs on update u if there exists M € N such that update u

130

Martin Farach-Colton, William Kuszmaul, Nathan S. Sheffield, and Alek Westover

causes the total waste to cross the M-th waste recovery threshold,
i.e., so that

M
Z T; €
t=1

Here we have used the fact that waste overflows between waste
recovery steps. By Lemma 4.3 the probability that such an M exists
is at most 4wy, /¢. If u must perform waste recovery the cost is at
most 1/x,,. Thus, the expected cost of waste recovery on delete u’
is at most

u' -1 u
S Zwk] |
k=1

k=1

4wy 1 _
Y <0 V?.
£ Xy

O

LEMMA 4.6. The cost due to swapping and compacting on update
u satisfies ['s < O(e~1/2),

Proor. When an item I of size class i is deleted GEO potentially
moves an item I’ also of size class i to replace item I. This costs
O(1). After removing item I from memory GEO must compact
level j;. The cost of this compaction is bounded by the maximum
possible size of level ;i divided by |I|. The size of level j; is at most
2ij;r by the level size invariant. We claim |I| > mi j [T <t
but [I| < m; jt /4 then I’s size class can fit on a deeper level than j7,
contradicting the definition of ji. If jI' = ¢ then the inequality is
true because m;¢/4 is smaller than the minimum item size. Thus,
the cost of compacting level j; is at most

= _1/2
TS0 0,

Note that there is zero cost here on an insert. m]

LemMA 4.7. The expected cost due to rebuilding levels on update u
satisfies B[TR] < O(s_l/z).

PRroOF. There are only £ = ©(log e~ 1) levels. Thus, it suffices to
fix alevel j € [¢] and show that the expected cost due to rebuilding
level j on update u is at most O(C) < O(¢71/2). Fix j € [¢] and
let update u be an item I of size class i € [C]. First, note that if
Jj > Jji level j is never rebuilt by an item of size class i. So, we may
assume j € [j;]. We claim the probability that update u triggers
a rebuild of level j is at most 100/c; ;. Suppose that update u is an
insert; the case of deletes is symmetric. Let u be the u’-th insert
of a size class i item. Let the sequence of insert rebuild thresholds
rij for level j on items of size class i chosen by GEO be x1, x3, . . ..
Recall that these are sampled from [[c; j/4], [ci j/3]] N N. Then,
the probability of update u triggering a rebuild of level j is precisely
the chance that there is some k* such that Y g <+ xx = v’. This is
exactly the situation described in Lemma 4.4. Thus, the probability
that u triggers a rebuild of level j is at most 100/c; ; in this case.

If update u triggers a rebuild of level j the cost is at most 2Cm; /|I|
(and may even be 0 in the case that it was a free rebuild, i.e., covered
by a larger level’s rebuild). Thus, the expected cost of rebuilding
level j on update u is at most

200Cm;
cijlll

1)

"5z0¢ L 1dy uo Knuepy uonmusu] VSV Aq A1e1qr [enSiq NV o) WXy PapEo[umo(]



A Nearly Quadratic Improvement for Memory Reallocation

Recall the definition of ¢; j: if b; denotes the maximum possible size
in size class i then ¢; j = | mj/b;]. Thus, because ¢; j > 1 we have

cij |l = cijbi/B=1mj/bi]bi/ B = m;[(2f) = mj/4.
This shows that (1) is bounded by O(C). O

Thus, the expected cost of update u is at most
E[Ts + Ly +Ig] < O(e~1/?).

]

4.2 Combining GEO with Kuszmaul’s Allocator

Throughout the subsection we say that an item is large if it has
size larger than ¢*, and tiny otherwise. In Theorem 4.1 we de-
scribed the GEO allocator which can handle large items. In [5]
Kuszmaul constructed an allocator based on min-hashing, which
we call TINYHASH, that can handle tiny items with worst-case
expected update cost O(log e™!). Kuszmaul’s TINYHASH is even
a resizable allocator, like GEO. Combining GEO and TINYHASH
immediately yields:

COROLLARY 4.8. There is an allocator for arbitrary items with
worst-case expected update cost O(e~12).

Proor. Instantiate GEO with ¢/3 free space starting at the be-
ginning of memory and instantiate TINYHASH with ¢/3 free space,
but starting at the end of memory and growing backwards. When
we get an update of a tiny item we send the update to TINYHASH,
and when we get an update of a large item we send the update to
GEO. The correctness of this approach follows from the fact that
TINYHASH and GEO are resizable. In particular, if at some time
there is L; total size of tiny items present and Ly total size of large
items present then GEO only places items in the memory region
[0,L; + ¢/3], and TINYHASH only places items in the memory re-
gion [1— Ly — ¢/3,1]. Because L1 + Ly < 1 — ¢ these intervals are

disjoint.
This allocator inherits the max of the worst-case expected update
costs in GEO, TINYHASH as its expected update cost. O

In fact, by exploiting the modular structure of TINYHASH, rather
than simply using TINYHASH as a black box we can strengthen
Corollary 4.10 to obtain the same (asymptotically) update cost,
but with a resizable allocator. Now, the layout of memory will be
space [0,L; + ¢/2] allocated to GEO, where L; is the total size
of large items and then space [L; + ¢/2,L; + L + ¢] allocated to
TINYHASH where L; is the total size of tiny items present. As before,
GEO handles large items and TINYHASH handles tiny items. The
difference now is that TINYHASH doesn’t have a fixed start location:
as the region of memory managed by GEO changes size we have to
ensure that the region of memory managed by TINYHASH starts
right after GEO’s memory region ends. That is, in addition to the
usual internal updates, we have to modify TINYHASH to support
external updates, which are requests of the form “rearrange all of
memory to start at a location k ahead or k behind its current start
point”. Such an external update is considered an operation of “size”
k, and a resizable allocator capable of handling external updates is
called relocatable. The cost of an external update is the total size
L of items moved to handle the external update divided by the size

131

SPAA 24, June 17-21, 2024, Nantes, France

k of the external update. In the full version of our paper on arxiv
we show:

LEMMA 4.9. Ifall internal updates are tiny and all external updates
are large, there is a relocatable allocator achieving worst-case expected
internal update cost O(loge™'), and worst-case expected external
update cost O(1).

Using the relocatable allocator FLEXHASH from Lemma 4.9 it is
easy to show:

COROLLARY 4.10. There is a resizeable allocator for arbitrary
items with worst-case expected update cost O(e~1/2).

Proor. We instantiate GEO with ¢/2 free space starting from
0. We also instantiate the relocatable FLEXHASH from Lemma 4.9
with ¢/2 free space, and we maintain the property that FLEXHASH
starts after GEO’s memory region ends. If there are L; total size
of large items present and Ly total size of tiny items present then
GEOQO’s memory region is [0, L1 + £¢/2] and FLEXHASH’s memory
region is [Lq+¢&/2, L1+Ly+¢]. We handle tiny items with FLEXHASH
and large items with GEO.

Whenever the portion of memory managed by GEO changes
size by k (due to an update of size k), we issue an external update
of size k to FLEXHASH in the appropriate direction. The cost of an
external update is defined precisely so that if FLEXHASH handles
this external update at cost x then the total size of items moved by
FLEXHASH is O(kx). Thus, the actual cost of this update is O(x)
as well. Hence, on any update the expected cost due to handling
external updates is O(1). The expected cost due to updates handled
by GEO is at most O(£71/2), and the expected cost of internal
updates for FLEXHASH is O(log ¢~ 1). Thus, our allocator’s expected
cost is O(e~1/2). O

5 A LOWER BOUND

In this section we give the first non-trivial lower bound for the
reallocation problem using a surprisingly simple update sequence.

THEOREM 5.1. There exist sizes s1,52 € 9(51/2) and an update
sequence S consisting solely of items of sizes s1,s2 such that any
resizable allocator (even one that knows S) must have amortized
update cost at least Q(loge™!) on S.

Proor. Without loss of generality assume ¢71/2 € 4N, and let
n= (s_l/ 2)/4. We call the items of size s; A’s and the items of size
sy B’s. Set s; = el/2 4+ 2¢ and = £1/2 The sequence S is as follows:
First, insert n A’s. Then, for n iterations, delete an A and insert a B.

Consider an allocator operating on S. We will think of the alloca-
tor’s experience as follows. Every step the allocator must rearrange
memory such that it ends with an A. Then, that A is turned into a
B. This is without loss of generality because a resizable allocator
cannot afford to leave a gap of size s; in memory after an A is
deleted. Let the “i-th item” denote the i-th item counting from the
end of memory. For i € [n] let B; denote the number of B’s among
the final i items of memory. Define potential function (which we
only measure when there are n items in memory, i.e., at the start of
each step):

"5z0¢ L 1dy uo Knuepy uonmusu] VSV Aq A1e1qr [enSiq NV o) WXy PapEo[umo(]



SPAA 24, June 17-21, 2024, Nantes, France

Whenever an A at the end of memory is turned into a B, each B;
increases by 1, so ® increases by .1 1/i > Q(logn).

Now we analyze how much the allocator can change ® by per-
forming x work. We claim that the allocator’s rearrangement can
be decomposed into “full permutations”, operations of the form:
pick i, j € [n] and for each k € [i, j] N N assign item k a new loca-
tion. Clearly the cost of such an operation is Q(j — i). Intuitively
this decomposition is possible because si, sz were constructed to
have no additive structure: for any 41,12 € [0,n] N Z not both 0
we have |A151 — A252| > 2¢. Now we show how to decompose the
allocator’s rearrangement into full permutations. Fix i, j € [n] such
that the allocator moves item k for each k € [i, j], but does not
move item k’ for kK’ € {i— 1, j+ 1} N [n]. Let x; be the location
where item j + 1 ends (set x; = 0 if j = n) and let x; be the location
where item i — 1 starts (set xo = 1if i = 1). Suppose that there are
a A’s and b B’s in the memory region [x1, x3] to start, and a’ A’s
and b’ B’s in this memory region after the the rearrangement. Note
that there are no items only partially in [x1, x2] before or after the
re-arrangement due to the assumption that the items immediately
on either side of the interval (or the endpoints of memory if no such
items exist) do not move. As argued above, if (a,b) # (a’,b’) then
|(a—a’)sy + (b —b")sz| > 2¢. A resizable allocator is not allowed
to have more than an ¢ gap anywhere in memory, so this would
be an invalid rearrangement. Hence we must have (a,b) = (a’,1’).
And then the allocator can simply rearrange the items within items
[i, j] rather than taking items from outside of [i, j]. Thus, we can
decompose any set of rearrangements into full permutations.

Now, consider the potential change caused by a full permutation
that moves x items. This operation only changes the B; values for x
items. Thus, because B; /i < 1 for all i, the operation decreases ® by
at most x. This operation requires at least x/2 work. In summary,
the allocator requires at least x/2 work to decrease ® by x.

We have shown a sequence of 3n updates such that, over the
course of the whole update sequence, ® must increase by Q(nlogn).
Since the potential starts at 0 and is always at most n, the allocator
must have amortized cost at least

lQ(nlogn) -n

-1
2 3n > Q(logn) > Q(loge™").

6 AN ALLOCATOR FOR ITEMS WITH
RANDOM SIZES IN [§, 2]

In this section we consider allocators for random items, i.e., items
with uniformly random sizes in some range [J, 25]. In this setting
we are able to create an allocator with substantially better perfor-
mance than the allocators of Section 4.

Fix 6 = poly(¢). A 5-random-item sequence is the following
sequence of updates: The first [ §~!/4] updates are inserts of items
with sizes chosen randomly from [§, 28]. Then, the sequence alter-
nates between a deletion of a random item and an insertion of an
item with size chosen randomly from [§, 25]. Note that there will
always be (within 1 of) | §~!/4] items present. Our main result of
this section is:

THEOREM 6.1. There is a randomized resizable allocator that han-
dles §-random-item sequences with worst-case expected update cost

132

Martin Farach-Colton, William Kuszmaul, Nathan S. Sheffield, and Alek Westover

O(log e™1). Furthermore, the set of items that our allocator moves to
handle an update can be computed in expected time O(e~1/2).

Note that in this stochastic setting where the total size of items
present is variable the resizable guarantee of our allocator is the
most natural property to hope for. To prove Theorem 6.1, the fol-
lowing property of §-random-item sequences is quite useful: After
d > | 571/4] updates the distribution of items sizes present is the
same distribution as obtained by sampling [671/4] (or [671/4] +1
depending on the parity of d) values independently from [8, 26].

Our allocator for random items is based on the observation that
random independent values can make many subset sums. The sub-
set sums of random sets have been studied before (see, e.g., [8]).
However, to the best of our knowledge previous work has only
given an asymptotic version of the result we need, namely The-
orem 6.2. Our self-contained analysis explicitly determines the
constant-factor for how large a random set has to be in order to
contain a subset of a desired sum with constant probability. This is
important for our application because the constant-factor appears
as an exponent in the running time of our algorithm.

In what follows our analysis is asymptotic in a parameter n € N
(rather than in ¢! like in all other places in the paper). First we
need a standard fact about sums of random variables. We show in
the full version of our paper on arxiv how to derive this fact from a
theorem in [12].

FacT 1. Fix constantsa,b > 0. Let x1,...,x, <
uniformly randomly and independently. Then

[0, 1] be chosen

n

in e[n/2—-an/2+b]

i=1

Pr =0(1/vn).

We will also need the following asymptotic expression for bino-
mial coefficients (see, e.g., [13]):

FAcT 2. Define the binary entropy function H as
H(x) = —xlogx — (1 - x) log(1 — x). For any constant & € (0, 1),

n
=@ (2@ .
( [an] ) ( /%)
We establish the following theorem:

THEOREM 6.2. Let m = 2[(logn)/2]. Fix arbitraryy € (3/4)m +
[-1,1]. Let x1,...,xm <« [1,2] be uniformly random and inde-
pendent values. Then, with probability Q(1) there exists an (m/2)-

logn
.yl

element subset of x1, .. ., X with sum in [y —

Proor. Let Iy = [y - loin, y]. Let random variable S denote the
number of (m/2)-element subsets of x1, ..., Xy, With sum in I3,

Lemma 6.3. E[S] > Q(1).

PROOF. Let z1,22,...,2p/2 be sampled uniformly from [1,2].

m/2—1

Define random variable Z = ;1"  z;. Let Z* denote the event

Ze[y—Z,y—l—b%].Then,
Pr(Z + 2y, € Iy| > Pr[Z*] - Pr[Z + 2pyp € Iy | Z7].

Bounding the probability in this manner is productive because Z*
is very likely, and conditional on Z* the event Z +z,,/, € Iy, is easy
to analyze. In particular,

E[Z] = (m/2-1)-(3/2) € [y =3,y +3].

"5z0¢ L 1dy uo Knuepy uonmusu] VSV Aq A1e1qr [enSiq NV o) WXy PapEo[umo(]



A Nearly Quadratic Improvement for Memory Reallocation

Thus Fact 1 implies that Pr[Z*] = ©(1/4/m). If Z* occurs, making
the (m/2 — 1)-th partial sum very close to the desired value, then

with probability lo% the value of z,,/, makes Z + z,,, /5 € Iy. So
we have found

N
PH[Z + 2y € Iy] > Q (loﬂ) >0 ﬂ). @)
nym n

Now we use (2) to show E[S] is large. Using linearity of expecta-
tion over all (m";z) possible (m/2)-element subsets of the x;’s we

conclude:
1 1 zlogn
E[s] > o | Y8 ( m)ZQ VR 27 ) s .
n m/2 n \logn
|

Let A; denote a uniformly random value from [1, 2] and for each
i € Nlet Ajy1 denote A; plus another random independent value
drawn from [1, 2].

LEMMA 6.4. For any constant A € (0,1), anyi € N withi < Am/2
and any a € R we have

ylogn

n

Pr[Am/z €ly|Aj=a] < O(

Proor. By Fact 1 we have that for any value of A; there is at

most a O(1/4/m/2 —i) < O(1/4/m) chance that A,,/,_; sums to
within 2 of y. Conditional on Ay, ,_; being this close to y there is at

most a 10% chance that the value added to A, /,_; to make A/,
makes the sum A/, precisely lie in the interval 7. Multiplying
these probabilities yields the desired bound. O

We now proceed with the proof of the theorem. We will use the
second moment method ([1]) to show that Pr[S > 0] > Q(1).

Let X denote the set of all size-m/2 subsets of [m]. For A € X let
indicator variable S5 € {0, 1} indicate the event that }};c 4 x; € 3.
Of course S = Y 4cx Sa. Let A = 4/5. We decompose E[S?] as:

E[S%] = Z Pr[Sa A Sp] + Z Pr[Sa A Sg]

ABeX? ABeX?
A=B |ANB|<Am/2
+ Z Pr[Sa ASEl. (3)
A,BeX?

Am/2<|ANBl<m/2

Let T3, Tp, T3 denote the three terms in (3) in the order they appear.
Ti is simply E[S]. Recall that Lemma 6.3 says E[S] > Q(1). Thus,
Ty =E[S] < O(E[S]*). @
We can bound the probability in the sum defining T, using
Lemma 6.4. In particular, observe that A N B is a sufficiently small
set, so if we condition on ;¢ 4np Xi the conditional probabilities
of S4, Sp are at most O((4/logn)/n). The number of terms in the
sum defining T is trivially at most |X|?. Thus, we have

logn m \?
L<Oo|l—|- < 0(1). 5
v<0(=82).( 1) <o ©)
The probabilities of S 4, S in the sum defining T3 might be highly

correlated so we cannot use the strong bound that we used when
bounding T,. Fortunately, for A # B in order for both events S4, Sg

133

SPAA 24, June 17-21, 2024, Nantes, France

to occur we need two distinct random values to land in specific

intervals of size 105". Specifically if A # B then we can find ig €
B\ Aandig € B\ A. Then, after conditioning on the value of x; for
each i € [m] \ {a, b} the probability that S4 and Sg both occur is at

2
most loiz L

. Fortunately the number of terms in the sum defining
Tz is not too large: it is at most

m m 2
[mA/2])\m/2 - [mA/2]) °
because we can first chose A N B and then chose A\ B, B\ A. Thus,

log?n{ m m 2
b= (Mm/ﬂ)(m/z - rmam) '

Now we show T3 < 0(1). Using Fact 2 we have

2
<0 logznzmH(/l/Z)zZmH((l—/l)/Z) 1 al
" (\/10g n)

Thus

1-2
log T3 < O(1) +loglogn + (H(A/Z) +2H (T) - 2) -log n.
Evaluating the expression with A = 4/5 we find log T3 < —Q(logn).
Thus T3 < 0(1) as desired.
Now we combine our bounds on Ti, T2, T3 to obtain, via the sec-
ond moment method (see chapter 4 of [1]), the bound

E[S]® _  E[S]°
E[Sz] a T1 +T2 +T3 = Q(l).

Pr(S > 0] >

We are now equipped to prove Theorem 6.1.

Proor or THEOREM 6.1. We call our allocator RSUM. We start
by giving a construction that works if § < ¢/4. At the end of the
proof we show how to modify this construction to work in the
case § > ¢/4 as well. RSUM reserves ¢/2 free space for use as a
buffer, which will separate the main-body of memory and the
trash can: a suffix of the used portion of memory. The trash can,
buffer and main-body all start empty. It is important that the buffer
is at least the size of the largest item, i.e., £/2 > 26. If this is not the
case we will need a more involved construction for the buffer; we
discuss this at the end of the proof. RSUM reserves the remaining
£/2 free space to enable RSUM to create waste by introducing up
to 571/(2loge™!) gaps of size up to g = e§loge~! in memory.

RSUM operates somewhat similarly to the GEO allocator of Sec-
tion 4 in that RSUM handles deletes by performing swaps that
introduce small amounts of waste in memory, and periodically
rebuilds memory to eliminate this waste. The main difference be-
tween RSUM and GEO is that RSUM swaps sets of items rather than
single items. This gives RSUM much greater flexibility, resulting in
its substantially lower cost.

RSUM groups the items in the main-body into blocks of m =
2[(loge~1)/2] items; the items in the trash can are not part of
blocks. Blocks will be the basic units that facilitate RSUM’s swap
operations. Blocks are marked as either valid or invalid.

"5z0¢ L 1dy uo Knuepy uonmusu] VSV Aq A1e1qr [enSiq NV o) WXy PapEo[umo(]



SPAA 24, June 17-21, 2024, Nantes, France

Handling Deletes. Suppose an item I is deleted. RSUM forms a
set Y containing I and roughly m/2 — 1 other nearby items, with
total size y € %m5 + [-4, 8]. In particular, if I is in the main-body
RSUM arbitrarily adds items contiguous with I from the same block
to Y until the total size of Y lies in %mc? +[=8, 8]. If I is in the trash
can RSUM simply adds arbitrary trash can items contiguous with I
to Y until the total size is appropriate. Constructing Y is possible
because items have size at most 26.

RSUM then attempts to find a block B near the end of the main-
body with a subset of elements S whose sum z is in the interval
[y — g, y]. We say that such a block is compatible with Y. To find a
compatible block RSUM checks whether the final valid block in the
main-body is compatible with Y. If it is not RSUM invalidates this
block and keeps trying valid blocks. If the number of valid blocks
ever becomes too small RSUM will abandon its search for a com-
patible block and instead handle the delete via a rebuild operation,
which will be described later. So we may assume RSUM finds a
valid block B with corresponding subset S of sum z € [y — g, y].

RSUM now swaps S, Y. To swap S, Y, RSUM first takes items S
and arranges them contiguously in the region of memory where
items Y used to be, leaving a gap of size at most g. RSUM then takes
items Y \ {I} and items B \ S and arranges them contiguously in
the region of memory that was occupied by block B. We remark
that if I is part of block B the above steps do nothing. RSUM then
removes I from memory. Once a block of items has been used for
a swap RSUM marks the block as invalidated. In particular, both
the block B used to repair the delete and the block where the delete
occurred (if I was in the main body) are invalidated.

To finish the swap RSUM pushes some blocks into the trash
can. Recall that the trash can is a suffix of the utilized portion of
memory, separated from the main-body by a small buffer. Once
an item Iy’s block has been invalidated RSUM may place Ij in the
trash can. However, invalidated blocks need not be immediately
placed in the trash can. When a swap happens, taking items S from
block B to repair a delete, RSUM takes block B and all blocks to
its right in the main-body and moves them to be contiguous with
the start of the trash can, and compacts them against the start of
the trash can. At this point RSUM no-longer considers items from
these pushed blocks to be part of any blocks.

When RSUM pushes blocks into the trash can it will potentially
increase the size of the buffer (i.e., the distance between the trash
can and the main body) due to the empty space created by removing
item I from memory. If the buffer size now exceeds £/2 RSUM takes
items from the end of the trash can and rotates them to be flush
with the beginning until the buffer size is again at most ¢/2.

Handling Inserts. RSUM handles inserts by placing the inserted
item after the final item currently in memory and adding the in-
serted item to the trash can.

Performing Rebuilds. In addition to responding to deletes and
inserts as described above RSUM occasionally must perform expen-
sive rebuild operations that ensure necessary guarantees on the
layout of items in memory.

In the beginning RSUM uniformly randomly samples a rebuild
threshold r — (571/(8m),5~1/(6m)) N N. This counts as a “free
rebuild” (as a sentinel value). If an update would cause the number
of valid blocks to drop below r, instead of handling it normally

134

Martin Farach-Colton, William Kuszmaul, Nathan S. Sheffield, and Alek Westover

RSUM randomly permutes all items, places them contiguously into
memory to eliminate all waste, and then logically partitions the
items into blocks of m contiguous items, starting from the right of
memory. RSUM then resamples r.

Now we verify that RSUM is well-defined and analyze RSUM’s
performance.

LEMMA 6.5. RSUM places items in valid locations.

PRroOF. Note that the items present are always kept contiguous
except for small gaps introduced by swaps and the buffer between
the main-body and the trash can. Each swap creates wasted space at
most g and invalidates at least 1 block. The total number of blocks is
L[671/41/m]. RSUM certainly rebuilds before all blocks are invali-
dated. Hence, the wasted space never exceeds [ [671/4]/m|g < ¢/2.
RSUM regulates the size of the buffer to be at most ¢/2, so this
ensures that if there is L total size of items present at some point in
time then the items fit in the space [0, L + ¢]. o

LEMMA 6.6. RSUM’s worst-case expected update cost is O(log e™1).
The set of items to move at each update by RSUM can be computed
in expected time O(e~1/2),

Proor. RSUM clearly has cost O(1) per insert. Before analyzing
the expected cost of deletes, we analyze the rate at which blocks
are invalidated: this will dictate the cost of rebuilds.

We will show using Theorem 6.2 that in expectation only O(1)
valid blocks must be checked before finding a compatible valid
block to handle each delete. Fix some delete. Let y € %m& +[-6,6]
be the size of the set of items Y contiguous with the deleted item
which we aim to swap. Suppose we are given a set X of m items
with sizes chosen uniformly randomly and independently from
[8,26]. We claim that with constant probability there is a subset
X’ c X such that Y, cx x € [y — ¢, y]. This follows immediately
from Theorem 6.2, with all sizes scaled down by a factor of §.

Intuitively this means that the expected number of valid blocks
RSUM looks at on each delete should be O(1). Now we formalize
this intuition. Define a phase to be the set of updates between
rebuild steps. Note that the set of items present is highly correlated
between phases, so great care is needed. However, we will argue
that RSUM’s periodic rebuild operations, where RSUM randomly
permutes all present items, guarantee the following property: Let C;
denote the event that the i-th check of a valid block’s compatibility
during a fixed phase succeeds. Then for all distinct i, j the events
Ci, Cj are independent and occur each with probability Q(1). We
call this property the “purity of valid blocks”.

We now argue why the purity of valid blocks property holds.
If a block is valid, it means that RSUM has not touched or even
looked at the items in the block during the phase so far. Since the
set of items sizes present at the start of the phase is equivalently
distributed to randomly sampled items, the sizes of the items in each
valid block is equivalently distributed to randomly sampled items,
as their randomness has not been spoiled. Thus, the events C; are
indeed independent random variables, and occur with probability
Q(1) by the argument above (i.e., applying Theorem 6.2).

Thus, the expected number of blocks that RSUM invalidates on
each delete is the expectation of a geometric random variable with
probability Q(1) of occurring and hence is O(1). In particular this

"5z0¢ L 1dy uo Knuepy uonmusu] VSV Aq A1e1qr [enSiq NV o) WXy PapEo[umo(]



A Nearly Quadratic Improvement for Memory Reallocation

implies that the expected number of steps before there are fewer
than r valid blocks is Q(6~1/m).

Now we analyze the expected cost of update u. There are four
costs that we must analyze: the costs due to (1) rebuilding, (2)
swapping items to handle deletes, (3) pushing items into the trash
can, and (4) rotating items to make the buffer sufficiently small.
Intuitively, because each phase has expected length Q(5~1/m) and
because the rebuild threshold r is random, the expected cost of
rebuilding per update is O(log ¢~1); we give a formal proof in the
full version of our paper on arxiv.

The swap operation has cost O(m) < O(log e™!) because there
are O(m) items amongst the two blocks involved in the swap. Re-
pairing the buffer has cost O(1): it requires moving at most O(1)
items. Now we analyze the cost of pushing items into the trash can.
Using the purity of valid blocks property we have that every delete
decreases the number of valid blocks by at most O(1) in expecta-
tion. Since RSUM always rebuilds before the number of valid blocks
drops below §~1/(8m) at most 1/2 of the blocks are invalid at any
point. Since the delete locations are uniformly random, the subset
of blocks that are invalid is uniformly distributed in the main-body,
conditional on its size. Thus, in expectation the number of blocks
that RSUM must push to the trash can on update u is at most twice
the number of blocks it invalidates. As RSUM invalidates O(1) ex-
pected blocks, it only pushes O(1) expected blocks to the trash can
in total, for which it incurs cost O(log e 1).

Now we analyze the expected running time required to compute
RSUM’s strategy. The running time is dominated by the expected
O(1) times that RSUM must check if a valid block is compatible to
handle the delete. Each such check can be performed by computing
all subset sums of the m item sizes in the valid block that it is
checking. This requires 0(e~1/2) time by using the meet-in-the-
middle algorithm for finding subset sums. O

In the above analysis we have assumed § < ¢/4 for simplicity of
exposition. The only place we used this assumption is in construct-
ing the buffer that separates the trash can from the main-body: a
simple buffer requires an items-worth of slack. In the full version
of our paper on arxiv we show how to handle the regime § > ¢/4
as well.

O

135

SPAA 24, June 17-21, 2024, Nantes, France

REFERENCES

[1] Noga Alon and Joel H Spencer. 2016. The probabilistic method. John Wiley &
Sons.

[2] Michael A Bender, Martin Farach-Colton, Sandor Fekete, Jeremy T Fineman, and
Seth Gilbert. 2013. Reallocation problems in scheduling. In Proceedings of the
twenty-fifth annual ACM symposium on Parallelism in algorithms and architectures.
271-279.

[3] Michael A Bender, Martin Farach-Colton, Sandor P Fekete, Jeremy T Fineman,
and Seth Gilbert. 2015. Cost-oblivious reallocation for scheduling and planning.
In Proceedings of the 27th ACM symposium on Parallelism in Algorithms and
Architectures. 143-154.

[4] Michael A Bender, Martin Farach-Colton, Sandor P Fekete, Jeremy T Fineman,
and Seth Gilbert. 2017. Cost-oblivious storage reallocation. ACM Transactions on
Algorithms (TALG) 13, 3 (2017), 1-20.

[5] William Kuszmaul. 2023. Strongly History Independent Storage Allocation: New
Upper and Lower bounds. FOCS (2023).

[6] Wei Quan Lim, Seth Gilbert, and Wei Zhong Lim. 2015. Dynamic Reallocation
Problems in Scheduling. arXiv preprint arXiv:1507.01981 (2015).

[7] Michael G Luby, Joseph Naor, and Ariel Orda. 1996. Tight bounds for dynamic
storage allocation. SIAM Journal on Discrete Mathematics 9, 1 (1996), 155-166.

[8] George S Lueker. 1998. Exponentially small bounds on the expected optimum of
the partition and subset sum problems. Random Structures & Algorithms 12, 1
(1998), 51-62.

[9] Moni Naor and Vanessa Teague. 2001. Anti-persistence: History independent
data structures. In Proceedings of the thirty-third annual ACM symposium on
Theory of computing. 492-501.

[10] John Michael Robson. 1971. An estimate of the store size necessary for dynamic
storage allocation. Journal of the ACM (JACM) 18, 3 (1971), 416—423.

[11] John Michael Robson. 1974. Bounds for some functions concerning dynamic
storage allocation. Journal of the ACM (JACM) 21, 3 (1974), 491-499.

[12] J. V. Uspensky. 1937. Introduction to Mathematical Probability. McGraw-Hill, New
York. 305 pages.

[13] Yufei Zhao. 2023. Graph Theory and Additive Combinatorics: Exploring Structure
and Randomness. Cambridge University Press.

"5z0¢ L 1dy uo Knuepy uonmusu] VSV Aq A1e1qr [enSiq NV o) WXy PapEo[umo(]



	Abstract
	1 Introduction
	2 Preliminaries and Conventions
	3 An Allocator for Very Large Items
	4 An Allocator for Arbitrary Items
	4.1 Handling Items with Sizes in [5,1]
	4.2 Combining GEO with Kuszmaul's Allocator

	5 A Lower Bound
	6 An Allocator for Items with Random Sizes in [, 2 ]
	References

