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Abstract. Spatial-temporal forecasting is crucial in various domains,
including traffic flow prediction for Intelligent Transportation Systems
(ITS). Despite the challenges posed by complex spatial-temporal depen-
dencies in traffic networks, Partial Differential Equations (PDEs) have
proven effective for capturing traffic dynamics. However, recent trends
favor data-driven approaches like Graph Neural Networks (GNNs) for
traffic forecasting, often overlooking the principles described by PDEs. In
this paper, we propose a Graph Partial Differential Equation Network
(GPDE) that integrates PDE principles with GNNs to enhance traffic
flow forecasting. Our approach leverages dynamic graph structures based
on PDE flux functions, incorporating residual connections and learnable
rates for improved model performance. Extensive experiments on real-
world traffic datasets demonstrate the superiority of GPDE over existing
methods in both short-term and long-term traffic speed prediction tasks.

1 Introduction

Spatial-temporal forecasting has garnered significant attention in recent years
due to its widespread applications in various domains such as traffic flow fore-
casting [11,28], climate prediction [13], and more. Accurate spatial-temporal
forecasting plays a crucial role in enhancing the service quality of these applica-
tions. In this paper, we focus on traffic flow forecasting, an essential component
of Intelligent Transportation Systems (ITS), which aims to predict future traffic
flow based on historical traffic conditions and underlying road networks.

Predicting traffic flow is particularly challenging due to the complex and long-
range spatial-temporal dependencies inherent in traffic networks. The travel dis-
tances of different individuals vary significantly [21], resulting in both nearby and
distant spatial dependencies coexisting simultaneously. Moreover, the interaction
between spatial attributes and temporal patterns poses a formidable challenge
for traffic flow forecasting.

Partial Differential Equations (PDEs) have emerged as powerful tools for cap-
turing the spatial and temporal variations in traffic density and flow, enabling
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a dynamic representation of traffic behavior. Notably, in traffic flow modeling,
well-known PDEs such as the first-order Lighthill-Whitham-Richards (LWR)
model [6] and the second-order Aw-Rascle-Zhang (ARZ) model [32] are com-
monly employed to describe the conservation of vehicles within roadway seg-
ments. These PDEs facilitate the understanding of complex traffic phenomena
including congestion, shockwaves, and traffic propagation.

While PDEs provide a solid framework for traffic flow modeling, recent years
have seen a surge of interest in data-driven methods, such as Graph Neural
Networks (GNNs), for traffic forecasting and other applications [3,16,30]. GNNs
excel in handling graph-structured data, enabling effective aggregation of node
representations from their neighbors. Although many GNN-based models, like
STGCN [30] and DCRNN [16], have been proposed to extract spatial features
in traffic networks, they often overlook the underlying traffic flow laws described
by PDEs.

In this paper, we propose a novel approach termed Graph Partial Differen-
tial Equation Network (GPDE) to address the challenges in traffic flow forecast-
ing. Our method leverages the knowledge from PDEs to guide the design of a
dynamic graph neural network layer, enabling the modeling of interacting traffic
flows within a traffic network. Specifically, we introduce a dynamic adjacency
matrix based on the PDE flux function to capture spatial correlations from both
geographical and semantic perspectives. Additionally, we incorporate residual
connections inspired by residual networks [12] to mitigate the over-smoothing
problem often encountered in GNNs. Furthermore, we introduce weighted learn-
able rates to control parameter updates and a non-homogeneous term to account
for unobserved flows in traffic networks. We integrate these components into a
PDE layer and augment existing baselines to demonstrate the superiority of our
model using real-world traffic datasets.

The main contributions of this work are as follows:

– We propose a novel dynamic graph neural network layer, GPDE, to model
traffic networks with interacting traffic flows, improving the performance of
existing baselines.

– We leverage the knowledge from PDEs to guide the design of our evolving
graph structure, incorporating residual connections and learnable rates to
enhance model effectiveness.

– We conduct extensive experiments to evaluate our method, demonstrating its
superiority in both short-term and long-term traffic speed prediction tasks
compared to existing methods.

2 Related Work

Recent advancements in traffic prediction techniques have seen the applica-
tion of various neural network architectures to capture the complex spatial
and temporal dependencies inherent in traffic data. Traditional approaches
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have utilized RNNs and CNNs to encode temporal and spatial dependen-
cies, respectively [17,28,29,31,33]. More recently, the adoption of Graph Neu-
ral Networks (GNNs) has been proposed to more effectively learn traffic net-
work patterns [14,18,34]. Notable contributions include the Graph Recur-
rent Neural Network (GRNN) [26] and the Diffusion Convolutional Recurrent
Neural Network (DCRNN) [16], which offer sophisticated models for under-
standing traffic flow and spatial-temporal dynamics. Furthermore, advance-
ments like STGCN [30], GraphWaveNet [27], and ASTGCN [11] have separately
addressed the spatial and temporal dependencies in traffic prediction. The STS-
GCN model [24] represents a significant step forward by integrating spatial and
temporal blocks to model these dependencies synchronously. However, the chal-
lenge of over-smoothing in deep GNNs limits their ability to capture long-range
spatial-temporal relationships [15]. In contrast, the STGODE model [8] utilizes
a tensor-based ordinary differential equation approach to overcome these limi-
tations, though it primarily addresses temporal dynamics without incorporating
spatial information. [5] proposes the spatio-temporal graph neural controlled
differential equation (STG-NCDE), which designs two neural controlled differ-
ential equations: one for the temporal processing and the other for the spatial
processing.

Integrating physics with machine learning models has shown promise in
enhancing predictive performance and generalizability in scientific domains [2].
Physics-based ML models have been explored for traffic state estimation [7,20],
offering a novel perspective by combining deep learning with physics informa-
tion, though these approaches have not fully leveraged graph structures [23]. Our
work seeks to distinguish itself by simulating spatial dependencies through PDE
knowledge within a GNN framework, thereby addressing the spatial aspect more
effectively than the ODE-based STGODE model [8].

3 Preliminaries

3.1 Problem Formulation

We aim to model traffic flow dynamics within a connected road network, repre-
sentable by a graph structure G = {V, E ,A}, where V denotes the set of N nodes
(road segments), E the connections among these nodes, and A the adjacency
matrix. Each node i at time t has an observation xt

i ∈ R
F , with F being the fea-

ture length. The full observation set at time t is Xt = (xt
1,x

t
2, ...,x

t
N ) ∈ R

N×F ,
and the entire series of observations over time is X = (X1,X2, ...,XT ) ∈
R

T×N×F . The task is to predict future traffic observations T ′ based on past
observations T , formally defined as:

[Xt−T+1,Xt−T+2, ...,Xt;G]
f−→ [Xt+1,Xt+2, ...,Xt+T

′
] (1)
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3.2 Network Architectures

GRNN. The GRNN [26] incorporates graph convolution into an LSTM mech-
anism as follows:

ht+1 = σ(Wh
hAht + bh),

ct+1 = σ(Wh
c Act + bc),

(2)

where A is the adjacency matrix, ht and ct are the hidden state and cell state
at time t, respectively, and σ denotes the activation function. Model parameters
include weight matrices W and bias vectors b.

DCRNN. The DCRNN model [16] integrates diffusion convolution with recur-
rent neural network mechanisms to capture the dynamics of traffic flow. The
diffusion convolution operation at each time step is formulated as follows:

H(l+1) = σ(
K−1∑

k=0

W(l)
k (D−1A)kH(l) + b(l)) (3)

where H(l) ∈ R
N×Fl is the hidden state matrix at layer l, A ∈ R

N×N is the
adjacency matrix with its degree matrix D, W(l)

k is the weight matrix for the
k-th power of the normalized adjacency matrix at layer l, b(l) is the bias term,
σ denotes the activation function, and K is the maximum diffusion step. This
equation captures the spatial dependency through diffusion convolution, model-
ing traffic flow as a diffusion process across the network.

STGCN. The STGCN [30] architecture operates through a series of spatio-
temporal convolutional blocks, where each block is designed to capture both
spatial and temporal dependencies. The key operation in a block is defined as:

Z = σ(Wt ∗ (σ(WsXA + bs)) + bt) (4)

where X ∈ R
N×F is the input feature matrix, A ∈ R

N×N is the adjacency
matrix, Ws and Wt are the spatial and temporal convolutional weight matrices,
respectively, bs and bt are bias terms, σ denotes the activation function, and ∗
represents the convolution operation in the temporal dimension.

4 Methods

In the Methods section, we introduce the GPDE, a novel framework designed
to enhance traffic flow forecasting by integrating the principles of PDEs into
different spatio-temporal prediction models like GRNN, STGCN, and DCRNN.
This section outlines the underlying theory of our approach, the formulation of
the PDE layer, and its integration with established GNN architectures, offering a
comprehensive overview of how GPDE systematically addresses the complexities
of traffic flow forecasting.
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4.1 Vanilla PDE for Traffic Flow

In tackling the complex challenge of traffic flow forecasting, our approach hinges
on the foundational use of PDEs to model the continuous dynamics of traf-
fic movement. PDEs offer a robust framework for encapsulating the spatial
and temporal variations observed in traffic flow, making them indispensable for
understanding and predicting traffic behavior. Specifically, we consider the ARZ
model [1,32] for traffic flow, derived from the principles of fluid dynamics as a
cornerstone for our method, bridging the gap between theoretical physics and
practical traffic forecasting. Other PDE methods like [22] could also be integrated
in a similar way.

ARZ Model. The ARZ model is a well-acknowledged representation in traf-
fic flow theory to capture the non-linear dynamics of traffic flows, including the
crucial aspects of vehicle conservation and momentum, which are essential for
accurate traffic prediction. Specifically, we consider the Zhang model [32]. Our
implementation of the model incorporates source functions to account for exter-
nal influences on traffic flow, such as ramps or intersections, not directly observ-
able through data:

∂ρ

∂t
+

∂(ρv)
∂s

= H1,

∂v

∂t
+ (v + ρV

′
(ρ))

∂v

∂s
= H2,

(5)

where ρ(s, t) denotes the traffic density, v(s, t) the traffic speed, and
H1(s, t),H2(s, t) are non-homogeneous source functions representing the traf-
fic flow variations. The equilibrium traffic speed profile, V (ρ), is described using
Greenshield’s linear model [10], which simplifies the relationship between traffic
density and speed:

V (ρ) = vf (1 − (
ρ

ρmax
)γ), (6)

where vf is the free flow speed, ρmax the maximum traffic density, and γ a
parameter governing the density-speed relationship. For our study, we select
γ = 1, yielding a linear model that simplifies the subsequent computations.

With the assumption of constant traffic density over short forecasting
horizons, we can reformulate the Zhang model to focus on predicting traf-
fic speed. Essentially, we reduce the model back to the Lighthill-Whitham-
Richards (LWR) [6] model and write it in a velocity format. This simplifica-
tion leads to a more tractable PDE for integration within GNN architectures:

∂v

∂t
+

∂f(v)
∂s

= H, (7)

where f(v) = v2

2 − vf
ρ

ρmax
v represents the flux function capturing the move-

ment of traffic through the network, and H = H2 embodies external influences on
the traffic flow. This equation lays the foundation for our proposed GPDE layer,
allowing the dynamic modeling of traffic flow within the structured framework
of GNNs, thus bridging theoretical models with practical forecasting needs.
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4.2 Discrete-Time PDE Solutions

In tackling the challenge of traffic flow forecasting, our approach necessitates
transitioning from the continuous dynamics captured by PDEs to a discrete-
time computational model that aligns with the practicalities of traffic networks.
This transition is vital for bringing theoretical models to bear on real-world
forecasting tasks. To achieve this, we employ numerical methods to discretize
the PDE presented in Eq. 7, focusing on finite difference schemes that provide a
practical means to approximate traffic speed changes over discrete intervals in
both time and space. This section delves into the discretization process for two
distinct scenarios: traffic flow on a linear roadway and within a more complex
network topology.

Linear Roadway Discretization. Our first discretization scheme is tailored
for linear roadway scenarios, such as highways, where traffic flow can be approx-
imated as moving along a straight path. The scheme is formulated as follows:

vt+1
i = vt

i − Δt

Δsi
(f t

i − f t
i−1) + Ht

i Δt, (8)

where vt
i denotes the speed at node i and time t, f t

i −f t
i−1 represents the flux dif-

ference at node i between two discrete time steps, and Ht
i encompasses external

factors affecting traffic flow. Δsi indicates the spatial difference between con-
secutive nodes, derived from the adjacency matrix A, and Δt specifies the time
step. This equation updates traffic states along a linear path, effectively captur-
ing traffic dynamics as observed in datasets like the I-24 MOTION project [9].

Network Discretization. Extending the discretization to accommodate com-
plex traffic networks involves adapting the scheme to account for the flow at
intersections and merges, characteristic of urban and suburban environments:

vt+1
i = vt

i − Δt

Δsi+1 + Δsi
(f t

i+1 − f t
i−1) + Ht

i Δt, (9)

where Eq. 9 uses a central difference scheme to approximate ∂f(v)
∂s . Δsi+1,Δsi

is the distance of node i to downstream node i + 1 and upstream node i − 1.
Since we consider node i in a network, it must have multiple upstream nodes

and downstream nodes. In this case, the flux difference becomes the difference
between all incoming flows and outgoing flows. Also, we double the denomina-
tor number because the distance is asymmetric in the graph using the central
difference scheme. This approach is refined to reflect the directional nature of
traffic flow through network nodes:

vt+1
i = vt

i −
⎛

⎝ Δt

2Δsj

ndn∑

j

f t
j − Δt

2Δsk

nup∑

k

f t
k

⎞

⎠ + Ht
i Δt, (10)



172 T. Bao et al.

where nup and ndn represent the numbers of upstream and downstream nodes
connected to node i, respectively. This detailed approach captures the essence
of network-based traffic dynamics, where each node’s traffic state is influenced
by its immediate neighborhood.

Fig. 1. (a) Flux functions fdn, fup evolve accordingly. (b) Visualization of the Graph
PDE Layer’s architecture. It includes how the layer processes input states through
the combined mechanisms of flux difference calculation, non-homogeneous term adjust-
ment, and weighted residual updating to produce the next state in the traffic prediction
sequence.

Boundary Conditions. Accurately simulating the dynamics of traffic flow
systems, such as those represented by our model, necessitates the careful consid-
eration of boundary conditions. These conditions are essential for ensuring that
the solution to the PDE is well-defined and physically plausible. For traffic flow
forecasting within a network, boundary conditions consider the traffic behavior
at edge road segments in a network or linear roadways, which can significantly
differ from internal network dynamics.

We apply the Neumann boundary condition [19], which specifies the spatial
derivative of the traffic speed at the network’s boundaries. Specifically, we set
the derivative to zero: v

′
(L, t) = 0, where L denotes the boundary points of the

network. This reflects the understanding that the traffic speed at the outermost
points of a network does not experience direct changes due to external traffic
entering or exiting the system. The Neumann condition aligns with the physical
intuition that the outer edges of a traffic network are insulated from external
speed variations, thus stabilizing the model at the network’s extremes.

Figure 1(a) conceptually illustrates the application of our discretization
schemes within a traffic network. It highlights the dynamic interplay between
different network nodes and underscores the continuous updates of traffic states
based on calculated flux differences, laying a methodological foundation for
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incorporating PDE dynamics into GNN architectures for enhanced traffic fore-
casting capabilities.

4.3 Graph PDE Layer

Having established the foundation for applying PDEs to graph structures, in this
section, we introduce the Graph PDE Layer which integrates PDEs into GNN
architectures.

State Update of PDE Output pt. In typical GNN operations, the hidden
states (ht) represent the traffic state at each node within the network at time
t. The evolution of these states is influenced by two primary factors: the flux
differences F arising from the traffic flow dynamics and the non-homogeneous
terms H accounting for external traffic influences.

To adeptly manage the contribution of these factors to the state updates,
we introduce two learnable rates, r1 and r2 to modulate the impact of flux
differences and the non-homogeneous term, respectively. This approach leads to
the following formulation for the state update within the Graph PDE Layer:

pt = φ(ht + r1 · F (ht,ρt, ρmax, vf ,A) + r2 · H), (11)

where φ(·) represents the activation function, chosen to be the sigmoid func-
tion for its properties conducive to modeling nonlinearities inherent in traffic
dynamics. The term F (ht,ρt, ρmax, vf ,A) computes the flux differences based
on the current state, traffic densities (ρt), the maximum density (ρmax), free flow
speed (vf ), and the spatial relationships as delineated by the adjacency matrix
(A). The non-homogeneous term (H), treated as an external influence, is mod-
eled as a learnable and time-invariant tensor, providing a flexible mechanism to
incorporate external traffic influences not directly observable from the data.

Final Update of State ht. To further refine the model and incorporate the
concept of residual learning, we propose the following weighted combination
of the updated state (pt) and the previous state (ht):

ht+1 = α · pt + β · ht, (12)

The weights α and β are learnable parameters that allow the network to
balance the influence of the PDE-based updates with the preservation of infor-
mation from the previous state. This mechanism not only facilitates the inte-
gration of the dynamic traffic flow information encoded by the PDEs but also
ensures that the model can adaptively learn the importance of historical versus
newly computed states for accurate traffic flow prediction.

Overall Flow of a PDE Layer. The flow of operations within the proposed
PDE layer is summarized in Algorithm 1, outlining the sequential steps under-
taken for each epoch of model training. This includes the retrieval and update of
hidden states, the application of the PDE layer for state evolution, and the iter-
ative adjustment of both network and physical parameters to refine the model’s
predictive performance.
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Algorithm 1. The flow of the proposed PDE layer
Input: hidden states ht, maximum traffic flow density ρmax, current traffic flow
density ρt, free flow speed vmax, adjacent matrix A, trainable non-homogeneous
term H, trainable weights r1, r2, α, β.
for epoch = 1 : number of iterations do

for t = 1 : T do
Get hidden states ht from the previous steps
Get pt through Eq. 11
Get ht+1 through Eq. 12

end for
Update model parameters (i.e., networks weights) and physical parameters (i.e.,
H and α)

end for

4.4 Integrating PDE Layer with GNNs

With the development of the GPDE layer, we aim to augment traditional GNN
architectures with the capability to simulate traffic dynamics informed by PDEs.
This integration enables GNNs to not only leverage the structural information
present in traffic networks but also incorporate the underlying physical princi-
ples governing traffic flow. Here, we detail the integration of the GPDE layer
with specific GNN architectures, including Graph Recurrent Neural Networks
(GRNN), Spatio-Temporal Graph Convolutional Networks (STGCN), and Dif-
fusion Convolutional Recurrent Neural Networks (DCRNN).

GRNN. For GRNN [26], which utilizes LSTM mechanisms to capture spatial-
temporal dependencies, integrating the GPDE layer involves substituting the
adjacency matrix A with dynamics encoded by the GPDE layer. This adjustment
enhances the model’s capacity to process spatial-temporal traffic patterns effec-
tively: ht+1 = PDE(ht,ρt, ρmax, vf ,A,H), ct+1 = PDE(ct,ρt, ρmax, vf ,A,H).

DCRNN. DCRNN [16] utilizes a sequence-to-sequence framework with diffu-
sion convolution for modeling traffic flow dynamics. Integrating the GPDE layer
into DCRNN entails placing it before the DCGRU layers in both the encoder
and decoder components. This configuration empowers DCRNN with enhanced
predictive capabilities grounded in the physical behaviors captured by the GPDE
layer: ht+1

enc/dec = DCGRUenc/dec(GPDE(ht,ρt, ρmax, vf ,A,H)), where ht+1
enc/dec

are the updated hidden states within the encoder/decoder processed by the
DCGRU layer, which now incorporates inputs processed by the GPDE layer.
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Fig. 2. Illustration for the I-24 RDS dataset on the linear roadways [35].

STGCN. STGCN’s [31] design is geared towards analyzing traffic data through
spatial-temporal convolution blocks. To incorporate the GPDE layer within
STGCN, it is positioned immediately before the spatial graph-convolution layer
within each spatial-temporal convolution block. This positioning allows the net-
work to preprocess input data through the lens of the GPDE layer, integrating
physical traffic dynamics before spatial convolutional processing. The operation
can be formalized as Xt

GPDE = GPDE(Xt,ρt, ρmax, vf ,A,H), where Xt
GPDE

denotes the output of the GPDE layer, serving as the input to the subsequent
spatial graph-convolution layer.

5 Experiments

In this section, we describe the experiment details and results. All experiments
are conducted using TensorFlow and PyTorch on a computer with the follow-
ing configuration: Intel Core i7-8750H CPU @2.20GHz × 6 Processor, 16 GiB
Memory, GeForce GTX 1060, 64-bit Win10 OS.1

5.1 Datasets and Baselines

Datasets. We evaluate the proposed method on two different traffic datasets, a
linear roadway dataset on the Nashville I-24 Radar Detector System (I-24
RDS) [35] and a network dataset on the Caltrans Performance Measurement
System (PeMSD8) [4] (Fig. 2).
• I-24 RDS Dataset. This dataset contains the radar detection traffic data
in Nashville from April 1 to April 30 in 2023, with 44 sensors on the I-24 road
with a time interval of 30 s. Every observation contains 5 features: speed, occu-
pancy, volume, smooth speed, and smooth occupancy. Since occupancy is linearly
related to density and the GPDE contains linear transformations, we simply use
occupancy as the GPDE input. We use the first 20 d of data to train the models
and use the remaining 10 d of data to test the models. A description of the sensor
layout for the road section can be found in [35].

1 The code for this paper can be found at https://drive.google.com/drive/folders/
1FzKPIfORu54vQ2oWDSFjh4tvepIFIEVW?usp=drive link.

https://drive.google.com/drive/folders/1FzKPIfORu54vQ2oWDSFjh4tvepIFIEVW?usp=drive_link
https://drive.google.com/drive/folders/1FzKPIfORu54vQ2oWDSFjh4tvepIFIEVW?usp=drive_link
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• PeMSD8 Dataset. This dataset contains the traffic data in San Bernardino
from July to August in 2016, with 170 detectors on 8 roads with a time interval
of 5 minutes. Three kinds of traffic measurements were considered, including
total flow, average speed, and average occupancy. We use the first 40 d of data
to train the models and use the remaining 22 d of data to test the models.

Baselines. We compare our proposed method with existing state-of-the-art
methods, including GRNN [26], STGCN [31], and DCRNN [16]. Their imple-
mentations are supported by LibCity [25] toolbox, which is a comprehensive
and extensible library for traffic prediction. For each model and its GPDE-
enhanced variant, we apply distinct learning rates for experiments on the I-
24 RDS and PeMSD8 datasets, with a consistent epoch count of 50 across all
setups. Specifically, GRNN and GPDE(GRNN) use learning rates of 0.003 and
0.01 for I-24 RDS and PeMSD8 respectively, maintaining a hidden state size
of 20. STGCN and GPDE(STGCN) employ learning rates of 0.001 and 0.01 for
the same datasets, with block sizes set to [[1, 8, 16], [16, 8, 16]], and other param-
eters at default values. Similarly, DCRNN and GPDE(DCRNN) are configured
with learning rates of 0.001 and 0.01 for I-24 RDS and PeMSD8 respectively, fea-
turing an RNN unit size of 16, while adhering to default settings for additional
parameters as specified by LibCity. The hyperparameters are selected by expe-
rience. The instructions for running the experiments can be found on LibCity’s
website.

5.2 Performance Evaluation

We report the short-term and long-term testing performance of different methods
for traffic speed prediction in two datasets. For evaluation metrics, each experi-
ment is conducted five times with random model initialization, and the mean of
the Mean Square Error (MSE), Mean Absolute Error (MAE), and Rooted Mean
Square Error (RMSE) are reported.

Short-Term Prediction. Table 1 demonstrates the performance for short-term
prediction on two datasets. We have the following observations:
• Our proposed GPDE performs consistently better than the backbone models
without GPDE layers. This is because the PDE layers simulate the traffic in-and-
out flows in the graph. The PDE flux works as a regularization term to force the
model to follow the traffic rules for both short-term and long-term predictions.
Especially in the I-24 RDS dataset, the traffic propagation characteristic lines
are better preserved by our model.
• The GPDE(STGCN) method performs the best over the other 2 types of
approaches and preserves the accuracy in multistep time predictions. While
GRNN does not perform well due to the structure simplicity with only one layer
of LSTM, it shows great potential after adding the PDE layer in the PeMSD8
dataset. DCRNN does not perform well because of the diffusion process, which
over-smooths the pattern learned by the neural network, and oversimplifies the
traffic flows in the network.
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Table 1. Predictive performance of short-term speed prediction in I-24 RDS dataset
and PeMSD8 dataset. GDPE with different backbone models consistently performs
better with the lower MSE, MAE, and RMSE.

Method Metric I-20 MOTION Dataset PeMSD8 Dataset

30 s 60 s 90 s 120 s 150 s 5 min 10 min 15 min 20 min 25 min

GRNN MSE 29.747 34.63 38.159 42.747 48.263 12.263 16.662 18.317 17.152 19.377

RMSE 5.454 5.884 6.177 6.538 6.947 3.501 4.081 4.279 4.141 4.401

MAE 3.779 4.031 4.190 4.364 4.576 2.337 2.517 2.700 2.531 2.646

GPDE(GRNN) MSE 22.877 28.475 35.854 39.077 46.821 2.268 4.545 6.557 8.536 10.424

RMSE 4.782 5.336 5.987 6.251 6.842 1.505 2.131 2.561 2.921 3.228

MAE 3.338 3.586 3.897 4.233 4.524 0.818 1.084 1.249 1.389 1.522

STGCN MSE 18.858 18.969 19.055 19.290 19.324 3.043 3.407 3.696 4.011 4.176

RMSE 4.342 4.355 4.365 4.392 4.395 1.744 1.845 1.922 2.002 2.043

MAE 2.907 2.918 2.927 2.946 2.951 0.975 1.028 1.071 1.112 1.138

GPDE(STGCN) MSE 17.499 17.604 17.622 17.657 17.782 2.953 3.238 3.462 3.778 3.959

RMSE 4.183 4.195 4.197 4.202 4.216 1.718 1.799 1.860 1.943 1.989

MAE 2.781 2.787 2.788 2.792 2.804 0.994 1.037 1.074 1.117 1.145

DCRNN MSE 16.184 21.114 25.118 28.619 31.799 2.477 4.673 6.764 8.738 10.550

RMSE 4.022 4.594 5.011 5.349 5.639 1.573 2.161 2.601 2.956 3.248

MAE 2.742 3.054 3.243 3.382 3.508 0.846 1.095 1.267 1.404 1.516

GPDE(DCRNN) MSE 16.029 20.644 24.393 27.849 30.913 2.155 4.339 6.410 8.352 10.069

RMSE 4.003 4.543 4.938 5.277 5.559 1.467 2.083 2.531 2.889 3.173

MAE 2.749 3.068 3.247 3.385 3.504 0.802 1.059 1.231 1.366 1.472

Long-Term Prediction. Table 2 summarizes the performance of long-term pre-
dictions for all the methods. We have the following observations:
• The GPDE models show significant improvement in long-term predictions. This
improvement is attributed to the PDE regularization effect, which presumably
helps in modeling complex spatial-temporal dynamics more accurately.
• For STGCN and DCRNN models, there is a notable reduction in prediction
error when transitioning from short-term to long-term forecasts. Specifically,
the Mean Squared Error (MSE) reduces from 0.2 in short-term predictions to
approximately 2 in long-term predictions. This error reduction indicates the
effectiveness of GPDE in enhancing the model’s predictive capability over longer
horizons. The improvement is partly due to the innovative use of PDE network
convolution with weighted residual connections. This technique enhances the
model’s ability to capture long-term temporal and spatial dependencies, which
are crucial for accurate long-term forecasting in complex systems.

5.3 Model Analysis

Ablation Study. In order to assess the impact of various components within
the GPDE framework, we undertook a series of ablation studies using the
PeMSD8 dataset. These studies were designed to dissect the GPDE model by
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Table 2. Predictive performance of long-term speed prediction in I-24 RDS dataset
and PeMSD8 dataset. GPDE(STGCN) consistently outperforms the other baseline
methods.

Methods Metric I-20 MOTION Dataset PeMSD8 Dataset

3 min 4.5 min 6 min 30 min 45 min 60 min

STGCN MSE 19.413 19.644 19.828 4.343 4.724 4.992

RMSE 4.406 4.432 4.452 2.083 2.173 2.234

MAE 2.961 2.988 3.009 1.161 1.219 1.257

GPDE(STGCN) MSE 17.829 18.006 18.153 4.149 4.643 4.986

RMSE 4.222 4.243 4.260 2.036 2.154 2.232

MAE 2.811 2.839 2.858 1.170 1.236 1.275

DCRNN MSE 34.907 43.504 50.922 12.263 16.6159 19.919

RMSE 5.908 6.595 7.135 3.501 4.076 4.463

MAE 3.622 3.911 4.118 1.616 1.856 2.042

GPDE(DCRNN) MSE 33.837 41.982 48.919 11.619 15.378 18.189

RMSE 5.816 6.479 6.994 3.408 3.921 4.264

MAE 3.607 3.86 4.065 1.564 1.78 1.944

systematically removing specific elements, thereby creating three distinct vari-
ants on the base model, STGCN:

Table 3. Ablation experiments of GPDE(STGCN) on PeMSD8 dataset, evaluated for
30-min prediction. Other time steps have similar performances.

Metric GPDEGPDE wo. source function GPDE wo. weighted rates GPDE wo. residual

MSE 4.148 4.215 5.141 6.320

RMSE 2.036 2.053 2.267 2.514

MAE 1.170 1.161 1.269 1.358

– GPDE without source function: This variant omits the non-homogeneous
function H in Eq. 11.

– GPDE without learnable rates: This model excludes the weighted learnable
rates α, β in Eq. 12.

– GPDE without residual correction: This configuration removes ht in Eq. 12.

The results in Table 3 show that the complete GPDE (STGCN) model achieved
superior performance among the evaluated variants, highlighting the efficacy of
its novel spatial convolution and residual correction mechanisms. Specifically, the
absence of residual correction in one of the variants significantly hindered perfor-
mance, underscoring the crucial role of this component in the model. Addition-
ally, the variant without weighted rates showcased the significance of controlled
updates in the model’s performance.
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Parameter Analysis. One major advantage of our GPDE model over other
existing methods is performance stability to over-smoothing and thus can con-
struct deeper network structures. In Table 4, we represent the performance of the
DCRNN-based models under different depths, which is the number of RNN lay-
ers. We can see that as the network depth increases, the performance of DCRNN
drops dramatically while the performance of GPDE(DCRNN) is stable, which
clearly shows the strong robustness of our model towards over-smoothing.

Table 4. The performance of GPDE(DCRNN) and DCRNN as the network depth
increases. GPDE(DCRNN) is more robust than DCRNN in all aspects.

Methods Metric 1 layer 2 layers 3 layers

DCRNN MSE 2.477 4.843 3.662

RMSE 1.573 2.201 1.913

MAE 0.846 1.208 1.015

GPDE(DCRNN) MSE 2.155 2.322 2.446

RMSE 1.467 1.523 1.563

MAE 0.802 0.835 0.868

Fig. 3. Visualization of the long-term 30-min prediction made by (b) STGCN, (c)
GPDE(STGCN) on the I-24 RDS dataset on 04/24/2023. The x-axis presents the
time, the y-axis represents the sensor location. The dark parts represent the low-
speed area and traffic congestion. The congestion propagation can be observed. In
(c), the visualization is clearer around traffic changes, indicating a better performance
of GPDE(STGCN) over STGCN.

5.4 Case Study

We present the heatmaps for the I-24 RDS dataset because it is a straight free-
way. Figure 3 shows the 6 time steps predictions. In Fig. 3(b), the traffic propaga-
tion lines are better preserved than (c) because PDE is better at capturing such
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Fig. 4. Comparisons on predictions made by DCRNN and GPDE(DCRNN) with
ground truth for two locations (a) location 23, and (b) location 100 on PeMSD8 dataset
on 08/16/2016 - 08/17/2016. The green line is closer to the red line (ground truth)
than the blue line (DCRNN) especially under oscillations, indicating GPDE(DCRNN)
performs better than DCRNN. (Color figure online)

traffic flow property in long-term temporal and spatial dependencies. DCRNN
utilizes a diffusion process that is susceptible to few nearby neighbors and thus
performs unstably.

For the PeMSD8 dataset, we visualize the predictions of different methods
on two locations from the road network. As Fig. 4 shows, the prediction results
also show that GPDE methods are better at capturing traffic oscillations.

6 Conclusion

A tremendous number of works have been proposed to tackle complex spatial-
temporal problems, but none of them focus on utilizing physical knowledge to
model dynamic traffic flows on the network. In this paper, we present a novel
PDE-based spatial-temporal forecasting model named GPDE. To the best of
our knowledge, this is the first attempt to bridge physics equations to the node
representations of road networks in the area of traffic, which enables us to con-
struct deeper networks and leverage wider-range dependencies. Furthermore, the
participation of residual correction and weighted learnable rates largely enhance
the model’s performance. Extensive experiments prove the effectiveness of GPDE
over existing methods on different time spans and road networks. Since this work
relies on numerical experiments, future work can include verifying the theoretical
correctness of the model.
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