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ABSTRACT
Urban traffic is subject to disruptions that cause extended waiting

time and safety issues at signalized intersections. While numerous

studies have addressed the issue of intelligent traffic systems in

the context of various disturbances, traffic signal malfunction, a

common real-world occurrence with significant repercussions, has

received comparatively limited attention. The primary objective

of this research is to mitigate the adverse effects of traffic signal

malfunction, such as traffic congestion and collision, by optimiz-

ing the control of neighboring functioning signals. To achieve this

goal, this paper presents a novel traffic signal control framework

(MalLight), which leverages an Influence-aware State Aggregation

Module (ISAM) and an Influence-aware Reward Aggregation Mod-

ule (IRAM) to achieve coordinated control of surrounding traffic

signals. To the best of our knowledge, this study pioneers the appli-

cation of a Reinforcement Learning(RL)-based approach to address

the challenges posed by traffic signal malfunction. Empirical inves-

tigations conducted on real-world datasets substantiate the superior

performance of our proposed methodology over conventional and

deep learning-based alternatives in the presence of signal malfunc-

tion, with reduction of throughput alleviated by as much as 48.6%.

CCS CONCEPTS
• Computing methodologies→ Artificial intelligence; • Ap-
plied computing → Transportation.
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Deep reinforcement learning, traffic signal control, multi-agent

system

ACM Reference Format:
Qinchen Yang, Zejun Xie, Hua Wei, Desheng Zhang, and Yu Yang. 2024.

MalLight: Influence-Aware Coordinated Traffic Signal Control for Traffic

Signal Malfunctions. In Proceedings of the 33rd ACM International Conference

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CIKM ’24, October 21–25, 2024, Boise, ID, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0436-9/24/10

https://doi.org/10.1145/3627673.3679605

on Information and Knowledge Management (CIKM ’24), October 21–25, 2024,
Boise, ID, USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/

3627673.3679605

1 INTRODUCTION
Traffic signal malfunction refers to a situation when a traffic signal,

also known as a traffic light, fails to function properly. One of the

typical situations is that traffic lights are blackout caused by various

reasons, such as flood [28, 52], hurricane [43], equipment aging [6],

or human-made events, such as cyber-attacks [27, 16], traffic acci-

dents and mismanagement [5]. When the traffic signal malfunction

happens, it causes confusion and chaos on the road, leading to

increased risk of accidents, traffic delay,s and traffic congestion. For

example, we conducted a case study based on the traffic dataset

from New York City (details in the Evaluation section), where traffic

signals were set to be controlled by the FixedTime strategy [25],

the most commonly used traffic signal control strategy. When the

traffic signal at one intersection experiences a blackout, the average

throughput of that intersection is reduced by nearly 30%. More-

over, the impacts also propagated to nearby intersections, such as

intersections 1, 2, and 3-block away from the malfunctioning inter-

section, as shown in Figure 1. Similar observations are identified in

other studies with increased travel time [15] and fatal accidents [37].

More importantly, these malfunctions occur more frequently than

one might expect. For example, as shown in Figure 2, citizens from

the City of Newark in New Jersey reported 94 complaints about

traffic signal malfunctions at 67 different intersections between

August 2020 and May 2022 on the Newark Connect platform [38]

(i.e., a 311-like platform for citizens to report city issues), leading to

three issues per month on average. Consequently, it is necessary to

find a way that can mitigate the negative impacts (e.g., congestion)

when traffic signal malfunctions occur.

The problem of traffic signal malfunctions has been studied in

existing work [4, 44, 22]. In general, we can categorize these studies

into two stages: detection and response. The malfunction detection

mainly relies on road user report [4] and some recently developed

intelligent signal systems to automatically detect signal malfunc-

tion [49, 44]. After detection, the ultimate response is to repair

or replace the malfunctioning traffic signals. Unfortunately, due

to limited resources (e.g., human resources and budgets), this re-

sponse process can be time-consuming, with repairs sometimes

taking months or even years to complete [50]. Therefore, imme-

diate temporary responses become necessary. Current temporary

 

2879

D
ow

nloaded from
 the A

C
M

 D
igital Library by A

rizona State Tem
pe on A

pril 7, 2025.

https://doi.org/10.1145/3627673.3679605
https://doi.org/10.1145/3627673.3679605
https://doi.org/10.1145/3627673.3679605
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3627673.3679605&domain=pdf&date_stamp=2024-10-21


CIKM ’24, October 21–25, 2024, Boise, ID, USA Qinchen Yang, Zejun Xie, Hua Wei, Desheng Zhang, and Yu Yang

0 1 2 3
Distance…to…malfunctioning

intersection…(hops)

0
5

10
15
20
25
30

Av
er

ag
e…

th
ro

ug
hp

ut
re

du
ct

io
n…

(%
)

Figure 1: Throughput reduc-
tion at intersections around
malfunctioning traffic signal

Figure 2: Locations of com-
plaints about traffic signal
malfunction

responses heavily rely on manual efforts, such as manual traffic

guidance or Flash Mode [2]. However, abundant ground surveys

have shown that Flash Mode is less effective [22], and manual traf-

fic guidance also suffers from long time delays [33, 53]. Our work

aims to provide a faster and more automated response after the

malfunctions are detected and before significant human efforts get

involved.

Our solution is inspired by the fundamental theory of traffic

management from the perspective of demand (i.e., the number of

vehicles that request to pass through an intersection in a unit of

time) and capacity (i.e., the number of vehicles that an intersection

can handle in the same unit of time) [1, 46]. Traffic congestion

occurs when demand is higher than capacity. When a traffic signal

malfunction occurs, i.e. the intersection changes from signalized

to a blackout, capacity decreases [42], while demand remains rel-

atively constant in the short term. This imbalanced relationship

between demand and capacity motivates us to explore immediate

responses to traffic signal malfunction: by carefully managing the

networked traffic signals, especially those surrounding malfunc-

tioning intersections, we can potentially control the traffic demand

that enters the malfunctioning intersections in a desired manner,

which leads to a more balanced demand and capacity.

However, coordinating intersections to control traffic in a desired

manner is challenging, because (1) the impact from each intersec-

tion to malfunctioning ones is hard to measure. For example, one in-

tersection has several routes to malfunctioning intersections. (2) In-

fluence changes over time, such as during peak hours and non-peak

hours. Recently, reinforcement learning (RL) has introduced a new

possibility to coordinate traffic signal controls (TSC) [presslight19,
3, 14, 61, 71], where each agent controlling a single intersection

can automatically learn to generate its actions to maximize its own

benefits (e.g., the throughput of corresponding intersection). Since

the reward function for each agent in these RL methods only de-

pends on its own traffic condition, under a malfunction scenario,

the agents of the well-functioning intersections are not aware of

the specific needs of the malfunctioning intersections, even when

its assistance benefits the whole system. Through experiments (Ta-

ble 4, we observe that previous RL methods experience significant

throughput reduction. For example, the IDQN method experiences

a 42.8% reduction in throughput on the Hangzhou dataset, which

is roughly 3.3 times higher than the 13% reduction observed with

our model. Further, how the actions of each agent impact others is

not well studied. To the best of our knowledge, none of the existing

RL-based traffic signal controls can be applied in the malfunction

setting.

In this work, we design MalLight, an RL-based traffic signal

control method to mitigate the impacts of traffic signal malfunc-

tions, by modeling the spatially and temporally varied influence

between well-functioning and malfunctioning interactions. Specifi-

cally, MalLight models the dynamic influences through the special

design of the state module and the reward module in RL. To model

the spatially and temporally varied influence, we adapt a graph

diffusion convolution network to integrate the network-level state

with the local state of an individual agent so that each RL agent is

aware of its influence on other intersections while controlling its

local traffic conditions. To guide each well-functioning intersection

to be aware of the reward associated with malfunctioning inter-

sections, we introduce the graph diffusion process. This process

enables each agent to dynamically integrate rewards from multiple

malfunctioning intersections while learning their policy. In sum-

mary, the main contributions of this work are as follows:

• This is the first work that utilizes adaptive traffic signal control

to build a resilient and responsive traffic system in the presence of

traffic signal malfunction.

• We design a novel RL model, MalLight, based on modeling influ-

ences among intersections under signal malfunction. We incorpo-

rate the graph diffusion process into the state and reward design to

model the influences and guide the training of MalLight, making it

resistant to signal malfunction.

• Experiments on real-world and synthetic datasets show that

MalLight outperforms both traditional and state-of-the-art (SoTA)

RL-based models, achieving a remarkable alleviation in throughput

reduction by up to 48.6%.

2 PRELIMINARIES
In this section, we introduce the preliminaries of the traffic signal

control problem [63, 61] and extend it to our scenario consider-

ing traffic signal malfunction. In our setting, each intersection is

controlled by one agent, which has its own local observations of

its intersection as the state. An agent controls the traffic signal

in its own intersection by deciding the signal phase at the next

time interval to optimize the local traffic, such as maximizing the

throughput. We use centralized learning with a decentralized execu-

tion manner to reduce the computational complexity of traditional

centralized methods [60]. Specifically, we formulate our problem as

a Markov Decision Process(MDP) with the following components

< 𝑆,𝑂,𝑀,𝐴, 𝑟, 𝜋,𝛾 >.

• Set of malfunctioning signals 𝑀 : 𝑀 is a set of intersections

with malfunctioning traffic signals.

• State space 𝑆 and observation space 𝑂 : Assuming there are 𝑁

intersections in our road network and 𝑁 corresponding agents that

control the traffic signals located at the intersections. All possible

traffic states from 𝑁 intersections form the state space 𝑆 and each

agent has access to partial state s∈𝑆 , which forms the agent’s own

observation o∈𝑂 . The state 𝑠 of each intersection includes current

phase 𝑝 (one of the 8 total phases illustrated in Figure 4) and the

number of vehicles in each lane (i.e., a 12-element vector with

each element representing a number of vehicles in lanes illustrated

in Figure 3). In MalLight, observations from all intersections in

the road network are fed into a state module, which outputs a

global state. The global state is combined with local state 𝑠 to form

observation 𝑜 for each agent.
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Figure 3: Intersection, incoming
lanes(blue), outgoing lanes(red).
Phase 3 is set.
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Figure 4: Eight phases (actions).
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Figure 5: MalLight framework and modules.

• Action space 𝐴: In the traffic signal control task, the 𝑖th agent

generates an action 𝑎𝑡
𝑖
as the signal phase at time point 𝑡 from its

action space 𝐴𝑖 for the following Δ𝑡 period. Eight signal phases
corresponding to eight actions are illustrated in Figure 4. The eight-

phase setting is commonly used in real-world traffic signal control

task [60]. We set Δ𝑡 as 10 seconds based on the practice of the

previous work [3]. Given the action 𝑎𝑡
𝑖
, the traffic signal chooses

the corresponding phase 𝑝 . For malfunctioning signal𝑚 ∈ 𝑀 , 𝑎𝑡𝑚
is set to be off denoted as 𝑝𝑚𝑎𝑙 .

• Reward 𝑟 : Each RL agent obtains an immediate reward from the

environment at time 𝑡 by a rewarding function 𝑆×𝐴1× ...×𝐴𝑁 → 𝑅,

where 𝑁 is the number of intersections. We introduce the concept

of pressure to measure the local reward for each intersection, which

is the difference between the upstream and downstream queue

length, indicating the inequivalence of the vehicle distribution [3].

More specifically, we denote the local reward of the 𝑖th intersection

at time 𝑡 as 𝑟𝑡
𝑖
, which is calculated as

𝑟𝑡𝑖 = −𝑃𝑖 = −

������∑︁𝑙𝑖𝑛∈𝑖 𝑢𝑡𝑖,𝑙𝑖𝑛 −
∑︁
𝑙𝑜𝑢𝑡 ∈𝑖

𝑢𝑡
𝑖,𝑙𝑜𝑢𝑡

������ (1)

where 𝑃𝑖 represents the pressure of intersection 𝑖 , 𝑢
𝑡
𝑖,𝑙

is the queue

length of lane 𝑙 at intersection 𝑖 at time 𝑡 , 𝑙𝑖𝑛 and 𝑙𝑜𝑢𝑡 represent

incoming and outgoing lane, respectively. For example, in Fig-

ure 3, the pressure of intersection is calculated as |#queueing cars
in incoming lanes - #queueing cars in outgoing lanes|, which is

|3 + 3 + 1 + 2 − 1 − 1 − 3 − 2| = 2. In MalLight, rewards from all

intersections in the road network are fed into a reward module,

which generates a global reward. Details of reward generation are

described in Section 3.3. The global reward is then combined with

the local reward 𝑟𝑡
𝑖
, to form the final reward 𝑟

,𝑡
𝑖
for each agent.

• Policy set 𝜋 and discount factor𝛾 : At time 𝑡 , each agent chooses

an action following a policy 𝜋 :𝑆 → 𝐴. This choice can also be

expressed as action-value function𝑄𝜋 , which indicates the expected

quality of an action 𝑎𝑡
𝑖
if the 𝑖th agent takes action 𝑎𝑡

𝑖
based on policy

𝜋 in state 𝑠𝑖𝑡 . The formulation of the action-value function is

𝑄𝜋 (𝑠, 𝑎) = E[
∞∑︁
𝑖=𝑡

𝛾𝑟𝑡+𝑖 |𝑠𝑖𝑡 = 𝑠, 𝑎𝑖𝑡 = 𝑎] (2)

Problem formulation and objective: In our problem, each inter-

section is controlled by one agent, and these agents share param-

eters from the same deep RL model. At each time step 𝑡 , agent 𝑖

(managing well-functioning traffic signals) obtains an observation

𝑜𝑡
𝑖
from the environment. Given traffic conditions and current sig-

nal phases at both local and other intersections, the objective of

each agent is to determine the optimal action 𝑎𝑡
𝑖
that maximizes

the reward 𝑟
,𝑡
𝑖
, formulated as:

𝑎𝑟𝑔 max

𝑎𝑡
𝑖
∈𝐴
𝑟
,𝑡
𝑖
= −𝑃𝑖 −

∑︁
𝑗∈𝑀

(𝑤 𝑗𝑃 𝑗 ) (3)

Here, 𝑃𝑖 represents the pressure at 𝑖th intersection,𝑤 𝑗 is the weight

of 𝑗th intersection with malfunctioning signals, for reward aggre-

gation, and𝑀 is the set of intersections of malfunctioning signals.

3 METHOD
We introduce MalLight, a RL-based traffic signal control model

built upon a general RL framework, incorporating new modules: an

Influence-aware State AggregationModule (ISAM) and an Influence-

aware Reward Aggregation Module (IRAM). These modules en-

hance the model’s resistance to signal malfunctions. In the follow-

ing sections, we first introduce the overview of our model and then

describe the detailed design of ISAM and IRAM.

3.1 Overview
To alleviate congestion in malfunctioning intersections through

coordinated management with neighboring intersections (inter-

sections can be multi-hop away), each agent should possess two

key abilities. Firstly, each agent should have the ability to “care”

about malfunctioning intersections. In previous works [61, 63, 3,

70], the reward for each RL agent was solely dependent on its own

traffic conditions, which meant that each agent would only benefit

from its own actions. In our setting, intercepting some vehicles at
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a well-functioning intersection to prevent excessive traffic from en-

tering malfunctioning intersections would lead to a reduction in the

rewards earned by agents at well-functioning intersections. There-

fore, to alleviate the traffic demand on malfunctioning intersections,

each surrounding agent should be aware of the reward from these

malfunctioning intersections. Secondly, each agent should have

the ability to quantify how much influence it can exert on the mal-

functioning intersection to determine the optimal actions. Different

levels of influence require different policies.

The overall framework of MalLight is depicted in Figure 5. In line

with the two aforementioned abilities, we introduce two modules,

the Influence-aware State Aggregation module (ISAM), and the

Influence-aware Reward Aggregation module (IRAM). In ISAM,

we designed masked graph diffusion convolution and adapt it into

our multi-agent scenario, where each agent needs to take nearby

malfunctioning agents into consideration while being aware of its

influence on these agents. In IRAM, we design a novel reward

reshaping scheme based on diffusion process, which boost the

performance of model when used in cooperation with masked

diffusion convolution. Up to our knowledge, we are the first to

adapt diffusion convolution into multi-agent RL scheme and the

first to reshape reward by diffusion process.

To simplify the task, in MalLight, sensing devices for detecting

the vehicle queue length of each lane, such as cameras or induc-

tive loop detectors, are assumed to work well in all intersections

including the malfunctioning ones, as traffic signals and sensing

devices are generally managed by different systems [4, 26]. In ad-

dition, we assume that the system is aware of which intersections

have malfunctioning traffic signals (e.g., through human reports

or anomaly detection techniques [44, 49]), and the signal control

agents can share information.

3.2 Influence-aware State Aggregation Module
The Influence-aware State Aggregation Module (ISAM) is designed

to ensure that each agent’s observation includes global states from

malfunctioning intersections while taking into account its influ-

ence on these malfunctioning intersections. Higher influence cor-

responds to greater weight assigned to other intersections’ states,

and vice versa. ISAM takes road network static information and

intersection-specific local states as input. For each agent, it gen-

erates an aggregated state that encompasses observations from

malfunctioning intersections and their corresponding local states.

This state information is subsequently fed into the RL model and

serves as the agent’s final environmental observation.

Inspired by the graph diffusion convolutional recurrent neu-

ral network (DCRNN) [29], which has achieved promising results

in automatically modeling complex spatial dependencies on road

networks, we design masked diffusion convolution and adapt it

to multi-agent scheme, to capture influence among intersections,

particularly the influence from well-functioning intersections to

malfunctioning intersections. In the diffusion convolution opera-

tion, an influence vector is extracted for each agent. These vectors

are used as weights to perform a weighted sum of states from other

intersections. Additionally, before the weighted sum is calculated, a

Malfunction Mask is applied to filter out data from well-functioning

intersections. This helps agents at well-functioning intersections

focus on only themselves and the malfunctioning intersections.

Details of ISAM are described below.

• Diffusion Process. Diffusion convolution [29] is a variation of

the diffusion process [55] that incorporates trainable parameters

into transition matrix of each layer, offering enhanced representa-

tiveness and flexibility in modeling influence. According to [55],

the stationary distribution of the diffusion process can be expressed

as a weighted combination of random walks on the graph:

P =

𝐾∑︁
𝑘=1

𝛼 (1 − 𝛼)𝑘 (𝐷−1
𝑂 𝑊 )𝑘 , (4)

, where 𝑘 represents the diffusion step,𝑊 is the edge weight matrix,

𝐷𝑂 is the out-degree diagonal matrix of graph, 𝛼 ∈ [0, 1] denotes
the restart probability, and 𝐷−1

𝑂
𝑊 serves as the state transition ma-

trix. This Markov process converges to the distribution P ∈ R𝑁×𝑁
,

where each 𝑖-th row P𝑖 , : represents the likelihood of diffusion from

node 𝑣𝑖 ∈ 𝑉 , where 𝑉 represents the set of nodes in the graph, and

𝑁 denotes the total number of nodes.

The edge weight matrix𝑊 is constructed based on the road

distance between each pair of intersections. For normalization, we

use a thresholded Gaussian kernel [48], defined as follows:

𝑊𝑖, 𝑗 = 𝑒𝑥𝑝 (−
𝑑𝑖𝑠𝑡 (𝑣𝑖 , 𝑣 𝑗 )2

𝜎2
) (5)

In this formula,𝑊𝑖, 𝑗 represents the edge weight between node 𝑣𝑖
and node 𝑣 𝑗 , 𝜎 is the deviation of distances, and 𝑑𝑖𝑠𝑡 (𝑣𝑖 , 𝑣 𝑗 ) is 0 if
nodes 𝑣𝑖 and 𝑣 𝑗 are not connected by a road. Otherwise, it represents

the distance between 𝑣𝑖 and 𝑣 𝑗 .

•MaskedDiffusionConvolution. Building upon the diffusion pro-
cess described above, diffusion convolution introduces a trainable

filter for each diffusion step 𝑘 . Additionally, to ensure that agents

do not concentrate their efforts on other functioning intersections,

which do not require assistance, we apply the Malfunction Mask.

The Malfunction Mask vector, denoted as𝑀𝑎𝑠𝑘 ∈ {0, 1}𝑁 , where
𝑁 represents the number of intersections in the road network. The

element in the Malfunction Mask is set to 1 if the corresponding

intersection is experiencing a malfunction, and 0 otherwise. The

formulation of masked diffusion convolution is as follows:

𝑆 ′
:,𝑝 =

[
𝐾∑︁
𝑘=1

(𝜃𝑘 (𝐷−1
𝑂 𝑊 )𝑘 ) ⊙ 𝑀𝑎𝑠𝑘

]
𝑆:,𝑝 , 𝑝 ∈ {1, 2, 3, ..., 𝑃} (6)

Here, ⊙ indicates Hadamard product, 𝑆 ∈ R𝑁×𝑃
represents the

matrix of features in the graph (each agent’s local state), 𝑃 is the

length of input features, 𝑝 ∈ [1, 𝑃] is an index of an element in

input feature, 𝜃𝑘 represents the trainable filter for diffusion step

𝑘 , and 𝐾 is the number of diffusion steps. The masked diffusion

convolution process involves randomwalks on the road network for

each element of the input features. 𝑆 ′
𝑖,:
indicates the information i-th

agent needs considering its influence to other nodes(intersections).

Masked diffusion convolution provides a more explainable method

for making the model aware of the influence.

• State Aggregation. This step combines the local state of the

target intersection with the global state 𝑆 ′ originating from mal-

functioning intersections. For the 𝑖-th agent operating at the 𝑖-th

intersection, its corresponding global state is 𝑆 ′
𝑖,:

∈ R𝑃 and its local

state is 𝑆𝑖,: ∈ R𝑃 . Finally, for the 𝑖-th agent, we obtain the state as:

𝑆 ′′𝑖,: = 𝑆
′
𝑖,: + 𝑆𝑖,:, 𝑖 ∈ {1, 2, 3, ..., 𝑁 } (7)
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Here 𝑆 ′′
𝑖,:

∈ R𝑃 contains all the information i-th agent should con-

sider for making a decision and it serves as the input to the traffic

control RL model.

3.3 Influence-aware Reward Aggregation
Module

The Influence-aware Reward Aggregation Module (IRAM) is de-

signed to ensure that each agent ”cares” about the benefits of mal-

functioning intersections and is ”willing” to assist these intersec-

tions. IRAM takes road network static information and intersection

rewards as input, and for each agent, generate aggregated reward

containing rewards of malfunctioning intersections and correspond-

ing local rewards. The reward information then serve as direction

to optimize the RL model.

Reward Shaping [39] is a technique, where additional rewards are

utilized to represent domain knowledge and guide the training of RL

models using expert knowledge. In our context, we aggregate the

rewards from malfunctioning intersections to each working agent,

with different weights, representing influences between malfunc-

tioning and working agents. The additional reward guides working

agents in earning benefits for malfunctioning intersections. We em-

ploy a diffusion process without trainable parameters to perform a

weighted sum of rewards. The formulation is as follows:

𝑅′ =

[
𝐾∑︁
𝑘=1

(𝐷−1
𝑂 𝑊 )𝑘 ⊙ 𝑀𝑎𝑠𝑘

]
𝑅 (8)

where 𝑅 ∈ R𝑁 is the vector of rewards of all intersections, 𝑘 is

the diffusion step, 𝐷−1
𝑂
𝑊 is the state transition matrix. Similar to

the state aggregation method described above, for i-th agent, we

add the global reward 𝑅′
𝑖
and the local reward 𝑅𝑖 to obtain the final

reward, denoted as 𝑅′′
𝑖
:

𝑅′′𝑖 = 𝑅𝑖 + 𝑅′𝑖 , 𝑖 ∈ {1, 2, 3, ..., 𝑁 } (9)

3.4 Training
MalLight is updated using the Bellman Equation[13]:

𝑄 (𝑆
′′𝑡
𝑖 , 𝑎

𝑡
𝑖 ) = 𝑅

′′𝑡
𝑖 + 𝛾𝑚𝑎𝑥𝑄 (𝑆

′′𝑡+1
𝑖 , 𝑎𝑡+1𝑖 ) (10)

In this equation, 𝑅
′′𝑡
𝑖

represents the reward that i-th agent can

obtain by taking action 𝑎𝑡
𝑖
based on the state 𝑆

′′𝑡
𝑖
, at decision time

𝑡 . 𝛾 is discount factor. We employ the Mean Squared Error (MSE)

as the loss function to measure the disparity between the current

action-value estimation and the desired action-value estimation

provided by the Bellman Equation. The RL model is optimized using

the RMSprop[18] algorithm.

4 EXPERIMENTS
In this section, we conduct experiments to answer the following

research questions:
1

• RQ1: Does MalLight outperform other SoTA methods on the

malfunctioning signal scenario?

• RQ2: Does MalLight perform well on the normal traffic signal

control scenario?

• RQ3: How the components in MalLight contribute to the perfor-

mance?

• RQ4: Does MalLight decrease accidental risk?

1
Implementation can be found at: https://anonymous.4open.science/r/MalLight-B3DC

• RQ5: How the diffusion process distributes state and reward ag-

gregation weights?

• RQ6: How do hyper-parameters affect the performance?

•RQ7: How does the number of malfunctioning intersections affect

the performance?

4.1 Experiment Setting
Table 1: SUMO Environment Setting

Attribute Value Description

accel 2.0 max acceleration ability (𝑚/𝑠2)
decel 4.5 max deceleration ability (𝑚/𝑠2)
length 5.0 vehicle netto-length (𝑚)

width 2.0 vehicle width (𝑚)

maxSpeed 40 max velocity (𝑘𝑚/ℎ)
minGap 2.5 empty space after leader (𝑚)

jmIgnoreFoeProb 0.05 the probability of vehicle ignoring foes

Environment setting: The experiments were conducted on a

server with two Intel Xeon E5-2650 processors, 252GB of mainmem-

ory, and two GeForce GTX 2080ti GPUs. We conducted experiments

based on the LibSignal framework [35], which is a traffic signal sim-

ulation toolkit developed on top of simulator engines SUMO [30]

and CityFlow [69, 7]. We used SUMO for our experiments due to

its flexibility in simulating intersection malfunction. The SUMO

settings are provided in Table 1. We generated vehicle trajectories

by running the Dijkstra algorithm on each origin-destination pair

in our datasets (introduced later). After feeding the traffic flow

data into the simulator, each vehicle moves toward its destination

following the predefined trajectory.

To better simulate traffic congestion and potential traffic acci-

dents, we employ the FoeIgnore strategy [14]. This mechanism

enables each vehicle to ignore vehicles already within the intersec-

tion and potentially collide with them based on a predetermined

probability. By simulating collisions at intersections, it mimics the

congestion and chaos resulting from signal malfunctions.

Model Setting: For the traffic control module, which makes de-

cisions based on local and global information, we use a deep Q-

learning model with a Multi-Layer Perceptron (MLP) model as the

backbone. Details of MLP are shown in Table 2. The training al-

gorithm is described in Section 3.4. Our model is trained for 200

episodes with a replay buffer size of 5000. For each episode, we run

SUMO over the training dataset, with the signal phase determined

by the current model. The model is updated with 10 iterations over

all MDP samples in a replay buffer at the end of each episode. The

learning rate is set to 0.001. The diffusion step 𝐾 is 10. Discount

factor 𝛾 is set to 0.95.

Table 2: Details of Backbone MLP

Layer #Neurons

Input Layer 12

Hidden Layer 1 20

Hidden Layer 2 20

Output Layer 8

4.2 Datasets
We use two real-world and one synthetic traffic flow data in our

experiments. The road networks for real-world datasets were im-

ported from OpenStreetMap [41], as shown in Figure 6. The data
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(a) Gudang Sub-district,
Hangzhou, China

(b) Upper East Side, Manhattan,
New York, USA

Figure 6: Road networks for real-world datasets. Red dots
mark intersections chosen for experiments. Red circles mark
malfunctioning signals.

statistics are listed in Table 3. The road network of the synthetic

Grid4*4 dataset is the same as that of Hangzhou dataset, and the

only difference between them is the traffic flow pattern. In datasets,

a vehicle is described as (𝑜, 𝑑, 𝑡), where 𝑜 denotes the origin loca-

tion, 𝑑 denotes the destination location, 𝑡 represents the departure

time. Both origin (𝑜) and destination (𝑑) locations are within the

road network.

• Hangzhou Dataset [57]: This is a widely used real-world dataset
in prior works [61, 36, 65]. We selected 16 intersections in the

Gudang Sub-district of Hangzhou and the signal at one of these

intersections is set to be malfunctioning. Vehicle information was

collected from roadside surveillance cameras. Each record in the

camera data includes time, camera ID, and vehicle details. The

camera ID indicates the vehicle’s location. Through the analysis

of these records, we generated vehicle trajectories as they passed

through the selected intersections.

• New York Dataset [40]: This is also a well-known real-world

dataset used in prior works [3, 63, 61, 36]. We take 49 intersections

in the Upper East Side of Manhattan as a demonstration. In this

setting, the traffic signals on four intersections are set to be mal-

functioning. Vehicle information was generated using open-source

taxi trip data [40]. This taxi trip data includes the geo-locations of

the origin and destination for each trip. We initially mapped these

geo-locations to the nearest intersections and then retained the

trips that fell within the selected area. Because taxi trips can be

seen as a sample from real-world trip distributions, we empirically

scaled up the number of trips by 4.5 to consider the impacts of

personal and commercial vehicles. We made the simulation traffic

volume roughly aligned with the real-world traffic volume indicated

by New York Traffic Data Viewer [56].

• Grid4*4 Dataset: A synthetic dataset. The road network of

Grid4*4 is the same as that of the Hangzhou dataset. We generate ve-

hicles with a steady arrival rate and random origin and destination

locations. Table 3 shows details of generated traffic flow.

Each dataset comprises 2 hours of traffic flow data, of which we

utilize 1 hour for training purposes and the remaining hour for

testing.

4.3 Evaluation Metrics
Following existing studies [60], we mainly use throughput to evalu-

ate the performance of different models for traffic signal control.

In addition, we simulate the number of accidents to evaluate the

Table 3: Data statistic of real-world traffic dataset

Dataset #intersections

Arrival rate (#vehicles/300s)

Mean Std Max Min

Hangzhou 16 1053.26 86.70 1352 512

New York 49 361.19 10.08 411 324

Grid4*4 16 1200 0 1200 1200

impacts of our model on reducing accidental risk. The detailed de-

scriptions are as follows:

• Network Throughput: It represents the number of vehicles that

have completed their trip in the road network during the one-hour

testing period.

• Intersection Throughput: It represents the (average) number of

vehicles that pass through malfunctioning intersection(s) during

the one-hour testing period. We introduced this intersection-level

metric to better compare the performance of models on malfunc-

tioning intersections.

• Number of Accidents: It represents the number of traffic colli-

sions simulated by SUMO in malfunctioning intersections. This is

an additional metric. We do not calculate collisions at the road net-

work level considering traffic collisions rarely occur in signalized

intersections on SUMO.

4.4 Compared Methods
• FixedTime [25]: A policy with predefined fixed phase length

and phase splits, which is commonly used in practice. The offset is

randomly set in our experiments.

• SOTL [6]: A rule-based method based on the request from current

phase and competing phases.

• MaxPressure [58]: A state-of-the-art (SoTA) optimization-based

algorithm that minimizes pressure at each intersection. It reduces

over-saturation by balancing queue lengths between each pair of

neighboring intersections.

• IDQN [62]: A deep RL method in which information is not shared

among agents. Each intersection is controlled by one agent, and

these agents do not share model parameters.

• CoLight [61]: A deep RL method based on Graph Attention Net-

work.

• Advanced-CoLight [70]: A SoTA RL algorithm template that

incorporates advanced traffic state (ATS) into the RL model. It uses

CoLight as a backbone network.

• Advanced-PressLight [70]: Similar to Advanced-CoLight, it uses

PressLight [63] as the backbone network. PressLight is a deep RL

method that coordinates traffic signals by minimizing the Pres-

sure [58] at each intersection to maximize the throughput of the

road network.

• PRLight [17]: A SoTA RLmethod that integrates a dynamic graph

representation module and a traffic prediction module to effectively

control traffic signals and mitigate action hysteresis in real-time

traffic management.

4.5 Experiment Result
4.5.1 Overall Performance. Our experimental results usingHangzhou

dataset and New York dataset are shown in Table 4. By analyzing

the results, we have the following findings:

• RQ1: By analyzing the Reduction Ratio (RR) columns in Table 4,
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Table 4: Results on Hangzhou, New York and Grid4*4 datasets

Methods

Intersection throughput Road network throughput

No Mal ↑ Mal ↑ RR (%) ↓ #Acc ↓ No Mal ↑ Mal ↑ RR (%) ↓
Hangzhou

FixedTime 538 390 27.5 18 2923 2653 9.2

SOTL 760 489 35.7 23 3674 3118 15.1

MaxPressure 592 405 31.5 27 3997 3777 5.5

IDQN 676 387 42.8 36 4554 4133 9.2

CoLight 702 457 34.9 31 4617 4219 8.6

Advanced-CoLight 740 526 28.9 27 4679 4295 8.2

Advanced-PressLight 752 561 25.3 25 4745 4370 7.9

PRLight 841 577 31.4 29 4779 4310 9.8

MalLight (ours) 822 715 13 11 4607 4416 4.2
New York

FixedTime 540 365 32 31 2671 2239 16.1

SOTL 579 492 15 18 3172 2594 18.2

MaxPressure 630 570 9 13 3068 2852 7

IDQN 617 554 10.2 22 3223 2883 10.5

CoLight 627 561 10.5 18 3507 3119 11.1

Advanced-CoLight 625 562 10.1 16 3612 3154 12.6

Advanced-PressLight 642 542 15.5 17 3784 3276 13.4

PRLight 639 534 16.4 19 3695 3117 15.6

MalLight (ours) 633 592 6.5 8 3532 3309 6.3
Grid4*4

FixedTime 579 381 34.2 25 3192 2582 19.1

SOTL 612 418 31.7 23 3463 2829 18.3

MaxPressure 645 454 29.6 21 3728 3053 18.1

IDQN 796 504 36.7 29 4339 3454 20.4

CoLight 832 589 29.2 19 4591 3778 17.7

Advanced-CoLight 854 624 26.9 17 4829 4076 15.6

Advanced-PressLight 883 679 23.1 17 4914 4236 13.8

PRLight 892 684 23.3 15 4963 4258 14.2

MalLight(ours) 877 767 12.5 9 4871 4515 7.3
No Mal denotes No Malfunction, Mal denotes Malfunction, RR denotes Reduction Ratio, #Acc denotes #Accidents

we can conclude that our model, MalLight, performs better in mal-

functioning scenarios. When a malfunction occurs, the throughput

reduction ratios, both at the intersection level and network level, are

lower than those of other models. This suggests that our proposed

state and rewardmodules genuinely enhance the resilience of the RL

model to intersection malfunctions. By reducing the traffic demand

in malfunctioning intersections, congestion is alleviated, and mal-

functioning intersections experience a lower throughput reduction.

Specifically, on Hangzhou dataset, compared with the second-best

model Advanced-PressLight, our model alleviates throughput re-

duction by as much as 48.6%.

• RQ2: By analyzing the throughput when no malfunction, we con-

clude that MalLight performs well in normal (without malfunction)

scenarios. The throughputs at both the intersection and network

level when no malfunction are very close to the highest through-

puts of other models. In addition, traditional Methods (FixedTime,

SOTL, MaxPressure) perform poorly in both intersection and net-

work levels. This is because traffic flow in our datasets is highly

dynamic. These traditional methods rely heavily on human-defined

assumptions of the environment, which may not be true under

some circumstances.

• An interesting finding is that the throughput reduction of the

whole road network can be greatly higher than the throughput re-

duction of malfunctioning intersections, which means that conges-

tion in malfunctioning intersections affects other well-functioning

intersections. This occurs because when congestion arises in mal-

functioning intersections, waiting vehicles can spill over into neigh-

boring intersections, leading to congestion in those neighboring

intersections and a subsequent reduction in their throughput. For

example, in the case of SOTL under the New York dataset, the total

throughput reduction of malfunctioning intersections is (579 −
492) × 4 = 348, while the throughput reduction for the entire road

network is 578, which is 66.1% higher than that of the malfunction-

ing intersections.

4.5.2 Ablation Study. We consider several variations of MalLight:

• MalLight-S: For state aggregation, instead of using diffusion

convolution which contains trainable parameters, MalLight-S uses

a diffusion process without any trainable parameter. This variant is

to show the benefits of the flexible state aggregation in our model.

•MalLight-R: We remove reward aggregation in MalLight-R. This
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means that each agent exclusively concentrates on its own reward

and disregards the benefits of malfunctioning intersections.

•MalLight-M We remove Malfunction Mask in MalLight-M. In-

stead of having each agent focus on its own intersection and mal-

functioning intersections, MalLight-M allows each agent to observe

and care about the entire road network.

Table 5: Results of Ablation Study

Methods

Intersection Throughput Reduction (%) ↓
Hangzhou New York Grid4*4

MalLight* 13 6.5 12.5
MalLight-S 18.8 9.9 20.3

MalLight-R 30.9 16.1 27.4

MalLight-M 26.3 11.3 23.6

Table 5 shows the performance of variations of our model. We

have the following findings (RQ3):
• The trainable parameters in diffusion convolution provide the

model with greater adaptability, thereby enhancing its performance.

• The absence of reward aggregation, which makes the agent priori-

tize caring about malfunctioning intersections, leads to a significant

decrease in performance.

• MalLight outperforms MalLight-M due to the presence of the

Malfunction Mask, which filters out well-functioning intersections

and enables each agent to concentrate on what we want it to pay

attention to—malfunctioning intersections. Features and rewards

coming from well-functioning intersections can be distracting for

the agent, under which circumstances the agent may struggle to

focus on malfunctioning intersections or even itself.

4.5.3 Accident Risk (RQ4). : We analyze the relationship between

accident risk and throughput reduction. The number of accidents

serves as an additional metric for our model. When an accident

occurs at an intersection, the victims can block following vehi-

cles, leading to congestion. By examining the column labeled #Acc,

we can observe that a higher level of Reduction Ratio typically

corresponds to a higher number of accidents.

4.5.4 Weight Distribution from Diffusion Process (RQ5). We select

the upper-left intersection inHangzhou road network as an example

and calculate the influence weights generated by a diffusion process.

Figure 7 demonstrates the influence (weights) from this node to

other nodes at distances of 1 to 4 hops away. Because the road

network is a bidirectional graph, with two edges connecting a pair

of nodes and sharing the same initial weight (determined by road

distance processed through a thresholded Gaussian kernel), this

figure can also be viewed as representing the influence from this

specific node to other nodes at varying distances (hops) in the graph.

We can observe that as the distance (number of hops in the graph)

increases, the influence between two nodes tends to decrease.

4.5.5 Parameter Sensitivity (RQ6). We set different 𝐾 values and

observe the throughput reduction metric. The parameter 𝐾 in the

diffusion process, as well as its counterpart in diffusion convolution,

determines how many hops a signal can diffuse along edges. For ex-

ample, if 𝐾 = 1, the malfunctioning intersection will only consider

directly connected intersections. The result is shown in Figure 8.

When 𝐾 is set too low, the observation scope of well-functioning
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steps K on throughput reduc-
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intersections will be significantly limited, and the influence among

intersections cannot be adequately modeled. It’s worth noting that

a higher value of 𝐾 requires more computational resources. Based

on the curve, we set 𝐾 = 10 in experiments.

4.5.6 Performance on various number of malfunctioning intersec-
tions (RQ7). We conduct experiments using the MalLight frame-

work on the New York dataset, varying the number of malfunction-

ing signals. For each experiment, our model is run five times, and

scores are averaged. The result is shown in Figure 9. As the number

of malfunctioning signals increases, the curve initially remains rela-

tively flat before experiencing a sharp increase after approximately

15 signals. Our model operates under the assumption that nearby

working intersections can provide assistance to malfunctioning

ones. Consequently, if the percentage of malfunctioning intersec-

tions exceeds a certain threshold, the effectiveness of the model

decreases significantly.
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Figure 9: Performance on different #malfunctioning inter-
sections

5 DISCUSSION
Lessons Learned: We summarize key lessons learned from work:

• We design our malfunction-resistant approach based on inter-

intersection cooperation, as manifested in the design of state and

reward modules. In contrast to alternative methods that neglect

the advantageous potential of well-functioning intersections in al-

leviating the plight of malfunctioning counterparts, our approach

stands out by affording a notably reduced reduction in throughput.

• The integration of state and reward aggregation mechanisms,

while taking into consideration the influences among agents, is

of great importance in coordinating intersections and enhancing

the model’s resilience in the face of signal malfunction. In direct

comparison to the Advanced-PressLight model which shares sim-

ilar architecture but lacks the incorporation of these two pivotal

modules, our approach achieves better performance in the pres-

ence of signal malfunction. In essence, by optimizing control of
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surrounding intersections, the impact of signal malfunction can be

alleviated, thus aligning with our central research idea.

Limitations: Constrained by the inherent limitations of the driver

behavior model integrated within the SUMO traffic simulator, re-

grettably fails to authentically replicate the congestion resulting

from signal malfunctions, we resorted to the use of traffic collisions

as a surrogate for congestion induction. We have to acknowledge

that not all instances of congestion are precipitated by traffic colli-

sions. In the future, our objective is to enhance the fidelity of our

simulation by refining the driver behavior model to more accurately

emulate real-world congestion dynamics. We envision that the core

concept of our research can be effectively transposed to a more

realistic environment, which has a more comprehensive and precise

representation of traffic congestion causality.

6 RELATED WORK
6.1 Traffic Signal Malfunction
The time series of traffic signal malfunctions and the subsequent

actions are as follows: malfunction occurs, detection, and response.

Methods designed to address malfunctioning traffic signals can be

categorized into two groups: detection and response methods.

Detection methods: As stated in [4], malfunction detection typ-

ically relies on manual reports. Several resources [64] are available

for reporting signal problems, including 24-hour signal repair hot-

lines, transportation emergency operations centers, and 911 calls.

Manual detection, based on road user reports, often results in delays.

Remote monitoring techniques may be employed in some areas

when crew time and workload allow, but they are seldom effective

due to the expensive human resources required.

Furthermore, some automatic detection systems have been de-

veloped. Purba et al [44] develop a self-diagnosis system to detect

traffic signal malfunction immediately. Soh et al [49] design a mon-

itoring system based on fuzzy technology for traffic signal malfunc-

tion detection. In our work, we assume malfunctioning signals are

detected by the existing work.

Response methods: The response to put malfunctioning traffic

signals back to fully functional relies heavily on manual repair or

replacement actions taken by contractors or authorities [4]. In addi-

tion to manual response, some automatic response methods are also

designed. Malfunction flash [2] is designed to prevent safety issues

from traffic signal malfunction.When an error is detected, the signal

is automatically placed into flash mode as a safety precaution (if the

signal is still accessible). However, malfunction flash only serves as

a warning to road users. However, some decisions, such as whether

to cross or wait, and whether to stop before crossing, are left to

drivers, based on their observation of traffic conditions. Hunter et

al [22] studied the driver behaviors under malfunction flash and

revealed that malfunction flash cannot eliminate the safety issue

of traffic signal malfunctions, not to mention other impacts such

as congestion. In addition, our method is applicable in situations

where the traffic signal is in a blackout, where the traffic signal

cannot even work as a flashing warning to drivers.

Some methods are designed for efficient human resources dis-

tribution. For example, Mathibela [34] designs a RUSBoost-based

framework to predict the best distribution of human resources at

critical intersections in the presence of malfunctioning traffic lights.

Our work is considered an immediate response before human re-

sources get involved to prevent the heavy consequences resulting

from traffic signal malfunction.

6.2 Traffic Signal Control
Traffic Signal Control is an important sub-domain of smart city [67,

72, 66, 21, 8]. Methods for controlling traffic signals can be divided

into classic optimization-based methods [58, 6, 51] and RL-based

methods [62, 63, 70, 61, 17]. Among these techniques, RL is most

popular these years because of its ability to learn directly from com-

plex conditions without assumptions about the environment [54,

31, 32, 59, 24, 47, 23]. Thus, RL-based methods and Deep Learning

based methods usually outperform classic optimization-based meth-

ods [19, 20, 68, 12]. However, current RL-based methods exhibit

suboptimal performance under scenarios involving signal malfunc-

tions due to the isolation of reward mechanisms. Specifically, each

agent operates with a focus exclusively on optimizing the traffic

flow at its own intersection, neglecting the potential benefits of

adjacent intersections. While this approach is effective in standard

conditions, where each intersection is regulated by a functioning

agent, it falters in the event of a signal malfunction. In such cases,

the affected intersection lacks the capability to leverage support

from neighboring intersections, leading to increased congestion.

Recently, a number of works have focused on traffic disruptions,

such as missing data [36], incidents [14, 45], or weather changes [9,

10, 11]. Traffic signal malfunction is different from these disruptions

in that: Firstly, these disruptions affect the RL model’s input, while

signal malfunction disables the RL agent from interacting with the

environment, i.e. affects the output. Secondly, these disruptions

test a single model’s robustness, while signal malfunction tests the

coordination ability of the whole system. Because a malfunctioning

signal loses the ability to control traffic flow, it is naturally in need of

help from other well-functioning signals, which makes cooperation

an important factor in this context. In conclusion, traffic signal

malfunction is a unique scenario that has not been considered in

previous traffic disruption and robustness works.

7 CONCLUSION
In this paper, we study the problem of intelligent traffic signal

control in the presence of traffic signal malfunction. We design

MalLight, an traffic signal control model founded on RL principles.

In the MalLight framework, we introduce two pioneering compo-

nents, namely the Influence-aware State Aggregation Module and

the Influence-aware Reward Aggregation Module, which are seam-

lessly integrated into the RL architecture. We subsequently conduct

a comprehensive array of empirical investigations on two real-

world datasets. Our empirical findings demonstrate that MalLight

surpasses the performance of extant methods in both normal condi-

tions and scenarios characterized by signal malfunctions. Notably,

our results reveal a substantial improvement in the reduction of

intersection throughput, with a remarkable mitigation rate of up to

48.6%.

8 ACKNOWLEDGMENTS
The work was supported in part by the National Science Foundation

under Grant No. 2047822, 1952096, 2318697 and 2421839. We thank

all the reviewers for their insightful feedback to improve this paper.

 

2887

D
ow

nloaded from
 the A

C
M

 D
igital Library by A

rizona State Tem
pe on A

pril 7, 2025.



CIKM ’24, October 21–25, 2024, Boise, ID, USA Qinchen Yang, Zejun Xie, Hua Wei, Desheng Zhang, and Yu Yang

REFERENCES
[1] Md Aftabuzzaman. “Measuring traffic congestion-a critical review”. In: 30th

Australasian transport research forum. ETM GROUP London, UK. 2007, pp. 1–16.

[2] B Benioff, FC Dock, and C Carson. A STUDY OF CLEARANCE INTERVALS,
FLASHING OPERATION, AND LEFT-TURN PHASING AT TRAFFIC SIGNALS.
VOLUME 2. CLEARANCE INTERVALS. Tech. rep. 1980.

[3] Chacha Chen et al. “Toward a thousand lights: Decentralized deep reinforce-

ment learning for large-scale traffic signal control”. In: Proceedings of the AAAI
Conference on Artificial Intelligence. Vol. 34. 04. 2020, pp. 3414–3421.

[4] Wenling Chen, Larrie Henley, and Jeff Price. “Assessment of traffic signal

maintenance and operations needs at Virginia department of transportation”.

In: Transportation research record 2128.1 (2009), pp. 11–19.

[5] Md Mamun Chowdhury. “Traffic congestion and mismanagement in dhaka

city”. In: Planned Decentralization: Aspired Development, World Town Planning
Day (2013).

[6] Seung-Bae Cools, Carlos Gershenson, and Bart D’Hooghe. “Self-organizing

traffic lights: A realistic simulation”. In: Advances in applied self-organizing
systems (2013), pp. 45–55.

[7] Longchao Da et al. “CityFlowER: An Efficient and Realistic Traffic Simulator

with Embedded Machine Learning Models”. In: arXiv preprint arXiv:2402.06127
(2024).

[8] Longchao Da et al. “Open-ti: Open traffic intelligence with augmented language

model”. In: International Journal of Machine Learning and Cybernetics (2024),
pp. 1–26.

[9] Longchao Da et al. “Prompt to transfer: Sim-to-real Transfer for Traffic Signal

Control with Prompt Learning”. In: In Proceedings of the Thirty-Eighth AAAI
Conference on Artificial Intelligence (AAAI’24). 2024.

[10] Longchao Da et al. “Sim2Real Transfer for Traffic Signal Control”. In: 2023 IEEE
19th International Conference on Automation Science and Engineering (CASE).
IEEE. 2023, pp. 1–2.

[11] Longchao Da et al. “Uncertainty-aware Grounded Action Transformation to-

wards Sim-to-Real Transfer for Traffic Signal Control”. In: In Proceedings of
62nd IEEE Conference on Decision and Control (CDC 2023). 2023.

[12] Yi Ding et al. “P2-Loc: A Person-2-Person Indoor Localization System in On-

Demand Delivery”. In: Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.
6.1 (2022), 9:1–9:24. doi: 10.1145/3517238. url: https://doi.org/10.1145/3517238.

[13] Zihan Ding et al. “Introduction to reinforcement learning”. In: Deep reinforce-
ment learning: fundamentals, research and applications (2020), pp. 47–123.

[14] Wenlu Du et al. “Safelight: A reinforcement learning method toward collision-

free traffic signal control”. In: Proceedings of the AAAI Conference on Artificial
Intelligence. Vol. 37. 12. 2023, pp. 14801–14810.

[15] Barry C Ezell et al. “Cyber risk to transportation, industrial control systems,

and traffic signal controllers”. In: Environment Systems and Decisions 33 (2013),
pp. 508–516.

[16] Branden Ghena et al. “Green Lights Forever: Analyzing the Security of Traffic

Infrastructure.” In:WOOT 14 (2014), pp. 7–7.

[17] Xiao Han et al. “Mitigating Action Hysteresis in Traffic Signal Control with

Traffic Predictive Reinforcement Learning”. In: Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining. 2023, pp. 673–
684.

[18] Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. “Neural networks for

machine learning lecture 6a overview of mini-batch gradient descent”. In: Cited
on 14.8 (2012), p. 2.

[19] Zhiqing Hong et al. “CoMiner: nationwide behavior-driven unsupervised spa-

tial coordinate mining from uncertain delivery events”. In: Proceedings of the
30th International Conference on Advances in Geographic Information Systems,
SIGSPATIAL 2022, Seattle, Washington, November 1-4, 2022. Ed. by Matthias Renz

and Mohamed Sarwat. ACM, 2022, 10:1–10:10. doi: 10.1145/3557915.3560944.

url: https://doi.org/10.1145/3557915.3560944.

[20] Zhiqing Hong et al. “FastAddr: real-time abnormal address detection via con-

trastive augmentation for location-based services”. In: Proceedings of the 30th In-
ternational Conference on Advances in Geographic Information Systems, SIGSPA-
TIAL 2022, Seattle, Washington, November 1-4, 2022. Ed. by Matthias Renz and

Mohamed Sarwat. ACM, 2022, 64:1–64:10. doi: 10.1145/3557915.3560999. url:

https://doi.org/10.1145/3557915.3560999.

[21] Zhiqing Hong et al. “SmallMap: Low-cost Community Road Map Sensing

with Uncertain Delivery Behavior”. In: Proc. ACM Interact. Mob. Wearable
Ubiquitous Technol. 8.2 (2024), 50:1–50:26. doi: 10.1145/3659596. url: https:
//doi.org/10.1145/3659596.

[22] Michael Hunter et al. “Mode of flashing for malfunctioning traffic signals”. In:

Journal of transportation engineering 137.7 (2011), pp. 438–444.

[23] Haoyuan Jiang et al. “GuideLight:" Industrial Solution" Guidance for More

Practical Traffic Signal Control Agents”. In: arXiv preprint arXiv:2407.10811
(2024).

[24] Haoyuan Jiang et al. “X-Light: Cross-City Traffic Signal Control Using Trans-

former on Transformer as Meta Multi-Agent Reinforcement Learner”. In: arXiv
preprint arXiv:2404.12090 (2024).

[25] Peter Koonce and Lee Rodegerdts. Traffic signal timing manual. Tech. rep.
United States. Federal Highway Administration, 2008.

[26] P Kuppusamy et al. “Design of smart traffic signal system using internet of

things and genetic algorithm”. In: Advances in Big Data and Cloud Computing.
Springer. 2018, pp. 395–403.

[27] JooChan Lee, JangHoon Kim, and JungTaek Seo. “Cyber attack scenarios on

smart city and their ripple effects”. In: 2019 international conference on platform
technology and service (PlatCon). IEEE. 2019, pp. 1–5.

[28] Serge Lhomme et al. “Analyzing resilience of urban networks: a preliminary

step towards more flood resilient cities”. In: Natural hazards and earth system
sciences 13.2 (2013), pp. 221–230.

[29] Yaguang Li et al. “Diffusion Convolutional Recurrent Neural Network: Data-

Driven Traffic Forecasting”. In: 6th International Conference on Learning Repre-
sentations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings. OpenReview.net, 2018. url: https://openreview.net/forum?

id=SJiHXGWAZ.

[30] Pablo Alvarez Lopez et al. “Microscopic Traffic Simulation using SUMO”. In:

The 21st IEEE International Conference on Intelligent Transportation Systems.
IEEE, 2018. url: https://elib.dlr.de/124092/.

[31] Wenjun Lyu et al. “REDE: Exploring Relay Transportation for Efficient Last-

mile Delivery”. In: 39th IEEE International Conference on Data Engineering,
ICDE 2023, Anaheim, CA, USA, April 3-7, 2023. IEEE, 2023, pp. 3003–3016. doi:
10.1109/ICDE55515.2023.00230. url: https://doi.org/10.1109/ICDE55515.2023.

00230.

[32] Wenjun Lyu et al. “Towards FairWorkload Assessment via Homogeneous Order

Grouping in Last-mile Delivery”. In: Proceedings of the 31st ACM International
Conference on Information & Knowledge Management, Atlanta, GA, USA, October
17-21, 2022. Ed. by Mohammad Al Hasan and Li Xiong. ACM, 2022, pp. 3361–

3370. doi: 10.1145/3511808.3557132. url: https://doi.org/10.1145/3511808.

3557132.

[33] Hashim MN Al-Madani. “Dynamic vehicular delay comparison between a

police-controlled roundabout and a traffic signal”. In: Transportation Research
Part A: Policy and Practice 37.8 (2003), pp. 681–688.

[34] Bonolo Mathibela. “Another broken traffic light? Reducing traffic congestion

in resource constrained environments”. In: 2017 IEEE Intelligent Vehicles Sym-
posium (IV). IEEE. 2017, pp. 1305–1310.

[35] Hao Mei et al. “LibSignal: An Open Library for Traffic Signal Control”. In: arXiv
preprint arXiv:2211.10649 (2022).

[36] Hao Mei et al. “Reinforcement Learning Approaches for Traffic Signal Control

under Missing Data”. In: arXiv preprint arXiv:2304.10722 (2023).
[37] National Center for Statistics and Analysis. Traffic Safety Facts 2020: A Compi-

lation of Motor Vehicle Crash Data. Report DOT HS 813 375. National Highway

Traffic Safety Administration, Oct. 2022.

[38] Newark Connect. https://www.newarknj.gov/card/newark-connect. Accessed:

2023-06-30.

[39] Andrew Y Ng, Daishi Harada, and Stuart Russell. “Policy invariance under

reward transformations: Theory and application to reward shaping”. In: Icml.
Vol. 99. Citeseer. 1999, pp. 278–287.

[40] NYC-Taxi-Trips. https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page/.

[41] OpenStreetMap. https://www.openstreetmap.org/.

[42] Basil Paul and H Pitale. “Comparison of capacity at signalised and unsignalised

intersection”. In: IJSTE-Int J Sci Technol Eng 3 (2017), pp. 108–111.

[43] Maria Pregnolato et al. “Assessing urban strategies for reducing the impacts of

extreme weather on infrastructure networks”. In: Royal Society open science 3.5
(2016), p. 160023.

[44] Aleksander Purba, Rahayu Sulistyorini, and Ageng Sadnowo. “Developing

Monitoring System of Traffic Signal Using Microcontroller Device by SMS of

GSM Network”. In: Prosiding Semnas SINTA FT UNILA Vol. 1 Tahun 2018 1.1
(2018), pp. 273–277.

[45] Filipe Rodrigues and Carlos LimaAzevedo. “Towards robust deep reinforcement

learning for traffic signal control: Demand surges, incidents and sensor failures”.

In: 2019 IEEE intelligent transportation systems conference (ITSC). IEEE. 2019,
pp. 3559–3566.

[46] Sandra Rosenbloom. “Peak-period traffic congestion: A state-of-the-art analysis

and evaluation of effective solutions”. In: Transportation 7.2 (1978), pp. 167–191.
[47] Jingqing Ruan et al. “CoSLight: Co-optimizing Collaborator Selection and

Decision-making to Enhance Traffic Signal Control”. In: arXiv preprint arXiv:2405.17152
(2024).

[48] David I Shuman et al. “The emerging field of signal processing on graphs:

Extending high-dimensional data analysis to networks and other irregular

domains”. In: IEEE signal processing magazine 30.3 (2013), pp. 83–98.
[49] Azura Che Soh, Asnor Juraiza Ishak, and Mohd Hanif Zaini. “Smart monitoring

fault detection system for malfunction traffic light operation”. In: 2013 IEEE
8th Conference on Industrial Electronics and Applications (ICIEA). IEEE. 2013,
pp. 549–554.

[50] Some Chicago traffic lights still broken months, even a year, after reporting to 311.
https://abc7chicago.com/chicago-traffic-light-broken-311-cdot/12300361/.

Accessed: 2023-06-30.

 

2888

D
ow

nloaded from
 the A

C
M

 D
igital Library by A

rizona State Tem
pe on A

pril 7, 2025.

https://doi.org/10.1145/3517238
https://doi.org/10.1145/3517238
https://doi.org/10.1145/3557915.3560944
https://doi.org/10.1145/3557915.3560944
https://doi.org/10.1145/3557915.3560999
https://doi.org/10.1145/3557915.3560999
https://doi.org/10.1145/3659596
https://doi.org/10.1145/3659596
https://doi.org/10.1145/3659596
https://openreview.net/forum?id=SJiHXGWAZ
https://openreview.net/forum?id=SJiHXGWAZ
https://elib.dlr.de/124092/
https://doi.org/10.1109/ICDE55515.2023.00230
https://doi.org/10.1109/ICDE55515.2023.00230
https://doi.org/10.1109/ICDE55515.2023.00230
https://doi.org/10.1145/3511808.3557132
https://doi.org/10.1145/3511808.3557132
https://doi.org/10.1145/3511808.3557132
https://www.newarknj.gov/card/newark-connect
https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page/
https://www.openstreetmap.org/
https://abc7chicago.com/chicago-traffic-light-broken-311-cdot/12300361/


MalLight: Influence-Aware Coordinated Traffic Signal Control for Traffic Signal Malfunctions CIKM ’24, October 21–25, 2024, Boise, ID, USA

[51] Aleksandar Stevanovic, Cameron Kergaye, and Peter T Martin. “Scoot and

scats: A closer look into their operations”. In: 88th Annual Meeting of the
Transportation Research Board. Washington DC. 2009.

[52] Pablo Suarez et al. “Impacts of flooding and climate change on urban transporta-

tion: A systemwide performance assessment of the Boston Metro Area”. In:

Transportation Research Part D: transport and environment 10.3 (2005), pp. 231–
244.

[53] Henk Taale, PHG van Bekkum, and MLD van Rij. “Evaluation of traffic man-

agement by the traffic police”. In: (2004).

[54] Heng Tan et al. “Joint Rebalancing and Charging for Shared Electric Micro-

mobility Vehicles with Energy-informed Demand”. In: Proceedings of the 32nd
ACM International Conference on Information and Knowledge Management,
CIKM 2023, Birmingham, United Kingdom, October 21-25, 2023. Ed. by Ingo

Frommholz et al. ACM, 2023, pp. 2392–2401. doi: 10.1145/3583780.3614942.

url: https://doi.org/10.1145/3583780.3614942.

[55] Shang-Hua Teng et al. “Scalable algorithms for data and network analysis”.

In: Foundations and Trends® in Theoretical Computer Science 12.1–2 (2016),

pp. 1–274.

[56] Traffic Data Viewer. https://www.dot.ny.gov/tdv/.

[57] Traffic Signal Control Datasets. https://traffic-signal-control.github.io/index.

html#open-datasets/.

[58] Pravin Varaiya. “Max pressure control of a network of signalized intersections”.

In: Transportation Research Part C: Emerging Technologies 36 (2013), pp. 177–
195.

[59] Dimitris M Vlachogiannis et al. “HumanLight: Incentivizing ridesharing via

human-centric deep reinforcement learning in traffic signal control”. In: Trans-
portation Research Part C: Emerging Technologies (2023).

[60] Hua Wei et al. “A survey on traffic signal control methods”. In: arXiv preprint
arXiv:1904.08117 (2019).

[61] Hua Wei et al. “Colight: Learning network-level cooperation for traffic signal

control”. In: Proceedings of the 28th ACM International Conference on Information
and Knowledge Management. 2019, pp. 1913–1922.

[62] Hua Wei et al. “Intellilight: A reinforcement learning approach for intelligent

traffic light control”. In: Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 2018, pp. 2496–2505.

[63] Hua Wei et al. “Presslight: Learning max pressure control to coordinate traffic

signals in arterial network”. In: Proceedings of the 25th ACM SIGKDD Inter-
national Conference on Knowledge Discovery & Data Mining. 2019, pp. 1290–
1298.

[64] what should you do if a traffic is malfunctioning. https://elteccorp.com/news/

other/what-should-you-do-if-a-traffic-light-is-malfunctioning/.

[65] Libing Wu et al. “DynSTGAT: Dynamic spatial-temporal graph attention net-

work for traffic signal control”. In: Proceedings of the 30th ACM International
Conference on Information & Knowledge Management. 2021, pp. 2150–2159.

[66] Hua Yan et al. “Robust Route Planning under Uncertain Pickup Requests for

Last-mile Delivery”. In: Proceedings of the ACM on Web Conference 2024, WWW
2024, Singapore, May 13-17, 2024. Ed. by Tat-Seng Chua et al. ACM, 2024,

pp. 3022–3030. doi: 10.1145/3589334.3645595. url: https://doi.org/10.1145/

3589334.3645595.

[67] Guang Yang et al. “CARPG: Cross-City Knowledge Transfer for Traffic Accident

Prediction via Attentive Region-Level Parameter Generation”. In: Proceedings
of the 32nd ACM International Conference on Information and Knowledge Man-
agement, CIKM 2023, Birmingham, United Kingdom, October 21-25, 2023. Ed. by
Ingo Frommholz et al. ACM, 2023, pp. 2939–2948. doi: 10.1145/3583780.3614802.

url: https://doi.org/10.1145/3583780.3614802.

[68] Qinchen Yang et al. “Mapping Plastic Mulched Farmland for High Resolution

Images of Unmanned Aerial Vehicle Using Deep Semantic Segmentation”.

In: Remote. Sens. 11.17 (2019), p. 2008. doi: 10.3390/RS11172008. url: https:
//doi.org/10.3390/rs11172008.

[69] Huichu Zhang et al. “Cityflow: A multi-agent reinforcement learning environ-

ment for large scale city traffic scenario”. In: The world wide web conference.
2019, pp. 3620–3624.

[70] Liang Zhang et al. “Expression might be enough: Representing pressure and

demand for reinforcement learning based traffic signal control”. In: International
Conference on Machine Learning. PMLR. 2022, pp. 26645–26654.

[71] Guanjie Zheng et al. “Learning phase competition for traffic signal control”.

In: Proceedings of the 28th ACM International Conference on Information and
Knowledge Management. 2019, pp. 1963–1972.

[72] Shuxin Zhong et al. “RLIFE: Remaining Lifespan Prediction for E-scooters”.

In: Proceedings of the 32nd ACM International Conference on Information and
Knowledge Management, CIKM 2023, Birmingham, United Kingdom, October
21-25, 2023. Ed. by Ingo Frommholz et al. ACM, 2023, pp. 3544–3553. doi:

10.1145/3583780.3615037. url: https://doi.org/10.1145/3583780.3615037.

 

2889

D
ow

nloaded from
 the A

C
M

 D
igital Library by A

rizona State Tem
pe on A

pril 7, 2025.

https://doi.org/10.1145/3583780.3614942
https://doi.org/10.1145/3583780.3614942
https://www.dot.ny.gov/tdv/
https://traffic-signal-control.github.io/index.html#open-datasets/
https://traffic-signal-control.github.io/index.html#open-datasets/
https://elteccorp.com/news/other/what-should-you-do-if-a-traffic-light-is-malfunctioning/
https://elteccorp.com/news/other/what-should-you-do-if-a-traffic-light-is-malfunctioning/
https://doi.org/10.1145/3589334.3645595
https://doi.org/10.1145/3589334.3645595
https://doi.org/10.1145/3589334.3645595
https://doi.org/10.1145/3583780.3614802
https://doi.org/10.1145/3583780.3614802
https://doi.org/10.3390/RS11172008
https://doi.org/10.3390/rs11172008
https://doi.org/10.3390/rs11172008
https://doi.org/10.1145/3583780.3615037
https://doi.org/10.1145/3583780.3615037

	Abstract
	1 Introduction
	2 Preliminaries
	3 Method
	3.1 Overview
	3.2 Influence-aware State Aggregation Module
	3.3 Influence-aware Reward Aggregation Module
	3.4 Training

	4 Experiments
	4.1 Experiment Setting
	4.2 Datasets
	4.3 Evaluation Metrics
	4.4 Compared Methods
	4.5 Experiment Result

	5 Discussion
	6 Related Work
	6.1 Traffic Signal Malfunction
	6.2 Traffic Signal Control

	7 Conclusion
	8 Acknowledgments



