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Abstract
Heatwaves pose significant health risks, particularly due to pro-
longed exposure to high summer temperatures. The large vulner-
able groups, especially pedestrians and cyclists on sun-exposed
sidewalks, motivate the development of a route planning method
that incorporates somatosensory temperature effects through shade
ratio consideration. This paper is the first to introduce a pipeline
that utilizes segmentation foundation models to extract shaded
areas from high-resolution satellite images. These areas are then in-
tegrated into a multi-layered road map, enabling users to customize
routes based on a balance between distance and shade exposure,
thereby enhancing comfort and health during outdoor activities.
Specifically, we construct a graph-based representation of the road
map, where links indicate connectivity and are updated with shade
ratio data for dynamic route planning.

CCS Concepts
• Information systems→ Information systems applications;
• Computing methodologies→ Computer vision; Artificial intel-
ligence.
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1 Introduction
The impact of global warming is increasingly evident worldwide. In
some regions, the number of deaths related to high temperatures is
alarming. A study by [20] reports that, from 2000 to 2019, an average
of 178,700 deaths annually were attributed to high temperatures,
with the number continuing to rise yearly. The escalating sever-
ity and frequency of heatwaves, exacerbated by climate change,
represent a significant public health threat. Extreme heat not only
poses direct health risks but also affects urban mobility [25, 26]
and infrastructure [17, 18, 27]. Efficient route planning that take
into account temperature data and predict heatwave events can
help mitigate exposure to high temperatures, thus protecting vul-
nerable populations during travel. Integrating such considerations
into urban planning aligns with the goals of creating more resilient
and adaptive cities, as prioritized in the European Union’s Green
Deal [7] and the United Nations Sustainable Development Goals [3].

Some literature conducted preliminary research on the possi-
bility of planning under shaded areas. For example, BOTworld [6]
proposes to find and visualize optimal thermal comfort paths in
small neighborhoods for an agent-based model to act with micro-
climate [14] simulations. [23] investigated thermal walks in two
European pedestrian routes using questionnaires and field mea-
surements to improve dynamic thermal comfort perception mod-
els. In [22], researchers propose a novel way to detect optimal
pedestrian-shaded paths using UMEP [12] in QGIS [21], however,
this solution relies on accurate terrain maps, and real-time building
heights are not well-considered. Besides, [16], proposes to conduct
shaded navigation using a cross-source of OpenStreetMap [2] and
LiDAR point cloud data that resolves both treetop canopy and bare
ground elevation problems, however, this relies on well-collected
LiDAR data [13] and is hard to apply directly to arbitrary cities.

In this paper, we present ShadeRouter, a novel shaded route
planning method, and provide a demo to showcase its real-time
planning ability. This paper contributes in the following aspects:
First, this paper introduces a complete pipeline leveraging the foun-
dation model to extract shaded information from satellite images,
which can be directly applied to any city with available satellite
information. Second, the paper proposes a shaded ratio calculation
algorithm, which takes the satellite image and OpenStreetMap as
input, and derives the percentage of shade-covered length to the
whole route length. Such shaded ratios will be adopted to create an
information graph that will be jointly considered with a distance
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Figure 1: The overview of the proposed pipeline for our shaded route planning method. The upper part shows the shaded
ratio derivation process that takes the satellite image and OSM data as input and calculates the shaded ratio for specific valid
walkable or bikeable lanes. And the lower part shows the multi-layer road graph construction and route planning process, this
reveals how ShadeRouter provides user preference shaded route planning from derived shadow information.

graph when providing routing plans. Third, we provide an online
demo for route planning employing a variant of the Dijkstra al-
gorithm and release the source code, dataset, and corresponding
derived shaded ratios for other researchers’ convenience.

2 Approach
In this section, we will introduce the proposed planning method
ShadeRouter. The detailed pipeline includes three components:
Shade Ratio Derivation, Multi-layer Road Graph Construction, and
Route Planning Interface. Previous studies have attempted to uti-
lize LiDAR data [1, 11, 24] to simulate shade and enhance route
planning [4, 22]. However, these methods often struggle with lo-
calization issues and data sparsity for places without LiDAR data,
limiting their applicability to certain regions. Our approach lever-
ages widely available satellite imagery to derive shade information
globally. This data source provides detailed environmental features,
such as vegetation and buildings, ensuring our shade-based naviga-
tion planning is both versatile and reliable.

2.1 Shade Ratio Derivation
This step utilizes satellite imagery to derive information about
shaded areas on maps, as illustrated in the first module of Fig. 1.
The process begins with the segmentation of raw satellite images
using the foundation model, SegmentAnything [8–10], which em-
ploys contrastive learning to identify and delineate each object
within the image. Once segmented, the image components are ana-
lyzed for color hue and brightness to determine shaded areas. This
is achieved through chromatics analysis, which identifies darker
areas as shaded. In our empirical study, the best threshold value
for selecting RGB masks is 75 (mask keeps iff RGB(mask) >= 75).
Subsequently, these shaded areas are aligned with road data from

OpenStreetMap [2]. By overlaying the shade map onto valid path
coordinates, as shown in Fig. 1, we can determine the shade ratio,
i.e., the percentage of each road covered by shade, facilitating the
identification of walkable shaded lanes.

The Fig. 2 shows another example of shaded ratio calculation in a
walkable network, in this yellow color masked satellite image (such
mask implies the shaded area), the red line is a valid pedestrian
route extracted from the OSM files [15], as shown in the image,
the total pixel 𝐿 = 400, by image processing, we calculate the
overlap between valid pedestrian route and the actual shaded area
is 𝑆 = 67% × 𝐿. in our setting, each image is downloaded with a
zoomed-in level as 20, result in the range of 49.84m x 49.84m. Given
this information, we could calculate the shaded ratio for the above
example in Fig. 2 which is 49.84 × 67% ≈ 33.39m.

Another challenge in the shade ratio derivation is, the dataset of
a place contains multiple images, and the same route may appear
multiple times in different images. In order to deal with this, we
take the road name as the key (K), assume we already have partially
detected shaded length as 𝐿𝑆ℎ𝑎𝑑𝑒𝑑 , accumulated length as 𝐿𝐴𝑐𝑐 , and
now we conduct query Q(𝑖𝑚𝑔𝑖 , K) in each un-visited dataset image,
if Q(𝑖𝑚𝑔𝑖 , K) = True, indicating a positive query, the 𝐿𝑆ℎ𝑎𝑑𝑒𝑑 =

𝐿𝑆ℎ𝑎𝑑𝑒𝑑 + 𝐿𝐾𝑆ℎ𝑎𝑑𝑒𝑑 , and 𝐿𝐴𝑐𝑐 = 𝐿𝐴𝑐𝑐 + 𝐿
𝐾
𝐴𝑐𝑐

. The final shaded ratio
for route 𝐾 is 𝑟 (𝐾) = 𝐿𝑆ℎ𝑎𝑑𝑒𝑑

𝐿𝐴𝑐𝑐
. If we traverse all interested routes,

we could derive a pre-processed shaded ratio map.

2.2 Multi-layer Road Graph Construction
Following the derivation of shade ratio data, we employ this data in
the construction of a Shaded Ratio Map, as part of our Multi-layer
Road Graph Construction shown in Fig. 1. This construction com-
prises two primary layers: the upper layer represents the shade
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Figure 2: The shaded ratio calculation, the yellow blocks
show the shaded areas, and the red line shows valid routes
from OSM data.

ratios derived from our earlier process, and the lower layer repre-
sents geographic maps, denoted as G𝑇𝑦𝑝𝑒 (where 𝑇𝑦𝑝𝑒 is either
walk or bike), sourced from OpenStreetMap (OSM) data. It is impor-
tant to note that the connectivity in G𝑤𝑎𝑙𝑘 and G𝑏𝑖𝑘𝑒 may differ.
The shaded ratio layer acts as a universal set, GU , encompassing
all possible links. While mapping the shaded ratio map to the ge-
ographical maps, if the connectivity does not exist, then it will
be automatically removed from consideration because it will be
identified as in-accessible. After mapping all of the route vertices
and links, well-defined data sources are available for various route
planning methods in the next steps.

2.3 Route Planning and User Interface
Equipped with the road graph and shaded ratio graph, our system
can now offer customizable routing recommendations through a
modified version of the Dijkstra [19] algorithm. Users can input a
query in the format Query(𝑂,𝐷,𝑇𝑦𝑝𝑒), where O and D represent
the coordinates of the starting points and destinations, respectively,
denoted as (x, y) and (x′, y′). The Type parameter specifies the mode
of transportation, either walk or bike. Depending on the selected
type, different graphs are utilized: T𝑤𝑎𝑙𝑘 uses {G𝑤𝑎𝑙𝑘 ,GU }, and
T𝑏𝑖𝑘𝑒 employs {G𝑏𝑖𝑘𝑒 ,GU }. This system allows for route planning
that is tailored to the user’s specific preferences and needs. Let 𝛼 be
the preference for a more shaded route 𝛼 ∈ [0, 1], and 1 − 𝛼 would
be the preference weight for the distance. Thus, for any edge with
connectivity, the value of the edge will be updated by the equation:

𝑤 𝑗𝑜𝑖𝑛𝑡 (𝑢, 𝑣) = 𝛼𝑉𝑠ℎ𝑎𝑑𝑒 + (1 − 𝛼)𝑉𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (1)

where the𝑉𝑠ℎ𝑎𝑑𝑒 can be represented as 𝑟 (𝑢, 𝑣), given the two point
of interests 𝑢 and 𝑣 , and 𝑟 (·) as the shade ratio calculation function.

In the algorithm 1, the𝑉 is the set of interested points from the
OSM-filtered bikeable or walkable graph network, and 𝐸 is the set
of accessible lanes (edges), and after the calculation, the returned 𝑃
contains the 𝑃𝑎𝑡ℎ of the suggested plan, which is a list of POIs and
can be used for planning and navigation [5]. Alternatively, one can
easily modify the above algorithm and output the top 𝑘 suggested
paths based on their different preference 𝛼 reflecting on a balance
of shaded areas and distance.

Algorithm 1 ShadeRouter Planning

Require: Graph𝐺 = (𝑉 , 𝐸), origin vertex 𝑣𝑜 , destination vertex 𝑣𝑑 ,
shaded ratios 𝑟 (𝑢, 𝑣) for each edge (𝑢, 𝑣), preference parameter
𝛼 ∈ [0, 1]

1: Initialize 𝑑 [𝑣] ← ∞ for all 𝑣 ∈ 𝑉
2: 𝑑 [𝑣𝑜 ] ← 0
3: Initialize priority queue 𝑄
4: for all vertex 𝑣 ∈ 𝑉 do
5: Insert 𝑣 into 𝑄 with priority 𝑑 [𝑣]
6: end for
7: Initialize 𝑝𝑟𝑒𝑣 [𝑣] ← null for all 𝑣 ∈ 𝑉
8: while 𝑄 is not empty do
9: 𝑢 ← Extract vertex with minimum distance from 𝑄

10: for all neighbor 𝑣 of 𝑢 do
11: 𝑤joint (𝑢, 𝑣) ← (1 − 𝛼) ·𝑤 (𝑢, 𝑣) + 𝛼 · 𝑟 (𝑢, 𝑣)
12: if 𝑑 [𝑢] +𝑤joint (𝑢, 𝑣) < 𝑑 [𝑣] then
13: 𝑑 [𝑣] ← 𝑑 [𝑢] +𝑤joint (𝑢, 𝑣)
14: 𝑝𝑟𝑒𝑣 [𝑣] ← 𝑢

15: Decrease priority of 𝑣 in 𝑄 to 𝑑 [𝑣]
16: end if
17: end for
18: end while
19: Construct path 𝑃 ← []
20: 𝑢 ← 𝑣𝑑
21: while 𝑝𝑟𝑒𝑣 [𝑢] ≠ null do
22: insert 𝑢 at the beginning of 𝑃
23: 𝑢 ← 𝑝𝑟𝑒𝑣 [𝑢]
24: end while
25: insert 𝑣𝑜 at the beginning of 𝑃
26: return 𝑃

3 Dataset Construction
While conducting route planning tasks, in this paper, we get rid of
the localized specially collected LiDAR data, instead, we propose
to adopt a more accessible resource - satellite image as base data,
and we query the Google Map API 1 for the satellite images of a
specific city in the demo. We use the 20x zoomed pile image data
for processing, the resolution at the equator is 0.1246 meters per
pixel (there are 400 pixels in total, so the range in the equator is
400 × 0.1246 = 49.84 m). To a general latitude, the resolution 𝑅𝑒𝑠 is:

𝑅𝑒𝑠 = 49.84 ×𝐶𝑜𝑠𝑖𝑛(𝑙𝑎𝑡) (2)

where the 𝑙𝑎𝑡 is the latitude in degrees.

Table 1: The dataset statistics and file information.

Dataset Images Size Latitude-Longitude Range

Tempe 38,796 3.67 GB (33.43, 33.32, -111.97, -111.89)
Paris 26,052 2.94 GB (48.88, 48.83, 2.30, 2.39)
Byeng 72 6.6 MB (33.425, 33.422, -111.941, -111.936)

Our released dataset can be found in the GitHub repository, we
covered two complete cities Paris, France and Tempe - AZ, USA.
1https://developers.google.com/maps/apis-by-platform
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Figure 3: The comparison between two itineraries by ShadeRouter in Paris. The shortest route in orange color is more exposed
to heatwaves compared to the most shaded route, as shown in the snapshot of street views.

We also include a case study dataset Byeng which is the location of
the Brickyard Engineering Building, in Tempe, AZ, No.699.

4 Demo Presentation
In this section, we introduce the demo program, and the recorded
demo video and provide an introduction to the ShadeRouter. The
video link can be visited in the GitHub repository.

In the implemented program, the user interface incorporates 4
text boxes, two buttons, and one travel mode selector, with a map
viewing area at the bottom. Corresponding to the user input, the
user would be required to input the source point and destination
point (for user-friendly practice, this accepts a partially correct
spot name and the routing system still recognizes the interested
place), the extra two boxes are for the Google map API and the
number of suggested routes users intend to receive. Once two valid
places are searched, the system will show up the top k marked
routes and pop up a legend explaining each color’s meaning. The
two images shown in Fig. 3. are from the same query’s two route
results, the shortest path, and the most shaded path, we could
notice that the orange line gives the fastest itinerary with high
exposure to sunshine, and the green one prefers alley that is more
shaded and thermally comfortable. This enables users to find the
most preferred plans that improve the travel experience. Despite
the demo screenshot, for more interaction, please visit the demo
website at 2 and we also welcome to check our released code site 3.

2https://longchaoda.github.io/ShadedPlanning.github.io/
3https://github.com/LongchaoDa/Shaded_Planning.git

5 Conclusion
In this work, we propose a prototype method of ShadeRouter,
which leverages the satellite image to mine the shaded ratio on the
sidewalks. By doing so, it provides route planning suggestions for
pedestrians and cyclists considering the shades on the road. It is
feasible to extend the demo to a worldwide map using the formally
designed pipeline based on publicly accessible satellite image data.

On the other hand, this demonstration can be further improved
by temporal information such as the time or seasonal shade situa-
tion, so designing a dynamic time-aware shade simulation would
be helpful. We hope this project will benefit the citizens’ health by
reducing the heatwave exposure probability and providing a more
comfortable outdoor activity plan.

Future developments include adapting the current method to a
more dynamic shade simulation that captures the real-time shadow
changes in cities, and optimizes the planning speed to enhance the
users’ experience. If equipped with more sensible data, or more
outdoor choices, the algorithm could even include wind strength or
extreme weather conditions in the planning process, and provide
more alternatives such as e-scooters and shared bikes, and these
will definitely provide richer activity choices for city travelers.
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