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Abstract
This study examined the effects of embodied learning experiences on students’ un-
derstanding of computational thinking (CT) concepts and their ability to solve CT
problems. In a mixed-reality learning environment, students mapped CT concepts,
such as sequencing and loops, onto their bodily movements. These movements were
later applied to robot programming tasks, where students used the same CT concepts
in a different modality. By explicitly connecting embodied actions with programming
tasks, the intervention aimed to enhance students’ comprehension and transfer of CT
skills. Forty-four first- and second-grade students participated in the study. The results
showed significant improvements in students’ CT competency and positive attitudes
toward CT. Additionally, an analysis of robot programming performance identified
common errors and revealed how students employed embodied strategies to over-
come challenges. The effects of embodied learning and the impact of embodied learning
strategies were discussed.
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Introduction

Computational thinking (CT) has gained recognition as a fundamental skill that stu-
dents should acquire (Wing, 2006). As Shute et al. (2017) defined, CT is the essential
conceptual foundation for an efficient and effective solution to a problem that can be
applicable to other problems in diverse contexts. Regarding the timing of learning, it
has been acknowledged that early exposure to CT can benefit students’ future learning
and career paths, making it an area of increased attention in early education (Angeli &
Valanides, 2020; Ottenbreit-Leftwich et al., 2021). However, the pedagogy for CT
education in early childhood has not yet been fully developed. Therefore, it is necessary
to carefully investigate age-appropriate learning strategies, considering the cognitive
developmental status of young learners and the characteristics of learning tasks (Bers
et al., 2014; Siegler, 1976).

CT encompasses a range of cognitive processes, including logical thinking, algo-
rithmic thinking, pattern recognition, abstraction, evaluation of solutions, and auto-
mation of processes, all of which possess a high level of abstraction (Grover & Pea,
2018; Wing, 2008). However, young children in the concrete operational or preop-
erational stage of cognitive development may face challenges in comprehending these
abstract concepts as they heavily rely on sensory inputs to process information. For
example, students in early elementary grades may struggle with understanding con-
ditional reasoning, such as if-then conditionals, and abstract representation of data,
including variables (Müller et al., 2001; Seiter & Foreman, 2013).

Regarding these challenges, embodied cognition provides valuable insights for
designing learning activities in CT education. Research on embodied cognition sug-
gests that children utilize their perceptual, motor, and emotional systems to engage in
cognitive processes, such as reasoning, language acquisition, and scientific thinking
(Glenberg, 2008). For instance, when children program a robot to execute actions like
“forward” or “turn right,” they must employ a programming language (code) that
involves transforming physical movements into symbolic representations of move-
ment. In this regard, when children are encouraged to link sensory information (bodily
movement) with symbolic representation (code) using body-based metaphors, they can
enhance their programming comprehension and performance (Weisberg & Newcombe,
2017). As such, students can ground abstract mathematical proofs in concrete sensory
representations, which bolsters their mathematical reasoning abilities (Nathan &
Walkington, 2017).

The rapid advancement of technology has brought about remarkable innovations in
education, particularly by facilitating the development of interactive learning envi-
ronments. From the perspective of embodied learning, advanced technologies now
offer learners simulated and immersive experiences within virtual or augmented reality
(VR or AR) settings, a possibility that was previously unimaginable within traditional
classroom settings. For example, motion-sensing input devices like Microsoft Kinect
can capture learners’ gestures and location, so that learners can interact with virtual
objects (i.e., Gautam et al., 2018). Wearable devices can provide haptic feedback in
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response to learners’ actions, which enhances the multimodal nature of learning by
offering an additional channel of information (Magana & Balachandran, 2017).
Moreover, AR creates immersive learning environments where learners can seamlessly
interact with virtual objects overlaid on the real world as demonstrated in the current
study. These environments empower children to engage their senses and utilize sensory
information to enhance their conceptual understanding (Xu et al., 2022).

While embodied learning environments hold promise in providing meaningful
learning experiences that foster deep understanding, there are still many questions that
remain unanswered. For instance, it is unclear under which conditions embodied
learning activities effectively facilitate learning, how these activities translate into
conceptual understanding, and how instructors can assess the transformation of
learning while observing students’ learning progress.

To address these gaps, the current study focuses on a classroom learning context
where a mixed-reality learning system was implemented as an embodied learning
environment. The embodied learning experiences were enhanced by robot program-
ming activities, which were intentionally designed to transfer CT concepts learned
through bodily engagements to CT practices. To examine the effects of embodied
learning activities within the mixed-reality system and during robot programming
activities, the study analyzed students’ learning performances and perceptions of
learning activities. Through these efforts, the research aims to advance our under-
standing of how embodied learning activities support students’ CT learning, partic-
ularly for those in the concrete operational developmental stage. The specific research
questions addressed in this study are as follows:

1. Do students show improvement in CT learning while participating in embodied
learning activities?

2. What are students’ levels of self-efficacy, attitudes, and confidence toward CT
after engaging in embodied learning activities?

3. To what extent does students’ performance in a robot programming task
demonstrate the transfer of skills acquired through embodied learning activities?

Computational Thinking for Kids

CT has been acknowledged as a fundamental skill for every student. Wing (2006)
suggests that the ultimate goal of CT education is to cultivate students who think as
computer scientists do. Although this argument suggests a proper direction for CT
education, more specific guides are necessary to identify instructional goals, develop
assessment tools, design learning activities, and create learning materials. In this
endeavor, many scholars identify core CTconcepts to learn and suggest CT practices to
perform (e.g., Barr et al., 2011; Grover & Pea, 2013; Lee et al., 2011).

In our everyday lives, we are consistently engaged in problem-solving, whether
employing CT or not. Problem-solving within the context of CT differs from general
problem-solving in that it requires a “computing” process that is executed by a
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computer or human. This means that solving a problem using CT requires a solution
that computers or other individuals can understand and execute as intended. In this
sense, the utilization of symbols to represent instructions and algorithms to organize
these instructions in a specific sequence forms the fundamental basis of CT (Critten
et al., 2022). To extend the CTconcepts, students should be able to analyze problems or
tasks and devise proper solutions (logical thinking), develop step-by-step plans for the
solutions (algorithmic thinking), find patterns to make generalizable solutions (pattern
recognition), identify the most essential components from similarities and differences
(abstraction), and evaluate the effect of solutions and correct any errors (evaluation)
(Angeli et al., 2016; Zeng et al., 2023).

To teach students to think like computer scientists, we need to first understand how
computer scientists think and perform when solving problems, which has not yet been
achieved in the literature on CT education. Many studies have investigated the ef-
fectiveness of learning strategies and tools; however, while this is necessary, they often
overlook specific learning objectives to be achieved with them. For example, the
concept of variables is fundamental for computer scientists to manage data (Samurcay,
1989). However, students often define and utilize variables in inefficient ways that
differ from computer scientists’ common practices (Grover & Basu, 2017; Kwon,
2017).

Especially when introducing students to the fundamental concepts of CS, their
mental models and practices should be understood in relation to those of CS experts.
Programmers use program languages to communicate instructions with computers and
to collaborate with fellow programmers. A program utilizes a collection of symbols
followed by predefined rules. So, it is essential for students to understand that each
symbol corresponds to a particular action. Furthermore, they must learn to select the
appropriate symbols and arrange them in a specific sequence in order to accomplish a
computational task. This can pose a significant challenge for young children due to their
cognitive development status and the complexity of the tasks (Andrews & Halford,
2002).

Considering these issues, various age-appropriate pedagogical approaches have
been introduced. In particular, block-based programming environments (e.g., Scratch)
and tangible robots (e.g., Bee-Bot) have been shown to reduce cognitive load by
visualizing text-based code with blocks and illustrating the execution of instructions.
These approaches also allow students to easily evaluate their programs by showing
their results within the learning contexts. Studies have shown that even kindergarteners
can learn to program a robot by entering instructions in order, given proper practices
and specific guides (e.g., programBee-Bot to move a certain path) (Angeli &Valanides,
2020). However, more research is needed to understand the learning trajectories of
mastering the concepts and how young children apply the concepts to more com-
plicated tasks (Zeng et al., 2023). From the embodied cognition point of view, these
learning environments have limitations in providing embodied learning experiences.
This is because no physical referents can be linked to students’ sensory-motor
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information. In the next section, we will review how embodied approaches can support
CT learning.

Embodied Learning for CT Education

As discussed, CT involves abstract concepts that are not observable or even felt. This
can pose more challenges to young children, who are highly oriented toward sensory-
motor information according to their cognitive development (Rijke et al., 2018; Statter
& Armoni, 2020). From the embodied cognition perspective, to support students in
grounding CT knowledge in their perceptual learning experiences, educators have
introduced unplugged activities or robotics (e.g., Kim & Tscholl, 2021; Kwon et al.,
2022). These approaches emphasize hands-on activities that encourage students to
express their ideas or understandings through their bodily movement (or gesture) or
tinkering with physical objects, including robots. Studies have revealed the positive
effects of these approaches on students’ performances in CT tasks as well as their
motivation and engagement in learning (Fofang et al., 2021; Kopcha et al., 2021).

This movement has been extended to VR or AR learning environments where
immersive learning experiences are designed for students to interact with virtual
objects. The specific affordances of an advanced medium enable adaptive instructional
methods that are not possible traditionally. In this sense, researchers emphasize the
potential of environments providing immersive learning experiences, which allow
students to have a higher feeling of presence and agency (Johnson-Glenberg, 2019).
The term “presence” refers to the feeling of “being there,” which can be perceived
differently according to the degree of immersion and control given to the students and
the fidelity of representation of information (Ijsselsteijn & Riva, 2003). In an immersive
context, “agency” means the sensation of initiating and directing actions (Moore &
Fletcher, 2012). The sense of agency is closely related to the extent to which students
exert control over their actions in it.

Immersive learning environments utilizing VR or AR technologies provide students
with the sense of presence and agency in various methods, including allowing them to
generate gestures that represent reasoning or quantitative operations (Lindgren et al.,
2019), play an agent, allowing first-person perspectives, or observe other agents’
behavior, allowing third-person perspectives, to understand a complex system while
playing (Peppler et al., 2020), see abstract scientific concepts visualized by 3D models
(Sahin & Yilmaz, 2020), and carry our physics laboratory experiment by manipulating
virtual objects (Thees et al., 2020). Literature has shown that these embodied learning
experiences facilitated by immersive learning environments bring positive learning
outcomes in both attitudinal as well as cognitive aspects (Fan et al., 2020; Garzón et al.,
2020; Kwon et al., 2024).

It is noteworthy that the effects of embodied learning are highly associated with the
degree of congruency that maps students’ embodiment and the content to be learned
(Johnson-Glenberg & Megowan-Romanowicz, 2017). If students cannot make a
connection between their bodily experiences and cognitive processes, we may not
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expect positive learning outcomes. In this vein, exploring the degree of congruency that
students perceive is crucial to advancing our knowledge in immersive embodied
learning. Although there is growing research on this topic in various subjects, there is
still a lack of studies examining students’ learning experiences within immersive
learning contexts where embodied learning activities aim to enhance CT skills and
practices.

Method

Participants

We collaborated with two teachers from a public elementary school in a mid-sized city
in the Midwestern United States. A total of 44 students, aged 7–9, comprising 20 first-
grade and 22 second-grade students, were recruited. Only a few participants had limited
previous experience in programming a robot, and none had learned CTwithin a mixed-
reality environment. This study was approved by the Institutional Review Board (IRB)
at the researchers’ institute. Written informed consent was obtained from all partici-
pants’ parents or legal guardians prior to their participation in the study.

Mixed-Reality Learning Environment

The researchers developed a mixed-reality learning environment where students can
understand and practice CT concepts (symbols and sequences) while navigating a
chessboard-like ground to accomplish CT tasks. On a five-by-five grid (covering a
92 ft2 area), where each cell coordinated locations of an agent and objects, students
were instructed to move (forward or backward) or turn (right or left in 90°) like a robot
to find a path toward a goal (see Figure 1). Virtual objects were visualized through AR
technology at the center of each cell. These objects represented mission items to collect,
obstacles to avoid, or the destination to reach (see Figure 2). The AR technology
detected students’ bodily movements based on the coordination of the board and
provided feedback simultaneously.

Four symbols (⬆: Move Forward, ⬇: Move Backward, ➡: Turn Right, and : Turn
Left) were introduced to the students. Each symbol was presented on the students’
handheld tablet screen in association with their bodily movements. For instance, if
students moved toward the next cell in front, the system displayed the Move Forward
symbol and said, “You just moved forward.” As students moved or changed directions,
the symbols were listed in order at the bottom of the screen, which represented the
sequence of symbols. In this article, we will refer to the mixed-reality learning en-
vironment as “the application” for convenience.
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Intervention

The intervention unfolded in three phases over four days, scheduled within the regular
school day, with the presence of a teacher, an assistant teacher, and four researchers.
The teachers took charge of explaining and demonstrating each intervention phase,
while the researchers facilitated group activities and addressed technological issues.

Figure 1. A student moving on the physical board while seeing virtual objects through the
screen.

Figure 2. Virtual objects shown on the tablet screen.
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In the first phase, a walk-through of the application occurred. The teacher introduced
the learning activity by demonstrating movements on the board (including four allowed
movements and restrictions like moving diagonally), the use of a tablet to view virtual
objects, and tasks to accomplish. The teacher guided students in handling the tablet,
explaining how to navigate the interface, adjust views to explore the virtual objects, and
interact with the application’s features. Students were also shown how to interpret
feedback within the application, with time allocated for them to explore the tablet’s
functions before beginning the tasks. This helped students become familiar with
operating the tablet and understand CT tasks in the application, while also acquiring CT
concepts such as the meaning of symbols and how to organize them into sequences.

The second phase constituted the main learning session, where students engaged in
embodied learning activities to acquire CTskills, which refers to the ability to apply CT
concepts in their practices. Each student individually performed a CT task with teacher
support. Using the application, students carried out the CT task by collecting mission
items while avoiding obstacles and arriving at the destination. Immediate feedback was
provided through the application, including symbols for each movement, accumulated
symbols (sequence), and guidance or warnings related to mission items or obstacles.
The augmented information provided the player with a first-person perspective on the
CT tasks. As this learning session occurred in a classroom with other students ob-
serving individual performances, the tablet screen was live-streamed through a
classroom projector. During this phase, students associated their bodily movements
with symbols and organized them toward a common goal, which was the main learning
objective of this intervention.

The third phase involved programming a robot. Beebot was chosen for our study due
to its codes aligning with the symbol systems learned in the second phase. The Beebot
board, where programming tasks took place, simulated the surface features of the
mixed-reality learning experiences. As shown in Figure 3, students programmed
Beebot to navigate a specific path toward a goal, mirroring the activities from the
second phase. This served as a transfer task, requiring students to apply the CT skills to
robot programming. In this group activity, each group consisted of four to five students
and had the guidance of a researcher. This arrangement allowed students to take turns
programming Beebot and observe their peers’ performances.

Data Collection

The data for this study encompassed the assessment of CT competency, perception of
CT, and performance in robot programming. To assess CTcompetency, a test consisting
of 12 multiple-choice questions was developed (see Figure 4). The test was admin-
istered both before and after the intervention in a paper-and-pencil format. CT
competency was measured in three aspects: CT concepts, tasks to perform, and the
configuration of directions. Regarding CT concepts, four questions tested the meaning
of symbols represented on a board, while eight questions checked the results of or-
ganized symbols (sequence). In terms of tasks to perform, each of the three questions
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assessed the identification of symbol meaning, anticipation of code outcomes, com-
pletion of missing code, and the development of code for a given task. Regarding the
configuration of directions, we evaluated how students would figure out directional
inconsistencies given three different initial directional pieces of information. As il-
lustrated in Figure 5, there could be three different initial directions: one type consistent

Figure 3. Programming Beebot on the board.

Figure 4. Sample questions of the CT Test.
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with the students (a robot facing upward), one type opposite to them (a robot facing
downward), and two types 90° inconsistent with them (a robot facing left or right sides).

The perception of CT in the context of mixed reality was evaluated through a survey
comprising twelve statements. The questionnaire consisted of three constructs: (1) self-
efficacy, (2) attitude toward CT, and (3) confidence in CT. Table 1 presents the
statements for the three constructs. Considering the age of students, the researchers
simplified responses into two options (yes = 1, no = 0).

To evaluate how students apply CT concepts in programming tasks, we observed
students’ Beebot programming performance individually conducted after the

Table 1. Survey Statements Measuring the Perception of CT

Self-efficacy 1. I can program paths with my body movements in AR.
2. I can explain my ideas of codes (sequences) to my friends with body

movements in AR.
3. I can understand codes (sequences) created by others.
4. I can fix errors by changing my positions or directions in AR.

Attitude toward
CT

5. I think programming with AR is useful to learn.
6. I think programming paths with AR is easy to do.
7. I like programming paths with AR.
8. I want to learn more about programming with AR.

Confidence in CT 9. I know how to break down a task to make it easy.
10. I know how to program bee-bot using codes.
11. I know how to use codes to create a step-by-step path.
12. I know how to solve other problems with my experiences of using codes.

Figure 5. Three Beebot programming tasks having different initial directions. Note: In Task 1,
students shared the same directional orientation with Beebot, while in Task 2 and 3, they had
different orientations. The character at the bottom of the board represents a student.
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intervention. In three tasks, the students were asked to program Beebot to navigate from
a starting point to the endpoint, with an additional required stop in between. To test
students’ ability to handle directional information while programming Beebot, each
task presented different directional orientations of Beebot as shown in Figure 5. If
students failed a task, they were allowed to try up to two additional attempts.

Analysis

The current study employed statistical analyses to examine if there were any changes in
CT competency after the intervention. A one-way multivariate analysis of variance
(MANOVA) was conducted to test the difference between pre- and post-tests across the
three aspects of CT competency. Descriptive statistics of students’ perceptions of CT
were calculated.

Students’ Beebot programming performance was evaluated based on the success of
CT task. To be successful, a student should program Beebot to pass the Stop (first
mission) and arrive at End (second mission) as shown in Figure 5. Considering the
complexity of the tasks, the moment of failure was also evaluated (before or after the
first mission). As students were allowed to try the test up to three time, the number of
trials was measured. To identify error types, the researchers employed inductive
thematic analysis (Braun & Clarke, 2006) and categorized errors according to their
shared reasons and patterns. While analyzing the programming performance, the re-
searchers also made a note of students’ voluntary embodiment (e.g., hand gestures
demonstrating Beebot movements) as necessary.

Results

CT Competency

The learning gains after the intervention had been assessed regarding the CT concept
(symbol and sequence), tasks to perform (identifying the meaning of symbols, an-
ticipating the outcome of a given code, completing a missing code, and developing a
code for a given task), and the initial direction of an agent (up, down, and right or left).
Table 2 presents the descriptive statistics of the assessment.

A MANOVAwas conducted with the time of tests as an independent variable and
with the measures of each category as a dependent variable. The MANOVA on the CT
concepts revealed significant differences between the tests, Wilks’ λ ¼ :13,Fð2, 45Þ ¼
149:5, p< :001, η2p ¼ :87: Follow-up univariate analysis indicated that students dem-

onstrated significant learning gains after the invention in both symbol, Fð1, 46Þ ¼
4:95, p ¼ :031, η2p ¼ :10 and sequence, Fð1, 46Þ ¼ 34:12, p< :001, η2p ¼ :43:

The MANOVA on the task type revealed significant differences between the tests,
Wilks’ λ ¼ :12,Fð2, 45Þ ¼ 76:80, p < :001, η2p ¼ :88: Follow-up univariate analysis

indicated that students demonstrated significant learning gains after the invention in
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identifying the meaning of symbols, Fð1, 46Þ ¼ 4:95, p ¼ :031, η2p ¼ :10, anticipating

the outcome of a given code, Fð1, 46Þ ¼ 36:62, p< :001, η2p ¼ :44, and completing a

missing code, Fð1, 46Þ ¼ 10:37, p ¼ :002, η2p ¼ :18. However, students did not

demonstrate a significant learning gain in developing a code for a given task,
Fð1, 46Þ ¼ 3:22, p ¼ :079, η2p ¼ :07.

The MANOVA on the initial direction of an agent revealed significant differences
between the tests, Wilks’ λ ¼ :09,Fð2, 45Þ ¼ 145:9, p < :001, η2p ¼ :91: Follow-up
univariate analysis indicated that students demonstrated significant learning gains
after the invention in configuring upward agent, Fð1, 46Þ ¼ 8:55, p ¼ :005, η2p ¼ :16,

downward agent, Fð1, 46Þ ¼ 11:10, p ¼ :002, η2p ¼ :19, and horizontal agent,

Fð1, 46Þ ¼ 28:39, p< :001, η2p ¼ :38:

Overall, the findings suggest the positive effects from the learning activities on
students’ understanding of CT concepts. Considering the difficulty of tasks, students
demonstrated significant improvement in identifying the meaning of symbols, antic-
ipating the outcome of a given code, and completing a missing code. However, for the
most challenging task -- developing a code for a given task -- they did not show
statistically significant improvement. Regarding the initial direction of an agent,
students performed best when facing the same direction as the agent (upward). When
students had different directional perspectives from the agent, they performed poorer.
However, even in these cases, students demonstrated significant learning gains after the
learning activities.

Table 2. Descriptive Statistics of Learning Evaluation.

Pretest Posttest

Measure M SD M SD F p-value η2p

CT concepts
Symbol (4) 1.79 .954 2.19 1.096 4.95 .031 .097
Sequence (8) 2.19 1.676 4.00 2.011 34.12 <.001 .426

Tasks
Meaning (3) 1.79 .954 2.19 1.096 4.95 .031 .097
Outcome (3) .30 .587 1.36 1.092 36.62 <.001 .443
Missing (3) 1.02 .872 1.49 .953 10.37 .002 .184
Arrange (3) .87 .947 1.15 .722 3.22 .079 .065

Direction
Up (4) 1.74 1.170 2.32 .837 8.55 .005 .157
Down (4) 1.30 .749 1.85 1.083 11.10 .002 .194
Horizontal (4) .94 .942 2.02 1.406 28.39 <.001 .382

Note. The numbers in parentheses represent the number of questions, which is equal to the highest score that
can be obtained.
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Perceptions of CT

Students’ attitudinal aspects were collected after the intervention (see Table 3). Overall
students expressed high self-efficacy regarding CT (M ¼ :95, SD ¼ :122), positive
attitude (M ¼ :80, SD ¼ :177), and great confidence (M ¼ :94, SD ¼ :141).

Beebot Programming Performance

The Beebot programming performance of students was assessed based on individual
tasks, with successes and failures (see Table 4). Students achieved initial success rates
of 46.7%, 30.0%, and 46.7% for Tasks 1, 2, and 3, respectively. This indicates that
approximately half of the students (14 out of 30) successfully completed Tasks 1 and
3 on their first attempts. Moreover, Task 2 proved more challenging, with only 9 out of
30 students succeeding on their initial try.

Students were allowed to solve the problems up to three times after initial failures.
The success rates, inclusive of multiple trials, increased to 63.3%, 43.3%, and 53.3%
for Tasks 1, 2, and 3, respectively. Analyzing the number of trials undertaken revealed
that, on average, students attempted 1.26, 1.31, and 1.13 times before successfully
solving the problems. Notably, some students attempted three times, but none achieved
success on the third trial. This suggests that once students encountered initial failure,
they faced considerable difficulty in solving the problems if unsuccessful in their
second attempts.

The analysis of errors in Beebot programming tasks among students revealed two
main types: turn-related errors and move-related errors (see Table 5). Turn-related
errors occurred when students directed Beebot in the wrong direction (Incorrect Turns)
or neglected to turn when required (Missed Turns). These errors were the most fre-
quently observed, accounting for 58% and 22% of Incorrect Turns and Missed Turns,
respectively. The remaining errors were associated with Beebot’s movements, in-
cluding instances of adding unnecessary or omitting necessary forward and backward
motions, constituting 16% of the total errors.

Considering that there were two targets to pass, we analyzed when the errors
occurred: before or after passing the first target. Among the 78 errors, excluding the
three categorized as ‘other,’ 53 (68%) errors occurred after passing the first target, and

Table 3. Descriptive Statistics of Attitudinal Aspects.

Construct M SD

Self-efficacy .948 .122
Attitude toward CT .803 .177
Confidence in CT .935 .141

Note. Forty-two students responded to the survey, with each construct’s range extending from zero
(negative) to 1 (positive).
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25 (32%) occurred before. This revealed that students made more errors after solving
the first task, which implies that the complexity of the task negatively affected their
performance. In other words, as the tasks became more complex, students made more
errors accordingly.

Discussion

The study aimed to investigate the impact of embodied activities on comprehending the
concepts of symbols and sequences, and subsequently, on programming a robot by
applying these concepts. The results revealed that students exhibited significant
knowledge gains across various dimensions, including CT concepts, tasks to perform,
and directional orientations. In terms of attitudinal aspects related to CT, students
expressed high self-efficacy, a strong positive attitude, and robust confidence after
engaging in the learning activities. Moreover, the study identified specific types of
errors made by students during the robot programming phase, which would provide
valuable insights into understanding student CT learning. In this section, we will
discuss the meaning of the findings and suggest their implications for designing
embodied learning experiences within the context of CT.

Table 4. Performances on Each Task.

Task 1 Task 2 Task 3

# of success at first trial 14 9 14
# of success in total 19 13 16
# of trials to success 1.26 1.31 1.13

Note. The total number of students was 30.

Table 5. Types and Ratios of Errors per Problem.

Type of error Task 1 Task 2 Task 3 Grand total

Turns 17 (70.8%) 29 (87.9%) 19 (79.2%) 65 (80.2%)
Incorrect turns 14 (58.3%) 19 (57.6%) 14 (58.3%) 47 (58.0%)
Missed turns 3 (12.5%) 10 (30.3%) 5 (20.8%) 18 (22.2%)

Moves 5 (20.8%) 4 (12.1%) 4 (16.7%) 13 (16.0%)
Incorrect moves 3 (12.5%) 2 (6.1%) 2 (8.3%) 7 (8.6%)
Missed steps 2 (8.3%) 2 (6.1%) 2 (8.3%) 6 (7.4%)

Other 2 (8.3%) 0 (0%) 1 (4.2%) 3 (3.7%)
Total 24 (100%) 33 (100%) 24 (100%) 81 (100%)
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Embodied Learning Activities for CT

The integration of embodied learning activities within the AR learning environment has
proven to be effective in understanding CT concepts and applying them to CT tasks. In
this study, these immersive learning experiences were designed to instill a sense of
presence and agency among students (Johnson-Glenberg, 2019). The AR-based
learning environment, by seamlessly integrating virtual objects into the physical
space, provided students with interactive embodied learning experiences. In this
context, students were able to map their bodily movements to the CT concepts being
taught. This congruency between physical actions and abstract concepts contributes to
their deeper understanding (Hald et al., 2015; Odermatt et al., 2021). The AR-based
learning environment also offered real-time feedback which allowed students to assess
their performance immediately during the CT tasks. The positive outcomes facilitated
by the immersive embodied learning experiences are consistent with prior research,
highlighting the benefits of embodied learning for CT (Agbo et al., 2023; Zhang et al.,
2023).

One of the main benefits of utilizing embodied learning for abstract concepts is the
enhanced comprehension of concepts and application to problem-solving tasks (Keefer
et al., 2014), which forms different cognitive styles (Allen et al., 2024). The analysis of
the tests revealed that students performed better in tasks with the same directional
orientation (Up) than in those with the opposite directional orientation (Down). No-
tably, the findings indicated that students significantly improved their performance even
in tasks where they had different directional orientations that required higher cognitive
effort. These findings suggested that embodied learning has ultimately led to positive
learning outcomes. However, differences in task performance emerged based on the
task difficulty, as determined by directional orientation.

Interestingly, the differences disappeared in the robot programming tasks, where
students could represent CT tasks with their gestures. When figuring out directional
information in the paper-and-pencil tests, the utilization of embodied cognition could
be limited for students. While programming the robot, however, they could simulate
spatial information onto their hand gestures, which had been observed often. This type
of utilization of embodied cognition allowed students to perform well in the tasks where
they needed to intentionally figure out the directional information, as well as in tasks
where they could intuitively see directional information.

These findings suggest the effects of embodied activities during learning CT
concepts and highlight the significance of leveraging embodied cognition when car-
rying out CT tasks. The study also found that the learning experiences were associated
with positive attitudinal responses from the students. To deepen our understanding of
embodied learning in virtual environments, further analysis of immersive embodied
learning experiences is essential. This includes examining how students perceive
virtual information in association with their movements and how they ground CT
concepts in their bodily actions.
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Cognitive Challenges and Embodied Strategies

The analysis of robot programming performance revealed the types of errors students
made and the contexts in which these errors appeared. Not surprisingly, students made
more errors as the tasks became more complex, which added more intrinsic cognitive
load (VanMerriënboer & Sweller, 2005). The low success rates after unsuccessful trials
suggested that the initial failures were not mere mistakes but rather a result of in-
sufficient skills or knowledge related to the complexity of the tasks. This implies
students’ performance on the CT tasks could indicate their mastery of the learning
objectives.

Considering the cognitive tasks students carried out while programming a robot,
they were required to trace the changes in the robot’s location and direction according to
the codes they entered. Here, the CT tasks involved converting spatial information
(including direction and distance) into codes (Qiu et al., 2019). The frequency of error
types indicated that cognitive tasks dealing with directional information were more
challenging than those involving distance information. At this point, it is interesting to
examine how students utilized the embodiment they experienced.

A close examination of student performance during robot programming tasks
unveiled that some students employed embodied learning strategies to figure out spatial
information. For example, using an index finger to count the number of cells was an
effective means to convert distance information through a hand gesture. Turning one’s
left hand toward the proper direction, mimicking the robot’s turn, helped a student
process directional information. Additionally, we observed less effective methods of
embodiment, such as pointing to cells without accompanying turning gestures, which
failed to explicitly represent directional information (turning right or left). This in-
sufficient embodiment often resulted in errors: turning in the opposite direction.

The results of the current study indicate that embodiment, when adopted appro-
priately, can enhance cognitive function and facilitate problem-solving performance, in
line with existing literature (Macedonia, 2019; Zhong et al., 2023). However, due to the
limitations of the research design, we did not investigate how embodiment was
voluntarily utilized by students or how it could be trained, including factors influencing
its effectiveness in problem-solving tasks. Future studies exploring these aspects, such
as voluntary utilization or training to employ embodied strategies, can contribute
significantly to the embodied learning literature.

Conclusion

As the advance of technologies has allowed mixed-reality experiences, the potential of
embodied learning activities utilizing immersive learning has gained more attention in
the education field. However, there is still a lack of studies exploring their educational
effects and suggesting instructional design principles to implement embodied learning
strategies in K-12 settings. In this context, the current study contributes to the literature
by revealing the positive impacts of embodied learning activities within a mixed-reality
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learning environment. It also deepens our understanding of embodiment in learning CT
by analyzing the errors students made while carrying out CT tasks. This study calls for
future research that closely examines students’ embodied learning experiences, their
learning trajectories, and the utilization of embodiment in problem-solving to further
advance our understanding in this regard.
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