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Abstract. Metacognition is the concept of reasoning about an agent’s
own internal processes and was originally introduced in the field of devel-
opmental psychology. In this position paper, we examine the concept of
applying metacognition to artificial intelligence. We introduce a frame-
work for understanding metacognitive artificial intelligence (AI) that we
call TRAP: transparency, reasoning, adaptation, and perception. We dis-
cuss each of these aspects in-turn and explore how neurosymbolic AI
(NSAI) can be leveraged to address challenges of metacognition.
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1 Introduction

Metacognition is the concept of reasoning about an agent’s own internal pro-
cesses and was originally introduced in the field of developmental psychology [17]
as a description of higher-order cognition. This “cognition about cognition” is
regarded by some as a self-monitoring process that is integral to the function-
ing of the human mind [13]. It has been studied extensively in the fields of
manufacturing [28], aerospace [23], transportation [2,6,20], and military appli-
cations [32]. We argue for the study of metacognitive artificial intelligence which
deals with the reasoning about an artificial agent’s own processes. This idea
actually has been studied on and off in the history of AI [8,9], but recent devel-
opments indicate that this area deserves a renewed focus. Specifically, despite
large scale industry investments in AI, major failures still occur - which indicates
that pure engineering solutions are unlikely to solve these fundamental failures.
Consider the following examples:

– Large language model falsely accuses a professor of sexual harassment [30].
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– Autonomous robot taxi in San Francisco accidentally drags a woman for 20 ft
causing major injury [16].

– Reinforcement learning model has to be retrained to play with slight changes
in the environment [24,35].

– Robot mistakes a man for a box in South Korea and crushes him to death [4].

Each of these case studies exhibits a different modality of AI failure. The first
item illustrates a failure of Transparency - the system generated information
that was false and could not provide a way to check itself on the facts. The second
illustrates a failure in Reasoning - how the system synthesizes information and
ultimately produces a decision. The third illustrates a failure of Adaptation
- the system could not accommodate itself in a new environment. The fourth
illustrates a failure in Perception - how the system recognizes entities in its
environment. In this introduction, which stemmed from the 2023 ARO-sponsored
Workshop on Metacognitive Prediction of AI Behavior, we argue that the study
of metacognitive AI should encompass these four areas (TRAP), as is shown in
Fig. 1. In this paper, we build on our recent ARO-sponsored workshop event [36]
and examine each of these aspects and then discuss how neurosymbolic AI can be
used as an approach to address challenges in metacognition.

Fig. 1. Four aspects of metacognitive AI (TRAP) and approaches to achieve metacog-
nition

2 The TRAP Framework for Metacognition

A traditional artificial intelligence (AI) system could be simplified as y = fθ(x),
where x is the input for the AI system; y, depending on applications, could be
a description, prediction, or actions to take; and fθ is the operational function
in most AI systems with parameters θ. A metacognitive AI system could be
an additional function g. With different metacognitive areas, g is in different
locations concerning f . With this framing in mind, we examine each aspect of
the TRAP framework below.
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Transparency. While traditional AI can sometimes be perceived as a ‘black
box’, metacognitive AI enhances trust and transparency by making the decision-
making process in black-box AI more understandable to users. This is achieved
through the function g(f(x), θ) or the function g|f . The function g(f(x), θ) rep-
resents the process of generating explanations based on both the input x and the
parameters θ of the model f , while the function g|f represents the function f
with a series of g. This function allows metacognitive AI to explain its decisions
in terms of both the input data and its internal parameters, catering to different
user expectations and motivations for seeking explanations.

On one hand, the nature of the explanation can vary significantly depending
on whether it’s intended for an expert with technical knowledge or a layperson.
If they are looking to understand why certain outputs come from a global per-
spective, then the focus is to have g(θ) to make the θ transparent; if users are
looking to understand certain cases, then the focus is to have g(f(x)) to under-
stand a certain prediction f(x) on x. On the other hand, the purpose behind an
explanation necessitates a different approach to how explanations are formulated
and presented: is the explanation for enhancing the performance of the system,
reducing bias, increasing fairness, or simply deriving a clearer understanding
of the AI’s decision-making process? Enhancing the performance of the system
through transparency could involve using the explanations to correct predic-
tions or induce actions g|f where the understanding outputted from g is then
processed by the AI system to better learn f . [29] argued building cognitive
models of both the AI and the human user that could be introspected upon to
adapt explanations according to the discrepancy between the two models, e.g.,
when the AI decision does not conform to the human model’s expectations. [34]
applied explainable AI framework to a real-world clinical machine learning (ML)
use case, i.e., an explainable diagnostic tool for intensive care phenotyping. Co-
designing with 14 clinicians, they provided five explanation strategies to mitigate
decision biases and moderate trust. They implemented an early decision aid sys-
tem to diagnose patients in an Intensive Care Unit (ICU) and found that users
employed a diverse range of explainable AI facilities to reason.

Reasoning. Traditional AI systems f often rely on predefined algorithms and
data sets for reasoning or decision-making, which can limit their effectiveness in
dynamic or unfamiliar scenarios. In contrast, metacognitive AI incorporates self-
reflection and self-awareness into its logic, represented by f(x; g(θ)). This indi-
cates how the AI’s self-reflection (through g) informs its decision-making process
(through f), enhancing its reasoning capabilities. For instance, a metacognitive
AI in healthcare could use this approach to evaluate and refine its diagnostic
criteria over time, learning to differentiate between complex cases and refining
its diagnostic criteria based on outcomes. This leads to decisions that are not
only based on data but also enriched by the AI’s growing experiential knowledge,
resulting in more accurate and reliable outcomes.

In [33], the authors showed that model-based reflection may guide reinforce-
ment learning with two benefits: The first is a reduction in learning time as
compared to an agent that learns the task via pure reinforcement learning. Sec-
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ondly, the reflection-guided RL agent shows benefits over the pure model-based
reflection agent, matching the performance of that agent in the metrics measured
in addition to converging to a solution in fewer trials. In addition, the augmented
agent eliminates the need for an explicit adaptation library such as is used in
the pure-model-based agent and thus reduces the knowledge engineering burden
on the designer significantly. In [3], a novel technique called Hindsight Experi-
ence Replay was introduced, whose intuition is to re-examine the trajectories
with a different goal - while a trajectory may not help learn how to achieve the
desired goal, it tells us something about how to achieve the state in the actual
trajectory. They demonstrated this approach on the task of manipulating objects
with a robotic arm on three different tasks: pushing, sliding, and pick-and-place,
while the vanilla RL algorithm fails to solve these tasks.

Adaptability. Adaptation in metacognitive AI encapsulates the system’s abil-
ity to detect and correct errors of internal conditions and to flexibly adapt its
behavior and strategies. This is represented by f ′(x; g(f(x), θ)), where f ′ is the
adapted model based on the metacognitive assessment g of the original model’s
output f(x) and parameters θ. This notation reflects how metacognitive AI
adapts by reassessing its outputs and parameters, allowing for more effective
decision-making in the face of uncertainty and changing environments [10,39].
Additional adaptations could also be implemented with g(x)?f(x) : h(x), where
the metacognitive process g decides whether to use the main function f or an
alternative function h based on its analysis of the input x. This could model AI
systems that choose different processing paths based on metacognitive assess-
ment without modifying f . Such systems can adapt to new environments and
tasks by understanding their learning process and limitations. [27] showed that
uncertainty-informed decision referral can improve diagnostic performance. More
recently, another metacognitive approach allowing for adaptability known as
error detection and correction rules (EDCR) was introduced [37]. In this frame-
work, function g results in a set of learned rules that characterize the failure
modes of f and how to correct on those failure modes while f ′ is an inference
process conducted using these rules to erase or change the results of the under-
lying model f . In [37] the authors applied this technique to the classification of
geospatial movement trajectories and examined performance improvement on f ,
where the current state-of-the-art is neural architecture known as LRCN [26].
EDCR was able to both improve over the state-of-the-art as well as exhibit the
ability to improve performance when exposed to out-of-distribution data.

Perception. Perception refers to the ability to interpret sensory information to
understand the environment. Perception in metacognitive AI involves the sys-
tem’s ability to interpret and understand sensory information, such as visual and
auditory data, in a context-aware manner, represented by f(g(x), x), where con-
text is a metacognitive assessment of the AI’s own capacity rather than an
external context. Here, f represents the primary perceptual processing function,
interpreting sensory data like visuals or audio, while the metacognitive function
g specifically evaluates the accuracy and limitations of the AI’s own sensory pro-
cessing. The primary perceptual function f then uses both the original sensory
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input x and the metacognitive assessment g(x) to refine its interpretation. This
dual-input model allows the AI to recognize and compensate for any inherent
biases or weaknesses in its perception. This could include AI in autonomous
vehicles that must interpret complex visual environments, in medical imaging
distinguishing subtle diagnostic details, or in environmental monitoring systems
that detect and analyze changes through sensory data.

3 Neurosymbolic AI for Metacognition

In the previous section, we introduced the TRAP framework of metacognitive
AI , which provides a structured approach to understanding how metacognitive
elements augment traditional AI systems. Building upon this foundation, in
this section, we explore the emerging field of neurosymbolic AI (NSAI) and
its profound implications for metacognition. NSAI refers to the integration of
connections (e.g., neural) with symbolic (e.g., logical) systems. This term was
coined in the early 2000s and has gained wider prominence in recent years [18,
21,25,31]. The key relationships between NSAI and metacognition relate to the
ability to use symbolic knowledge and perceptual models to detect and correct
errors in each other (adaptability) and the use of symbolic languages to express
information about error modes of a perceptual model (transparency).

With the introduction of Logic Tensor Networks [5] the canonical paradigm
for NSAI has consisted of guiding gradient descent with the addition of soft
logical constraints in the loss function - and this was followed by related
work [19,38]. In general, these loss-based approaches would not fit the metacog-
nitive paradigm, as in these incarnations of NSAI, the symbolic logic is used
as an additional optimization criteria - in much the same way as one would a
regularization term. However, more recent views on NSAI do lend themselves to
metacognition - in particular with respect to adaptability and transparency.

The key intuition in the use of NSAI for metacognitive adaptability is to lever-
age symbolic domain knowledge to explicitly identify errors in a neural model,
allowing for some corrective action to be performed. One well-known approach
for NSAI metacognitive adaptability is abductive learning (ABL) [11]. Using the
paradigm of adaptability introduced in this paper, function f ′ returns a result
based on the combination of a perceptual model, a-priori domain knowledge (i.e.,
a logic program), and abduced error information (function g in our framework).
Here, function g is abduced based on inconsistencies between the perceptual
model and domain knowledge and can take the form of additional symbolic
structures added to the logic program and/or updates to the perceptual model
(f in our framework). ABL has been shown to provide SOTA performance on
combined perception-reasoning tasks as well as application to the identification
of new concepts as shown in [22]. More recent applications of NSAI to metacog-
nitive adaptability have sought to disentangle perceptual updates from the base
perceptual model. Specifically, [7] introduces a framework where an additional
transformer model (g in our framework) is used to predict errors in the under-
lying neural (f) using symbolic knowledge and reinforcement learning to detect
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and correct perceptual errors. The work of [37] also addresses perceptual errors
but using a rule-learning approach - here rules are learned about the results of
the neural model that allow for error detection and correction while providing the
byproduct of an explanation of the errors.

Complementary to the NSAI work relevant to metacognitive adaptability is
NSAI work relating to metacognitive transparency. Here, NSAI is used to reason
directly about the inner workings of a perceptual model, often for a downstream
task involving an explanation of the perceptual results. One example of such
work is [1] where a binarized neural network is used to produce a symbolic theory
of perception used in a downstream task of appreciation, providing an explana-
tion of the perceptual results. Another application of NSAI to transparency deals
with the use of concept induction [12] to map activations in a neural network to
an explanation using description logic - thereby providing transparency.

4 Challenges

The idea of metacognitive AI leads to many open questions. In the application
of NSAI to metacognition, there are several such as the challenge of creating
symbolic structures to reason about (e.g., using inductive logic programming to
obtain a knowledgebase [15], leveraging common sense knowledge [14] - both
still have major challenges). More broadly, there are challenges that apply to
metacognitive AI in general, which include the following:

– Generalization to Diverse Dynamic Environments. Metacognitive AI must be
capable of adapting to rapidly changing and unpredictable environments, or
at least know when it is incapable.

– Designing for Continuous Self-Improvement. Enabling AI systems to not only
identify their weaknesses or errors but also to autonomously modify their
behavior and learning strategies for continuous improvement.

– Ensuring Ethical and Responsible Metacognition. As metacognitive AI sys-
tems will have a higher level of autonomy in decision-making, ensuring that
these decisions are ethically and morally responsible.

– Interpreting Metacognitive Processes. While explainability in AI is already a
challenge, making the metacognitive processes of AI interpretable and under-
standable to humans adds an extra layer of complexity.

– Benchmarking Datasets and Baselines. Such benchmarks would afford vali-
dation of an AI’s self-assessment and adaptive learning capabilities are func-
tioning as intended, which requires human assessment.

While the ideas of metacognitive AI are still very new, the ideas of error
correction have previously been used to establish the foundations for technologies
such as computer networking and digital signal processing. We believe a formal
study of the topic with respect to AI may yield similar advances in the future.
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