

Cardiovascular Reactivity During Conversations About Discrimination is Buffered by Social
Support Among U.S. Latines

Hannah I. Volpert-Esmond^{a*}

Jessica R. Bray^b

Samantha M. Pages^a

Chad Danyluk^c

^aUniversity of Texas at El Paso, Department of Psychology, 500 W. University Ave, El Paso, TX, 79968

^bUniversity of Kentucky, Department of Psychology, Kastle Hall 115, Lexington, KY, 40506

^cCarleton University, Department of Psychology, 1125 Colonel By Dr, Ottawa, Ontario, K1S 5B6, Canada

*corresponding author email: hivolpertes@utep.edu

Accepted for publication at Scientific Reports

Abstract

3 Racial discrimination is conceptualized as an acute and chronic stressor. Like other acute
4 stressors, lab-based studies demonstrate acute effects of discrimination-related stressors on
5 stress-related cardiovascular outcomes, including total cardiac output, blood pressure, and
6 indices of sympathetic and parasympathetic nervous system activity. Critically, it is important to
7 understand how individual and social factors buffer the experience of race-related acute stress.
8 The current study extends existing work by measuring cardiovascular indices of stress during
9 conversations about racial/ethnic discrimination and examines the moderating role of social
10 support. Latine/Hispanic participants ($N = 97$) talked about personal discrimination experiences
11 with either a close **other** or a research assistant they had never previously met. Participants in
12 both conditions exhibited cardiovascular reactivity indicative of stress during the conversation.
13 Additionally, patterns of reactivity reflected a more adaptive stress response and recovery profile
14 when participants talked about discriminatory experiences with a close other relative to a
15 stranger (less parasympathetic withdrawal during the stressor and more parasympathetic rebound
16 during recovery). These patterns are consistent with a *stress buffering* account of social support,
17 which suggests social bonds and community-level support are critical to consider in interventions
18 to mitigate the harms of experiencing discrimination and prevent chronic health disparities.

19 Experiences of racial discrimination are pervasive for members of minoritized racial/ethnic
20 groups. More than half of U.S. Latines, for example, report experiencing discrimination due to
21 their race, perceived intelligence, and language proficiency ¹. Experiencing discrimination is
22 linked to both psychological and physical health outcomes, including cardiovascular disease and
23 mortality rates ²⁻⁵. This relationship has been demonstrated for various minoritized racial/ethnic
24 groups in the US, including Latine/Hispanic individuals ⁶⁻⁸. To explain the relationship between
25 discrimination and health, discrimination has been conceptualized as both an acute and chronic
26 stressor (e.g., Clark et al., 1999). Within this perspective, repeated experiences of discrimination-
27 related stress that activate momentary adaptive changes in cardiovascular, immune, and
28 neuroendocrine functioning contribute over time to chronic dysregulation in physiological
29 functioning, resulting in racial disparities in health across a broad spectrum of health outcomes.
30 Critically, both individual-level and group-level factors have been identified that buffer the
31 negative impacts of discrimination on health, including social support ¹⁰, although, the
32 mechanisms by which social support may disrupt the negative impact of discrimination on health
33 are understudied, especially for Latine/Hispanic people. The current study examines how
34 culturally relevant social support among Latines reduces cardiovascular reactivity during
35 conversations about discrimination, which has implications for reducing adaptive “wear and
36 tear” on the body in the long term and may function as a protective factor for both physical and
37 psychological health.

38 **Discrimination as an Acute Stressor**

39 Cardiovascular disease is among the leading causes of death in North America and is
40 experienced more frequently by minoritized racial/ethnic groups ^{11,12}. Repeated experiences of
41 racial/ethnic discrimination have been linked to increased risk for cardiovascular disease ^{4,13,14}.

42 To understand this link, the *biopsychosocial model*⁹ conceptualizes discrimination as a stressor
43 similar to other physical or psychological stressors. In response to acute stressors, the human
44 body activates the sympathetic nervous system and deactivates the parasympathetic nervous
45 system, similar to patterns seen during increased metabolic demand, such as exercise¹⁵. This
46 stress response is a state of high energy expenditure and, once the stressor has passed, the body
47 rapidly returns to a more energy-efficient resting state¹⁶. When acute stressors accumulate over
48 time, however, without adequate opportunity for the individual to recover, such stressors become
49 chronic, contributing to load on systems that regulate responses to environmental changes and,
50 ultimately, producing the kind of bodily wear and tear that can result in cardiovascular disease.

51 In support of the conceptualization of discrimination as an acute stressor, experimental
52 lab studies demonstrate that perceiving discrimination results in stress reactivity: increased blood
53 pressure and heart rate¹⁷⁻¹⁹, decreased parasympathetic activity²⁰⁻²², increased sympathetic
54 activity²²⁻²⁴ and increased cortisol production²⁵. Over time, repeated experiences of
55 discrimination and resulting stress responses can contribute to cumulative load in these
56 regulatory systems that leads to racial disparities in physical health, including in cardiovascular,
57 immune, and neuroendocrine functioning^{14,26}. Although much of this research has been done
58 with Black participants, studies have shown both acute and chronic effects of discrimination
59 among Latinx/Hispanic participants, including acute effects on heart rate, blood pressure,
60 sympathetic and parasympathetic activity, and cortisol^{24,27-29}, as well as chronic, lifetime effects
61 on physical health³⁰⁻³³. Latinx are the largest ethnic minority group in the U.S. and report
62 experiencing discrimination at similar rates as other racial/ethnic minority groups within the U.S.
63^{34,35} and thus compose an important but understudied group.

64 **Conversations about Discrimination in the Lab**

65 Lab-based research on the acute effects of discrimination often ask participants to
66 imagine their responses to written or audio/visual vignettes of discrimination ^{17,19,20,23,36–39}. For
67 example, an early study examining blood pressure had participants view video clips that were
68 either neutral, racist, or anger-provoking ⁴⁰. Another study had Black participants listen to a 2-
69 minute audio clip describing an incident involving unfair treatment of a person while shopping
70 and give a 5-minute speech on how they would feel and react if they were in that scenario ¹⁸.
71 Other work has involved simulation of discrimination in the lab, typically using confederates ^{27–}
72 ^{29,41–46}. For example, Hoggard et al⁴⁷ included a manipulation where Black participants
73 “accidentally” overheard a conversation between the experimenter and confederate describing
74 the participant as intellectually inferior because of their race. In another study, Latine participants
75 were randomly assigned to an interaction with the experimenter that included a microinsult
76 (“You speak English really well”) or a microinvalidation (“Where are you really from?”) or no
77 discrimination ²⁷. Recently, additional technologies such as virtual reality have been used to
78 increase the realism of such simulations ⁴⁵.

79 Such lab-based work has the benefit of making the discrimination exposure consistent
80 across participants; however, depending on participants’ own experiences, imagined or simulated
81 discrimination in the lab may or may not reflect a participant’s own lived experiences. In
82 response to this, some work has asked participants to recall their own experiences of
83 discrimination ^{22,48}, which has the benefit of making experiences salient that have personal
84 relevance to the participant. The present study expands on this by examining Latine participants’
85 own experiences of discrimination through discussion with a conversation partner while
86 cardiovascular stress reactivity is measured.

87 **Social support as a protective factor**

88 Given the prevalence of experiencing discrimination and its negative consequences, it is
89 important to consider protective buffering factors that can mitigate the negative effects of
90 discrimination. Although Latines experience higher levels of obesity, diabetes, and other
91 cardiometabolic risk factors than non-Latine Whites ⁴⁹⁻⁵¹ and worse social determinants of health
92 (e.g., income, access to health services, exposure to contagious illnesses),^{52,53} some studies show
93 that Latines and Mexican-Americans in particular do not experience worse cardiovascular health
94 or mortality in general, possibly because of effective socio-cultural buffering factors ⁵¹. Several
95 protective factors that may mitigate the effect of stress and discrimination on health are
96 particularly important for Latines, including cultural values of familism and resulting social
97 support prevalent in Latine communities. Familism refers to the cultural emphasis on one's
98 family as the main source of emotional and instrumental social support when needed and
99 includes elements of loyalty, reciprocity, and solidarity within one's family ⁵⁴⁻⁵⁷. Familism has
100 been shown to have a protective effect by promoting resilience among those experiencing
101 acculturative conflict and is related to lower levels of internalizing symptoms, depression, and
102 suicidality ⁵⁷⁻⁶³. However, it is unclear whether and how strong family relationships attenuate the
103 negative effect of discrimination on cardiovascular stress and mental health.

104 One possibility is the *stress-buffering hypothesis*, which suggests that close others and
105 social relationships affect cardiovascular, immune, and neuroendocrine functioning during the
106 experience of stress, which reduces allostatic load and potentially prevents the development of
107 chronic health disparities ⁶⁴. The ability for social relationships to buffer stress, including
108 cardiovascular functioning, is well established with non-Hispanic participants and non-race-
109 specific lab-based stressors ^{65,66}. Passive, physical, and verbal forms of social support have all
110 been shown to buffer cardiovascular stress responses ⁶⁷⁻⁶⁹. Additionally, both strangers (e.g., lab

111 confederates) as well as existing supports (e.g., friends, family members, significant others) have
112 been shown to function as effective stress-buffers in the lab⁷⁰⁻⁷². However, most experimental
113 research testing the stress-buffering hypothesis has included only non-Hispanic White
114 participants reacting to non-race-specific forms of stress.

115 Given the buffering effect of social support on cardiovascular stress reactivity among
116 non-Hispanic White participants, as well as the positive effect of social support in other health
117 domains among Latines, it stands to reason that familism and social support among Latines may
118 buffer the negative effects of discrimination-related stress on physical health, specifically via
119 cardiovascular reactivity to acute stressors. Two studies to date have examined the role of
120 familism among Latines in moderating cortisol reactivity during a race-neutral lab-induced
121 stressor with mixed results^{73,74}. In both studies, familism was measured prior to the stressor via
122 self-report, and there was no element of social support (i.e., the presence of another person)
123 during the stressor. The current study applies a social support paradigm used in other stress
124 buffering research to test the possibility that the presence of family support *during* a race-specific
125 stressor (e.g., recalling a personal experience of racial/ethnic discrimination) reduces
126 cardiovascular stress reactivity, which may mitigate the negative impact of discrimination on
127 downstream health outcomes.

128 **Current study**

129 The current study extends existing work by testing the possibility that the presence of
130 close others during recall of a personal experience of racial/ethnic discrimination buffers the
131 acute response typically experienced during a race-relevant stressor, thereby functioning as a
132 protective factor for both physical and psychological health. In our paradigm, participants
133 brought someone they were personally close with to the lab and had a conversation about their

134 own personal experiences with discrimination, either with that close other or with a Latinx
135 laboratory research assistant they had never met before. Indices of cardiovascular stress
136 reactivity were measured during a 5-minute baseline, the 10-minute conversation about the
137 participant's experiences with discrimination (Discrimination Speaking Task; DST), and a 5-
138 minute recovery period. We hypothesized that the DST would induce stress reactivity and
139 changes in momentary affect and that social support from close others would buffer stress. The
140 moderating roles of ethnic identity, familism, and prior experiences with discrimination on stress
141 reactivity were explored.

142 We report three indices relevant to cardiovascular stress reactivity: Interbeat interval
143 (IBI), cardiac sympathetic index (CSI), and respiratory sinus arrhythmia (RSA). IBI is the
144 inverse of heart rate, measured as the amount of time in milliseconds between R spikes in the
145 electrocardiograph (ECG) waveform, and is a global measure of hemodynamic function
146 reflecting influences of both sympathetic (SNS) and parasympathetic nervous system (PNS)
147 activation. Acute psychological stress tasks consistently elicit decreases in IBI (less time between
148 heart beats) in response to acute stress¹⁵. Since IBI is a multiply determined cardiovascular end
149 point, we additionally indexed SNS and PNS influences separately using CSI and RSA,
150 respectively. Both are derived from rhythmic fluctuations in heart rate during respiration and
151 capture unique autonomic influences on the heart. SNS and PNS activity, which we measure with
152 CSI and RSA respectively, have potentially differential consequences for long-term health¹⁵.

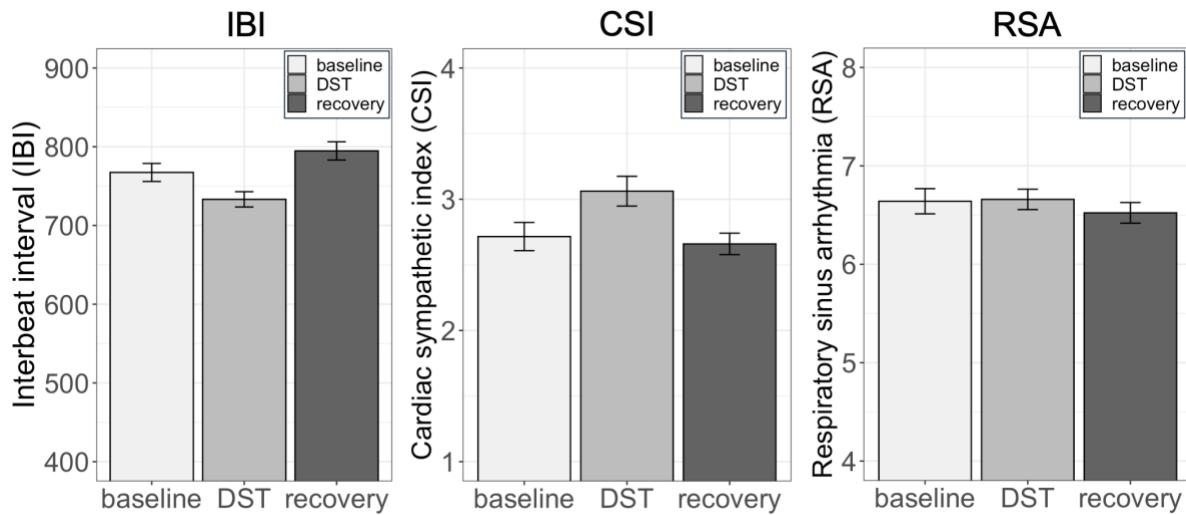
153 CSI, a putative measure of SNS activity, is derived from a Lorenz plot, where each IBI is
154 plotted against the subsequent IBI⁷⁵. The transverse axis reflects beat-to-beat variation in the IBI
155 time series while the longitudinal axis reflects the IBI range. CSI, the ratio of L/T, is unaffected
156 by parasympathetic blockades but decreases with sympathetic blockades in healthy adults⁷⁵. A

157 reasonable amount of evidence suggests that CSI is a useful index of sympathetic influence over
158 the heart. CSI increases with administration of intravenous cocaine ⁷⁶. Changes in CSI relate to
159 mental disorders linked with dysregulated SNS activity ^{77,78}. CSI also increases in response to
160 novel, socially evaluative tasks ⁷⁹. Evidence for CSI changes across tasks is somewhat equivocal
161 ^{75,80}; however, some have found that it reliably discriminates between resting and stressor tasks⁸¹.
162 In contrast, RSA, thought to reflect PNS influences over the heart through the vagus nerve, is
163 derived by performing spectral analysis on the high-frequency respiration band of the IBI time
164 series data. RSA is often interpreted as a biomarker of self-regulation in response to rapidly
165 changing environmental demands ⁸²⁻⁸⁴.

166 During acute stress, SNS activity increases due to beta-adrenergic sympathetic activation
167 in a “fight or flight” response before returning to baseline once the stressor has passed. Over-
168 activation of this response has been associated with anxiety disorders and PTSD ^{85,86}. In response
169 to stress, PNS activity typically decreases, representing vagal withdrawal or an orienting
170 response in preparation for motor or emotional responses to match the situation. PNS withdrawal
171 itself can be adaptive, as it prepares an individual to react to a stressor or stimulus. However,
172 heightened withdrawal is considered maladaptive, as it indicates an “over-preparation” for the
173 stressor and results in over-expenditure of physiological resources that do not match the
174 metabolic demand ^{83,87,88}. Once the stressor has passed, PNS activity typically increases past
175 baseline levels (“vagal rebound”) before returning to baseline^{84,89}. Lack of vagal rebound
176 predicts development of cardiovascular disease, including chronic hypertension⁹⁰.

177 Results

178 Manipulation Checks


179 **Was the DST stressful?** First, we checked whether the Discrimination Speaking Task
180 was stressful by comparing IBI, RSA, and CSI across the three periods (baseline, DST, and
181 recovery; Figure 1). We used a mixed effects model **to test each outcome separately**, with a
182 random intercept by Participant to account for the repeated measures nature of the data, along
183 with Period as the fixed effect. **The following covariates were additionally included: BMI (mean-
184 centered), age (mean-centered), gender (0 = woman, 1 = man, 2 = trans/non-binary), alcohol in
185 the last 24 hours (0 = no, 1 = yes), caffeine in the last 2 hours (0 = no, 1 = yes), and whether the
186 participant ate in the last 2 hours (0 = no, 1 = yes). Analyses for unadjusted models are included
187 in the Supplementary Material.** We used the lme4 ⁹¹ and lmerTest ⁹² packages in R (version
188 4.2.1) to fit the models and the emmeans package ⁹³ for post-hoc comparisons **(all reported
189 means are model-estimated means)**. Data and code for analysis can be found at
190 [<https://osf.io/28bnz/>].

191 As expected, there were significant changes in IBI across time periods (Figure 1). IBI
192 decreased significantly from the baseline period ($M = 807$ ms, $SE = 40$ ms) to the DST period (M
193 = 773 ms, $SE = 40$ ms), $t(160) = -7.2, p < .001$, **Cohen's $d = -1.13$** . and then increased
194 significantly to the recovery period ($M = 834$ ms, $SE = 40$ ms), $t(160) = 12.7, p < .001$, **Cohen's d**
195 = 1.99, which is consistent with the conceptualization of the DST as an acute stressor. Our
196 measure of sympathetic activity—CSI—was consistent with this conceptualization as well. CSI
197 significantly increased from the baseline period ($M = 2.78, SE = 0.30$) to the DST period ($M =$
198 3.13, $SE = 0.30$), $t(160) = 3.1, p = .006$, **Cohen's $d = 0.49$** , and then significantly decreased to the
199 recovery period ($M = 2.73, SE = 0.30$), $t(160) = -3.5, p = .002$, **Cohen's $d = -0.55$** . However, RSA
200 did not significantly change from the baseline period ($M = 6.89, SE = 0.37$) to the DST period (M

201 $= 6.90$, $SE = 0.37$), $t(160) = 0.1$, $p = .997$, Cohen's $d = 0.01$, nor from the DST period to the
 202 recovery period ($M = 6.77$, $SE = 0.37$), $t(160) = -1.3$, $p = .406$, Cohen's $d = -0.20$.

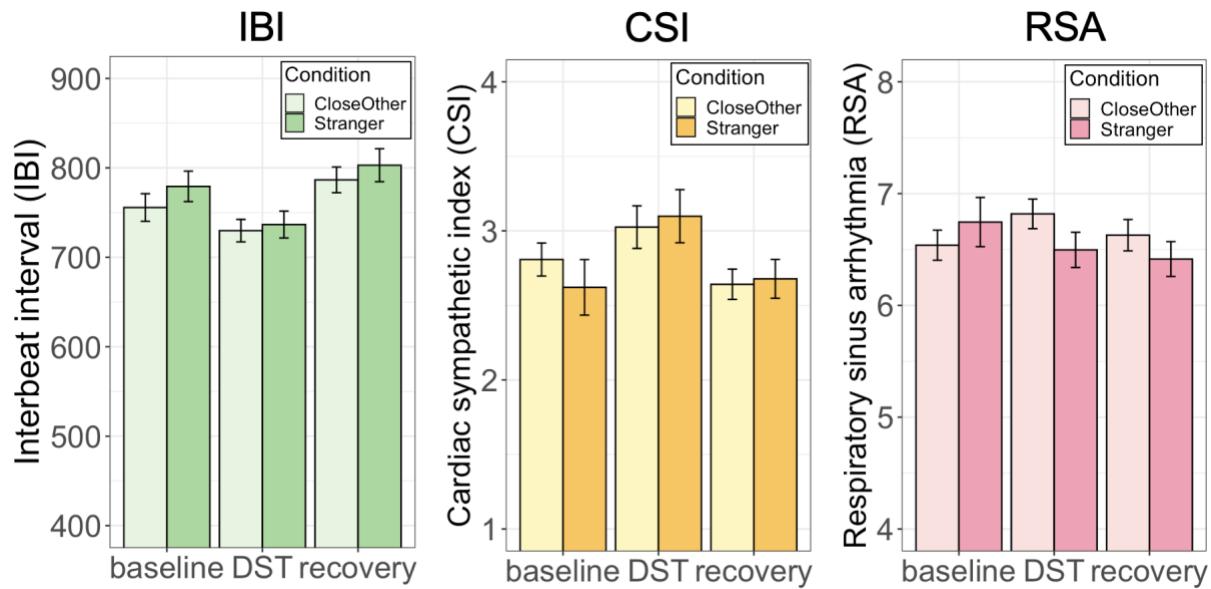
203 **Figure 1**

204 *IBI, CSI, and RSA, Separately by Period*

205

206 Some significant effects of covariates were noted. There was a significant effect of eating
 207 within the last 2 hours on IBI, such that eating corresponded with a lower IBI, $b = -45.4$, $t(73) = -$
 208 2.0 , $p = .046$, $d = -1.48$. There was a significant effect of age on CSI, $b = 0.06$, $t(73) = 2.8$, $p =$
 209 $.007$, $R^2_{semi-partial} = 0.053$, and on RSA, $b = -0.06$, $t(73) = -2.3$, $p = .027$, $R^2_{semi-partial} = 0.043$,
 210 where being older was associated with a higher CSI and a lower RSA. All other effects of
 211 covariates were not significant.

212 **Did perceived support differ across experimental conditions?** Our experimental
 213 manipulation (i.e., whether participants talked about their experiences of discrimination with a
 214 close other versus a stranger during the DST) was intended to manipulate the level of social
 215 support the participant received during the stressor. To check this manipulation, we compared
 216 level of perceived social support during the DST according to experimental condition.


217 Participants in the stranger condition reported significantly lower levels of perceived support (M
 218 $= 3.67$, $SE = 0.12$) than participants in the close other condition ($M = 4.45$, $SE = 0.12$), $t(81) =$
 219 4.7 , $p < .001$, Cohen's $d = 1.04$, suggesting strangers were perceived as less supportive than close
 220 others, as expected.

221 **Effect of Condition on Cardiovascular Stress**

222 To examine the effect of condition, we added condition as a fixed predictor to the
 223 previously describe multilevel models including all covariates and examined the Condition \times
 224 Period interactions.

225 **Figure 2**

226 *IBI, RSA, and CSI, Separated by Period and Experimental Condition (Close Other versus*
 227 *Stranger)*

228
 229 **IBI.** There were no significant interactions between period and condition predicting IBI
 230 (see Figure 2). Although there was a slightly larger decrease in IBI from baseline to DST in the
 231 stranger condition ($M_{diff} = -42.7$ ms, $SE_{diff} = 6.8$ ms) relative to the close other condition ($M_{diff} = -$
 232 26.7 ms, $SE_{diff} = 6.9$ ms), this difference was not significant, $t(158) = 1.7$, $p = .100$, $R^2_{semi-partial} =$

233 0.00. There was also no significant difference across conditions in change from DST to recovery,
 234 $t(158) = 1.1, p = .283, R^2_{semi-partial} = 0.00$.

235 **CSI.** There were no significant interactions between period and condition predicting CSI,
 236 including no differences as a function of condition from baseline to DST, $t(158) = 1.06, p = .289$,
 237 $R^2_{semi-partial} = 0.00$, or from baseline to recovery, $t(158) = -0.16, p = .870, R^2_{semi-partial} = 0.00$.

238 **RSA.** There was a significant interaction between period and condition, specifically when
 239 considering change in RSA from baseline to DST, $t(158) = 2.52, p = .013, R^2_{semi-partial} = 0.01$.

240 Participants in the stranger condition showed a decrease in RSA from baseline to the DST period
 241 ($M_{diff} = -0.25, SE_{diff} = 0.15$), whereas participants in the close other condition showed an increase
 242 ($M_{diff} = 0.27, SE_{diff} = 0.15$), indicating more PNS withdrawal to the stressor in the stranger
 243 condition. There was no significant difference between conditions in change scores from the
 244 DST to recovery, $t(158) = 0.52, p = .607, R^2_{semi-partial} = 0.00$. We additionally examined the
 245 difference between baseline and recovery to look for evidence of vagal rebound. There was a
 246 significant difference across conditions, such that participants in the close other condition
 247 experienced a pattern of vagal rebound where RSA was higher during recovery than baseline
 248 ($M_{diff} = 0.08, SE_{diff} = 0.15$), whereas participants in the stranger condition had lower RSA during
 249 recovery than baseline ($M_{diff} = 0.03, SE_{diff} = 0.23$). Although the effect of condition on recovery
 250 was significant (i.e. a cross-over interaction), $t(158) = -2.0, p = .046, R^2_{semi-partial} = 0.01$, each of
 251 the simple effects was not significant, making conclusions about vagal rebound difficult.

252 **Moderators of Cardiovascular Reactivity**

253 We additionally examined potential moderators of stress reactivity, focusing specifically
 254 on changes in IBI, CSI, and RSA from baseline to DST. Here, we used multilevel models, only
 255 including the baseline and DST periods, to look at the interaction between period and each

256 individual difference variable. All covariates were included, as before, and all individual
 257 difference variables were standardized. Perceived social support during the DST, ethnic identity,
 258 and familism values did not significantly moderate stress reactivity, $ps > .05$ (see Table 1).
 259 However, frequency of experiencing discrimination in the past year did significantly moderate
 260 CSI reactivity from baseline to stress, such that reporting more frequent discrimination
 261 corresponded to a stronger sympathetic stress response in the DST, relative to baseline.
 262 Exploratory follow-ups examining each discrimination item separately revealed that this
 263 relationship with CSI reactivity was driven primarily by vicarious experiences of discrimination
 264 ("In the past year, how often did you see or witness anti-Mexican or anti-Hispanic statements or
 265 behaviors in person?"), $b = 0.32$, $t(79) = 2.5$, $p = .016$, $R^2_{semi-partial} = 0.026$.

266 **Table 1**

267 *Moderation of Cardiovascular Reactivity from Baseline to Stress by Individual Difference*

268 *Variables*

	ΔIBI			ΔCSI			ΔRSA		
	<i>b</i>	<i>p</i>	$R^2_{semi-partial}$	<i>b</i>	<i>p</i>	$R^2_{semi-partial}$	<i>b</i>	<i>p</i>	$R^2_{semi-partial}$
Perceived support	0.05	.993	.000	0.08	.541	.002	-0.01	.923	.000
Ethnic identity (commitment)	-7.71	.137	.002	0.16	.243	.006	-0.04	.764	.000
Ethnic identity (exploration)	-8.28	.109	.002	0.11	.422	.003	-0.20	.105	.008
Familism (support)	-2.01	.700	.000	0.18	.192	.008	-0.16	.196	.005
Familism (obligation)	-0.03	.996	.000	0.09	.506	.002	-0.10	.404	.002
Familism (referent)	-2.93	.573	.000	0.11	.441	.003	-0.11	.380	.003

Past-year Discrimination	-8.90	.084	.002	0.30	.028	.022	-0.11	.367	.003
-----------------------------	--------------	------	------	-------------	-------------	-------------	-------	------	------

269 Note. Beta estimates represent the interaction between the individual difference variable and
270 period in multilevel models that include all covariates.

271 Interactions between individual difference variables and condition were additionally
272 examined, but no moderating effects were significant, suggesting the effect of condition on
273 reactivity did not significantly differ according to any individual difference variables.

274 Changes in Self-Reported Affect

275 In addition to cardiovascular measures of stress, we examined fluctuations in momentary
276 affect, which participants reported during baseline and following the DST period at the
277 beginning of recovery. We expected participants to show increases in negative affect, anxiety
278 symptoms, and depressive symptoms, and decreases in positive affect, consistent with prior
279 research showing an acute effect of discrimination-related stress on psychological wellbeing.

280 Using paired t-tests, we did find a small decrease in positive affect, $M_{diff} = -0.16$, $SD_{diff} = 0.71$,
281 $t(80) = -2.0$, $p = .049$, $d = .22$, but no change in negative affect, $M_{diff} = 0.06$, $SD_{diff} = 0.48$, $t(80) =$
282 1.1 , $p = .297$, $d = 0.12$, or depressive symptoms, $M_{diff} = 0.01$, $SD_{diff} = 0.51$, $t(80) = 0.2$, $p = .886$,
283 $d = 0.02$. Additionally, we found a significant *decrease* in anxiety symptoms from baseline to
284 post-DST, $M_{diff} = -0.26$, $SD_{diff} = 0.76$, $t(80) = -3.1$, $p = .003$, $d = 0.35$, which was unexpected and
285 not consistent with the conceptualization of the DST as an acute psychological stressor. There
286 were no differences in change in affect by condition.

Discussion

Given the prevalence of racial discrimination and its consequences for both mental and physical health^{4,14}, it is important to identify buffering factors that reduce the negative impact of discrimination on health. Among *Latine* communities, familism and social support may be

291 particularly important to consider. In the current study, we brought participants to the lab to
292 recall experiences with discrimination in a conversation with either a **close other** (such as family
293 member or friend) or a stranger. Cardiovascular measures of stress reactivity were examined to
294 test the stress-buffering hypothesis, which suggests that social support during a stressful event
295 may reduce cardiovascular stress responses and alleviate the long-term effect of repeated race-
296 related stress activation.

297 Overall, we found some evidence that having a conversation about past experiences of
298 discrimination was stressful, in that participants displayed a typical physiological stress response
299 during the DST relative to baseline (e.g., decreases in IBI and increases in CSI). These changes
300 are consistent with the cardiovascular profile exhibited **when confronting or encountering a**
301 **stressor**⁹⁴ and are similar to cardiovascular changes displayed in response to other racial
302 discrimination stressors^{21,22}. However, differences in condition (e.g., whether participants
303 discussed the experience of discrimination with a **close other** versus a stranger) were only
304 apparent in parasympathetic reactivity. Specifically, people who discussed past discrimination
305 experiences with a **close other** displayed less PNS withdrawal and **a more adaptive pattern of**
306 **recovery** than people who shared their experiences with a stranger.

307 Whereas resting **PNS activity** is consistently associated with positive outcomes (e.g.,
308 effective emotion- and self-regulation abilities),⁹⁵ patterns of **PNS** reactivity in response to stress
309 can be more variable and dependent on the increased demands related to the stressor, including
310 demands for top-down executive processing. When a higher activity level is required in response
311 to a stressor and metabolic demands are important, a higher vagal withdrawal response is
312 associated with more effective self-regulation. However, in situations that require more top-down
313 executive functioning and top-down control, a smaller vagal control response may be more

314 adaptive^{83,96}. In the case of conversations about discrimination, which can be a socially sensitive
315 topic requiring emotion regulation and little physical metabolic demand, strong vagal withdrawal
316 may be counterproductive to successfully navigating these conversations. Here, we saw a larger
317 PNS withdrawal response in participants having a conversation with a stranger relative to a close
318 other. This pattern is similar to prior studies observing higher PNS reactivity in situations where
319 discrimination was seen as more threatening^{20,21,23}. One possibility is that participants with
320 social support from a close other positively reappraised the discrimination experience and felt
321 they had more psychosocial resources to deal with the stressor, characterized by strong
322 sympathetic activation and less parasympathetic withdrawal. This physiological profile of a
323 challenge response is similar to challenge responses exhibited by participants who were
324 administered oxytocin prior to a social stressor⁹⁷.

325 Additionally, patterns of recovery were significantly different in the close other condition
326 relative to the stranger condition. Vagal rebound in recovery is characterized by an increase in
327 PNS activity that exceeds resting levels following a stressor and is a compensatory mechanism to
328 restore homeostasis. Enhanced vagal rebound is observed in individuals with greater aerobic
329 fitness following exercise⁸⁹ and decreased in individuals with a family history of cardiovascular
330 disease⁹⁰ or emotion regulation difficulties⁹⁸. Participants in the stranger condition showed a
331 lack of vagal rebound, suggesting more difficulty regulating emotionally following the
332 conversation about discrimination and has been found in other studies examining recovery
333 following a race-based stressor^{20,21}.

334 Together, these patterns suggest a more adaptive stress response and recovery profile
335 when participants described their experiences of racial discrimination to a close other relative to
336 a stranger, identifying an important pathway by which social support may modulate stress

337 responses experienced during recall of discrimination. This mechanism is especially important to
338 consider given recent attention to rumination as a coping mechanism following experiences of
339 discrimination, and how continued processing and reflection on a negative experience
340 contributes to long-term health consequences ⁹⁹⁻¹⁰².

341 In an exploratory way, we additionally investigated several individual difference factors
342 that may affect cardiovascular reactivity when having conversations about racial discrimination,
343 including ethnic identity, cultural values of familism, and frequency of past experiences of
344 discrimination. The only significant moderating factor was how frequently an individual had
345 experienced racial discrimination within the past year, and specifically, how often they had
346 vicariously experienced discrimination (“How often did you see or witness anti-Mexican or anti-
347 Hispanic statements or behaviors in person?”). Recent research on vicariously experienced
348 discrimination distinguishes it from directly experienced discrimination and can encompass
349 seeing, hearing, or learning about others’ experiences with discrimination either in person from
350 friends, family, or strangers, or through online social networks or the news¹⁰³. People from
351 racial/ethnic minority groups, including Latines, experience discrimination vicariously more
352 often than directly ^{104,105}, and can experience negative consequences as a result, including
353 psychological distress, sleep disturbances, and other adverse health-related outcomes^{106,107}. The
354 current results are consistent with previous studies showing that frequent experiences of
355 discrimination over time alters individuals’ autonomic functioning and stress reactivity¹³.
356 Although the current results are exploratory, future research should continue to examine the
357 consequences of vicariously experienced discrimination and mechanisms by which vicarious
358 discrimination influence both physiological and psychological outcomes.

359 Although this study provides preliminary evidence of an intriguing physiological
360 mechanism by which discrimination-related stress may be buffered, there were several
361 limitations that should be considered when interpreting results. First, during the Discrimination
362 Speaking Task (DST), participants discussed their own experiences with discrimination, which
363 were often variable in terms of content and emotional impact. In some cases, participants said
364 they had never experienced discrimination and did not initially know what to talk about, possibly
365 because of the unique characteristics of the El Paso area (e.g., 80% of the population is Latine,
366 making Latines the majority group), **or alternatively described experiences of intra-group**
367 **discrimination (e.g., being excluded for not being “Mexican enough”), a less-studied form of**
368 **racial discrimination.** We did not audio or video record what participants talked about during the
369 DST, so we have no way of controlling for or accounting for the variability in the conversations.
370 **Since reporting** more experiences of discrimination in the past-year was related to greater
371 increases in **SNS activity, one possibility** is that participants who had more frequently
372 experienced discrimination **recently** had more emotionally laden experiences to discuss during
373 the DST, prompting greater stress reactivity.

374 We expected increases in negative affect, depression, and anxiety related symptoms and
375 decreases in positive affect following the DST to match psychological stress responses captured
376 following other acute stressors, whether race-related or not^{45,108}. However, we did not see this
377 pattern and instead saw *decreases* in anxiety following the conversation. One possibility is that
378 since participants completed the baseline questionnaire after physiological recording equipment
379 had already been applied, the baseline period captured some anticipatory processes while
380 preparing for the conversation or responses to the unfamiliar lab environment and equipment,
381 including elevated anxiety. Thus, the baseline questionnaire may not have captured a true

382 baseline. Additionally, and importantly, the conversation about discrimination may not have been
383 experienced as a purely negative stressor, as other lab-based manipulations of discrimination
384 have been in the past. Instead, because of the nature of the give-and-take of a conversation,
385 especially when a close other is present, these conversations may have been cathartic and
386 affirming. This may especially be the case because in both conditions, participants talked with a
387 racial/ethnic ingroup member (e.g., a Latine conversation partner). Thus, a conversation about
388 shared experiences may have elicited a shared group identity that may have also buffered
389 momentary negative affect, even when talking with a stranger. Other research has begun to
390 examine the positive effects of difficult conversations about race on relationship quality and
391 positive psychological outcomes, providing an opportunity for bonding and other long term
392 positive effects ¹⁰⁹⁻¹¹². Thus, conversations about discrimination may have more nuanced
393 consequences than an isolated simulation of discrimination because of the complexity of
394 interpersonal dynamics, which may be either mediated or moderated by stress responses and
395 autonomic system related emotional regulation.⁷⁹

396 Last, we did not measure respiration rate to adjust for respiratory influences when
397 examining RSA. Because participants were having a conversation during the DST but were at
398 rest during baseline, differences in respiration related to speech production create a possible
399 confound in interpreting any differences in RSA between the baseline and DST periods, as RSA
400 can reflect changes in respiration that are independent of central vagal effects ^{113,114}. However,
401 we found no overall differences in RSA across periods and instead, our main effects of interest
402 concerned differences in RSA reactivity across conditions. As systematic differences in speech
403 production were not expected across conditions, issues related to controlling for respiration are

404 less likely to influence our conclusions. Future research should consider adjusting for respiratory
405 influences related to speech production to strengthen conclusions.

406 Taken together, our work highlights the protective role of close social ties in managing
407 the impacts of racial/ethnic discrimination on physiological mechanisms relevant to
408 cardiovascular health. When people discuss their discrimination experiences in the presence of
409 close others, they mitigate immediate harm and enhance recovery. Thus, the current study
410 suggests that working with close others to reflect on or process instances of discrimination or
411 racial trauma might be a resource for minoritized racial communities to draw from to improve
412 their long-term health and well-being. Further work is needed to assess how and why
413 conversations are beneficial, and what strategies can be used to maximize the positive benefits of
414 social support.

415 **Method**

416 **Participants**

417 The project was approved by the University of Texas at El Paso IRB and was performed
418 in accordance with all relevant guidelines and regulations. Participants were recruited from
419 undergraduate psychology classes and the surrounding community via the university SONA
420 system, flyers, and campus announcements. Interested participants completed an eligibility
421 screening survey and were selected for participation if they 1) were 18 years of age or older, 2)
422 identified as Latina, Latino, Latinx, or Hispanic, 3) were fluent in English, and 4) were able to
423 bring another person to the lab with whom they had a close relationship that spoke English
424 fluently (“close other”) and also identified as Latina, Latino, Latinx, or Hispanic. Additionally,
425 prospective participants were excluded from participating if they had a BMI over 35 or used
426 medication likely to affect cardiovascular functioning, including antidepressant, antipsychotic, or

427 antihypertensive medication. Participants were compensated with course credit or a \$30
428 electronic gift card for their participation. Additionally, the person who accompanied the
429 participant to the study (“close other”) received a \$20 electronic gift card in compensation.

430 A total of 97 people participated in the study (78 female, 14 male, 3 non-binary, and 2 not
431 reported) from October 2021 to December 2022. **Sample size was not determined by an *a priori***
432 **power analysis; Instead, we simply recruited as many participants as possible within a given**
433 **window of time, as recruitment of participants and their close others to come to an in-person lab**
434 **session was challenging and slower than expected, especially due to ongoing COVID-related**
435 **concerns.** The age of participants ranged from 18 years to 48 years ($M = 20.9$, $SD = 4.4$). The
436 close others that participants brought with them to the lab included romantic partners ($n = 22$),
437 parents ($n = 27$), siblings ($n = 14$), close friends ($n = 24$), cousins ($n = 7$), and their own children
438 over 18 years ($n = 3$). Data from 1 participant were excluded due to equipment failure, and
439 cardiovascular data from 13 participants were excluded due to artifacts in the data, resulting in a
440 final sample size of 83 participants. **To conduct a sensitivity power analysis, we used G*Power to**
441 **determine that the smallest effect size detectable with 80% power for a within-between**
442 **interaction (e.g., the hypothesized Period x Condition interaction) in a repeated-measures**
443 **ANOVA with the final sample size ($n = 83$) was $f = .18$.**

444 **Procedure**

445 Following informed consent, physiological recording equipment was applied to the
446 participant. Participants then completed a baseline questionnaire that took approximately 10
447 minutes and included items related to demographics, ethnic identity, values of familism, and
448 **information about** the person they brought with them to the lab, **including their race/ethnicity and**
449 **relationship to the participant** (see Measures).

450 Once the recording equipment was applied, ECG and EDA data were recorded during
451 three distinct periods: baseline (5 minutes), Discrimination-Speaking Task (DST; 10 minutes),
452 and recovery (5 minutes). Although EDA data were recorded, they are not included in this report
453 because of equipment-related issues affecting the quality of data. During the baseline period,
454 participants were asked to sit alone in the recording room with no distractions. Then, a
455 conversation partner entered the room, and participants were given instructions for the
456 Discrimination Speaking Task (DST). The conversation partner was randomly assigned to be
457 either the “close other” that the participant had brought with them to the lab or a research
458 assistant whom the participant had never previously met (“stranger” condition). For the first few
459 minutes, participants were instructed to describe to their conversation partner an instance of
460 racial/ethnic discrimination that they had experienced without interruption. The conversation
461 partner was instructed to respond naturally once the participant had finished describing their
462 experience, and the conversation was allowed to continue for the remainder of the ten minutes.
463 In both conditions, the conversation partner matched the participant’s race/ethnicity (e.g.,
464 identified as Latine). The conversation during the DST was not audio or video recorded to
465 increase the comfortability of participants and their close others to speak openly about
466 potentially sensitive topics. Research assistants who interacted with participants in the stranger
467 condition did have knowledge of the experimental manipulation but were not instructed to
468 respond in a particular manner and instead received the same instructions as the close other to
469 respond in a way that felt natural, as if someone initiated a similar conversation outside the lab.
470 Two research personnel were present at each lab session so that the research assistant who the
471 participant interacted with during the DST was not the experimenter who conducted the consent

472 process and placed the physiological recording equipment on the participant at the beginning of
473 the study. A total of seven research assistants acted as the stranger throughout data collection.

474 Following the DST, the conversation partner was asked to leave the room and the
475 participant completed a short recovery questionnaire that took less than 2 minutes (see
476 Measures). The participant was then left alone for a 5-minute recovery period with no
477 distractions. Following the recovery period, the recording equipment was removed, and the
478 participant was debriefed about the nature of the study. The entire procedure took about 1.5
479 hours.

480 **Measures**

481 ***Physiological Measures***

482 The electrocardiogram (ECG) signal was measured with no online filter and a sampling
483 rate of 512 Hz using 4 Ag/AgCl electrodes (right collarbone, left collarbone, CMS/DRL on left
484 forearm) using an ActiveTwo BioSemi data acquisition system (BioSemi, Amsterdam,
485 Netherlands). An offline band filter from 0.1-50 Hz was applied to the digitized data before
486 automated detection of R spikes for extraction of interbeat intervals using EMSE (version 5.6.1).
487 All automated event markers were visually inspected and misplaced markers were corrected
488 manually. Participants with excessive missing markers (i.e., IBIs > 1200 ms) within a period
489 were excluded, rather than relying on imputation, which resulted in the exclusion of 13
490 participants. Once markers had been inspected, IBI series were produced separately for each
491 participant and each time period. Mean IBI, CSI ⁷⁵, and RSA (natural log of band-limited [.12-
492 .40 Hz] variance of IBI series) were calculated for each time period using CMetX⁸¹.

493 ***Baseline Questionnaire***

494 **Cardiovascular Covariates.** To account for their effects on cardiovascular functioning
495 and reactivity, we asked participants to report their height (inches) and weight (pounds) to
496 calculate body mass index (BMI), age, and gender (man, woman, trans/non-binary, other, prefer
497 not to say). Participants additionally reported if they had consumed alcohol within the last 24
498 hours, caffeine (e.g. coffee, tea, energy drinks) within the last 2 hours, and whether they had
499 eaten within the last 2 hours.

500 **Ethnic Identity.** The Multigroup Ethnic Identity Measure - Revised (MEIM-R)¹¹⁵ was
501 used to measure both identity commitment (3 items) and identity exploration (3 items). Items
502 assessing identity commitment included statements such as, “I have a strong sense of belonging
503 to my ethnic group.” Items assessing identity exploration included statements such as “I have
504 often done things that will help me understand my ethnic background better.” Participants were
505 asked to indicate how much they agree with each statement on a scale of 1 (strongly disagree) to
506 5 (strongly agree). Internal consistency within our sample was acceptable for each subscale
507 (commitment $\alpha = .86$; exploration $\alpha = .88$). Separate composite scores were created for each
508 facet, such that higher scores represented more identity commitment or identity exploration.

509 **Familism Values.** The three familism subscales from the Mexican American Cultural
510 Value Scale⁵⁹ were used to assess Mexican American cultural values related to support,
511 obligation, and family as referent. Familism support values refer to the desirability to maintain
512 close relationships (e.g., “Family provides a sense of security because they will always be there
513 for you”; 6 items). Familism obligation values refer to the importance of tangible care giving
514 (e.g., “If a relative is having a hard time financially, one should help them out if possible”; 5
515 items). Familism referent values refer to the reliance on communal interpersonal reflection to
516 define the self (e.g. “A person should always think about their family when making important

517 decisions”; 5 items). Participants were asked to indicate how much they believe each statement
518 on a scale of 1 (not at all) to 5 (completely). Internal consistency within our sample was
519 acceptable for each scale (support $\alpha = .87$; obligation $\alpha = .78$; referent $\alpha = .80$). Separate
520 composite scores were created for each facet, such that higher scores represented stronger
521 familism values.

522 **Past-year Racial/Ethnic Discrimination.** We created 5 items to assess past-year
523 discrimination, including both direct experiences of discrimination and indirect (vicarious)
524 experiences. Additionally, items separately asked about online versus in-person experiences and
525 rumination about discrimination (“In the past year, how often...were you treated unfairly or
526 poorly because of your race/ethnicity in person?; ...were you treated unfairly or poorly because
527 of your race/ethnicity on social media or the internet in general?; ...did you see or witness anti-
528 Mexican or anti-Hispanic statements or behaviors in person?; ...did you see or witness anti-
529 Mexican or anti-Hispanic statements or behavior on social media or in the news?; ...did you
530 think about racial injustices and the mistreatment of Latino/a, Hispanic, or other people of color
531 in the U.S.”). Participants were asked to indicate how often they experienced each item on a
532 scale of 1 (never) to 5 (almost every day). Internal consistency within our sample was acceptable
533 ($\alpha = .79$). A composite score was created by averaging across items, such that higher scores
534 represented more frequent experiences of discrimination.

535 **Momentary Affect.** The PANAS-X¹¹⁶ was administered to assess momentary positive
536 and negative affect (10 items each), along with added items to assess momentary anxiety (3
537 items: “anxious”, “worried”, “restless”) and depression-related symptoms (3 items: “depressed”,
538 “sad”, “downhearted”). Participants were instructed to indicate to what extent they felt each
539 emotion or feeling “right now” on a scale of 1 (very slightly or not at all) to 5 (extremely).

540 Internal consistency at baseline (negative affect α : .83; positive affect α : .91; anxiety α : .73;
541 depression α : .93) was acceptable. A composite score was created separately for each facet, such
542 that higher scores represented higher levels of affect/symptoms.

543 ***Recovery Questionnaire***

544 **Momentary Affect.** The same PANAS-X items were administered following the DST as
545 in the baseline questionnaire. Internal consistency at recovery (negative affect α : .83; positive
546 affect α : .91; anxiety α : .81; depression α : .85) was acceptable.

547 **Perceived Support.** The emotional support subscale from the Berlin Social Support
548 Scales¹¹⁷ was adapted to assess perceived support during the DST. Participants were instructed
549 to think about the person they interacted with during the DST and indicate their agreement with
550 the following 6 statements: “This person showed me that he/she loves and accepts me”, “This
551 person comforted me when I was feeling bad”, “This person made me feel valued and
552 important”, “This person expressed concern about my condition”, “This person assured me I can
553 rely completely on him/her”, “This person encouraged me not to give up”). Responses were on a
554 scale of 1 (strongly disagree) to 5 (strongly agree). Internal consistency within our sample was
555 acceptable ($\alpha = .90$). A composite was created by averaging the items, such that higher scores
556 represented higher levels of perceived support.

557

558

Author Contributions

559 HV conceptualized the project and oversaw every stage of data collection and manuscript
560 preparation. JB and SP coordinated data collection and processing and contributed to manuscript
561 writing. CD contributed to manuscript writing. All authors reviewed the manuscript **and**
562 **contributed to revisions.**

563

564

Additional Information

565

The authors have no competing interests to declare.

566

567

Data Availability

568

All data and code for analysis can be found at [<https://osf.io/28bnz/>].

569

570

571

References

- 572 1. Pew Research Center. Half of U.S. Latinos experienced some form of discrimination during
573 the first year of the pandemic. 2021. <https://www.pewresearch.org/race-and->
574 [ethnicity/2021/11/04/half-of-u-s-latino...experienced-some-form-of-discrimination-during-the-first-year-of-the-pandemic/](https://www.pewresearch.org/race-and-ethnicity/2021/11/04/half-of-u-s-latino...)
- 576 2. Carter RT, Johnson VE, Kirkinis K, Roberson K, Muchow C, Galgay C. A Meta-Analytic
577 Review of Racial Discrimination: Relationships to Health and Culture. *Race Soc Probl.*
578 2019;11(1):15-32. doi:10.1007/s12552-018-9256-y
- 579 3. Korous KM, Causadias JM, Casper DM. Racial discrimination and cortisol output: A meta-
580 analysis. *Social Science & Medicine*. 2017;193:90-100.
581 doi:10.1016/j.socscimed.2017.09.042
- 582 4. Pascoe EA, Richman LS. Perceived Discrimination and Health: A Meta-Analytic Review.
583 *Psychol Bull*. 2009;135(4):531-554. doi:10.1037/a0016059
- 584 5. Schmitt MT, Branscombe NR, Postmes T, Garcia A. The consequences of perceived
585 discrimination for psychological well-being: A meta-analytic review. *Psychological*
586 *Bulletin*. 2014;140(4):921-948. doi:10.1037/a0035754
- 587 6. Brittan AS, Toomey RB, Gonzales NA, Dumka LE. Perceived Discrimination, Coping
588 Strategies, and Mexican Origin Adolescents' Internalizing and Externalizing Behaviors:
589 Examining the Moderating Role of Gender and Cultural Orientation. *Applied*
590 *Developmental Science*. 2013;17(1):4-19. doi:10.1080/10888691.2013.748417
- 591 7. Cano MÁ, Castro Y, Dios MA de, et al. Associations of ethnic discrimination with
592 symptoms of anxiety and depression among Hispanic emerging adults: a moderated
593 mediation model. *Anxiety, Stress, & Coping*. 2016;29(6):699-707.
594 doi:10.1080/10615806.2016.1157170
- 595 8. Araújo BY, Borrell LN. Understanding the Link Between Discrimination, Mental Health
596 Outcomes, and Life Chances Among Latinos. *Hispanic Journal of Behavioral Sciences*.
597 2006;28(2):245-266. doi:10.1177/0739986305285825
- 598 9. Clark R, Anderson NB, Clark VR, Williams DR. Racism as a stressor for African
599 Americans: A biopsychosocial model. *American Psychologist*. 1999;54(10):805-816.
600 doi:10.1037/0003-066X.54.10.805
- 601 10. Finch BK, Vega WA. Acculturation Stress, Social Support, and Self-Rated Health Among
602 Latinos in California. *Journal of Immigrant Health*. 2003;5(3):109-117.
603 doi:10.1023/A:1023987717921
- 604 11. GBD. Global, regional, and national age–sex specific all-cause and cause-specific mortality
605 for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease
606 Study 2013. *The Lancet*. 2015;385(9963):117-171. doi:10.1016/S0140-6736(14)61682-2

607 12. Chiu M, Maclagan LC, Tu JV, Shah BR. Temporal trends in cardiovascular disease risk
608 factors among white, South Asian, Chinese and black groups in Ontario, Canada, 2001 to
609 2012: a population-based study. *BMJ Open*. 2015;5(8):e007232. doi:10.1136/bmjopen-
610 2014-007232

611 13. Lockwood KG, Marsland AL, Matthews KA, Gianaros PJ. Perceived discrimination and
612 cardiovascular health disparities: a multisystem review and health neuroscience perspective.
613 *Annals of the New York Academy of Sciences*. 2018;1428(1):170-207.
614 doi:10.1111/nyas.13939

615 14. Mays VM, Cochran SD, Barnes NW. Race, Race-Based Discrimination, and Health
616 Outcomes Among African Americans. *Annual Review of Psychology*. 2007;58(1):201-225.
617 doi:10.1146/annurev.psych.57.102904.190212

618 15. Brindle RC, Ginty AT, Phillips AC, Carroll D. A tale of two mechanisms: A meta-analytic
619 approach toward understanding the autonomic basis of cardiovascular reactivity to acute
620 psychological stress. *Psychophysiology*. 2014;51(10):964-976. doi:10.1111/psyp.12248

621 16. Thayer JF, Sternberg E. Beyond Heart Rate Variability: Vagal Regulation of Allostatic
622 Systems. *Annals of the New York Academy of Sciences*. 2006;1088(1):361-372.
623 doi:10.1196/annals.1366.014

624 17. Lepore SJ, Revenson TA, Weinberger SL, et al. Effects of social stressors on cardiovascular
625 reactivity in black and white women. *Ann Behav Med*. 2006;31(2):120-127.
626 doi:10.1207/s15324796abm3102_3

627 18. Merritt MM, Bennett GG, Williams RB, Edwards CL, Sollers JJ. Perceived racism and
628 cardiovascular reactivity and recovery to personally relevant stress. *Health Psychology*.
629 2006;25(3):364-369. doi:10.1037/0278-6133.25.3.364

630 19. Guyll M, Matthews KA, Bromberger JT. Discrimination and unfair treatment: relationship
631 to cardiovascular reactivity among African American and European American women.
632 *Health Psychol*. 2001;20(5):315-325. doi:10.1037/0278-6133.20.5.315

633 20. Volpe VV, Lee DB, Hoggard LS, Rahal D. Racial Discrimination and Acute Physiological
634 Responses Among Black Young Adults: The Role of Racial Identity. *Journal of Adolescent
635 Health*. 2019;64(2):179-185. doi:10.1016/j.jadohealth.2018.09.004

636 21. Dorr N, Brosschot JF, Sollers JJ, Thayer JF. Damned if you do, damned if you don't: The
637 differential effect of expression and inhibition of anger on cardiovascular recovery in Black
638 and White males. *International Journal of Psychophysiology*. 2007;66(2):125-134.
639 doi:10.1016/j.ijpsycho.2007.03.022

640 22. Cooper DC, Thayer JF, Waldstein SR. Coping with Racism: The Impact of Prayer on
641 Cardiovascular Reactivity and Post-stress Recovery in African American Women. *Ann
642 Behav Med*. 2014;47(2):218-230. doi:10.1007/s12160-013-9540-4

643 23. Neblett EW, Roberts SO. Racial identity and autonomic responses to racial discrimination.
644 *Psychophysiology*. 2013;50(10):943-953. doi:10.1111/psyp.12087

645 24. Sawyer PJ, Major B, Casad BJ, Townsend SSM, Mendes WB. Discrimination and the
646 Stress Response: Psychological and Physiological Consequences of Anticipating Prejudice
647 in Interethnic Interactions. *Am J Public Health*. 2012;102(5):1020-1026.
648 doi:10.2105/AJPH.2011.300620

649 25. Zeiders KH, Landor AM, Flores M, Brown A. Microaggressions and Diurnal Cortisol:
650 Examining Within-Person Associations Among African-American and Latino Young
651 Adults. *Journal of Adolescent Health*. 2018;63(4):482-488.
652 doi:10.1016/j.jadohealth.2018.04.018

653 26. Ginty AT, Kraynak TE, Fisher JP, Gianaros PJ. Cardiovascular and autonomic reactivity to
654 psychological stress: Neurophysiological substrates and links to cardiovascular disease.
655 *Autonomic Neuroscience*. 2017;207:2-9. doi:10.1016/j.autneu.2017.03.003

656 27. García J, Serpas D, Torres Y. Taking It to Heart: Preliminary Investigation on the
657 Cardiovascular Effects of Racial/Ethnic Microaggressions in Latinx. *Social Behavioral*
658 *Research and Practice*. 2020;5:1-7. doi:10.17140/SBRPOJ-5-120

659 28. Huynh VW, Huynh QL, Stein MP. Not just sticks and stones: Indirect ethnic discrimination
660 leads to greater physiological reactivity. *Cultural Diversity and Ethnic Minority*
661 *Psychology*. 2017;23(3):425-434. doi:10.1037/cdp0000138

662 29. Townsend SSM, Eliezer D, Major B, Mendes WB. Influencing the World Versus Adjusting
663 to Constraints: Social Class Moderates Responses to Discrimination. *Social Psychological*
664 *and Personality Science*. 2014;5(2):226-234. doi:10.1177/1948550613490968

665 30. Hagiwara N, Green TL, Moreno O, Smith D, Corona R. Ethnic discrimination and weight
666 outcomes among Latinx emerging adults: Examinations of an individual-level mediator and
667 cultural moderators. *Cultural Diversity and Ethnic Minority Psychology*. 2021;27(2):189-
668 200. doi:10.1037/cdp0000336

669 31. LeBrón AMW, Spencer M, Kieffer E, Sinco B, Piatt G, Palmisano G. Correlates of
670 Interpersonal Ethnoracial Discrimination Among Latino Adults with Diabetes: Findings
671 from the REACH Detroit Study. *Journal of Ethnic & Cultural Diversity in Social Work*.
672 2017;26(1-2):48-67. doi:10.1080/15313204.2016.1263820

673 32. Ryan AM, Gee GC, Laflamme DF. The Association between Self-Reported Discrimination,
674 Physical Health and Blood Pressure: Findings from African Americans, Black Immigrants,
675 and Latino Immigrants in New Hampshire. *Journal of Health Care for the Poor and*
676 *Underserved*. 2006;17(2):116-132. doi:10.1353/hpu.2006.0079

677 33. Flores E, Tschann JM, Dimas JM, Bachen EA, Pasch LA, de Groat CL. Perceived
678 Discrimination, Perceived Stress, and Mental and Physical Health Among Mexican-Origin
679 Adults. *Hispanic Journal of Behavioral Sciences*. 2008;30(4):401-424.
680 doi:10.1177/0739986308323056

681 34. Arellano-Morales L, Roesch SC, Gallo LC, et al. Prevalence and correlates of perceived
682 ethnic discrimination in the Hispanic Community Health Study/Study of Latinos
683 Sociocultural Ancillary Study. *Journal of Latina/o Psychology*. 2015;3(3):160-176.
684 doi:10.1037/lat0000040

685 35. Lee RT, Perez AD, Boykin CM, Mendoza-Denton R. On the prevalence of racial
686 discrimination in the United States. *PLOS ONE*. 2019;14(1):e0210698.
687 doi:10.1371/journal.pone.0210698

688 36. Bennett GG, Merritt MM, Edwards CL, Sollers JJ. Perceived Racism and Affective
689 Responses to Ambiguous Interpersonal Interactions among African American Men.
690 *American Behavioral Scientist*. 2004;47(7):963-976. doi:10.1177/0002764203261070

691 37. Hermosura AH, Haynes SN, Kaholokula JK. A Preliminary Study of the Relationship
692 between Perceived Racism and Cardiovascular Reactivity and Recovery in Native
693 Hawaiians. *J Racial and Ethnic Health Disparities*. 2018;5(5):1142-1154.
694 doi:10.1007/s40615-018-0463-4

695 38. Jones DR, Harrell JP, Morris-Prather CE, Thomas J, Omowale N. Affective and
696 physiological responses to racism: the roles of afrocentrism and mode of presentation. *Ethn
697 Dis.* 1996;6(1-2):109-122.

698 39. Morris-Prather CE, Harrell JP, Collins R, Leonard KL, Boss M, Lee JW. Gender differences
699 in mood and cardiovascular responses to socially stressful stimuli. *Ethn Dis.* 1996;6(1-
700 2):123-131.

701 40. Armstead CA, Lawler KA, Gorden G, Cross J, Gibbons J. Relationship of racial stressors to
702 blood pressure responses and anger expression in Black college students. *Health
703 Psychology*. 1989;8(5):541-556. doi:10.1037/0278-6133.8.5.541

704 41. Fischer S, Nater UM, Strahler J, et al. Psychobiological impact of ethnic discrimination in
705 Turkish immigrants living in Germany. *Stress*. 2017;20(2):167-174.
706 doi:10.1080/10253890.2017.1296430

707 42. Goodwin SA, Williams KD, Carter-Sowell AR. The psychological sting of stigma: The
708 costs of attributing ostracism to racism. *Journal of Experimental Social Psychology*.
709 2010;46(4):612-618. doi:10.1016/j.jesp.2010.02.002

710 43. Hoggard LS, Byrd CM, Sellers RM. The lagged effects of racial discrimination on
711 depressive symptomology and interactions with racial identity. *Journal of Counseling
712 Psychology*. 2015;62(2):216-225. doi:10.1037/cou0000069

713 44. Hoggard LS, Jones SCT, Sellers RM. Racial Cues and Racial Identity: Implications for
714 How African Americans Experience and Respond to Racial Discrimination. *Journal of
715 Black Psychology*. 2017;43(4):409-432. doi:10.1177/0095798416651033

716 45. Lui PP, Gobrial S, Stringer E, Jouriles EN. Effects of racial discrimination on stress,
717 negative emotions, and alcohol craving: A registered report of a virtual reality experiment.

718 *Cultural Diversity and Ethnic Minority Psychology*. Published online 2024:No Pagination
719 Specified-No Pagination Specified. doi:10.1037/cdp0000636

720 46. Masten CL, Telzer EH, Eisenberger NI. An fMRI Investigation of Attributing Negative
721 Social Treatment to Racial Discrimination. *Journal of Cognitive Neuroscience*.
722 2010;23(5):1042-1051. doi:10.1162/jocn.2010.21520

723 47. Hoggard LS, Hill LK, Gray DL, Sellers RM. Capturing the cardiac effects of racial
724 discrimination: Do the effects “keep going”? *International Journal of Psychophysiology*.
725 2015;97(2):163-170. doi:10.1016/j.ijpsycho.2015.04.015

726 48. Franco M, O’Brien KM. Taking Racism to Heart: Race-Related Stressors and
727 Cardiovascular Reactivity for Multiracial People. *Journal of Multicultural Counseling and*
728 *Development*. 2020;48(2):83-94. doi:<https://doi.org/10.1002/jmc.12167>

729 49. Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of childhood and adult obesity in
730 the United States, 2011-2012. *JAMA*. 2014;311(8):806-814. doi:10.1001/jama.2014.732

731 50. Mozaffarian D, Benjamin EJ, Go AS, et al. Heart Disease and Stroke Statistics—2016
732 Update. *Circulation*. 2016;133(4):e38-e360. doi:10.1161/CIR.0000000000000350

733 51. Ruiz JM, Hamann HA, Mehl MR, O’Connor MF. The Hispanic health paradox: From
734 epidemiological phenomenon to contribution opportunities for psychological science.
735 *Group Processes & Intergroup Relations*. 2016;19(4):462-476.
736 doi:10.1177/1368430216638540

737 52. Cleveland JC, Espinoza J, Holzhausen EA, Goran MI, Alderete TL. The impact of social
738 determinants of health on obesity and diabetes disparities among Latino communities in
739 Southern California. *BMC Public Health*. 2023;23(1):37. doi:10.1186/s12889-022-14868-1

740 53. Salgado de Snyder VN, McDaniel M, Padilla AM, Parra-Medina D. Impact of COVID-19
741 on Latinos: A Social Determinants of Health Model and Scoping Review of the Literature.
742 *Hispanic Journal of Behavioral Sciences*. 2021;43(3):174-203.
743 doi:10.1177/07399863211041214

744 54. Cortes DE. Variations in Familism in Two Generations of Puerto Ricans. *Hispanic Journal*
745 *of Behavioral Sciences*. 1995;17(2):249-255. doi:10.1177/07399863950172008

746 55. Sabogal F, Marín G, Otero-Sabogal R, Marín BV, Perez-Stable EJ. Hispanic Familism and
747 Acculturation: What Changes and What Doesn’t? *Hispanic Journal of Behavioral Sciences*.
748 1987;9(4):397-412. doi:10.1177/07399863870094003

749 56. Steidel AGL, Contreras JM. A New Familism Scale for Use with Latino Populations.
750 *Hispanic Journal of Behavioral Sciences*. 2003;25(3):312-330.
751 doi:10.1177/0739986303256912

752 57. Valdivieso-Mora E, Peet CL, Garnier-Villarreal M, Salazar-Villanea M, Johnson DK. A
753 Systematic Review of the Relationship between Familism and Mental Health Outcomes in
754 Latino Population. *Front Psychol.* 2016;7. doi:10.3389/fpsyg.2016.01632

755 58. Calderón-Tena CO, Knight GP, Carlo G. The Socialization of Prosocial Behavioral
756 Tendencies Among Mexican American Adolescents: The Role of Familism Values. *Cultural*
757 *Diversity & Ethnic Minority Psychology.* 2011;17(1):98-106. doi:10.1037/a0021825

758 59. Knight GP, Gonzales NA, Saenz DS, et al. The Mexican American Cultural Values Scale for
759 Adolescents and Adults. *The Journal of Early Adolescence.* 2010;30(3):444-481.
760 doi:10.1177/0272431609338178

761 60. Piña-Watson B, Gonzalez IM, Manzo G. Mexican-descent adolescent resilience through
762 familismo in the context of intergeneration acculturation conflict on depressive symptoms.
763 *Translational Issues in Psychological Science.* 2019;5(4):326-334. doi:10.1037/tps0000210

764 61. Santiago CD, Torres SA, Brewer SK, Fuller AK, Lennon JM. The Effect of Cultural Factors
765 on Daily Coping and Involuntary Responses to Stress Among Low-Income Latino
766 Adolescents. *Journal of Community Psychology.* 2016;44(7):872-887.
767 doi:<https://doi.org/10.1002/jcop.21814>

768 62. Volpert-Esmond HI, Marquez ED, Camacho AA. Family relationships and familism among
769 Mexican Americans on the U.S.-Mexico border during the COVID-19 pandemic. *Cultur*
770 *Divers Ethnic Minor Psychol.* 2023;29(2):145-151. doi:10.1037/cdp0000547

771 63. Zeiders KH, Updegraff KA, Umaña-Taylor AJ, Wheeler LA, Perez-Brena NJ, Rodríguez
772 SA. Mexican-Origin Youths' Trajectories of Depressive Symptoms: The Role of Familism
773 Values. *Journal of Adolescent Health.* 2013;53(5):648-654.
774 doi:10.1016/j.jadohealth.2013.06.008

775 64. Uchino BN. Social Support and Health: A Review of Physiological Processes Potentially
776 Underlying Links to Disease Outcomes. *J Behav Med.* 2006;29(4):377-387.
777 doi:10.1007/s10865-006-9056-5

778 65. Gunnar MR, Hostinar CE. The social buffering of the hypothalamic-pituitary-adrenocortical
779 axis in humans: Developmental and experiential determinants. *Soc Neurosci.*
780 2015;10(5):479-488. doi:10.1080/17470919.2015.1070747

781 66. Thorsteinsson EB, James JE. A Meta-analysis of the effects of experimental manipulations
782 of social support during laboratory stress. *Psychology & Health.* 1999;14(5):869-886.
783 doi:10.1080/08870449908407353

784 67. Kamarck TW, Manuck SB, Jennings JR. Social support reduces cardiovascular reactivity to
785 psychological challenge: A laboratory model. *Psychosomatic Medicine.* 1990;52(1):42-58.
786 doi:10.1097/00006842-199001000-00004

787 68. Doom JR, Doyle CM, Gunnar MR. Social stress buffering by friends in childhood and
788 adolescence: Effects on HPA and oxytocin activity. *Social Neuroscience*. 2017;12(1):8-21.
789 doi:10.1080/17470919.2016.1149095

790 69. Kirsch JA, Lehman BJ. Comparing Visible and Invisible Social Support: Non-evaluative
791 Support Buffers Cardiovascular Responses to Stress. *Stress and Health*. 2015;31(5):351-
792 364. doi:<https://doi.org/10.1002/smj.2558>

793 70. Edens JL, Larkin KT, Abel JL. The effect of social support and physical touch on
794 cardiovascular reactions to mental stress. *Journal of Psychosomatic Research*.
795 1992;36(4):371-381. doi:10.1016/0022-3999(92)90073-B

796 71. Roberts MH, Klatzkin RR, Mechlin B. Social Support Attenuates Physiological Stress
797 Responses and Experimental Pain Sensitivity to Cold Pressor Pain. *Annals of Behavioral
798 Medicine*. 2015;49(4):557-569. doi:10.1007/s12160-015-9686-3

799 72. Ditzén B, Schmidt S, Strauss B, Nater UM, Ehlert U, Heinrichs M. Adult attachment and
800 social support interact to reduce psychological but not cortisol responses to stress. *Journal
801 of Psychosomatic Research*. 2008;64(5):479-486. doi:10.1016/j.jpsychores.2007.11.011

802 73. Campos B, Yim IS, Busse D. Culture as a Pathway to Maximizing the Stress-Buffering
803 Role of Social Support. *Hispanic Journal of Behavioral Sciences*. 2018;40(3):294-311.
804 doi:10.1177/0739986318772490

805 74. Gonzales NA, Johnson M, Shirtcliff EA, Tein J, Eskenazi B, Deardorff J. The role of
806 bicultural adaptation, familism, and family conflict in Mexican American adolescents'
807 cortisol reactivity. *Dev Psychopathol*. 2018;30(5):1571-1587.
808 doi:10.1017/S0954579418001116

809 75. Toichi M, Sugiura T, Murai T, Sengoku A. A new method of assessing cardiac autonomic
810 function and its comparison with spectral analysis and coefficient of variation of R-R
811 interval. *Journal of the Autonomic Nervous System*. 1997;62(1):79-84. doi:10.1016/S0165-
812 1838(96)00112-9

813 76. Newlin DB, Wong CJ, Stapleton JM, London ED. Intravenous Cocaine Decreases Cardiac
814 Vagal Tone, Vagal Index (Derived in Lorenz Space), and Heart Period Complexity
815 (Approximate Entropy) in Cocaine Abusers. *Neuropsychopharmacology*. 2000;23(5):560-
816 568. doi:10.1016/S0893-133X(00)00135-4

817 77. Toichi M, Kubota Y, Murai T, et al. The influence of psychotic states on the autonomic
818 nervous system in schizophrenia. *International Journal of Psychophysiology*.
819 1999;31(2):147-154. doi:10.1016/S0167-8760(98)00047-6

820 78. Weinberg A, Klonsky ED, Hajcak G. Autonomic impairment in Borderline Personality
821 Disorder: A laboratory investigation. *Brain and Cognition*. 2009;71(3):279-286.
822 doi:10.1016/j.bandc.2009.07.014

823 79. Danyluk C, Page-Gould E. Social and Physiological Context can Affect the Meaning of
824 Physiological Synchrony. *Scientific Reports*. 2019;9(1):8222. doi:10.1038/s41598-019-
825 44667-5

826 80. Toichi M, Kamio Y. Paradoxical Autonomic Response to Mental Tasks in Autism. *J Autism*
827 *Dev Disord*. 2003;33(4):417-426. doi:10.1023/A:1025062812374

828 81. Allen JJB, Chambers AS, Towers DN. The many metrics of cardiac chronotropy: A
829 pragmatic primer and a brief comparison of metrics. *Biological Psychology*.
830 2007;74(2):243-262. doi:10.1016/j.biopsych.2006.08.005

831 82. Berntson GG, Cacioppo JT, Quigley KS. Respiratory sinus arrhythmia: Autonomic origins,
832 physiological mechanisms, and psychophysiological implications. *Psychophysiology*.
833 1993;30(2):183-196. doi:10.1111/j.1469-8986.1993.tb01731.x

834 83. Laborde S, Mosley E, Mertgen A. Vagal Tank Theory: The Three Rs of Cardiac Vagal
835 Control Functioning – Resting, Reactivity, and Recovery. *Front Neurosci*. 2018;12.
836 doi:10.3389/fnins.2018.00458

837 84. Porges SW. The Polyvagal Perspective. *Biol Psychol*. 2007;74(2):116-143.
838 doi:10.1016/j.biopsych.2006.06.009

839 85. Campbell AA, Wisco BE. Respiratory sinus arrhythmia reactivity in anxiety and
840 posttraumatic stress disorder: A review of literature. *Clinical Psychology Review*.
841 2021;87:102034. doi:10.1016/j.cpr.2021.102034

842 86. Craske MG, Rauch SL, Ursano R, Prenoveau J, Pine DS, Zinbarg RE. What Is an Anxiety
843 Disorder? *FOC*. 2011;9(3):369-388. doi:10.1176/foc.9.3.foc369

844 87. Beauchaine T. Vagal tone, development, and Gray's motivational theory: Toward an
845 integrated model of autonomic nervous system functioning in psychopathology.
846 *Development and Psychopathology*. 2001;13(2):183-214. doi:10.1017/S0954579401002012

847 88. Thayer JF, Lane RD. A model of neurovisceral integration in emotion regulation and
848 dysregulation. *Journal of Affective Disorders*. 2000;61(3):201-216. doi:10.1016/S0165-
849 0327(00)00338-4

850 89. Stanley J, Peake JM, Buchheit M. Cardiac Parasympathetic Reactivation Following
851 Exercise: Implications for Training Prescription. *Sports Med*. 2013;43(12):1259-1277.
852 doi:10.1007/s40279-013-0083-4

853 90. Mezzacappa ES, Kelsey RM, Katkin ES, Sloan RP. Vagal rebound and recovery from
854 psychological stress. *Psychosom Med*. 2001;63(4):650-657. doi:10.1097/00006842-
855 200107000-00018

856 91. Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4.
857 *Journal of Statistical Software*. 2015;67(1):1-48. doi:10.18637/jss.v067.i01

858 92. Kuznetsova A, Brockhoff PB, Christensen RH. lmerTest Package: Tests in Linear Mixed
859 Effects Models. *Journal of Statistical Software*. 2017;82(13):1-26.
860 doi:10.18637/jss.v082.i13

861 93. Lenth R, Singmann H, Love J, Buerkner P, Huerve M. emmeans: Estimated marginal
862 means. Published online 2018.

863 94. Seery MD. Challenge or threat? Cardiovascular indexes of resilience and vulnerability to
864 potential stress in humans. *Neuroscience & Biobehavioral Reviews*. 2011;35(7):1603-1610.
865 doi:10.1016/j.neubiorev.2011.03.003

866 95. Beauchaine TP, Bell Z, Knapton E, McDonough-Caplan H, Shader T, Zisner A. Respiratory
867 sinus arrhythmia reactivity across empirically based structural dimensions of
868 psychopathology: A meta-analysis. *Psychophysiology*. 2019;56(5):e13329.
869 doi:10.1111/psyp.13329

870 96. Thayer JF, Åhs F, Fredrikson M, Sollers JJ, Wager TD. A meta-analysis of heart rate
871 variability and neuroimaging studies: Implications for heart rate variability as a marker of
872 stress and health. *Neuroscience & Biobehavioral Reviews*. 2012;36(2):747-756.
873 doi:10.1016/j.neubiorev.2011.11.009

874 97. Kubzansky LD, Mendes WB, Appleton AA, Block J, Adler GK. A heartfelt response:
875 Oxytocin effects on response to social stress in men and women. *Biological Psychology*.
876 2012;90(1):1-9. doi:10.1016/j.biopsych.2012.02.010

877 98. Berna G, Ott L, Nandrino JL. Effects of Emotion Regulation Difficulties on the Tonic and
878 Phasic Cardiac Autonomic Response. *PLOS ONE*. 2014;9(7):e102971.
879 doi:10.1371/journal.pone.0102971

880 99. Borders A, Hennebry KA. Angry rumination moderates the association between perceived
881 ethnic discrimination and risky behaviors. *Personality and Individual Differences*.
882 2015;79:81-86. doi:10.1016/j.paid.2015.01.047

883 100. Borders A, Liang CTH. Rumination partially mediates the associations between perceived
884 ethnic discrimination, emotional distress, and aggression. *Cultural Diversity and Ethnic
885 Minority Psychology*. 2011;17:125-133. doi:10.1037/a0023357

886 101. Dondanville AA, Bordewyk A, Pössel P. Role of Rumination in the Association between
887 Discrimination and Adolescents' Mental and Physical Health. *J Child Fam Stud*.
888 2022;31(12):3302-3313. doi:10.1007/s10826-022-02401-2

889 102. Otto MW, Lubin RE, Rosenfield D, et al. The association between race- and ethnicity-
890 related stressors and sleep: the role of rumination and anxiety sensitivity. *Sleep*.
891 2022;45(10):zsac117. doi:10.1093/sleep/zsac117

892 103. Holloway K, Varner F. Forms and frequency of vicarious racial discrimination and African
893 American parents' health. *Social Science & Medicine*. Published online July 24,
894 2021:114266. doi:10.1016/j.socscimed.2021.114266

895 104. Volpert-Esmond HI, Aboargob M. Direct and vicarious experiences of discrimination and
896 ruminations among Latinos before and during the beginning of the COVID-19 pandemic.
897 *Social and Personality Psychology Compass*. 2023;17(11):e12864. doi:10.1111/spc3.12864

898 105. Quinn EB, Ross JD, Boston PQ, Committee HS, Mulligan CJ, Gravlee CC. The social
899 patterning of vicarious discrimination: Implications for health equity. *Social Science &*
900 *Medicine*. 2023;332:116104. doi:10.1016/j.socscimed.2023.116104

901 106. Yip T, Chung K, Chae DH. Vicarious racism, ethnic/racial identity, and sleep among Asian
902 Americans. *Cultural Diversity & Ethnic Minority Psychology*. 2024;30(2):319-329.
903 doi:10.1037/cdp0000534

904 107. Moody MD, Browning WR, Hossain M, Clay OJ. Vicarious experiences of major
905 discrimination, anxiety symptoms, and mental health care utilization among Black Adults.
906 *Social Science & Medicine*. 2023;316:114997. doi:10.1016/j.socscimed.2022.114997

907 108. Allen AP, Kennedy PJ, Cryan JF, Dinan TG, Clarke G. Biological and psychological
908 markers of stress in humans: Focus on the Trier Social Stress Test. *Neuroscience &*
909 *Biobehavioral Reviews*. 2014;38:94-124. doi:10.1016/j.neubiorev.2013.11.005

910 109. Coard SI, Kiang L, Martin Romero MY, Gonzalez LM, Stein GL. Talking through the
911 tough: Identifying facilitating factors to preparation for bias and racial–ethnic
912 discrimination conversations among families from minoritized ethnic–racial groups. *Family*
913 *Process*. 2023;n/a(n/a). doi:10.1111/famp.12878

914 110. DeLaney EN, Williams CD, Elias MJ, et al. Racial discrimination and depressive symptoms
915 mediated by conversations about race among students of color. *Journal of American*
916 *College Health*. 2023;71(9):2835-2839. doi:10.1080/07448481.2021.1998071

917 111. Moffitt U, Syed M. Ethnic-Racial Identity in Action: Structure and Content of Friends'
918 Conversations about Ethnicity and Race. *Identity*. 2021;21(1):67-88.
919 doi:10.1080/15283488.2020.1838804

920 112. Sanchez KL, Kalkstein DA, Walton GM. A threatening opportunity: The prospect of
921 conversations about race-related experiences between Black and White friends. *Journal of*
922 *Personality and Social Psychology*. 2022;122(5):853-872. doi:10.1037/pspi0000369

923 113. Grossman P, Kollai M. Respiratory sinus arrhythmia, cardiac vagal tone, and respiration:
924 Within- and between-individual relations. *Psychophysiology*. 1993;30(5):486-495.
925 doi:10.1111/j.1469-8986.1993.tb02072.x

926 114. Grossman P, Karemaker J, Wieling W. Prediction of Tonic Parasympathetic Cardiac Control
927 Using Respiratory Sinus Arrhythmia: The Need for Respiratory Control. *Psychophysiology*.
928 1991;28(2):201-216. doi:10.1111/j.1469-8986.1991.tb00412.x

929 115. Phinney JS, Ong AD. Conceptualization and measurement of ethnic identity: Current status
930 and future directions. *Journal of Counseling Psychology*. 2007;54(3):271-281.
931 doi:10.1037/0022-0167.54.3.271

932 116. Watson D, Clark LA. *The PANAS-X: Manual for the Positive and Negative Affect Schedule,*
933 *Expanded Form.* University of Iowa Press; 1999.

934 117. Luszczynska A, Boehmer S, Knoll N, Schulz U, Schwarzer R. Emotional support for men
935 and women with cancer: Do patients receive what their partners provide? *International*
936 *Journal of Behavioral Medicine.* 2007;14(3):156-163.

937