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KSB STABILITY IS AUTOMATIC IN CODIMENSION ≥ 3

JÁNOS KOLLÁR AND SÁNDOR J KOVÁCS

1. INTRODUCTION

The right framework for a moduli theory of canonical models of varieties of general type was
established in [KSB88], at least in characteristic 0 and over Noetherian bases; both of which
we assume from now on. The resulting notion, now called KSB stability, works with finitely
presented, flat morphisms g : X → B that satisfy 3 requirements.

• (Global condition) ωX/B is relatively ample and g is projective,

• (Fiberwise condition) the fibers Xb are semi-log-canonical, and

• (Local stability condition) ω
[m]
X/B is flat over B and commutes with base changes B′ → B

for every m ∈ Z.

If g satisfies the last two, then it is called locally KSB stable. See [Kol23] for a detailed
discussion of the resulting moduli theory, especially [Kol23, Sec. 6.2].
Note that the local stability condition is automatic at codimension 1 points, and quite well

understood at codimension 2 points, since we have a complete classification of 2-dimensional
slc singularities; see [KSB88] and [Kol23, Sec. 2.2]. Our aim is to show that local stability is
automatic in codimension ≥ 3. The simplest version is the following.

Theorem 1.1. Let g : X → B be a flat morphism of finite type over a field of characteristic

0. Let Z ⊂ X be a closed subset such that codim(Zb ⊂ Xb) ≥ 3 for every b ∈ B, and set

U := X \ Z.
Assume that the fibers Xb are semi-log-canonical, and g|U

: U → B is locally KSB stable.

Then g : X → B is locally KSB stable.

If the fibers Xb are CM, the claim follows from [Kol23, 10.73]. Being CM is a deformation
invariant property for projective, locally stable families by [KK10], see also [Kol23, 2.67]. In
particular, the theorem was known to hold for varieties in those connected components of
the KSB moduli space that contain a canonical model of a smooth variety.
If B is reduced, the theorem is proved in [Kol13a], see also [Kol23, 5.6]. Thus it remains

to deal with the case when B = SpecA for an Artinian ring A, which implies the theorem
for any B.
For applications, and even for the proof of Theorem 1.1, we need a form that strengthens it

in 2 significant ways. First, we deal with pairs (X,∆ =
∑
aiDi), where ai ∈

{
1
2
, 2
3
, 3
4
, . . . , 1

}

for every i; these are frequently called standard coefficients. Second, and this is more impor-
tant, we assume g to be flat only in codimension ≤ 2.
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2 JÁNOS KOLLÁR AND SÁNDOR J KOVÁCS

Theorem 1.2. Let g : X → B be a morphism of finite type and of pure relative dimension over

a field of characteristic 0, and ∆ =
∑
aiDi, where the Di are relative Mumford Z-divisors.

Let Z ⊂ X be a closed subset and set U := X \ Z. Assume that

(1.2.1) ai ∈
{

1
2
, 2
3
, 3
4
, . . . , 1

}
for every i,

(1.2.2) codim(Zb ⊂ Xb) ≥ 3 for every b ∈ B,

(1.2.3) g|U
: U → B is flat and the fibers (Ub,∆|Ub

) are semi-log-canonical,

(1.2.4) ω
[m]
U/B

(∑
i⌊mai⌋Di|U

)
is flat over B and commutes with base changes for every m ∈ Z,

(1.2.5) depthZ X ≥ 2, and

(1.2.6) the normalization (Xb, Cb + ∆b) → Xb is log canonical for every b ∈ B, where Cb

denotes the conductor of the normalization Xb → Xb; see [Kol13b, 5.2].

Then

(1.2.7) g : X → B is flat,

(1.2.8) the fibers (Xb,∆b) are semi-log-canonical, and

(1.2.9) ω
[m]
X/B

(∑
i⌊mai⌋Di

)
is flat over B and commutes with base changes for every m ∈ Z.

Remarks 1.3.

(1.3.1) As in [Kol23, 4.68], D is a relative Mumford divisor if at every generic point of Xb∩D,
the fiber Xb is smooth and D is Cartier.

(1.3.2) The notation depthZ X stands for depthZ OX : = inf{depthz OX | z ∈ Z}. This
terminology is used, for instance, in [EGA-IV/2, (5.10.1)] and [Kol23, 10.3].

(1.3.3) The condition (1.2.5) is easy to ensure by replacing OX with the push-forward of OU

if necessary. If B is S2 then (1.2.5) holds iff X is S2.

(1.3.4) Assumption (1.2.6) is a weakening of the fiberwise condition; the two are equivalent iff
Xb is S2. In many applications, including the proof of Theorem 1.2, at the beginning
we only know (1.2.6), but eventually conclude that (Xb,∆b) is slc.

(1.3.5) The following may be a better way of formulating (1.2.6). Let j : U →֒ X be the

natural embedding and set X̃b := SpecXb
j∗OUb

, which is the demi-normalization and
also the S2-hull of the fiber Xb; see [Kol13b, Sec.5.1] and [Kol23, Sec.9.1]. Then

X̃b → Xb is a universal homeomorphism that is an isomorphism over Ub. Now (1.2.6)

holds iff the induced pair
(
X̃b, ∆̃b

)
is slc.

(1.3.6) If ai ∈
{

2
3
, 3
4
, . . .

}
, then (1.2.4) is the same as the main assumption of KSB stabilty

with standard coefficients as defined in [Kol23, 6.21.3].
If we allow ai =

1
2
, then the above definition treats the pairs (X,D), (X, 1

2
D+ 1

2
D)

and (X, 1
2
(2D)) as different objects. Note that ωX(

∑
⌊ai⌋Di) is ωX(D) in the first

case but ωX in the other 2 cases. Thus, replacing 1 ·Di with
1
2
Di +

1
2
Di ensures the

extra condition on the {Di : ai = 1} in [Kol23, 6.22.3].
This way of handling the coefficient 1

2
case may not be natural from the point of

view of moduli, but seems necessary; see [Kol23, Secs. 8.1–2] for a discussion of the
general notion of such marked pairs.
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(1.3.7) The definition of KSB stabilty with standard coefficients also requires the Di to be
flat by [Kol23, 6.21.1]. We do not know whether this is automatic in codimensions
≥ 3, see Corollary 4.3 for a special case.

(1.3.8) We comment on other versions of stability in Section 5.

§1.4 Sketch of an approach to Theorem 1.2. Assume for simplicity that we are over C,
B = SpecA for an Artinian ring A, and the closed fiber Xk is projective. As in [KK10]
the proof relies on the Du Bois property (see Remark 1.9) of slc varieties, which implies that
the natural maps

(1.4.1) H i(Xan
k ,C) ։ H i(Xan

k ,OXan
k
) are surjective.

If g is also flat, these imply that the Rig∗OX are (locally) free by [DJ74]. Using this for
various cyclic covers, [Kol23, 2.68] shows that ωX/B is flat over B and commutes with base
changes B′ → B.
An inspection of these proofs shows that, in order to get the flatness of ωX/B, we need

(1.4.1) only for i = n, n−1 where n := dimXk. This is where the codimension 3 condition

enters first. As we noted in (1.3.5), the demi-normalization X̃k of Xk is slc, and X̃k → Xk is
a universal homeomorphism that is an isomorphism over Uk. Thus

H i(Xan
k ,C) ≃ H i(X̃an

k ,C) for every i, and

H i(Xan
k ,OXan

k
) ≃ H i(X̃an

k ,OX̃an
k
) for i = n, n−1.

It follows that (1.4.1) holds for i = n, n−1, although Xk is not (yet known to be) Du Bois, see
also Theorem 4.2. One also sees that it is enough if g is flat at points of dimension ≥ n− 2.
Therefore we get that ωX/B is flat over B.

Interestingly, this approach does not seem to imply that X is flat over B, much less the
full Theorem 1.2. A possible explanation is that ωX is insensitive to codimension 2:

Lemma 1.5. Let π : Y → X be a quasi-finite morphism that is an isomorphism at points of

codimension ≤ 1. Then π∗ωY ≃ ωX .

Proof. Let ı : U →֒ X be the largest open subset such that π′ : = π|π−1U
is an isomor-

phism between π−1U and U . Let  : π−1U →֒ Y denote the embedding. By assumption
codim(Y \ π−1U, Y ) ≥ 2 and codim(X \ U,X) ≥ 2. Therefore, because ωX and ωY are
S2-sheaves (cf. [KM98, 5.69]), it follows that

π∗ωY ≃ π∗∗ωπ−1U ≃ ı∗π
′
∗ωπ−1U ≃ ı∗ωU ≃ ωX . �

In order to prove Theorem 1.2, we use the techniques of [KK20], and establish the following
local, Du Bois version (see Remark 1.9).

Theorem 1.6. Let B be a local scheme over a field of characteristic 0, and f : (X, x) → B a

local morphism that is essentially of finite type. Let Xk be the fiber of f over the closed point

of B, Z ⊆ Xk a closed subset of codimension ≥ 3, and set  : Uk := Xk \ Z →֒ Xk. Assume

that

(1.6.1) f is flat along Uk, and

(1.6.2) Spec ∗OUk
is Du Bois.

Then ωX/B is flat over B and commutes with arbitrary base change.
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Theorem 1.6 will be proved as a combination of Theorem 3.16 and Theorem 4.2.
As before, the method does not seem to imply that X is flat over SpecS, not even if we

assume that depthZ X ≥ 2 as in (1.2.5). However, we do not have a counterexample.
Note that, without the Du Bois assumption, such examples are easy to get:

Example 1.7. Let {Ci : i ∈ I} be a finite set of smooth, projective curves. Fix di > 0 such
that di ≤ deg ωCi

for some i ∈ I, and dj > deg ωCj
for some j ∈ I. Set Y := ×iCi and

consider a line bundle L = ⊠iLi on Y , where degLi = di.
The affine cone over Y with conormal bundle L (cf.[Kol13b, 3.8]) is

Ca(Y, L) := Speck ⊕m∈ZH
0(Y, Lm).

By the i = 0 case of [Kol13b, 3.13.2] its dualizing sheaf is the sheafification of the module

⊕m∈ZH
0(Y, ωY ⊗ Lm).

The mth graded pieces are

⊗i∈IH
0(Ci, L

m
i ) and ⊗i∈I H

0(Ci, ωCi
⊗ Lm

i ).

Note that if di ≤ deg ωCi
then h0(Ci, Li) depends on the choice of Li, not only on degLi.

By contrast, we claim that h0(Y, ωY ⊗ Lm) depends only on the degrees of the Li and m.
Indeed, if m ≤ −1 then ωCj

⊗ Lm
j has negative degree, so H0(Y, ωY ⊗ Lm) = 0. If m = 0

then there is no dependence on the Li, and for m ≥ 1

h0(Ci, ωCi
⊗ Lm

i ) = m degLi + g(Ci)− 1.

Now set B := ×i Pic
di(Ci) and note that Y ×B ≃ ×i

(
Ci × Picdi(Ci)

)
. Let Pi denote the

universal degree di line bundle on Ci × Picdi(Ci) and let P = ⊠Pi on Y × B. Further let
π : Y × B → B be the projection, and consider the universal cone

XB := Ca(Y × B,P ) := SpecB ⊕m≥0π∗P
m

over B. As we noted, the h0
(
Y, ωY ⊗ Pm

b

)
are independent of b ∈ B, so the dualizing sheaf

of XB is flat over B. However, h0
(
Y, Pb

)
does depend on b ∈ B, thus the structure sheaf is

not flat over B. Note that h1
(
Y, Pb

)
also depends on b ∈ B, and when h1

(
Y, Pb

)
6= 0, then

Ca(Y, Pb), the normalization of the fiber of XB over b, is not Du Bois by [GK14, 2.5].

We also prove that KSB stability is automatic in codimension 3 in a different manner,
namely that it is enough to check it on general hyperplane sections.

Corollary 1.8. Let g : X → B be a quasi-projective morphism of pure relative dimension

n ≥ 3 over a field of characteristic 0, and ∆ =
∑
aiDi, where the Di are relative Mumford

Z-divisors. Assume that

(1.8.1) ai ∈
{

1
2
, 2
3
, 3
4
, . . . , 1

}
for every i,

(1.8.2) depthxX ≥ min
{
2, codim(x, g−1(g(x))

}
for every x ∈ X,

(1.8.3) the normalization (Xb, Cb +∆b) → Xb is log canonical for every b ∈ B, and

(1.8.4) general relative surface sections of (X,∆) → B are locally KSB stable.

Then (1.2.7)–(1.2.9) hold.

Proof. By [Kol23, 9.17] we may assume that B is Artinian. Then the relative pluricanonical

sheaves ω
[m]
X/B

(∑
i⌊mai⌋Di

)
are S2. This continues to hold after first tensoring with line
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bundles and then restricting to general surface sections Y := H1 ∩ · · ·Hn−2 ⊂ X ; for the
latter see [Kol23, 10.18]. Thus

ω
[m]
Y/B

(∑
i⌊mai⌋Di|Y

)
≃ ω

[m]
X/B

(∑
jHj +

∑
i⌊mai⌋Di

)
|Y .

Now by [Mat89, p.177] or [Kol23, 10.56], the ω
[m]
X/B

(∑
i⌊mai⌋Di

)
are flat over B outside a

subset of codimesion ≥ 3. Thus they are flat everywhere by Theorem 1.2. Over Artin rings,
flat modules are free [StacksProject, Tag 051G], so commuting with base change holds; see
also [Kol23, 9.17]. �

Remark 1.9. The precise definition of Du Bois singularities, introduced by Steenbrink [Ste83],
is quite involved. It starts with the construction of the Du Bois complex, see [DB81, GNPP88],
which has a natural filtration and agrees with the usual de Rham complex ifX is nonsingular.
For our purposes the important part is the 0th associated graded Du Bois complex of X ,
which is denoted by Ω0

X . This comes with a natural morphism OX → Ω0
X , and a separated

scheme of finite type over C is said to have Du Bois singularities if this natural morphism
is a quasi-isomorphism. For more details on the definition of Du Bois singularities and their
relevance to higher dimensional geometry see [Kol13b, Chap.6].
As we already mentioned in (1.4.1), for a proper complex variety X with Du Bois singu-

larities, the natural morphism

(1.9.1) H i(Xan,C) // // H i(Xan,OXan)

is surjective. (At least heuristically, one may think of Du Bois singularities as the largest
class for which this holds, cf. [Kov12].)
The surjectivity in (1.9.1) enables one to use topological arguments to control the sheaf co-

homology groups H i(X,OX). It is a key element of Kodaira type vanishing theorems [Kol87],
[Kol95, Sec.12],[Kov00],[KSS10] and leads to various results on deformations of Du Bois
schemes [DJ74, KK10, KS16b].
The obvious candidate for a local analog of (1.4.1) is the map on local cohomologies

(1.9.2) H i
x(X

an,C) → H i
x(X

an,OXan).

However, this map is never surjective for i = dimX . In fact, if X is smooth of dimension
n ≥ 2, then Hn

x (X
an,C) is trivial, but Hn

x (X
an,OXan) is infinite dimensional.

To get the right notion, one should look at the natural morphisms

(1.9.3) CXan
σ

// OXan

̺
// Ω0

Xan

The general theory implies that the composition ̺◦σ induces surjectivity on (hyper)cohomology
for any proper X . If X has Du Bois singularities, then ̺ is a quasi-isomorphism, and the
surjectivity in (1.9.1) follows.
Note that ̺ may be represented by a map between coherent sheaves, thus it is possible to

work with ̺ entirely algebraically. Eventually, this suggests that the correct local replacement
of (1.4.1) is the (a priori stronger) quasi-isomorphism of ̺; see also [Kov99, Lemma 2.2]. This
turns out to be equivalent to the local Du Bois isomorphisms

(1.9.4) H i
x(X,OX) ≃ Hi

x(X,Ω
0
X) for i ∈ N and x ∈ X .

At the end this leads to the local cohomology lifting property, the key technical ingredient
in [KK20]; see Definition 3.2.
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Notation 1.10. Hi stands for RiΓ, the ith derived functor of Γ, the functor of sections, and Hi
x

stands for RiΓx, the i
th derived functor Γx, the functor of sections with support at x, i.e.,

the ith local cohomology functor with support at x on the derived category of quasi-coherent
sheaves on X .

2. FILTRATIONS ON MODULES OVER ARTINIAN LOCAL RINGS

We recall the following notation from [KK20].

2.1. Maximal filtrations. Let (S,m, k) be an Artinian local ring and N a finite S-

module with a filtration N = N0 ) N1 ) · · · ) Nq ) Nq+1 = 0 such that Nj

/
Nj+1

≃ k as

S-modules for each j = 0, . . . , q. Further let f : (X, x) → (SpecS,m) be a local morphism
and denote the fiber of f over m by Xk. It follows that then for each j = 0, . . . , q,

(2.1.1) f ∗
(
Nj

/
Nj+1

)
≃ OXk

.

2.2. Filtering S. In particular, considering S as a module over itself, we choose a filtration

of S by ideals S = I0 ) I1 ) · · · ) Iq ) Iq+1 = 0 such that Ij
/
Ij+1

≃ k as S-modules for

all 0 ≤ j ≤ q. Observe that in this case I1 = m and for every j there exists a tj ∈ Ij such

that the composition S
tj ·

// Ij // Ij
/
Ij+1

induces an isomorphism S
/
m

≃ Ij
/
Ij+1

. In

particular, ann
(
Ij
/
Ij+1

)
= m. Finally, let Sj := S

/
Ij . Note that S1 = S

/
m

and Sq+1 = S.

2.3. Filtering ωS. Applying Grothendieck duality to the closed embedding given by the
surjection S ։ Sj implies that ωSj

≃ HomS(Sj, ωS) and we obtain injective S-module
homomorphisms ςj : ωSj

→֒ ωSj+1
induced by the natural surjection Sj+1 ։ Sj . Using the

fact that the canonical module of an Arinian local ring, in particular ωS, is an injective
module and applying the functor HomS( , ωS) to the short exact sequence of S-modules

0 // Ij
/
Ij+1

// Sj+1
// Sj

// 0,

we obtain another short exact sequence of S-modules:

(2.3.1) 0 // ωSj

ςj
// ωSj+1

// HomS (k, ωS) ≃ k // 0.

Therefore we obtain a filtration of N = ωS by the submodules Nj := ωSq+1−j
as in (2.1)

where q + 1 = lengthS(S) = lengthS(ωS). The composition of the embeddings in (2.3.1) will
be denoted by ς := ςq ◦ · · · ◦ ς1 : ωS1

→֒ ωSq+1
= ωS.

Recall that the socle of a module M over a local ring (S,m, k) is

(2.3.2) SocM := (0 : m)M = {x ∈M | m · x = 0} ≃ HomS(k,M).

SocM is naturally a k-vector space and dimk SocωS = 1 by the definition of the canonical
module. In particular, SocωS ≃ k and this is the only S-submodule of ωS isomorphic to k.
Let us recall [KK20, Lemma 3.4], which will be important later:

Lemma 2.4. Using the notation from (2.2) and (2.3), we have that

(2.4.1) im ς = SocωS = IqωS.
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Remark 2.4.2. Note that this is not simply stating that these modules in (2.4.1) are isomor-
phic, but that they are equal as submodules of ωS.

3. FAMILIES OVER ARTINIAN LOCAL RINGS

We will frequently use the following notation.

Notation 3.1. Let A be a noetherian ring, (R,m) a noetherian local A-algebra, I ⊂ R a
nilpotent ideal and (T, n) := (R/I,m/I) with natural morphism α : R ։ T .

Definition 3.2. Let A be a noetherian ring, and (T, n) a noetherian local A-algebra, and i ∈ N
fixed. We say that T has liftable ith local cohomology over A if for any noetherian local
A-algebra (R,m) and nilpotent ideal I ⊂ R such that R/I ≃ T , the natural morphism on
local cohomology

H i
m
(R) // // H i

n
(T )

is surjective. Finally, if T has liftable ith local cohomology over A for every i ∈ N, then we
say that T has liftable local cohomology over A [KK20].
We say that T has liftable ith local cohomology, resp. liftable local cohomology if it has the

relevant property over Z.

Remark 3.3. Notice that using the above notation, if φ : A′ → A is a ring homomorphism
from another noetherian ring A′ then if T has liftable ith local cohomology over A′, then it also
has liftable ith local cohomology over A. In particular, if T has liftable ith local cohomology
over Z, then it has liftable ith local cohomology over any noetherian ring A justifying the
above terminology.
Furthermore, if A = k is a field of characteristic 0 then the notions of having liftable ith

local cohomology over k and over Z are equivalent. This follows in one direction by the
above and in the other by the Cohen structure theorem [StacksProject, Tag 032A].

Definition 3.4. We extend this definition to schemes: Let (X, x) be a local scheme over a
noetherian ring A. Then we say that (X, x) has liftable ith local cohomology over A if OX,x

has liftable ith local cohomology over A. If f : X → Z is a morphism of schemes then we say
that X has liftable ith local cohomology over Z if (X, x) has liftable ith local cohomology over
A for each x ∈ X and for each SpecA ⊆ Z open affine neighbourhood of f(x) ∈ Z. This
also extends the notion of liftable local cohomology in the obvious way.

Lemma 3.5. Let X → Y → Z be morphisms schemes. If X has liftable ith local cohomology

over Z, then X has liftable ith local cohomology over Y as well.

In particular, if X has liftable ith local cohomology over a field k, then it has liftable ith

local cohomology over any other k-scheme to which it admits a morphism. In addition if

char k = 0, then X has liftable ith local cohomology.

Proof. This follows from the definitions and Remark 3.3. �

Let us recall the following simple lemma from [KK20, Lemma 4.4]:

Lemma 3.6. Using Notation 3.1 let M be an R-module such that there exists a surjective

R-module homomorphism φ : M ։ T . Assume that the induced natural homomorphism

H i
m
(R) ։ H i

n
(T ) is surjective for some i ∈ N. Then the induced homomorphism on local
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cohomology

(3.6.1) H i
m
(M) // // H i

m
(T ) ≃ H i

n
(T )

is surjective for the same i. In particular, if (T, n) has liftable local cohomology over A, then
the homomorphism in (3.6.1) is surjective for every i ∈ N.

We will also need the following.

Lemma 3.7. Let Di be the derived category of an abelian category Ai for i = 1, 2, Φ : D1 → D2

a triangulated functor, and define Φi := hi◦Φ : D1 → A2. Let A ∈ ObD1 such that hj(A) = 0
for j > d for some d ∈ Z and assume that there exists an m ∈ N such that Φi(hj(A)) = 0
for i > m and for each j ∈ Z. Then Φi(A) = 0 for i > m+ d.

Proof. Consider the conjugate spectral sequence associated to A and Φ:

Ep,q
2 = Φp(hq(A)) ⇒ Φp+q(A).

By the assumptions Ep,q
2 = 0 if either p > m or q > d, which implies that Ep,q

2 = 0 for
p+ q > m+ d. This implies the desired statement. �

Definition 3.8. Let f : X → Y be a morphism. Then f is said to be flat in codimension t if
there exists a closed subset Z ⊆ X such that codim(Z ∩Xy, Xy) ≥ t+1 for every y ∈ Y and
f |X\Z

is flat.

In the proof of the next statement we will use the canonical truncation of cochain complexes
of objects of an abelian category, which has the property that its cohomology objects are the
same as the original complex up to or above the given index. We follow the notation and
terminology of [StacksProject, Tag 0118]. In particular, for any complex C

q

and any r ∈ Z,
we have the following distinguished triangle of complexes,

(3.8.1) τ≤r(C
q

) // C
q

// τ≥r+1(C
q

)
+1

//

Corollary 3.9. Let (S,m, k) be an Artinian local ring, N a finite S-module, (X, x) a local

scheme of dimension n, and f : (X, x) → (SpecS,m) a local morphism. Assume that f is

flat in codimension t− 1. Then the natural morphism

RiΓx(Lf
∗N)

≃
// H i

x(f
∗N)

is an isomorphism for i ≥ n− t.

Proof. As f is flat in codimension t − 1, it follows that dim suppLjf ∗N ≤ n − t for each
j < 0. This implies that H i

x(L
jf ∗N) = 0 for i > n− t and j < 0. Let A := τ≤−1(Lf

∗N) and
B := τ≥0(Lf

∗N). Then (3.8.1) gives a distinguished triangle of complexes of OX-modules,

A // Lf ∗N // B
+1

// .

Furthermore, hj(A) = Ljf ∗N for j < 0 and hj(A) = 0 for j ≥ 0, hence Lemma 3.7 (for A,
Φ = RΓx, m = n − t and d = −1) implies that RiΓx(A) = 0 for i > n − t − 1. Finally,
B≃qis f

∗N , so the desired statement follows. �
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Proposition 3.10. Let (S,m, k) be an Artinian local ring, (X, x) a local scheme of dimension

n, and f : (X, x) → (SpecS,m) a local morphism. Assume that f is flat in codimension t−1.
Let N be a finite S-module with a filtration as in (2.1) and assume that (Xk, x), where Xk

is the fiber of f over the closed point of SpecS, has liftable ith local cohomology for i ≥ n− t
over S. Then for each i > n− t and for each j, the natural sequence of morphisms induced

by the embeddings Nj+1 →֒ Nj forms a short exact sequence,

0 // H i
x(f

∗Nj+1) // H i
x(f

∗Nj) // H i
x

(
f ∗

(
Nj

/
Nj+1

))
≃ H i

x (OXk
) // 0.

Proof. Since ann
(
Nj

/
Nj+1

)
= m, there is a natural surjective morphism

f ∗Nj ⊗ OXk
։ f ∗

(
Nj

/
Nj+1

)
.

By Lemma 3.6 and (2.1.1), the natural homomorphism

(3.10.1) H i
x(f

∗Nj) // // H i
x

(
f ∗

(
Nj

/
Nj+1

))
≃ H i

x (OXk
)

is surjective for all i ≥ n− t. Next, consider the distinguished triangle

Lf ∗Nj+1
// Lf ∗Nj

// Lf ∗
(
Nj

/
Nj+1

)
+1

// ,

and the induced long exact cohomology sequence for the functor RΓx. By Corollary 3.9 the
terms of that long exact sequence maybe replaced by terms in the form of H i

x(f
∗( )) for

i ≥ n− t and hence the statement follows from (3.10.1). �

3.11. The exceptional inverse image of the structure sheaves. Let (S,m, k) be
an Artinian local ring with a filtration by ideals as in (2.2). Further let f : X → SpecS be a
morphism which is essentially of finite type and fj = f |Xj

: Xj := X×Spec SSpecSj → SpecSj

where Sj = S/Ij as defined in (2.2), e.g., Xq+1 = X and X1 = Xk, the fiber of f over the
closed point of S. By a slight abuse of notation we will denote ωSpecS with ωS as well, but
it will be clear from the context which one is meant at any given time.
Using the description of the exceptional inverse image functor via the residual/dualizing

complexes [Con00, (3.3.6)] (cf.[R&D66, 3.4(a)], [StacksProject, Tag 0E9L]):

(3.11.1) f ! = RHomX(Lf
∗RHomS( , ω

q

S), ω
q

X)

and because S is Artinian, ω
q

Sj
≃ ωSj

for each j and we have that

(3.11.2) ω
q

Xj/Sj
≃ f !

jOSpecSj
≃ RHomXj

(Lf ∗
j ωSj

, ω
q

Xj
).

In the rest of this section we will use the following notation and assumptions.

Assumptions 3.12. Let (S,m, k) be an Artinian local ring, (X, x) a local scheme of dimension
n, and f : (X, x) → (SpecS,m) a local morphism. Assume that f is flat in codimension t−1
and that (Xk, x), where Xk is the fiber of f over the closed point of SpecS, has liftable ith

local cohomology for i ≥ n− t over S.

Theorem 3.13. For each i > n− t and each j ∈ N,

(i) there exists a natural surjective morphism ̺i,j : h
−i(ω

q

Xj+1/Sj+1
) // // h

−i(ω
q

Xj/Sj
) ,
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(ii) there exists a natural surjective morphism ̺i = ̺i,1 ◦ · · · ◦ ̺i,q : h
−i(ω

q

X/S)
// // h

−i(ω
q

Xk
) ,

(iii) the natural morphisms ̺i,j fit into a short exact sequence,

0 // h
−i(ω

q

Xk
) // h

−i(ω
q

Xj+1/Sj+1
)

̺i,j
// h

−i(ω
q

Xj/Sj
) // 0,

(iv) ker ̺i,j = Ijh
−i(ω

q

Xj+1/Sj+1
) ≃ Ijh

−i(ω
q

X/S)
/
Ij+1h

−i(ω
q

X/S)
,

(v) h
−i(ω

q

Xj/Sj
) ≃ h

−i(ω
q

X/S)
/
Ijh

−i(ω
q

X/S)
≃ h

−i(ω
q

X/S)⊗OX
OXj

, and

(vi) ker ̺i = mh
−i(ω

q

X/S).

Proof. Let N = ωS and consider the filtration on N given by Nj = ωSq+1−j
, cf. (2.3), (2.3.1).

Further let ( )̂ denote the completion at x (the closed point of X). Then by Proposition 3.10,
for each i > n− t and each j, there exists a short exact sequence

(3.13.1) 0 // H i
x(f

∗ωSj
) // H i

x(f
∗ωSj+1

) // H i
x

(
f ∗

(
ωSj+1

/
ωSj

))
// 0.

Notice that f ∗ωSj
≃ f ∗

j ωSj
. Combining this observation for both j and j+1 with Corollary 3.9

yields that this short exact sequence may also be written as

(3.13.2) 0 // RΓi
x(Lf

∗
j ωSj

) // RΓi
x(Lf

∗
j+1ωSj+1

) // RΓi
x

(
f ∗

(
ωSj+1

/
ωSj

))
// 0.

Applying local duality [StacksProject, Tag 0AAK] to (3.13.2) gives the short exact sequence

0 // Ext−i
X

(
f ∗

(
ωSj+1

/
ωSj

)
, ω

q

X

)̂
// Ext−i

X (Lf ∗
j+1ωSj+1

, ω
q

X)̂ // Ext−i
X (Lf ∗

j ωSj
, ω

q

X)̂ // 0.

Since completion is faithfully flat [StacksProject, Tag 00MC], this implies that there are short
exact sequences

0 // Ext−i
X

(
f ∗

(
ωSj+1

/
ωSj

)
, ω

q

X

)
//

// Ext−i
X

(
Lf ∗

j+1ωSj+1
, ω

q

X

)
// Ext−i

X

(
Lf ∗

j ωSj
, ω

q

X

)
// 0.

(3.13.3)

By Grothendieck duality

RHomX(Lf
∗
j ωSj

, ω
q

X) ≃ RHomXj
(Lf ∗

j ωSj
, ω

q

Xj
),

and hence Ext−i
X

(
Lf ∗

j ωSj
, ω

q

X

)
≃ h

−i(ω
q

Xj/Sj
) for each i, j, by (3.11.2). Therefore defining ̺i,j

as the surjective morphism in (3.13.3) implies (i). Composing the surjective morphisms in
(3.13.3) for all j implies that the natural morphism

h
−i(ω

q

X/S) ≃ Ext−i
X (f ∗ωS, ω

q

X)
̺i

// // Ext−i
X

(
f ∗ωSq , ω

q

X

)
≃ h

−i(ω
q

Xk
)

is surjective and hence (ii) follows as well.

By (2.3.1) f ∗
(
ωSj+1

/
ωSj

)
≃ OXk

, and hence Ext−i
X

(
f ∗

(
ωSj+1

/
ωSj

)
, ω

q

X

)
≃ h

−i(ω
q

Xk
), so

(3.13.3) also implies (iii).



KSB STABILITY IN CODIMENSION ≥ 3 11

Composing the injective maps in (3.13.1) for all j shows that the embedding ς : ωS1
→֒ ωS

induces an embedding on local cohomology:

(3.13.4) H i
x(f

∗ωS1
) ⊆ H i

x(f
∗ωS).

Next we prove (iv) for j = q first. Since h
−i(ω

q

Xq/Sq
) is supported on Xq it follows that

Iqh
−i(ω

q

X/S) ⊆ K := ker h−i(̺q)

Recall from (2.2) that there exists a tq ∈ Iq such that Iq = Stq ≃ S
/
m

and from Lemma 2.4

that IqωS = SocωS. It follows that for j = q the short exact sequence of (2.3.1) takes the
form

(3.13.5) 0 // ωSq
// ωS

τ
// SocωS

// 0,

where τ : ωS ։ SocωS ⊂ ωS may be identified with multiplication by tq on ωS. Applying f
∗

and taking local cohomology we obtain the sequence

(3.13.6) 0 // H i
x(f

∗ωSq) // H i
x(f

∗ωS)
Hi

x(τ)
// H i

x (f
∗ SocωS) // 0,

which coincides with (3.13.1) for j = q, and hence it is exact. Further note that the mor-
phismH i

x(τ) may also be identified with multiplication by tq onH
i
x(f

∗ωS). By Lemma 2.4 and
(3.13.4), the natural morphismH i

x(ς) : H
i
x (f

∗ SocωS) = H i
x(Iqf

∗ωS) = H i
x(f

∗ωS1
) → H i

x(f
∗ωS)

is injective. SinceH i
x(τ), i.e., multiplication by tq onH

i
x(f

∗ωS), is surjective ontoH
i
x (f

∗ SocωS),
it follows that

(3.13.7) H i
x (f

∗ SocωS)
Hi

x(ς)

≃
// imH i

x(ς) = IqH
i
x(f

∗ωS)
�

�

// H i
x(f

∗ωS),

i.e., H i
x (f

∗ SocωS) coincides with IqH
i
x(f

∗ωS) as submodules of H i
x(f

∗ωS). Next let E be

an injective hull of κ(x) = OX,x

/
mX,x

and consider a morphism φ : H i
x(f

∗ SocωS) → E.

As E is injective, φ extends to a morphism φ̃ : H i
x(f

∗ωS) → E. If a ∈ H i
x(f

∗ωS), then
tqa ∈ IqH

i
x(f

∗ωS) = H i
x (f

∗ SocωS), so

tqφ̃(a) = φ̃(tqa) = φ(tqa) =
(
φ ◦H i

x(τ)
)
(a)

Therefore, φ ◦H i
x(τ) = tqφ̃. Similarly, if ψ : H i

x(f
∗ωS) → E is an arbitrary morphism, then

setting φ = ψ|Hi
x(f

∗ SocωS)
: H i

x(f
∗ SocωS) → E and applying the same computation as above,

with φ̃ replaced by ψ, shows that φ ◦H i
x(τ) = tqψ. It follows that the embedding induced

by H i
x(τ),

(3.13.8) α : HomOX,x
(H i

x(f
∗ SocωS), E) →֒ HomOX,x

(H i
x(f

∗ωS), E)

identifies HomX(H
i
x(f

∗ SocωS), E) with Iq HomX(H
i
x(f

∗ωS), E). By local duality it follows
that (

ker
[
̺i,q : h

−i(ω
q

X/S) ։ h
−i(ω

q

Xq/Sq
)
]/
Iqh

−i(ω
q

X/S)

)
⊗ ÔX,x = 0

and hence, since completion is faithfully flat, this implies (iv) in the case j = q. Running
through the same argument with S replaced by Sj+1 gives the equality in (iv) for all j. In
addition, (iv) for j = q also implies (v) for j ≥ q. Assuming that (v) holds for j = r + 1
implies the isomorphism in (iv) for j = r. In turn, the entire (iv) for j = r, combined with
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(v) for j = r+ 1, implies (v) for j = r. Therefore, (iv) and (v) follow by descending induction
on j and then (vi) follows from (iv) and the definition of ̺i. �

We will also need the following simple lemma from [KK20, 4.11].

Lemma 3.14. Let R be a ring. M an R-module, t ∈ R and J = (t) ⊆ R. Assume that

(0 : J)M = (0 : J)R ·M . Then the natural morphism J ⊗R M
≃

// JM is an isomorphism.

The the following proposition and its proof is essentially the same as that of [KK20,
Prop. 4.12]. We include it here because the original situation here is slightly different from
[KK20], although the difference in the original situation does not influence anything in this
particular proof.

Proposition 3.15. Using the same notation as above,

(i) Ij ⊗ h
−i(ω

q

X/S) ≃ Ijh
−i(ω

q

X/S),

(ii) for any l ∈ N, Ij
/
Ij+l

⊗ h
−i(ω

q

X/S) ≃
Ijh

−i(ω
q

X/S)
/
Ij+lh

−i(ω
q

X/S)
, and

(iii) for any l ∈ N, m
l
/
m

l+1 ⊗ h
−i(ω

q

X/S) ≃
m

l
h
−i(ω

q

X/S)
/
m

l+1
h
−i(ω

q

X/S)
.

Proof. Notice that since H i
x(f

∗ SocωS) is both a quotient and a submodule of H i
x(f

∗ωS),
there are two natural maps between HomOX,x

(H i
x(f

∗ SocωS), E) and HomOX,x
(H i

x(f
∗ωS), E).

RegardingH i
x(f

∗ SocωS) a quotient module via H i
x(τ) we get the embedding α = ( )◦H i

x(τ)
in (3.13.8), and considering it a submodule the restriction map

β : HomOX,x
(H i

x(f
∗ωS), E) // HomOX,x

(H i
x(f

∗ SocωS), E).

φ ✤
// φ|Hi

x(f
∗ SocωS)

These maps are of course not inverses to each other. In fact, we have already established
(cf. (3.13.8)) that φ|Hi

x(f
∗ SocωS)

◦ H i
x(τ) = tqφ and hence the composition α ◦ β is simply

multiplication by tq:

(3.15.1)

φ ∈ HomOX,x
(H i

x(f
∗ωS), E)

α◦β

++❲❲❲
❲❲❲❲

❲❲❲❲
❲❲❲❲

❲❲❲❲
❲❲

β
// HomOX,x

(H i
x(f

∗ SocωS), E)

α≃

��

tqφ ∈ Iq HomOX,x
(H i

x(f
∗ωS), E).

✌

//

This implies, (cf. (3.13.4) and (3.13.7)), that ̺i may be identified with multiplication by tq
on h

−i(ω
q

X/S). Together with Theorem 3.13(vi) this implies that

(0 : Iq)h−i(ω
q

X/S
) = ker ̺i = mh

−i(ω
q

X/S) = (0 : Iq)S · h−i(ω
q

X/S),

and hence the natural morphism

(3.15.2) Iq ⊗S h
−i(ω

q

X/S)
≃

// Iqh
−i(ω

q

X/S)
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is an isomorphism by Lemma 3.14. Now assume, by induction, that (i) holds for Sq in place

of S. In particular, keeping in mind that Sq = S
/
Iq, the natural map

(3.15.3) Ij
/
Iq ⊗Sq h

−i(ω
q

Xq/Sq
)

≃
//

(
Ij
/
Iq

)
h
−i(ω

q

Xq/Sq
)

is an isomorphism for all j. Consider the short exact sequence (cf. Theorem 3.13(v)),

0 // Iqh
−i(ω

q

X/S)
// h

−i(ω
q

X/S)
// h

−i(ω
q

Xq/Sq
) // 0

and apply Ij
/
Iq ⊗S ( ). The image of Ij

/
Iq ⊗S Iqh

−i(ω
q

X/S) in Ij
/
Iq ⊗S h

−i(ω
q

X/S) is 0 and

hence by (3.15.3) the natural map

Ij
/
Iq ⊗S h

−i(ω
q

X/S) ≃ Ij
/
Iq ⊗Sq h

−i(ω
q

Xq/Sq
)

≃
//

(
Ij
/
Iq

)
h
−i(ω

q

Xq/Sq
) ≃

≃
(
Ij
/
Iq

)
h
−i(ω

q

X/S)
/
Iqh

−i(ω
q

X/S)
≃ Ijh

−i(ω
q

X/S)
/
Iqh

−i(ω
q

X/S)
.

is an isomorphism. This, combined with (3.15.2) and the 5-lemma, implies (i). Then (ii) is a
direct consequence of (i) and the fact that tensor product is right exact.
Finally, recall, that the choice of filtration in (2.2) was fairly unrestricted. In particular,

we may assume that the filtration I q of S is chosen so that for all l ∈ N, there exists a j(l)
such that Ij(l) = m

l. Applying (ii) for this filtration implies (iii). �

The following theorem is an easy combination of the results of this section.

Theorem 3.16. Let (S,m, k) be an Artinian local ring, (X, x) a local scheme of dimension

n, and f : (X, x) → (SpecS,m) a local morphism. Assume that f is flat in codimension

t− 1 and that (Xk, x), where Xk is the fiber of f over the closed point of SpecS, has liftable
ith local cohomology for i ≥ n − t over S. Then for each i > n − t, h−i(ω

q

X/S) is flat over

SpecS. In particular, if t > 0, then ωX/S is flat over SpecS and commutes with arbitrary

base change.

Proof. Flatness follows from Proposition 3.15(iii) and [StacksProject, Tag 0AS8]. If t > 0, then
this implies that ωX/S is flat over SpecS. Furthermore, it commutes with arbitrary base
change by Theorem 3.13(ii) and [Kol23, 9.17]. �

4. DU BOIS SINGULARITIES AND LIFTABLE LOCAL COHOMOLOGY

In this section we prove a criterion for a local scheme to have liftable ith local cohomology
for i ≥ n − t. As before, Hi

x denotes RiΓx, the i
th derived functor of Γx, the functor of

sections with support at x, i.e., the ith local cohomology functor with support at x on the
derived category of quasi-coherent sheaves on X .

Lemma 4.1. Let (X, x) be a local scheme of dimension n which is essentially of finite type

over a field of characteristic 0. Then H i
x(OX) → Hi

x(Ω
0
X) is surjective for each i ∈ Z.

Proof. This follows by applying Matlis duality to the map in [MSS17, Lemma 3.2] (cf. [Kov99,
Lemma 2.2], [KS16a, Theorem 3.3], [KS16b, Theorem 3.2], [MSS17, Lemma 3.3]). �
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Theorem 4.2. Let (X, x) be a local scheme of dimension n which is essentially of finite type

over a field of characteristic 0. Fix t ∈ N, t > 0, and let Z ⊆ X be a closed subset of

codimension t + 2. Further let σ : Y → X be an affine morphism which is an isomorphism

over U := X \ Z. Assume that Y is Du Bois. Then

(4.2.1) H i
x(OX) → Hi

x(Ω
0
X) is an isomorphism for i ≥ n− t, and

(4.2.2) X has liftable ith local cohomology for i ≥ n− t.

Proof. Let W = σ−1(x) ⊆ Y and observe that there is an equality of functors:

Γx ◦ σ∗ = ΓW .

As σ is an affine, morphism, σ∗ is exact, we obtain an equality of derived functors:

(4.2.3) RΓx ◦ σ∗ = RΓW .

Consider the short exact sequence

0 // OX
// σ∗OY

// Q // 0,

where Q is defined as the cokernel of the first non-zero morphism in this short exact se-
quence. Applying the functor RΓx, and taking into account (4.2.1), we obtain the following
distinguished triangle:

RΓxOX
// RΓWOY

// RΓxQ
+1

//

The assumption implies that Q is supported on Z, so H i
x(Q) = 0 for i > n − t − 2, and

hence

(4.2.4) H i
x(OX) ≃ H i

W (OY ) for i ≥ n− t.

Next, consider the following diagram:

OX

��

// Rσ∗OY

��

Ω0
X

// Rσ∗Ω
0
Y .

Applying RΓx to each element and using (4.2.1) and (4.2.4) leads to the following:

(4.2.5)

H i
x(OX)

��
��

(for i ≥ n− t)

≃
// H i

W (OY )

≃
��

Hi
x(Ω

0
X) // Hi

W (Ω0
Y )

The top horizontal arrow is an isomorphism for i ≥ n − t and the right vertical arrow is
an isomorphism for all i, because Y is Du Bois. It follows that the diagonal map is also an
isomorphism, and in particular, injective for i ≥ n− t. In particular the left vertical arrow is
also injective for i ≥ n−t. It is surjective for each i by Lemma 4.1 and hence an isomorphism
for i ≥ n− t. This proves (4.2.1).
Let (R,m) be a noetherian local ring and I ⊂ R a nilpotent ideal such that R/I ≃ OX,x.

In order to prove (4.2.2) we need that the induced natural morphism on local cohomology

(4.2.6) H i
m
(R) // // H i

x(OX)
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is surjective for i ≥ n− t. Let X ′ := SpecR and consider the following diagram:

H i
m
(R) //

��
��

H i
x(OX)

(for i ≥ n− t by (4.2.1))≃
��

Hi
m
(Ω0

X′) ≃
// Hi(Ω0

X)

As above, the left vertical arrow is a surjection by Lemma 4.1. The bottom horizontal arrow
is an isomorphism, because X ′

red ≃ Xred and Ω0 only depends on the reduced structure
by definition, cf. [MSS17, p.2150]. Finally, the right vertical arrow is an isomorphism for
i ≥ n− t by (4.2.1) and the combination of these implies (4.2.6) and hence (4.2.2). �

Proof of Theorem 1.6. It follows from Theorem 4.2 that the assumptions of Theorem 1.6 im-
ply those of Theorem 3.16, which in turn implies the desired statement of Theorem 1.6 if S
is Artinian.
If ωX/B is known to commute with base changes, then one can check flatness over Artin

subschemes of B by the local criterion of flatness.
The general case follows from [Kol23, 9.17], which is a variant of the local criterion of

flatness, combined with obstruction theory. �

Proof of Theorem 1.2. We may assume that B is a local scheme with closed point b ∈ B. We
will consider three, increasingly more general cases.

Case I: ∆ = 0 and ωX̃b
is locally free, where π : X̃b → Xb is the demi-normalization as in

(1.3.5).
Note that ωX/B is flat and commutes with arbitrary base change by Theorem 1.6. By

further localization we may assume that ωX̃b
is free. Since ωXb

≃ π∗ωX̃b
by Lemma 1.5, we

see that ωX/B has a section σ such that σb does not vanish on Ub, hence σ : OX → ωX/B is an
isomorphism away from a closed subsetW for whichWb ⊂ Zb. In particular, depthWb

OX ≥ 2
by (1.2.5). Now we use the easy [Kol23, Lem.10.6] to conclude that OX ≃ ωX/B. Thus g is
flat, ωX/B is locally free, and so are all of its powers.

Case II: ∆ = D is a Z-divisor and ωX̃b
(D̃b) is locally free. Note that OU(−D) ≃ ωU/B is flat

over B and commutes with base changes by assumption. Thus Proposition 5.1 applies, and
so ωX/B(D) is flat over B and commutes with base changes.

We may assume that ωX̃b
(D̃b) is free with generating section σ̃b. By Lemma 1.5 we can

identify σ̃b with a section σb of ωXb
(Db). By flatness it lifts to σ : OX → ωX/B(D), which is

an isomorphism over U . By (1.2.5) (and the easy [Kol23, 10.6]) σ is an isomorphism. Thus
ωX/B(D) is locally free and so are its powers.
Case III: The general case. We may assume that X is local, and by [Kol23, 9.17] it is sufficient
to prove the case when B is Artinian.
Write ∆ =

∑
i∈I aiDi, where ai = 1− 1

i
, I ⊂ {2, 3, 4, . . . ,∞} is a finite subset and the Di

are reduced divisors.
Choose m > 0 such that ω

[m]
Ub

(m∆b) ∼ OUb
. The kernel of Pic(U) → Pic(Ub) is a k-

vectorspace; hence divisible and torsion free. Thus there is a unique line bundle LU on U

such that LUb
∼ OUb

and ω
[m]
U/B(m∆) [⊗]Lm

U ∼ OU . Let L be the push-forward of LU to X .
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Take the corresponding cyclic cover

π : Y := SpecX
∑m−1

j=0 ω
[j]
X/B

(∑
i⌊jai⌋Di

)
[⊗]L[j] → X.

Note that π ramifies along the Di as follows. If i ≥ 3, then π has ramification index i along
Di, and π is unramified along D∞. The i = 2 case is somewehat special. Then πb has
ramification index 2 along an irreducible divisor Fb ⊂ Xb if it has multiplicity 1 in D2|b, and
Yb is nodal along π

−1
b (Fb) if Fb has multiplicity 2 in D2|b. Thus

KYb
+ π∗

bD∞ ∼Q π
∗
b

(
KXb

+∆b

)
.

In particular, (Y, π∗D∞) → B satisfies the assumptions (1.2.1)-(1.2.6). (Note that Y → B is
known to be flat only over U , so requiring flatness only in codimension ≤ 2 is essential here.)
By duality, we get that

π∗ωY/B(π
∗D∞) ≃

∑m−1
j=0 ω

[1−j]
X/B

(
D∞ −

∑
i⌊jai⌋Di

)
[⊗]L[−j], and

(πb)∗ωỸb
(π∗

bD∞) ≃
∑m−1

j=0 ω
[1−j]
Xb

(
D∞|b −

∑
i⌊jai⌋Di|b

)
[⊗]L

[−j]
b .

The j = 1 summand of (πb)∗ωỸb
(π∗

bD∞) is trivial. Thus ωỸb
(π∗

bD∞) has a section that is

nowhere zero on Ub, so ωỸb
(π∗

bD∞) is trivial. The previous case applies, and we conclude
that all the

ω
[1−j]
X/B

(
D∞ −

∑
i⌊jai⌋Di

)
[⊗]L[−j]

are flat over B and commute with base changes.
The j = 1 summand is L[−1], whose restriction to Xb is trivial. By flatness, the constant

1 section of L[−1]
|Xb

lifts to a section of L[−1], hence L is trivial.

Now fix 0 ≤ r < m and set 1− j = r −m. Then we get that

ω
[r]
X/B

(
D∞ +

∑
i(maiDi − ⌊(m− r + 1)ai⌋)Di

)
≃ ω

[1−j]
X/B

(
D∞ −

∑
i⌊jai⌋Di

)
[⊗]L[−j]

is flat over B and commutes with base changes. Now, observe that

⌊ra⌋+ ⌊(m− r + 1)a⌋ =

{
m+ 1 if a = 1, and

m if a = c−1
c

for some 1 < c | m.

This gives that

ω
[r]
X/B

(
D∞ +

∑
i(mai − ⌊(m− r + 1)ai⌋)Di

)
≃ ω

[r]
X/B

(∑
i⌊rai⌋Di

)
.

Thus the ω
[r]
X/B

(∑
i⌊rai⌋Di

)
are flat over B and commute with base changes. �

Corollary 4.3. Using the notation and assumptions of Theorem 1.2, set D∞ :=
∑

i:ai=1Di.

Then OX(−D∞) and OD∞
are flat over B and commute with base changes.

Proof. Arguing as in Case III above, we get that

π∗ωY/B ≃
∑m−1

j=0 ω
[1−j]
X/B

(
−
∑

i⌊jai⌋Di

)
[⊗]L[−j].

We proved that L is trivial, so the j = 1 summand is OX(−D∞). It is thus flat over B with
S2 fibers. Therefore the induced maps OX(−D∞)|Xb

→ OXb
are injections, hence OD∞

is
also flat over B and commutes with base changes. �
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5. KSBA STABILITY

It is possible that the analog of Theorem 1.2 holds for arbitrary KSBA stable pairs as in
[Kol23, Sec.8.2]. Note that by [Kol23, 7.5], K-flatness of divisors is automatic in codimension
≥ 3. This would say that the whole theory of KSBA stability is determined in codimension
2.
The next result is a very small step in this direction. It shows that the reduced part of

the boundary divisor behaves well in codimension ≥ 3.

Proposition 5.1. Let g : X → B be a morphism of finite type and of pure relative dimension

over a field of characteristic 0, ∆ a relative Mumford R-divisor and 0 ≤ D ≤ ∆ a relative

Mumford Z-divisor. Let Z ⊂ X be a closed subset and set U := X \ Z. Assume that

(5.1.1) codim(Zb ⊂ Xb) ≥ 3 for every b ∈ B,

(5.1.2) g|U
: U → B is flat with demi-normal fibers,

(5.1.3) OU(−D|U) is flat over B and commutes with base changes, and

(5.1.4) the demi-normalization (X̃b, ∆̃b) of (Xb,∆b) is semi-log-canonical for b ∈ B.

Then ωX/B(D) is flat over B and commutes with base changes.

Proof. Take two copies (Xi,∆i) ≃ (X,∆) and glue them together along D1 ≃ D2 to get

gY := (g1 ∐ g2) : Y := X1 ∐D1≃D2
X2 → B.

Let π : Y → X be the projection. Set ∆Y := π∗(∆ − D) and consider the short exact
sequence,

0 // OX1
(−D1) // OY

// OX2
// 0.

As π is finite, the push-forward of this remains exact and, using the fact that π|Xi
is an

isomorphism, the natural morphism OX → π∗OY provides a splitting of the push-forward
of the above exact sequence. Therefore, π∗OY ≃ OX ⊕ OX(−D), and so (Y,∆Y ) → B
is flat over π−1(U) with semi-log-canonical fibers. The demi-normalization of (Yb,∆Y |b)

is the amalgamation of 2 copies of
(
X̃b, ∆̃b

)
along D̃b, hence semi-log-canonical. Thus

ωY/B is flat over B and commutes with base changes by Theorem 1.6. Finally note that
π∗ωY/B ≃ ωX/B⊕ωX/B(D), thus ωX/B(D) is flat over B and commutes with base changes. �

Remark 5.2. We claim that AFI stability, where we float all coefficients as in [Kol23, Sec.8.3],
is determined in codimension 2.
To see this, note that the boundary divisor ∆ is necessarily R-Cartier. Thus, for every

point x ∈ Zb as in Theorem 1.2, either x 6∈ supp∆b, and then local stability holds by
Theorem 1.2, or x ∈ supp∆b, and then x is not an lc center of Xb. Then depthx OX̃b

≥ 3 by

[Kol13b, 7.20] (cf. [Kov11] and [AH12]), hence local stability holds by [Kol23, 10.73].
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[Kov99] S. J. Kovács: Rational, log canonical, Du Bois singularities: on the conjectures of Kollár and

Steenbrink, Compositio Math. 118 (1999), no. 2, 123–133. MR 1713307 (2001g:14022)
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