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KSB STABILITY IS AUTOMATIC IN CODIMENSION > 3

JANOS KOLLAR AND SANDOR J KOVACS

1. INTRODUCTION

The right framework for a moduli theory of canonical models of varieties of general type was
established in [KSB88|, at least in characteristic 0 and over Noetherian bases; both of which
we assume from now on. The resulting notion, now called KSB stability, works with finitely
presented, flat morphisms ¢g : X — B that satisfy 3 requirements.

e (Global condition) wx,p is relatively ample and g is projective,
e (Fiberwise condition) the fibers X, are semi-log-canonical, and

e (Local stability condition) w&?;]B is flat over B and commutes with base changes B’ — B

for every m € Z.

If g satisfies the last two, then it is called locally KSB stable. See [Kol23] for a detailed
discussion of the resulting moduli theory, especially [Kol23, Sec. 6.2].

Note that the local stability condition is automatic at codimension 1 points, and quite well
understood at codimension 2 points, since we have a complete classification of 2-dimensional
slc singularities; see [KSB88] and [Kol23, Sec. 2.2]. Our aim is to show that local stability is
automatic in codimension > 3. The simplest version is the following.

Theorem 1.1. Let g : X — B be a flat morphism of finite type over a field of characteristic
0. Let Z C X be a closed subset such that codim(Z, C X;,) > 3 for every b € B, and set
U:=X\Z.

Assume that the fibers X, are semi-log-canonical, and 9|y U — B is locally KSB stable.
Then g : X — B s locally KSB stable.

If the fibers X}, are CM, the claim follows from [Kol23, 10.73]. Being CM is a deformation
invariant property for projective, locally stable families by [KK10], see also [Kol23, 2.67]. In
particular, the theorem was known to hold for varieties in those connected components of
the KSB moduli space that contain a canonical model of a smooth variety.

If B is reduced, the theorem is proved in [Kol13a], see also [Kol23, 5.6]. Thus it remains
to deal with the case when B = Spec A for an Artinian ring A, which implies the theorem
for any B.

For applications, and even for the proof of Theorem 1.1, we need a form that strengthens it
in 2 significant ways. First, we deal with pairs (X, A = > a;D;), where a; € {%, %, %, cee 1}
for every i; these are frequently called standard coefficients. Second, and this is more impor-
tant, we assume g to be flat only in codimension < 2.
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Theorem 1.2. Let g : X — B be a morphism of finite type and of pure relative dimension over
a field of characteristic 0, and A =" a;D;, where the D; are relative Mumford Z-divisors.
Let Z C X be a closed subset and set U := X \ Z. Assume that

(1.2.1) a; € {%, %, %, ce 1} for every i,
1.2.2) codim(Z, C Xp) > 3 for every b € B,

1.2.3) g|,, - U — B is flat and the fibers (Uy, Aly,) are semi-log-canonical,

1.2.5) depth, X > 2, and

1.2.6) the normalization (Yb,éb + Zb) — X s lo_g canonical for every b € B, where C,
denotes the conductor of the normalization X, — X,; see [Kol13b, 5.2].

)
(1.2.2)
(1.2.3)
(1.2.4) w([;”]B (ZZ LmaiJDi|U) is flat over B and commutes with base changes for everym € Z,
(1.2.5)
(1.2.6)

Then
(1.2.7) g : X — B is flat,
(1.2.8) the fibers (Xy, Ap) are semi-log-canonical, and

(1.2.9) w%]B (3=, lma;| D;) is flat over B and commutes with base changes for every m € Z.
Remarks 1.3.

(1.3.1) Asin [Kol23, 4.68], D is a relative Mumford divisor if at every generic point of X,ND,
the fiber X is smooth and D is Cartier.

(1.3.2) The notation depth, X stands for depth, Ox: = inf{depth, Ox | = € Z}. This
terminology is used, for instance, in [EGA-IV/2, (5.10.1)] and [Kol23, 10.3].

(1.3.3) The condition (1.2.5) is easy to ensure by replacing O'x with the push-forward of &y,
if necessary. If B is S5 then (1.2.5) holds iff X is .S,.

(1.3.4) Assumption (1.2.6) is a weakening of the fiberwise condition; the two are equivalent iff
Xy is S5. In many applications, including the proof of Theorem 1.2, at the beginning
we only know (1.2.6), but eventually conclude that (X,, Ap) is slc.

(1.3.5) The following may be a better way of formulating (1.2.6). Let j : U — X be the
natural embedding and set X, = Specy, J«Ou,, which is the demi-normalization and
also the Sy-hull of the fiber X;; see [Kol13b, Sec.5.1] and [Kol23, Sec.9.1]. Then
)?b — X} is a universal homeomorphism that is an isomorphism over U,. Now (1.2.6)
holds iff the induced pair ()Z'b, &,) is slc.

(1.3.6) If a; € {%, %, e }, then (1.2.4) is the same as the main assumption of KSB stabilty
with standard coefficients as defined in [Kol23, 6.21.3].

If we allow a; = 1, then the above definition treats the pairs (X, D), (X, 3D+ D)
and (X, $(2D)) as different objects. Note that wx (3" |a;]D;) is wx(D) in the first
case but wx in the other 2 cases. Thus, replacing 1 - D; with %Di + %Di ensures the
extra condition on the {D;: a; = 1} in [Kol23, 6.22.3].

This way of handling the coefficient % case may not be natural from the point of
view of moduli, but seems necessary; see [Kol23, Secs. 8.1-2] for a discussion of the
general notion of such marked pairs.
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(1.3.7) The definition of KSB stabilty with standard coefficients also requires the D; to be
flat by [Kol23, 6.21.1]. We do not know whether this is automatic in codimensions
> 3, see Corollary 4.3 for a special case.

(1.3.8) We comment on other versions of stability in Section 5.

§1.4 Sketch of an approach to Theorem 1.2. Assume for simplicity that we are over C,

B = Spec A for an Artinian ring A, and the closed fiber X} is projective. As in [KK10]

the proof relies on the Du Bois property (see Remark 1.9) of slc varieties, which implies that

the natural maps

(1.4.1) HY(X™ C) — HY(X™, Oxam) are surjective.

If g is also flat, these imply that the R'g,0x are (locally) free by [DJ74]. Using this for
various cyclic covers, [Kol23, 2.68] shows that wx/p is flat over B and commutes with base
changes B’ — B.

An inspection of these proofs shows that, in order to get the flatness of wx,p, we need
(1.4.1) only for ¢ = n,n—1 where n := dim Xj. This is where the codimension 3 condition
enters first. As we noted in (1.3.5), the demi-normalization X, of X}, is slc, and X — X} is
a universal homeomorphism that is an isomorphism over Uj. Thus

H{(X™ C) ~ H(X™ C) for every i, and
HY(Xp", Oxm) ~ HY(XP", Ogem) fori=mnn-1.

l

It follows that (1.4.1) holds for i = n,n—1, although X} is not (yet known to be) Du Bois, see
also Theorem 4.2. One also sees that it is enough if ¢ is flat at points of dimension > n — 2.
Therefore we get that wy,p is flat over B.

Interestingly, this approach does not seem to imply that X is flat over B, much less the
full Theorem 1.2. A possible explanation is that wx is insensitive to codimension 2:

Lemma1.5. Let m: Y — X be a quasi-finite morphism that is an isomorphism at points of
codimension < 1. Then mwy =~ wx.

Proof. Let ©+ : U < X be the largest open subset such that 7’: = T ., is an isomor-

phism between 771U and U. Let 7 : 77U < Y denote the embedding. By assumption
codim(Y \ 771U, Y) > 2 and codim(X \ U, X) > 2. Therefore, because wyx and wy are
Sy-sheaves (cf. [KM98, 5.69]), it follows that

Ty ™ My Jap 1y = LT W1y 2 LWy ~ Wx. O
In order to prove Theorem 1.2, we use the techniques of [KK20], and establish the following

local, Du Bois version (see Remark 1.9).

Theorem 1.6. Let B be a local scheme over a field of characteristic 0, and f: (X,z) = B a
local morphism that is essentially of finite type. Let Xy, be the fiber of f over the closed point
of B, Z C Xy a closed subset of codimension > 3, and set j: Up:= Xy \ Z — Xy. Assume
that

(1.6.1) f is flat along Uy, and
(1.6.2) Spec 3.0, is Du Bois.
Then wx/p s flat over B and commutes with arbitrary base change.
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Theorem 1.6 will be proved as a combination of Theorem 3.16 and Theorem 4.2.

As before, the method does not seem to imply that X is flat over Spec S, not even if we
assume that depth, X > 2 as in (1.2.5). However, we do not have a counterexample.

Note that, without the Du Bois assumption, such examples are easy to get:

Example 1.7. Let {C; : i € I} be a finite set of smooth, projective curves. Fix d; > 0 such
that d; < degwc, for some ¢ € I, and d; > degwc, for some j € I. Set Y := x;C; and
consider a line bundle L = X;L; on Y, where deg L; = d;.
The affine cone over Y with conormal bundle L (cf.[Kol13b, 3.8]) is
Ca(}/a L) = Speck @mEZHO(Y> Lm)
By the i = 0 case of [Kol13b, 3.13.2] its dualizing sheaf is the sheafification of the module
DmezH' (Y, wy @ L™).
The mth graded pieces are
®RierH(Ci, L") and  ®ier HY(Ci,we, @ L.

Note that if d; < degwc, then h°(C;, L;) depends on the choice of L;, not only on deg L;.

By contrast, we claim that h°(Y, wy ® L™) depends only on the degrees of the L; and m.
Indeed, if m < —1 then we; ® L' has negative degree, so HY(Y,wy @ L™) = 0. If m =0
then there is no dependence on the L;, and for m > 1

hO(Ci,wCi X LG) = mdeg LZ + g(C’Z) — 1.

Now set B := x; Pic%(C;) and note that Y x B ~ x; (C’i X Picdi(Ci)). Let P, denote the
universal degree d; line bundle on C; x Picdi(CZ-) and let P = XP, on Y x B. Further let
7 :Y X B — B be the projection, and consider the universal cone

Xp = C,(Y x B, P) := Specg ®pm>om P™
over B. As we noted, the h° (Y, wy ® Pbm) are independent of b € B, so the dualizing sheaf
of Xp is flat over B. However, h° (Y, Pb) does depend on b € B, thus the structure sheaf is
not flat over B. Note that h! (Y, Pb) also depends on b € B, and when h' (Y, Pb) = 0, then
C.(Y, By), the normalization of the fiber of Xp over b, is not Du Bois by [GK14, 2.5].

We also prove that KSB stability is automatic in codimension 3 in a different manner,
namely that it is enough to check it on general hyperplane sections.

Corollary 1.8. Let g : X — B be a quasi-projective morphism of pure relative dimension
n > 3 over a field of characteristic 0, and A =Y a;D;, where the D; are relative Mumford
Z-divisors. Assume that

(1.8.1) a; € {%, %, %, cee 1} for every i,

(1.8.2) depth, X > min{2, codim(z, g7 (g9(x))} for every z € X,

(1.8.3) the normalization (X, Cy, + Ay) — X, is log canonical for every b € B, and
(1.8.4) general relative surface sections of (X, A) — B are locally KSB stable.
Then (1.2.7)-(1.2.9) hold.

Proof. By [Kol23, 9.17] we may assume that B is Artinian. Then the relative pluricanonical

sheaves WK',}]B (>=;lma;]) D;) are S,. This continues to hold after first tensoring with line
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bundles and then restricting to general surface sections Y := HyN---H,_» C X; for the
latter see [Kol23, 10.18]. Thus

Wy )iy (SiLmai ) Dily) = wy (S, H; + i lmai | D)y
Now by [Mat89, p.177] or [Kol23, 10.56], the W%]B (3>=;lma;) D;) are flat over B outside a
subset of codimesion > 3. Thus they are flat everywhere by Theorem 1.2. Over Artin rings,

flat modules are free [StacksProject, Tag 051G, so commuting with base change holds; see
also [Kol23, 9.17]. O

Remark 1.9. The precise definition of Du Bois singularities, introduced by Steenbrink [Ste83],
is quite involved. It starts with the construction of the Du Bois complex, see [DB81, GNPP88|,
which has a natural filtration and agrees with the usual de Rham complex if X is nonsingular.
For our purposes the important part is the 0™ associated graded Du Bois complex of X,
which is denoted by Q%. This comes with a natural morphism €y — Q%, and a separated
scheme of finite type over C is said to have Du Bois singularities if this natural morphism
is a quasi-isomorphism. For more details on the definition of Du Bois singularities and their
relevance to higher dimensional geometry see [Kol13b, Chap.6].

As we already mentioned in (1.4.1), for a proper complex variety X with Du Bois singu-
larities, the natural morphism

(1.9.1) Hi(X™ C) —» H(X™ Oyam)

is surjective. (At least heuristically, one may think of Du Bois singularities as the largest
class for which this holds, cf. [Kovi2].)

The surjectivity in (1.9.1) enables one to use topological arguments to control the sheaf co-
homology groups H'(X, Ox). It is a key element of Kodaira type vanishing theorems [Kol87],
[Kol95, Sec.12],[Kov00],[KSS10] and leads to various results on deformations of Du Bois
schemes [DJ74, KK10, KS16b].

The obvious candidate for a local analog of (1.4.1) is the map on local cohomologies

(1.9.2) HL{(X™ C) — HL(X™ Oxan).
However, this map is never surjective for ¢ = dim X. In fact, if X is smooth of dimension
n > 2, then H(X?*,C) is trivial, but H(X®", Oxan) is infinite dimensional.

To get the right notion, one should look at the natural morphisms

(1.9.3) Cxan —Z Oxan —— Q%un

The general theory implies that the composition goo induces surjectivity on (hyper)cohomology
for any proper X. If X has Du Bois singularities, then o is a quasi-isomorphism, and the
surjectivity in (1.9.1) follows.

Note that ¢ may be represented by a map between coherent sheaves, thus it is possible to
work with p entirely algebraically. Eventually, this suggests that the correct local replacement
of (1.4.1) is the (a priori stronger) quasi-isomorphism of g; see also [Kov99, Lemma 2.2]. This
turns out to be equivalent to the local Du Bois isomorphisms

(1.9.4) H(X,0x) ~H (X,05%) foricNandz e X.

At the end this leads to the local cohomology lifting property, the key technical ingredient
in [KK20]; see Definition 3.2.
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Notation 1.10. H stands for ®'T, the i** derived functor of I', the functor of sections, and H
stands for ®'Ty, the i*® derived functor I',, the functor of sections with support at x, i.e.,
the 7" local cohomology functor with support at  on the derived category of quasi-coherent
sheaves on X.

2. FILTRATIONS ON MODULES OVER ARTINIAN LOCAL RINGS
We recall the following notation from [KK20].
2.1. MAXIMAL FILTRATIONS. Let (S, m, k) be an Artinian local ring and N a finite S-
module with a filtration N = Ny 2 N; 2 --- 2 N, 2 Ny; = 0 such that Nj/Nj—i-l ~ k as

S-modules for each j = 0,...,q. Further let f : (X,x) — (Spec S, m) be a local morphism
and denote the fiber of f over m by X;. It follows that then for each j =0,...,q,

(2.1.1) f* <Nj/Nj+l> ~ Oy,.
2.2. FILTERING S. In particular, considering S as a module over itself, we choose a filtration

of Sbyideals S =1, 21 2 --- 2 I, 2 I,+1 = 0 such that Ij/fj+1 ~ k as S-modules for
all 0 < 7 < ¢q. Observe that in this case I; = m and for every j there exists a t; € I; such

t..
that the composition S —— I; —— Ij/lj-i-l induces an isomorphism S/m o~ Ij/[j+1. In

particular, ann (Ij/]j—i-l) = m. Finally, let S; := S/]j. Note that S; = S/m and Sgq1 = S.

2.3. FILTERING wg. Applying Grothendieck duality to the closed embedding given by the
surjection S — S; implies that wg, ~ Homg(S5;,ws) and we obtain injective S-module
homomorphisms ¢; : wg, < wg,,, induced by the natural surjection Sj;; — S;. Using the
fact that the canonical module of an Arinian local ring, in particular wg, is an injective
module and applying the functor Homg(__,wg) to the short exact sequence of S-modules

0—— ]j/]j-l-l Sj-i—l Sj 0,

we obtain another short exact sequence of S-modules:

(231) 0 ws; ki Ws;41 HOIIlS (]{7, ws) ~k——0.

Therefore we obtain a filtration of N = wg by the submodules N; := wg,,, . as in (2.1)
where ¢ + 1 = lengthg(S) = lengthg(ws). The composition of the embeddings in (2.3.1) will
be denoted by ¢ :=¢,0---0¢ :wg, = wg,,, = ws.

Recall that the socle of a module M over a local ring (S, m, k) is

(2.3.2) SocM :=(0:m)yy ={xreM|m-z=0}~Homg(k, M).

Soc M is naturally a k-vector space and dimj Socwg = 1 by the definition of the canonical
module. In particular, Socws =~ k and this is the only S-submodule of wg isomorphic to k.
Let us recall [KK20, Lemma 3.4], which will be important later:

Lemma 2.4. Using the notation from (2.2) and (2.3), we have that

(2.4.1) im¢ = Socwg = [,ws.
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Remark 2.4.2. Note that this is not simply stating that these modules in (2.4.1) are isomor-
phic, but that they are equal as submodules of wg.

3. FAMILIES OVER ARTINIAN LOCAL RINGS
We will frequently use the following notation.

Notation 3.1. Let A be a noetherian ring, (R, m) a noetherian local A-algebra, I C R a
nilpotent ideal and (7,n):= (R/I,m/I) with natural morphism o : R — T.

Definition 3.2. Let A be a noetherian ring, and (7', n) a noetherian local A-algebra, and i € N
fixed. We say that T has liftable i local cohomology over A if for any noetherian local
A-algebra (R, m) and nilpotent ideal I C R such that R/I ~ T, the natural morphism on
local cohomology

Hy (R) — H,(T)

is surjective. Finally, if 7 has liftable i*" local cohomology over A for every i € N, then we
say that T" has liftable local cohomology over A [KK20].

We say that T has liftable i local cohomology, resp. liftable local cohomology if it has the
relevant property over Z.

Remark 3.3. Notice that using the above notation, if ¢ : A — A is a ring homomorphism
from another noetherian ring A’ then if T has liftable i*"local cohomology over A’, then it also
has liftable i*" local cohomology over A. In particular, if 7" has liftable i*" local cohomology
over Z, then it has liftable i*" local cohomology over any noetherian ring A justifying the
above terminology.

Furthermore, if A = k is a field of characteristic 0 then the notions of having liftable ‘!
local cohomology over k and over Z are equivalent. This follows in one direction by the
above and in the other by the Cohen structure theorem [StacksProject, Tag 032A].

Definition 3.4. We extend this definition to schemes: Let (X, x) be a local scheme over a
noetherian ring A. Then we say that (X, x) has liftable i" local cohomology over A if Ox,
has liftable i*" local cohomology over A. If f : X — Z is a morphism of schemes then we say
that X has liftable i local cohomology over Z if (X, x) has liftable i*"local cohomology over
A for each z € X and for each Spec A C Z open affine neighbourhood of f(x) € Z. This
also extends the notion of liftable local cohomology in the obvious way.
Lemma3.5. Let X — Y — Z be morphisms schemes. If X has liftable i™ local cohomology
over Z, then X has liftable i local cohomology over Y as well.

In particular, if X has liftable i*™ local cohomology over a field k, then it has liftable i"
local cohomology over any other k-scheme to which it admits a morphism. In addition if
char k = 0, then X has liftable i local cohomology.

Proof. This follows from the definitions and Remark 3.3. 0J

Let us recall the following simple lemma from [KK20, Lemma 4.4]:

Lemma 3.6. Using Notation 3.1 let M be an R-module such that there exists a surjective
R-module homomorphism ¢ : M — T. Assume that the induced natural homomorphism
Hi(R) — HL(T) is surjective for some i € N. Then the induced homomorphism on local
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cohomology
(3.6.1) Hi(M)— H.(T) ~ H(T)

is surjective for the same i. In particular, if (T, n) has liftable local cohomology over A, then
the homomorphism in (3.6.1) is surjective for every ¢ € N.

We will also need the following.

Lemma3.7. Let D; be the derived category of an abelian category A; fori=1,2, ® : D — Dy
a triangulated functor, and define ®':= hio® : Dy — 4y. Let A € Ob Dy such that h/(A) =0
for j > d for some d € Z and assume that there exists an m € N such that ®'(h/(A)) = 0
fori > m and for each j € Z. Then ®'(A) =0 for i > m +d.

Proof. Consider the conjugate spectral sequence associated to A and ®:
EYT = ®P(h9(A)) = OPTI(A).

By the assumptions EY? = 0 if either p > m or ¢ > d, which implies that EY? = 0 for
p+ q > m+ d. This implies the desired statement. O

Definition 3.8. Let f : X — Y be a morphism. Then f is said to be flat in codimension t if
there exists a closed subset Z C X such that codim(Z N X, X,) > t+1 for every y € Y and

f|X\Z is flat.

In the proof of the next statement we will use the canonical truncation of cochain complexes
of objects of an abelian category, which has the property that its cohomology objects are the
same as the original complex up to or above the given index. We follow the notation and
terminology of [StacksProject, Tag 0118]. In particular, for any complex C'* and any r € Z,
we have the following distinguished triangle of complexes,

(3.8.1) T (C*) —— O —— 15,1 (C1) =
Corollary 3.9. Let (S,m,k) be an Artinian local ring, N a finite S-module, (X,z) a local

scheme of dimension n, and f : (X,x) — (SpecS,m) a local morphism. Assume that f is
flat in codimension t — 1. Then the natural morphism

R, (LF*N) —= HL(fN)
s an isomorphism for i > n —t.

Proof. As f is flat in codimension ¢ — 1, it follows that dim supp Lf*N < n —t for each
j < 0. This implies that H:(£ f*N) =0 for i >n —t and j < 0. Let A:=7<_1(Lf*N) and
B:= 70(Lf*N). Then (3.8.1) gives a distinguished triangle of complexes of &x-modules,

A—>Lf*N—>B+—1>.

Furthermore, h/(A) = £ f*N for j < 0 and h/(A) = 0 for j > 0, hence Lemma 3.7 (for A,
¢ = Rl,, m =n—tand d = —1) implies that K'I',(A) = 0 for i > n —¢ — 1. Finally,
B s f*N, so the desired statement follows. ]
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Proposition 3.10. Let (S, m, k) be an Artinian local ring, (X, z) a local scheme of dimension
n, and f : (X, x) — (SpecS,m) a local morphism. Assume that f is flat in codimensiont—1.
Let N be a finite S-module with a filtration as in (2.1) and assume that (X, z), where X
is the fiber of f over the closed point of Spec S, has liftable i local cohomology for i > n —t
over S. Then for each i > n —t and for each j, the natural sequence of morphisms induced
by the embeddings N1 — N; forms a short exact sequence,

0—— Hi(fNya) — Hi(FNy) — Hi (£ (N /v, ) ) = Hi (0x,) — 0.

Proof. Since ann (Nj / N, +1> = m, there is a natural surjective morphism

[*N; @ Ox, — f* (Nj/]\[j+1).

By Lemma 3.6 and (2.1.1), the natural homomorphism
(3.10.1) Hi(fNy) — HL (£ (Vi /vy, ) ) = Hi(0x,)
is surjective for all © > n —t. Next, consider the distinguished triangle
* * * . 1
Lf Nj+1 E— Lf Nj E— Lf (N]/Nj+1) +—> ,

and the induced long exact cohomology sequence for the functor ®I",. By Corollary 3.9 the
terms of that long exact sequence maybe replaced by terms in the form of H'(f*( )) for
1 > n — t and hence the statement follows from (3.10.1). O

3.11. THE EXCEPTIONAL INVERSE IMAGE OF THE STRUCTURE SHEAVES. Let (S, m, k) be

an Artinian local ring with a filtration by ideals as in (2.2). Further let f : X — Spec S be a

morphism which is essentially of finite type and f; = f|X_ : Xj = X Xgpec s0p€C S; — Spec S;
J

where S; = S/I; as defined in (2.2), e.g., X;+1 = X and X; = Xj, the fiber of f over the
closed point of S. By a slight abuse of notation we will denote wgpec g With wg as well, but
it will be clear from the context which one is meant at any given time.

Using the description of the exceptional inverse image functor via the residual/dualizing
complexes [Con00, (3.3.6)] (cf.[R&D66, 3.4(a)|, [StacksProject, Tag OE9L]):

(3.11.1) f'= RHomx (Lf* RHoms(__,ws), wi)
and because S is Artinian, wg ~ wg; for each j and we have that
(3.11.2) Wi, /s; = fiOspecs, = RHomx, (Lfjws,,wk,).

In the rest of this section we will use the following notation and assumptions.

Assumptions 3.12. Let (S, m, k) be an Artinian local ring, (X, x) a local scheme of dimension
n, and f : (X, z) — (SpecS,m) a local morphism. Assume that f is flat in codimension ¢ — 1
and that (X}, ), where X}, is the fiber of f over the closed point of Spec S, has liftable *"
local cohomology for ¢ > n —t over S.

Theorem 3.13. For each i > n —t and each j € N,

(i) there exists a natural surjective morphism ; ; : h_i(joH/SjH) —» h‘i(w;(j/sj) ,
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(ii) there exists a natural surjective morphism o' = ;100 0; 4 : h‘i(w)‘(/s) — h7(wx,) ,
(ili) the natural morphisms g; ; fit into a short exact sequence,

—if, e —i(, e 0i N =iy _—
0———h (ka) —h (jo+1/Sj+1> h (jo/Sj> O’

(iv) ker 0i; = L;h™"(wi, . /s,,,) = ]jh_z(w‘;(/s)/]j+1h_i(w5</s)’
(V) h™(wi /) = hﬂ(wk/S)/ Lh (wys) =N (Wkys) ®ox Ox,, and
(vi) ker o' = mh™"(wy )

Proof. Let N = wg and consider the filtration on N given by N; = wg,,, ., cf. (2.3), (2.3.1).
Further let ( )~ denote the completion at x (the closed point of X'). Then by Proposition 3.10,
for each ¢« > n — t and each j, there exists a short exact sequence

(3.13.1) 0 — Hi(f*ws,) — H.(f*ws,,,) — H (f* (wsj+1/ij)> — 0.

Notice that f*wg, ~ ffws;. Combining this observation for both j and j+1 with Corollary 3.9
yields that this short exact sequence may also be written as

(3132) 0 —— RTL(£fjws,) — R ws,,,) — R (17 (@801 g ) ) =0,
Applying local duality [StacksProject, Tag 0AAK] to (3.13.2) gives the short exact sequence
0— Exty (f* (WSHl/wsj) ,w}() — E;Ctgi(Lf]*+lej+l,w_;<)A—> E:(tgi(Lf]’-*ij,w_;()A—> 0.

Since completion is faithfully flat [StacksProject, Tag 00MC], this implies that there are short
exact sequences

o (7 (5 o) ) —
(3.13.3) ’
— Exty' (Lf;—l—lwsﬂvwk) — Exty (Lf;wsj’w).() 0.

By Grothendieck duality
RHomx (Lffws,,wy) =~ RHomx (LfFws;, w}(j),

and hence Exty’ (Lf;wsj,wk) o~ h_i(“{;{j/sj) for each 7, j, by (3.11.2). Therefore defining g; ;
as the surjective morphism in (3.13.3) implies (i). Composing the surjective morphisms in
(8.13.3) for all 5 implies that the natural morphism

—if, e —i (o . o' —i (P . —i(, e
h (WX/S) ~ Exty (ffws,wy) —— Exty (f WSanX) ~ h (ka)

is surjective and hence (ii) follows as well.

By (2.3.1) f* <Wsj+1/wS_> ~ Oy, , and hence Exty’ (f* (Wsj+1/wS_) ,wj() ~ h_i(w)}k), SO
J J
(8.13.3) also implies (iii).
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Composing the injective maps in (3.13.1) for all j shows that the embedding ¢ : wg, — wg
induces an embedding on local cohomology:
(3.13.4) H!(f*ws,) C H.(f*ws).
Next we prove (iv) for j = ¢ first. Since h_i(w)‘(q /sq) is supported on X, it follows that

Iqh_i(w).(/s) C K :=kerh™(g,)

Recall from (2.2) that there exists a t, € I, such that I, = St, ~ S/m and from Lemma 2.4

that I,ws = Socwg. It follows that for j = ¢ the short exact sequence of (2.3.1) takes the
form

(3.13.5) 0 ws

wg —— Socwg — 0,

q

where 7 : wg = Socws C wg may be identified with multiplication by ¢, on wg. Applying f*
and taking local cohomology we obtain the sequence

H (7)

(3.13.6) 0 —— Hi(ffws,) — Hi(f*ws) H! (f*Socwg) — 0,

which coincides with (3.13.1) for j = ¢, and hence it is exact. Further note that the mor-
phism H’(7) may also be identified with multiplication by ¢, on H.(f*ws). By Lemma 2.4 and
(3.13.4), the natural morphism H:(s) : H. (f* Socws) = H:(I,f*ws) = H.(f*ws,) — HL(f*ws)
is injective. Since H'(7), i.e., multiplication by ¢, on HZ(f*ws), is surjective onto H. (f* Socwsg),
it follows that

(3.13.7) H: (f*Socws) Hi(; im Hi(s) = I,H(f*ws)—— Hi(f*ws),
S

x

i.e., H. (f*Socwg) coincides with I, H:(f*wg) as submodules of H:(f*wg). Next let E be
an injective hull of k(z) = ﬁX,x/mXx and consider a morphism ¢ : Hi(f*Socws) — E.
As E is injective, ¢ extends to a morphism gzz : H(f*ws) — E. If a € Hi(f*wg), then
t,a € IHL(f*ws) = HL (f*Socws), so

tyd(a) = d(tqa) = ¢(tqa) = (¢ 0 Hy(1)) (a)

Therefore, ¢ o Hi(7) = t,¢. Similarly, if ¢ : Hi(f*ws) — E is an arbitrary morphism, then
setting ¢ = Q/)‘Hi (F+ Socws) - H!(f*Socwg) — E and applying the same computation as above,
3 0Cwg

with gg replaced by v, shows that ¢ o Hi(1) = t,1. It follows that the embedding induced
by H(7),

(3.13.8) o : Homg,  (H.(f* Socws), E) = Homg, , (H.(f*ws), E)
identifies Homx (H:(f* Socwsg), E) with I, Homx (H:(f*ws), F). By local duality it follows

that
(ker [Qi’q : h_l(wk/s) 7 h_l(wkq/sq)]/]qh_i(wi(/S)) ? ﬁxw -

and hence, since completion is faithfully flat, this implies (iv) in the case j = ¢. Running
through the same argument with S replaced by S;i; gives the equality in (iv) for all j. In
addition, (iv) for j = ¢ also implies (v) for 7 > ¢. Assuming that (v) holds for j = r + 1
implies the isomorphism in (iv) for 7 = r. In turn, the entire (iv) for 7 = r, combined with
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(v) for j = r+ 1, implies (v) for j = r. Therefore, (iv) and (v) follow by descending induction
on j and then (vi) follows from (iv) and the definition of ¢’ U

We will also need the following simple lemma from [KK20, 4.11].
Lemma 3.14. Let R be a ring. M an R-module, t € R and J = (t) C R. Assume that
(0:J)ar = (0: J)g-M. Then the natural morphism J @ M —— JM is an isomorphism.

The the following proposition and its proof is essentially the same as that of [KK20,
Prop. 4.12]. We include it here because the original situation here is slightly different from
[KK20], although the difference in the original situation does not influence anything in this
particular proof.

Proposition 3.15. Using the same notation as above,
(i) I @ h™(wxs) = Lih ™ (W /q),
(ii) for anyl € N, [j/[jH ®hH(wy/s) = Iih ™ (wys / I h™ ), and

(iii) for anyl € N, ml/ml+1 ® h_i(w)}/s) ~ m'h™ (wX/S /mlﬂh_i(w_;(/s)'

Proof. Notice that since H:(f*Socwg) is both a quotient and a submodule of H:(f*ws),
there are two natural maps between Homg, , (H.(f*Socws), E) and Homg, , (H.(f*ws), E).
Regarding H'(f* Socwg) a quotient module via H'(7) we get the embedding o = (__)JoH'(7)
in (3.13.8), and considering it a submodule the restriction map

B : Homg,  (HL(f*ws), E) — Homg,  (H.L(f*Socws), E).
ol Dl

& (f* Socws)

These maps are of course not inverses to each other. In fact, we have already established
(cf. (3.13.8)) that ¢|Hi (+ Socuws) © Hi(t) = t,¢ and hence the composition « o 3 is simply
L ocws

multiplication by %,:
¢.€ Homg,  (HL(f*ws), E) ., Homg, , (HL(f*Socws), E)
(3.15.1) aof :la
ty¢ € I Homo, , (H(f*ws), E).

This implies, (cf. (3.13.4) and (3.13.7)), that o' may be identified with multiplication by ¢,
on h™ (wX/S) Together with Theorem 3.13(vi) this implies that

(0: Ip)h—i(wr

X/S):kergi:mh (WX/S) (0:1,)s-h” (W}(/S)>

and hence the natural morphism

(3.15.2) I, @5 h™i{wy s) — Lh™(wi/s)
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is an isomorphism by Lemma 3.14. Now assume, by induction, that (i) holds for .S, in place
of S. In particular, keeping in mind that S, = S / I the natural map

(3.15.3) i1, @8, b wk,ys) —— (L /1,) bk, s,)
is an isomorphism for all j. Consider the short exact sequence (cf. Theorem 3.13(v)),

0—— I,h™ (wX/S)—>h (w)'(/s)—>h_i(w)’(q/sq)—>0

and apply Ij/[q ®s (__). The image of Ij/]q ®s [qh_i(wk/s) in Ij/[q ®s h_i(w;(/s) is 0 and
hence by (3.15.3) the natural map

Ij/lq ®s h™ (wy/s) |~ Ij/lq ®s, h7'(wk, /s,) — < /I) "(wx,s,)

~ (Ij/[q) h_i(wk/s)/lqh‘i(wk/s) =~ ]jh_i(wk/s)/[qh—i(w)-(/s) .

is an isomorphism. This, combined with (3.15.2) and the 5-lemma, implies (i). Then (i) is a
direct consequence of (i) and the fact that tensor product is right exact.

Finally, recall, that the choice of filtration in (2.2) was fairly unrestricted. In particular,
we may assume that the filtration /. of S is chosen so that for all [ € N, there exists a j(I)
such that I;;) = m’. Applying (ii) for this filtration implies (iii). 0J

The following theorem is an easy combination of the results of this section.

Theorem 3.16. Let (S, m, k) be an Artinian local ring, (X, z) a local scheme of dimension
n, and f : (X,z) — (SpecS,m) a local morphism. Assume that f is flat in codimension
t — 1 and that (X, ), where Xy, is the fiber of f over the closed point of Spec S, has liftable
i local cohomology for i > n —t over S. Then for each i > n — t, h_i(w)'(/s) is flat over
Spec S. In particular, if t > 0, then wx/g is flat over SpecS and commutes with arbitrary
base change.

Proof. Flatness follows from Proposition 3.15(iii) and [StacksProject, Tag 0AS8]. If ¢t > 0, then
this implies that wy/s is flat over SpecS. Furthermore, it commutes with arbitrary base
change by Theorem 3.13(ii) and [Kol23, 9.17]. O

4. DU BOIS SINGULARITIES AND LIFTABLE LOCAL COHOMOLOGY
In this section we prove a criterion for a local scheme to have liftable ithlocal cohomology
for i > n —t. As before, H’, denotes R'I';, the ith derived functor of I'y, the functor of
sections with support at z, i.e., the i*" local cohomology functor with support at x on the
derived category of quasi-coherent sheaves on X.

Lemma 4.1. Let (X, z) be a local scheme of dimension n which is essentially of finite type
over a field of characteristic 0. Then Hi(Ox) — HL(Q%) is surjective for each i € Z.

Proof. This follows by applying Matlis duality to the map in [MSS17, Lemma 3.2] (cf. [Kov99,
Lemma 2.2], [KS16a, Theorem 3.3], [KS16b, Theorem 3.2], [MSS17, Lemma 3.3)). O
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Theorem 4.2. Let (X, z) be a local scheme of dimension n which is essentially of finite type
over a field of characteristic 0. Fix t € Nt > 0, and let Z C X be a closed subset of
codimension t + 2. Further let o : Y — X be an affine morphism which is an isomorphism
over U:= X \ Z. Assume thatY is Du Bois. Then

(4.2.1) Hi(Ox) — HL(Q%) is an isomorphism fori > n —t, and
(4.2.2) X has liftable i™ local cohomology for i > n — t.
Proof. Let W = ¢7!(2) CY and observe that there is an equality of functors:
I'yoo,=Tw.
As o is an affine, morphism, o, is exact, we obtain an equality of derived functors:
(4.2.3) Rl', o0, = R['w.
Consider the short exact sequence
0—— Ox — 0,0y — 2 ——0,

where 2 is defined as the cokernel of the first non-zero morphism in this short exact se-
quence. Applying the functor RI',, and taking into account (4.2.1), we obtain the following
distinguished triangle:

The assumption implies that 2 is supported on Z, so H.(2) =0 for i >n —t — 2, and
hence

(4.2.4) H!(Ox) ~ H},(Oy) fori>n—t.
Next, consider the following diagram:
ﬁX Ko’* ﬁY
2% Ro. 5.
Applying RI', to each element and using (4.2.1) and (4.2.4) leads to the following:
H,(Ox) TETE Hyy (Oy)
(4.2.5) l lz
H; (%) Hiy (Qy)

The top horizontal arrow is an isomorphism for ¢ > n — ¢t and the right vertical arrow is
an isomorphism for all 7, because Y is Du Bois. It follows that the diagonal map is also an
isomorphism, and in particular, injective for ¢ > n —t. In particular the left vertical arrow is
also injective for ¢« > n—t. It is surjective for each ¢ by Lemma 4.1 and hence an isomorphism
for ¢ > n —t. This proves (4.2.1).

Let (R, m) be a noetherian local ring and I C R a nilpotent ideal such that R/I ~ Ox .
In order to prove (4.2.2) we need that the induced natural morphism on local cohomology

(4.2.6) Hi(R) —» Hi(0x)
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is surjective for ¢ > n —t. Let X’:= Spec R and consider the following diagram:

Hiy(R) ————— H,(0x)
l ':l (for i > n —t by (4.2.1))

Hi (/) ———=—— HI(Q%)

As above, the left vertical arrow is a surjection by Lemma 4.1. The bottom horizontal arrow
is an isomorphism, because X/, ~ X,q and " only depends on the reduced structure
by definition, cf. [MSS17, p.2150|. Finally, the right vertical arrow is an isomorphism for
1 >n —t by (4.2.1) and the combination of these implies (4.2.6) and hence (4.2.2). 0J

Proof of Theorem 1.6. It follows from Theorem 4.2 that the assumptions of Theorem 1.6 im-
ply those of Theorem 3.16, which in turn implies the desired statement of Theorem 1.6 if S
is Artinian.

If wx/p is known to commute with base changes, then one can check flatness over Artin
subschemes of B by the local criterion of flatness.

The general case follows from [Kol23, 9.17], which is a variant of the local criterion of
flatness, combined with obstruction theory. 0J

Proof of Theorem 1.2. We may assume that B is a local scheme with closed point b € B. We
will consider three, increasingly more general cases.

Case : A =0 and wg, s locally free, where m : X, — X, is the demi-normalization as in
(1.3.5).

Note that wx/p is flat and commutes with arbitrary base change by Theorem 1.6. By
further localization we may assume that wg, is free. Since wy, ~ m,wg, by Lemma 1.5, we
see that wx,p has a section o such that o, does not vanish on Uy, hence o : Ox — wx/p is an
isomorphism away from a closed subset W for which W, C Z;. In particular, depthy, Ox > 2
by (1.2.5). Now we use the easy [Kol23, Lem.10.6] to conclude that &x ~ wx/p. Thus g is
flat, wx,p is locally free, and so are all of its powers.

Case ll: A = D is a Z-divisor and w;(b(ﬁb) is locally free. Note that Oy (—D) ~ wy,p is flat
over B and commutes with base changes by assumption. Thus Proposition 5.1 applies, and
so wx/p(D) is flat over B and commutes with base changes.

We may assume that wgb(ﬁb) is free with generating section 0,. By Lemma 1.5 we can
identify o3, with a section oy, of wx, (D). By flatness it lifts to o : Ox — wx/p(D), which is
an isomorphism over U. By (1.2.5) (and the easy [Kol23, 10.6]) ¢ is an isomorphism. Thus
wx/p(D) is locally free and so are its powers.

Case lll: The general case. We may assume that X is local, and by [Kol23, 9.17] it is sufficient
to prove the case when B is Artinian.

Write A =3, a;D;, where a; =1 — %, I C{2,3,4,...,00} is a finite subset and the D;
are reduced divisors.

Choose m > 0 such that w[[};ﬂ (mAy) ~ Op,. The kernel of Pic(U) — Pic(U,) is a k-
vectorspace; hence divisible and torsion free. Thus there is a unique line bundle Ly on U
such that Ly, ~ Oy, and wWB(mA) ®) L7} ~ Oy. Let L be the push-forward of Ly to X.
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Take the corresponding cyclic cover

m:Y = Specy 1" wa/B(ZaniJDi) @I LI — X

Note that 7 ramifies along the D; as follows. If ¢+ > 3, then 7 has ramification index i along
D;, and 7 is unramified along D.. The ¢ = 2 case is somewehat special. Then m, has
ramification index 2 along an irreducible divisor Fj, C X}, if it has multiplicity 1 in Dsl,, and
Y} is nodal along 7rb_1(Fb) if Fy, has multiplicity 2 in Ds,. Thus

Kyb —|—7T;DOO ~Q WZ(KXb —|—Ab).

In particular, (Y, 7*D,) — B satisfies the assumptions (1.2.1)-(1.2.6). (Note that Y — B is
known to be flat only over U, so requiring flatness only in codimension < 2 is essential here.)
By duality, we get that

mwy/B(M* Do) Z;”:_Olcu;/_é](Doo—ZiLjaiJDi) @I L) and
. m—1 [1—j , —j
(mo)owy, (1 Dec) = 300w, (Dol = i Ljas] Dil) 9127
The j = 1 summand of (m).wy, (5 Do) is trivial. Thus wg (75 Doo) has a section that is

nowhere zero on Uy, so wf,b(m’fDoo) is trivial. The previous case applies, and we conclude
that all the

w3 (Do = ¥, i) Di) (@1 L1

are flat over B and commute with base changes.
The j = 1 summand is LI-Y, whose restriction to X, is trivial. By flatness, the constant
1 section of LI~ 1]| lifts to a section of LI=!, hence L is trivial.

Nowﬁx0<r<mandset 1 — 7 =17r—m. Then we get that
Wiy (Doo + Si(masD; — [(m = r + Dai ) Di) = w3 (Doe — 32, jas | Di) 11 LI
is flat over B and commutes with base changes. Now, observe that

m+1 if a=1, and
c=1

m if a=%= forsome 1<c|m

lra] + [(m —7r+1)a] = {
This gives that
) (Do + X (ma; — [(m — 7+ 1)a;))D) = wli) (S rai | D).

Thus the w! (3=, lra;]) D;) are flat over B and commute with base changes. O

X/B

Corollary 4.3. Using the notation and assumptions of Theorem 1.2, set Do, = >, D;.
Then Ox(—Dy,) and Op_, are flat over B and commute with base changes.

Proof. Arguing as in Case Ill above, we get that
mwyss = Y5 wy g (—3 ja Di) @IL.

We proved that L is trivial, so the j = 1 summand is Ox(—D.,). It is thus flat over B with
Sy fibers. Therefore the induced maps Ox(—Dy)|x, — Ox, are injections, hence Op_ is
also flat over B and commutes with base changes. 0
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5. KSBA STABILITY
It is possible that the analog of Theorem 1.2 holds for arbitrary KSBA stable pairs as in
[Kol23, Sec.8.2]. Note that by [Kol23, 7.5], K-flatness of divisors is automatic in codimension
> 3. This would say that the whole theory of KSBA stability is determined in codimension
2.
The next result is a very small step in this direction. It shows that the reduced part of
the boundary divisor behaves well in codimension > 3.

Proposition 5.1. Let g : X — B be a morphism of finite type and of pure relative dimension
over a field of characteristic 0, A a relative Mumford R-divisor and 0 < D < A a relative
Mumford Z-divisor. Let Z C X be a closed subset and set U := X \ Z. Assume that

(5.1.1) codim(Z, C X3) > 3 for every b € B,

(5.1.2) 9|, U — B is flat with demi-normal fibers,

(5.1.3) Oy(—D|y) is flat over B and commutes with base changes, and

(5.1.4) the demi-normalization (X,, Ay) of (Xy, Ay) is semi-log-canonical for b € B.

Then wx,p(D) is flat over B and commutes with base changes.

Proof. Take two copies (X;, A;) ~ (X, A) and glue them together along D; ~ Ds to get
gy = (1 M go): Y := X, lp,~p, Xo = B.

Let m : Y — X be the projection. Set Ay := 7*(A — D) and consider the short exact
sequence,

0—>ﬁX1(—D1)—>ﬁy—>ﬁX2—>O.

As 7 is finite, the push-forward of this remains exact and, using the fact that | is an

isomorphism, the natural morphism &x — 7,0y provides a splitting of the push- forward
of the above exact sequence. Therefore, 7,0y ~ Ox @ Ox(—D), and so (Y,Ay) — B
is flat over 7~!(U) with semi-log-canonical fibers. The demi-normalization of (Y3, Ay|p)

is the amalgamation of 2 copies of ()?b,gb) along Eb, hence semi-log-canonical. Thus
wy/p is flat over B and commutes with base changes by Theorem 1.6. Finally note that
TWy/B ~ wx/pBwx/p(D), thus wx,p(D) is flat over B and commutes with base changes. [

Remark 5.2. We claim that AFI stability, where we float all coefficients as in [Kol23, Sec.8.3],
is determined in codimension 2.

To see this, note that the boundary divisor A is necessarily R-Cartier. Thus, for every
point x € Z, as in Theorem 1.2, either = ¢ supp 4, and then local stability holds by
Theorem 1.2, or = € supp Ay, and then z is not an lc center of X;. Then depth, ﬁ;(b > 3 by
[Kol13b, 7.20] (cf. [Kov11] and [AH12]), hence local stability holds by [Kol23, 10.73].
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