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ABSTRACT Multimodal learning systems have been found to be effective in studies investigating cognitive
theory of multimedia learning. Yet this research is rarely put into practice in Science, Technology,
Engineering, andMath (STEM) learning environments, which are dominated by visual graphics. Introducing
multimodal learning systems into STEM settings and allowing students to access dual channel cues beyond
visual perception may help more students process information in their preferred modality. The purpose of
this study was to investigate the usability, effectiveness, and design of multimodal interfaces for enhancing
access to graphical representations. We used existing theories of multisensory information processing to
study how sighted participants could learn and interpret spatial primitives and graphical concepts presented
via three non-visual conditions: natural language (NL) descriptions, haptic renderings, and a NL-Haptic
combination. The results showed that access to haptic-only renderings produced the least accurate responses,
whereas NL descriptions with and without haptics led to similar performance by participants when learning
graphical content without vision. Performance was also impacted by the complexity of the graphical
content, with the highest level of accuracy observed for closed forms, compared to paired line segments
and line/polygon intersections. We argue that universally designed, multimodal learning environments can
transcend traditional, visual diagrams by utilizing non-visual channels and commercial hardware to support
learners with different sensory abilities, preferences, and processing needs. Findings contribute to extending
theoretical insights of non-visual information processing to better understand multisensory learning in
sighted individuals.

INDEX TERMS Education and learning interfaces, multimodal interfaces, interaction design, multisensory
information, non-visual information access.

I. INTRODUCTION
Advanced information interpretation skills will be needed for
the successful implementation of AI-based decision support
systems. One result of the AI information revolution is the
automated aggregation of raw data into many different types
of graphical representation, i.e. graphs, charts, diagrams,
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etc. New techniques are needed to accurately convey
AI-generated data visualizations for humans in the loop
to evaluate the system’s recommended actions. As human-
AI communication will increasingly occur through multiple
channels (i.e., multimodal environments), all learners will
need new skills and strategies to interpret and draw conclu-
sions about graphical data. A significant limitation of current
data aggregation and communication (manual or AI-based),
is the bias towards focusing on visual representations
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of information. There are many inclusive settings where
multimodal user interfaces (MUIs) may present additional
support for data interpretation beyond just blind and low
vision learners; i.e., the demographic that is conventionally
discussed and studied when designing and evaluating multi-
sensory access to visually-based graphical content. There is
a gap in the research literature about the optimal presentation
methods for the comprehension of graphical information
in multimodal systems as the majority of extant studies
are focused on individual sensory channels in isolation
from other sensory channels [1], [2]. Likewise, few studies
have investigated the interaction between modalities in
the effective representation of graphical information with
sighted participants, however, there are notable examples [3],
[4]. This study is specifically interested in identifying the
optimal combination of several non-visual modalities for
communicating graphical representations to sighted individ-
uals. To isolate the potential complexities introduced with
traditional charts, diagrams, and graphs, we have focused
our comparisons here on stimuli of spatial primitives (points,
straight/curved lines, and open/closed regions) using several
combinations of non-visual sensory information.

In this paper, we review several non-visual components of
interactive multimodal interfaces and discuss how they may
be used to promote Science, Technology, Engineering, and
Math (STEM) learning, maximize attention, and facilitate
information synthesis. Next, we report the results of our study
that investigates the learning performance of blindfolded,
sighted participants’ interpreting graphical primitive stimuli
under non-visual conditions: 1) two different unimodal
conditions (vibrotactile and natural language descriptions)
for conveying simple images, and 2) a synchronized bimodal
condition (abbreviated overview description along with a
vibrotactile representation). The motivation for the study was
to provide a basic comparison of multisensory learning of
non-visual stimuli in sighted individuals. Previous studies
suggest that sighted individuals can learn graphical content
non-visually, however, to our knowledge, research directly
comparing the different non-visual conditions evaluated in
this study has not been conducted. Likewise, evaluating the
functional equivalence between these sensory inputs has not
previously been studied with sighted participants. Removing
vision from the equation was a necessary, intentional, and
incremental study design decision to increase our understand-
ing of non-visual learning modes. This is also the first step in
evaluating the effectiveness of the unimodal/bimodal repre-
sentations to be applied in interface designs for multimodal
learning systems. The primary research questions addressed
by this research are the following:

• RQ1: Can sighted individuals accurately learn and men-
tally represent basic STEM-based non-visual graphical
content?

• RQ2: Which non-visual presentation methods (hap-
tics alone, natural language (NL) descriptions alone,
or bimodal combination of haptics and short NL

overview) are most effective for building up a mental
model in multimodal learning environments?

• RQ3: Does the type/complexity of graphical content
impact performance as a function of presentation
modality?

.
We hypothesized that learning performance would not

differ as a function of information presentation condition
or as a function of image complexity, as all presentations
were designed to ensure that each conveyed the requisite
information to support accurate learning. This information
matching between presentation conditions is a key baseline
criterion to meet when directly comparing learning outcomes
between different sensory/information modalities. That is,
it is important to ensure that the same information is available
from all comparison channels to allow fair multimodal
evaluations, as has been described in previous research on
sensory substitution andmultimodal learning [5], [6], [7], [8].
This study contributes new theoretical insights into how a
multimodal learning system can augment the interpretation of
STEM visual instructional graphics by leveraging non-visual
channels.

II. RELATED WORK
A. MULTIMODAL LEARNING PRINCIPLES
The cognitive theory of multimedia learning (CTML) [9]
provides guidance in the development of multimedia learning
interfaces. Based on CTML dual channel theory [10], learn-
ing can take place over two information processing channels
- e.g., visual / pictural channel, auditory / verbal channel,
or haptics / tactile channel. However, this learning process is
subject to capacity limitations, as learners can process only a
limited amount of material in each channel at any given time,
which means that reducing extraneous material is critical.
Likewise, CTML’s active processing assumption requires
that learners must be engaged by handling key words to be
processed in the verbal channel and identifying key graphics
features to be processed in either of the other channels in
working memory. The brain is optimized for the integration
of simultaneous redundant input from separate modalities,
allowing for parallel and modality-independent processing.
This improves people’s ability to develop and access concepts
and mental models in a flexible way [11], [12].

Theories on the coordination of dual processing, or the role
and timing of complementary and redundant sensory signals,
have been applied to the design of multimodal interfaces [13].
This research shows that organizing words, visuals, and
haptic/tactile sensations with one another, along with long-
term memory-activated prior knowledge, helps learners to
create connections between the information using carefully
coordinated dual-modality cues. Compared to unimodal
approaches, coordinated dual-modality signals support infor-
mation processing that aligns spatially matched, temporally
matched, or semantically matched visual or haptic/tactile
information [14]. If dual channel cues are spatially or
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temporally mismatched, they present an extraneous overload
that can hinder cognitive processing in workingmemory [15].

The functional equivalence hypothesis of spatial infor-
mation [16], emphasizes the underlying similarity and
perceptual salience of information that can be specified
between multimodal channels. Since spatial information
is common to multiple senses, learning the same spatial
stimuli across different perceptual modalities (e.g., audition,
touch, or vision)is possible. In addition, cognitively mediated
input, such as spatial language, leads to the development
of a unitary, amodal (sensory-independent) representation
in the brain, called the spatial image. The spatial image
supports functionally equivalent behavior -i.e., statistically
indistinguishable performance, irrespective of the input
source [8]. The functional equivalence hypothesis has been
demonstrated with both sighted and blind participants in
a variety of tasks and modalities. With respect to haptic
comparisons, a similar study with blind and low vision
participants showed equivalent performance when learning
simple diagrams between natural language descriptions and
haptically rendered vibrotactile images with a brief natural
language overview [17]. Functional equivalence was also
found with sighted participants when learning haptic and
visual spatial arrays [18] and with both sighted and blind par-
ticipants for haptic and visual learning of simple vibrotactile
graphs [19] and maps [20]. Functional equivalence has been
shown with both sighted and blind participants for spatial
updating of target locations learned from spatialized audio
and spatial NL conditions [16], and with sighted participants
for vision and spatial NL conditions [21] and between visual,
spatialized audio, and spatial NL conditions [22].

B. MULTIMODAL INTERFACES
The multimodal learning system evaluated in this study
is designed to provide a variety of sensory channels for
learners to perceive, interpret, and interact with stimuli.
These types of systems often consist of a combination
of interaction modalities, including vibrotactile / haptic,
verbal descriptions, audio and sonification cues, and high-
contrast visuals [23]. We designed our system in order
to compare learning outcomes using non-visual channels
(verbal natural language descriptions and vibrotactile/haptic,
plus a combination of bothmodalities) because: 1) they can be
employed using standard commercial smartphone hardware
without expensive or specialized technologies [24], 2) they
have already proven effective in learning environments in
a variety of applications [25], and 3) they are not often
studied together as non-visual learning support for sighted
participants [26].
Multimodal information is rarely implemented as a pri-

mary UI in inclusive STEM learning environments [27]. This
lack of application is in conflict with clear evidence-based
support for their efficacy and empirically driven theories such
as the cognitive theory of multimedia learning [28], [29].
Althoughmultimodal user interfaces (MUIs) can lead to some
improvement in task efficiency when compared to unimodal

interfaces, their greatest advantage over using traditional
unimodal approaches are that they lead to more reliable
performance, greater precision (especially for spatial tasks),
and superior ability to support individual learning preference
through inclusive design (see [13], [30], [31]). While MUIs
can incorporate both complementary and redundant channels
of information and be used for supporting input and output
interactions, the focus of most systems is on multimodal
output, as is studied here. As such, we next provide an
overview of vibrotactile representations of graphics and then
a summary of verbal descriptions using natural language.

C. HAPTIC AND VIBROTACTILE INTERFACES
Traditional haptic perception of graphical content is done
using embossed stimuli based on pressure-based mechanore-
ceptors. These receptors are innervated by movement and
deformation of the skin as the user feels the stimuli, (e.g.,
feeling a graph, map, figure, etc.) that is produced using a
tactile embosser, thermoform machine, or via heat sensitive
swell paper [32], [33]. Force-feedback devices such as the
PHANToM or a force-feedback Joystick are also used in
many haptics studies [34]. In this study, we employ a
recent form of dynamic haptic vibrotactile stimulation from
a touchscreen vs. traditional pressure-based tactile or force
feedback approaches. Advances in control of embedded
vibration motors in commercial touchscreen-based devices
(e.g., phones and tablets) provide a broad range of textures
and vibration patterns that can be easily implemented and
broadly deployed. These haptic engines are available on com-
mercial hardware and do not require expensive purpose-built
components that are the foundation of other force-feedback
or pin-based haptic solutions. Designing a system for
mobile devices that are already used by most learners and
implemented in many STEM educational contexts allows
for a more inclusive instructional setting. In addition, this
approach has already garnered significant research, relating
to both the psychophysical and usability parameters needed to
design perceptually salient and usable vibration-based MUIs
via the touchscreens of smart devices [35], [36]. The haptic
interface has been shown to support accurate learning of
similar graphic stimuli as are used here (e.g., oriented lines
and shapes) by sighted and blind participants [19], [37].

Studies employing touchscreen-based vibrotactile inter-
faces have demonstrated that these non-visual signals
can communicate many types of spatial information in
different real-world contexts, including navigation and
wayfinding [38], conveying and interpreting on-screen
2D images [39], and supporting mobile interface interac-
tions [40], [41]. There is also substantial evidence to suggest
that well-designed haptic representations are effective in
helping individuals accurately perceive and follow line
graphs, graph shapes, and graph patterns [19], [42]. Gor-
lewicz and colleagues [35] provides a set of recommendations
for graphical images using haptic vibrations which include:
1) graphical elements with object line widths of at least 2mm
for object edge/boundary detection and object line widths of

189928 VOLUME 12, 2024



S. A. Doore et al.: Non-Visual Interfaces for Visual Learners

at least 4mm to allow for object edge/boundary finger tracing,
2) any angled object lines should have a width of at least 4mm
to increase detection accuracy, 3) there should be different
haptic feedback signals for any points of significance, (e.g.,
endpoints, vertices, and inflection points), and 4) gap widths
between lines and objects should be at least 4mm [35],
[43]. In this study, we have used this collection of design
principles as well as other recent related studies on the design
of systems to increase access and interpretation of graphical
information [17], [44].

D. NATURAL LANGUAGE INTERFACES
Another non-visual technique for representing graphical
information is through natural language descriptions. Natural
language (NL) is a term used in psychology, linguistics, and
computer science for the communication and representation
of any language that has evolved naturally in humans through
use and diffusion [45]. Natural language text descriptions
are often used by blind and low vision individuals using
screen readers to access alt text descriptions for digital
figures in documents, webpages, and e-books. However,
sighted individuals also use NL information, even when they
think they are relying on visual graphical access. Sighted
learners often do not notice when they are provided additional
support for learning graphical material in a multisensory
environment. The theory of multimedia design emphasizes
the importance of providing natural language (or narration)
to align signaling cues and the temporal contiguity of
information presentation [15].
While there is significant evidence that both longer natural

language descriptions and shorter overviews help to support
learning, the challenge is how to best structure and stan-
dardize these descriptions to be most useful. Similarly, the
poor quality of many descriptions perpetuates unnecessary
barriers for anyone who might benefit from well-formed
and presented natural language descriptions. Often, if an alt
text or auditory description is provided, it is incomplete,
inaccurate, and/or does not adequately convey the complexity
of graphical content to answer questions, make inferences,
or draw conclusions [46]. This is problematic not only
for people who rely on them (e.g. blind and low vision
learners), but also for anyone else who is using NL as the
primary interaction style for learning, as is the focus of the
participants in this study. Significant effort was made in the
protocol development to standardize the longer descriptions
as well as the shorter overviews that served as the verbal
stimuli. Specifically, these NL descriptions were based on
terms used by STEM instructional experts to help with
the construction of a mental image [47]. The descriptions
provided comparable spatial information that was available
in the verbal and vibrotactile representations of the images.

III. MULTIMODAL LEARNING SYSTEM
As described above, accessible technologies and UIs can
greatly benefit from adopting multimodal design approaches.
As such, the multimodal learning system described in this

paper is an adaptation of the multimodal touchscreen-based
system implemented by Giudice et al. [19]. The original
system was developed using an Android touchscreen tablet
and later rebuilt to iOS for use in studies with sighted and
blind/low vision participants [17], [44].

The multimodal learning system used here leverages the
built-in speakers and vibration motors found in an Apple
iPhone XS. Experiment materials (see Experiment Stimuli)
are designed with high-contrast, colored lines and points that
are programmatically identified in the system and tagged
with researcher-provided NL descriptions. Haptic feedback
and natural language audio, customized within the iOS Swift
program scripts, are activated through touch interactions on
the touchscreen with a single finger. For example, placing a
fingertip on a line segment (4mm width) yielded a constant
vibration (230 Hz, intensity: 1.0, sharpness: 0.5) emitted
from the vibration motor in the iPhone. Endpoints, vertices,
or points of intersection were rendered as pulsing vibration
patterns (230 Hz, intensity: 1.0, sharpness 0.5, 0.1 second
intervals) that represented a discrete point. NL descriptions
were activated by a double-tap gesture and read by the
built-in iOS text-to-speech engine in their entirety or as
brief overviews depending on the experimental condition.
Touching the boundary zones produced auditory clicks,
rendered as ‘bars’ placed at the top and bottom of the
screen. These signals were used to identify the outer frame
of the active window and also prevented the participant
from accidentally closing out of the app or activating the
notification bar. Line widths, gap widths, and vibration
frequencies of the elements were chosen according to
previously discussed design guidelines and have been well
studied with blind and sighted participants to determine
their perceptual salience and efficacy for rendering such
basic elements [35], [36], [48], [49]. Figure 1 highlights the
interactions described above with one of the high-contrast
designs used in the study.

By leveraging these responsive touchscreen gestures,
we can streamline user interactions with the multimodal
learning system. This seamless activation of haptic feedback
and NL descriptions allows us to employ all three presen-
tation conditions–Haptic Only, Natural Language Only, and
Haptic + Overview–within a single, unified system. This
integration not only enhances the versatility of the system,
but also provides a robust framework for examining the
effects of different sensory inputs on information access and
comprehension.

IV. STUDY DESIGN AND METHODS
The study consisted of a within-subjects design with two
independent variables, information presentation (with three
conditions) and image stimuli (with three experimental sets).
Information presentation was manipulated in three different
conditions (see Section IV-D): 1) Haptic Only, 2) Natural
Language Only, and 3) Haptic + Overview. The image
stimuli were grouped by similarity into four image sets, one
set was used to practice the different presentation methods,
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FIGURE 1. A diagram of the interactions used by participants within the
study.

while the remaining three were used in the experimental
analysis. Each image set contained three different image
stimuli where one stimulus was used in each condition
of the study. This means that each condition incorporates
one stimulus from each set of images, totaling four stimuli
per condition. The order in which stimuli and conditions
were experienced was counterbalanced between participants
and all participants completed the experimental trials while
blindfolded.

The dependent variables within the study were response
accuracy (captured using multiple-choice questions) and
quality of open response descriptions. Accompanying each
image stimulus were four multiple-choice questions. These
questions probed different aspects of information extraction
and interpretation, relating to information readability, spatial
properties, and global relations. For example, when presented
with two curved line segments (shown in Figure 3 (b)), the
four questions included were:

• Q1) ‘‘What is the total number of endpoints, vertices,
and points of intersection in this image?’’ [A. 2, B. 4, C.
6],

• Q2) ‘‘Which option best describes this image?’’ [A. Two
straight line segments, B. Two curved line segments, C.
One straight line segment and one curved line segment],

• Q3) ‘‘Which line segment is shortest?’’ [A. Left line
segment, B. Right line segment, C. The line segments
are of equal length], and

• Q4) ‘‘Where would the line segments intersect if they
were extended beyond the screen?’’ [A. Beyond the top
right edge, B. Beyond the bottom left edge, C. They
would never intersect].

After the multiple-choice questions, participants were tasked
with describing the image stimulus in their own words. This
was meant to qualify the level of participant understanding
and characterize the mental representation of the stimulus
they learned. In summary, every participant experienced four
image stimuli (one practice, three experimental) in each
condition of the study, totaling 12 stimuli. They all answered
a total of 36 multiple-choice questions and 9 open response

questions from the experimental trials, which were used in
the subsequent analyses.

A. PARTICIPANTS
Twenty-four sighted participants were recruited for this study
through campus-wide email and flyers (self-identified F =

9 and M = 15, ages 18–35). The experiment took between
1–1.5 hours to complete. Participants were blindfolded for
the duration of the study, excluding the initial training
period. This study was approved by the University IRB;
all participants signed an informed consent form and
were compensated with a $30 Amazon gift card for their
participation.

FIGURE 2. A diagram of the experimental data flow from the study.

B. EQUIPMENT
Two computer stations were required for the experimental
setup in the lab to facilitate the study according to the
pandemic safety protocols implemented at the time. At the
participants’ station, individuals sat at a table in front
of an iMac (21.5-inch, Core i5, 2.7 model). An iPhone
XS, with the experimental app pre-loaded and open, was
plugged into the computer. This wired connection allowed
the iPhone screen to be shared in real-time via Zoom with
the researcher’s computer while minimizing any end-to-
end system lag. The iMac front-facing camera was turned
on to monitor that participants’ blindfolds stayed in place
during the study. The microphone was also on to capture
any audio from the experiment (e.g., participant responses
to questions). The researcher’s station was set up with
an iMac (same model) that was logged in to Zoom. One
side of the researcher’s screen showed the iPhone XS
screen-share and participant’s camera feed in Zoom and the
other side displayed a Qualtrics survey protocol used to
record participant responses. This split-screen view allowed
the researcher to proctor participants as they were using the
app in real-time while simultaneously asking questions from
the protocol for the experiment. The researcher recorded all
experimental sessions via Zoom. Touch interactions were
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also recorded (timestamps, color, and x-y coordinates) on
the iPhone and later uploaded to a SQL data server to be
downloaded by the researcher conducting the experiment.
Figure 2 depicts the flow of collected data from the study.

FIGURE 3. Example stimuli from each image set. (a) A single line segment
from Practice Set (b) Paired curved lines from Image Set 1 (c) An octagon
from Image Set 2 (d) A polygon/line intersection from Image Set 3.

C. EXPERIMENT STIMULI
The stimuli for this study were images representing spatial
primitives, such as line segments with vertices, points of
intersection, simple closed regions, and shapes. There were
four image sets, each containing three unique stimuli that
varied by the type and number of primitives in the stimuli
(see Figure 3 for example images). The image sets increased
in complexity as more spatial primitives were added to the
stimuli, with the combined elements representing spatial
relations such as intersections and parallels. The Practice Set
contained single line segment images, Image Set 1 included
closed form images, Image Set 2 consisted of images with
pairs of line segments that do not intersect on screen, and
Image Set 3 was the most complex and had images with
lines and polygons that intersect on screen. The stimuli were
designed by the experimenters to represent some of the
most common primitive spatial relationships among points
and curves that are realized in geometry diagrams [47].
The stimuli were not designed to be representative of all
possible primitive spatial relationships that are realized
in STEM diagrams, but rather to capture a range of the
diagrammatic objects that are encountered in high school
geometry classes [50].

D. EXPERIMENT CONDITIONS
1) HAPTIC ONLY CONDITION
Participants were presented with the stimuli on the iPhone
screen (see Figure 4). By moving their hand around the
screen and feeling the elements via vibrations on one
finger, participants learned the image and constructed a
mental model of the represented information. As described
previously, line segments produced constant vibrations
(230Hz) and points produced pulsating vibrations (230Hz,
0.1s intervals) that could be traced with search strategies
introduced to the participant by the researcher during the
practice session. These exploratory procedures/strategies
build on work by Klatzky and Lederman using traditional

pressure-based haptics [51], [52] but are optimized for use
with vibrotactile stimuli on touchscreens based on participant
observation data from prior work. For example, using zigzag
finger movements for line tracing, employing finger circling
and four-directional scanning at intersections, and using
the device boundary as a reference when following global
contours [36], [44], [53].

2) NATURAL LANGUAGE CONDITION
When participants double-tapped the iPhone screen in this
condition, the app read aloud a description of the image
using the built-in iPhone VoiceOver feature. There was no
haptic interaction other than tapping the screen to initiate
the NL description. The carefully constructed descriptions
consisted of information such as the location of endpoints,
the curvature of line segments, and in some cases the specific
shapes and/or global placement of the figure relative to
the screen. To compare measures of functional equivalence
between modal presentation, the information provided was
matched between conditions, meaning that all information in
one modality was also conveyed by the others, which is a
critical controlling factor for inter-modal comparisons [8].

3) HAPTIC + OVERVIEW CONDITION
This condition employed a combination of the other two
methods. Participants could feel the images (as described
in the Haptic Only condition) and could also listen to
a brief Natural Language overview description. The NL
overview descriptions were always the first sentence of the
full descriptions used in the NL condition for each image.
The inclusion of the overview description is based on growing
support for the critical nature of summary information to
guide user attention and haptic search behavior [44], [54].

FIGURE 4. View of stimulus and single finger exploration in haptic only
condition.

E. PROCEDURE
The first trial was used as a practice for each participant and
involved a randomly selected image from the practice set,
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experienced under one of the three presentation conditions.
These images were used as practice because they were the
least complex. Conversely, the fourth trial was always a
randomly selected image from Image Set 3 since they were
the most complex in terms of number of elements rendered on
the screen. We did not have a priori rationale for Image Sets
1 and 2 being more difficult than one another. As such, half
of the participants had the image set order P, 1, 2, 3 and the
other half had P, 2, 1, 3. None of the images in the stimuli set
were repeated and each participant was exposed to all twelve
images over the course of the study.

The study began with a sighted practice phase where
participants were instructed on how to navigate the sequence
menu, select buttons to begin trials, and access images in all
three presentation conditions. For the Haptic Only condition,
the researcher explained the different vibration patterns for
image elements and gave some examples of best practice
strategies for exploring the stimuli. In the Natural Language
condition, the researcher trained the participant on how to
start and stop the audio descriptions. There was no limit
on how many times the description could be repeated. The
participants also practiced the Haptic + Overview condition,
which involved actions previously introduced in the other
two conditions. After they finished the sighted practice,
they were blindfolded and completed the practice phase
again with the three conditions to ensure that they had a
baseline understanding of how each condition functioned.
The participants remained blindfolded for the rest of the
experiment. Once the experimental sequence started, the
participant was told which presentation condition to expect
and was given a reminder of how to access the images in that
condition.

The participants were informed that they would be
answering five questions related to each image stimulus.
The first four questions were multiple-choice and the last
question was open response. The multiple-choice questions
had three possible answers. This design choice was based
on evidence that the three-option versions of multiple choice
questions are usually as robust, if not optimal, over the four-
or five-option versions [55], [56]. The questions and possible
answers were read aloud, and the participants vocalized their
answers. The first question was asked at the beginning of
each trial/learning of an image. Subsequent questions were
asked immediately following participants’ responses to the
prior question. As this was meant to be a perceptual task,
rather than memory-based, they could simultaneously access
the stimuli as they answered the questions. There was no time
limit, but they were encouraged to answer as quickly and
accurately as possible. They could also ask for questions and
answer options to be repeated. The researcher recorded the
answers to the four multiple-choice questions in Qualtrics,
the device recorded the participants’ iPhone interactions, and
a video of the session recorded participant description of
the perceived graphic using Zoom’s record and transcript
mode. This last question asked participants to describe their
mental model of the image as a re-creation task. It is not

unusual in perception studies for researchers to ask sighted
participants to draw a representation of their mental model
of an image, diagram, or map to evaluate learning of stimuli.
However, given the length of time needed for this experiment
andwanting to avoid the removal of the blindfold to record the
participants’ drawings for each image, we opted for a more
streamlined process of recording their verbal description
of the perceived image. This approach also allowed us to
determine if they would merely repeat the terms used in the
NL description or generate their own output representation of
their mental model for the description.

F. ANALYSIS METHODS
The independent variables were Information Presentation
Condition (3 levels: Natural Language (NL), Haptic Only,
and Haptic + Overview) and Image Set (3 levels: Set 1 =

closed forms, Set 2 = paired line segments, and Set 3 =

line/polygon intersections). The dependent variable was
response accuracy, measured by the multiple-choice ques-
tions, as percent of overall correct and incorrect responses.
Response accuracy was analyzed using a two-way repeated
measures ANOVA at a (95% confidence level (α = 0.05))
to identify effects from manipulating the two independent
variables. A post hoc power analysis with 2 independent
variables, α = 0.05, N = 24, and effect size = 0.303 for
the ANOVA achieved a power of 0.87. A power analysis
result over 0.8 supports the likelihood that the test is correctly
rejecting the null hypothesis for a sample of this size [57].
Accuracy data were not analyzed for the Practice Set because
the researcher gave feedback based on the participant’s initial
performance.

Analysis of the open response image descriptions was
conducted using thematic analysis methodology, which
offered a framework and set of practices for examining
qualitative data and for describing potential themes, patterns,
and trends within diverse phenomena situated in the context
of the domain [58]. We developed first order coding
processes from emergent, open coding methods [59] but
the data categorization followed a deductive process for
second order coding. This yielded 288 descriptions collected
from 24 participants. We then collapsed the categories to
Description Accuracy (correct/sufficient details, partially
correct/insufficient detail, incorrect/no or wrong detail)
and Misconception Types (insufficient detail, wrong spatial
relation, wrong understanding of image). Two researchers
labeled each description independently, and then resolved
any disagreement through discussion [60]. This iterative
process helped us to draw comparisons between description
sentences containing explicit spatial and/or mathematical
concept information that would be useful for forming a
mental model of the image - e.g.,‘‘There is a line that goes
from the bottom to the top of the screen’’ to descriptions
conveying a reference to a visually similar object to the image
- e.g., ‘‘It looks like a nine towards the top’’, ‘‘It’s like a hand
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fan facing left’’, ‘‘It has almost a butterfly shape that doesn’t
touch in the center’’.

V. RESULTS
A. ACCURACY BY CONDITION
The overall grand mean accuracy, based on the correctness
of 864 multiple-choice questions analyzed across all partici-
pants, conditions, and image sets was 72.45% (SE= 2.12%).
By condition, participants were least successful with the
Haptic Only condition with an average accuracy of 52.08%
(SE = 3.37%). Performance significantly increased for the
Haptic + Overview and Natural Language conditions with
an average accuracy of 80.56% (SE = 3.12%) and 84.72%
(SE = 2.73%) respectively (see Figure 5). The ANOVA
test revealed that information presentation condition had a
significant main effect on accuracy [F(2, 22) = 42.97, p <

0.001, η2p = 0.796].With a Bonferroni post hoc t-test pairwise
comparison, the Haptic Only condition yielded a statistically
lower performance from the Haptic + Overview (MD = -
28.47%, SE = 4.10%, p < 0.001) and the Natural Language
(MD=−32.64%, SE= 3.61%, p< 0.001) conditions, while
the Haptic + Overview and Natural Language conditions
did not statistically differ (MD = −4.17%, SE = 3.92%,
p = 0.896). These results indicate that participants had
significantly more difficulty with non-visual learning of the
stimuli through the Haptic Only condition as compared to the
Haptic + Overview and Natural Language conditions.

FIGURE 5. A bar graph of participant average accuracy for selected
response questions by presentation condition (Haptic Only, Haptic +

Overview, and Natural Language).

B. ACCURACY BY IMAGE STIMULI SET
By image set, collapsing across presentation condition,
average accuracy for closed forms (Set 1) was 80.56% (SE=

1.85%), paired line segments (Set 2) was 67.01% (SE =

2.99%), and line/polygon intersections (Set 3) was 69.79%
(SE = 3.36%). The ANOVA test revealed that image set
had a significant main effect on accuracy [F(2, 22) = 14.61,
p < 0.001, η2p = 0.570]. Post hoc t-tests with Bonferroni
correction revealed that closed formswere significantly better
than both paired lines (MD = 13.54%, SE = 2.92%, p <

0.001) and line/polygon intersections (MD = 10.76%, SE =

2.86%, p = 0.003). While paired lines and line/polygon

intersections were not statistically different (MD = -2.78%,
SE = 3.71%, p = 1.0).

C. ACCURACY BY CONDITION AND IMAGE STIMULI SET
Looking at the interaction between condition and image set,
no significant interaction effect was detected [F(4, 20) =

2.17, p = 0.11, η2p = 0.303]. However, a significant simple
effect of condition on image set was observed; information
presentation condition had a significant effect in each image
set - all with significance values less than 0.05 (p < 0.001).
For closed forms, participants had an average accuracy of
59.38% (SE = 4.71%) with Haptic Only, 86.46% (SE =

3.68%) with Haptic + Overview, and 95.83% (SE = 1.94%)
with Natural Language. For paired lines, participants had an
average accuracy of 43.75% (SE= 5.27%) with Haptic Only,
78.13% (SE= 4.59%) with Haptic+ Overview, and 79.17%
(SE = 4.43%) with Natural Language. For line/polygon
intersections, participants had an average accuracy of 53.13%
(SE= 4.83%) with Haptic Only, 77.08% (SE= 4.23%) with
Haptic + Overview, and 79.17% (SE = 4.68%) with Natural
Language. These data, alongwith significance levels between
the conditions within each image set, are visually represented
in the clustered bar graph in Figure 6.

FIGURE 6. A bar graph of participant average accuracy for selected
response questions by presentation condition (Haptic Only, Haptic +

Overview, and Natural Language) and image stimuli set (Closed Forms,
Paired Line Segments, and Line/Polygon Intersections).

D. POTENTIAL OF ORDER EFFECTS
The study was counterbalanced by alternating the order of
the presentation conditions and the image sets experienced by
the participants to minimize learning effects. When accuracy
was grouped by block order (first, second, and third), the
three blocks had averages of 71.53% (SE = 2.68%), 73.26%
(SE = 3.19%), and 72.57% (SE = 2.68%) respectively with
no significant effects of block order on accuracy [F(2,36) =
0.097, p = 0.908, η2p = 0.005].

Given the consistent differences between the two haptic
conditions, we were curious if the order in which the
conditions were experienced influenced the accuracy of the
subsequent haptic condition. That is, did participants who
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experienced the Haptic Only condition prior to the Haptic
+ Overview condition perform similarly to participants
who had the reverse order? This between-subjects variable
had 12 participants who experienced Haptic Only first and
12 participants who experienced Haptic + Overview first.
The average accuracy for participants that had Haptic Only
first was 65.28% (SE = 3.63%) and the average accuracy
for participants that had Haptic+Overview first was 67.36%
(SE= 3.63%). With similar accuracy, this suggests that there
was not a significant difference between the two conditions
based on the order the condition was experienced [F(1,22) =
0.165, p= 0.689, η2p = 0.007]. With no significant difference
in presentation order and a significant difference in average
accuracy, we interpret that the simple NL overview, which is
the element manipulated between the two haptic conditions,
impacted participant performance rather than the condition
order.

E. OPEN RESPONSE DESCRIPTIONS
We collected 24 open response descriptions for each of
the image sets across each condition. In total, this resulted
in 288 individual descriptions consisting of 524 natural
language sentences or sentence fragments.

1) DESCRIPTION ACCURACY CLASSIFICATION
Looking at the description results, the Natural Language
condition achieved the highest proportion of recreation
descriptions coded as accurate, with almost 2/3rd of descrip-
tions being coded as accurate for Image Sets 1 and 3. The
Haptic Only condition achieved the lowest proportion of
descriptions coded as accurate across all image sets. In the
Haptic + Overview condition, no more than half of the
descriptions were coded as accurate (see Table 1). A set
of chi-square tests for goodness of fit were conducted to
see if an observed frequency distribution of an accuracy
rating matched an expected frequency distribution. In this
case, there were 96 descriptions collected for each of the
three presentation conditions across all image sets, totaling
288 descriptions. Under the null hypothesis for a chi-square
goodness of fit test, it is assumed that the descriptions are
equally distributed across all accuracy ranks and conditions.
Thus a 3× 3 table (Table 1) with 9 cells will have an expected
value of 32 descriptions per accuracy rank.

TABLE 1. Observed and Expected Accuracy Classification per Condition.

A chi-square test of goodness of fit was performed to
examine the relation between each individual presentation
condition and the description accuracy rank (A, I, W). The
relation between these variables was significant at a p <

0.05. [Haptic Only X2 (1, N = 96) = 11.812, p =.00272.

Haptic + Overview X2 (1, N = 96) = 24.250, p =.00001.
NL X2 (1, N = 96) = 43.0, p =.00001]. A chi-square test
of independence was also performed to examine the relation
between all three presentation conditions and the level of
description accuracy. The relation between these variables
was significant with a large effect size, [X2 (2, N = 288) =
75.2995, p =.00001, V = 0.3615].
In summary, the Natural Language image descriptions

were significantly more likely than Haptic + Overview or
Haptic Only to produce accurate descriptions. Haptic +

Overview were significantly more likely to produce insuf-
ficient descriptions and Haptic Only was significantly more
likely to produce inaccurate descriptions. The participant
generated recreation descriptions (vs. the researcher gener-
ated unimodal NL stimuli in the protocol) are used here
as a form of reconstruction of the stimuli. It served as
a way to evaluate the amount and type of information
conveyed by the unimodal/bimodal representations as well
as the participant’s underlying cognitive representation of
the learned stimuli. Image Set 3 descriptions consistently
had a greater proportion of accurate codes across modality
conditions. This was an unexpected finding given that as
image complexity increased, we predicted that the number
of descriptions coded as accurate would decrease across all
three conditions. Overall, Image Set 2 descriptions had fewer
accurate codes than the other image set descriptions. This
finding was also surprising as we expected that these images
would be easier to interpret because they were almost parallel
lines as opposed to different lines or shapes.

It should be noted that although the researchers had
developed a set of 12 extended NL descriptions designed to
follow existing linguistics-based guidelines and research for
describing visual images for non-visual access, participants
did not ‘parrot’ back the provided descriptions when asked to
give their own description. Based on the video observations,
these data reflected the participants’ genuine efforts to
produce output reflecting their mental model vs a simple
recall of the exact wording or terms used in the NL
condition or the Haptic + Overview conditions. This finding
suggests that participants were attempting to provide novel
descriptions to verbally convey their mental representations
built up from learning, as was our intent.

2) INCORRECT DESCRIPTION CLASSIFICATION
All of the description responses were coded as accurate-
detailed (A), accurate but insufficient detail (ID), wrong-
spatial relations (WSD), or wrong-image understanding
(WU). The Natural Language condition descriptions consis-
tently produced a significant number of accurate responses,
however there were many that fell into the insufficient detail
category (>50%). This may be due to not receiving additional
spatial information from the visual or tactile channels and
therefore needing to rely on working memory to form a
mental model of the global image.

The Haptic + Overview descriptions were mixed in terms
of insufficient/incorrect response codes based on the image
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set. For example, the frequency of incorrect responses in
the category of wrong understanding of the image fluctuates
between a high of 50% of incorrect responses (Image Set 1)
to a low 5% of incorrect responses (Image Set 3). This last
observation is surprising because we predicted that Image
Set 3 would be the most difficult to describe due to the
combination of lines, shapes and intersections, hence the
highest level of complexity. However, based on the results
of the analysis, Image Set 3 resulted in the fewest number
of codes that were evaluated to be wrong due to a complete
misunderstanding of the image.

The Haptic Only descriptions consistently produced the
greatest percentage of incorrect responses based on a
wrong understanding of image across all four image sets.
The earlier comparison of responses for Haptic Only and
Haptic + Overview would suggest there was not a learning
effect. There are several other alternative explanations
for this pattern. One explanation could be the use of
sighted blindfolded participants who are not familiar with
processing haptic information into mental models. We find
this explanation unlikely given success of sighted people
on other haptic learning tasks/stimuli [18] and with both
sighted and blind participants for haptic and visual learning
of simple vibrotactile graphs [19], [20]. Another explanation
could be the misalignment of asking participants to take
information processed through a haptic input and provide a
natural language format output as a replication task. In the
next section, we further explore these results.

VI. DISCUSSION
Well-designed multimodal learning systems have been
demonstrated to benefit students with a variety of sensory
needs and preferences [61], [62]. Yet, there are few studies
that directly compare the ways in which non-visual presen-
tation methods might help to improve universally designed
multimodal learning systems with sighted participants. This
paper is part of a long-term research program to investi-
gate non-visual information processing abilities in sighted
individuals as an important theoretical contribution for its
own sake and not just serving as a control for research into
non-visual representations for blind and low vision learners.
Our contribution to the body of literature on multimodal
learning interfaces is the comparison of the effectiveness of
three types of non-visual information presentation modes for
sighted participants learning basic graphical primitives. In the
next sections, we discuss our findings based on the research
questions and how they can be used to better understand
the ways in which the multimodal interfaces providing input
through non-visual channels may substantively contribute to
learning graphical STEM content.

A. LEARNING ACCURACY
The first research question focused on the ability of
blindfolded sighted participants to learn spatial primitives
using the three non-visual interface conditions as measured
by response accuracy. Response accuracy was measured by

the number of correct selected responses to the multiple
choice questions and by the accuracy of the participant verbal
recreation descriptions of their mental model of each image
stimuli.

RQ1: Can sighted individuals accurately learn and men-
tally represent basic STEM-based non-visual graphical
content?

The selected response results suggest that sighted partici-
pants were able to effectively learn the graphical primitives
using two of the three conditions (Haptic + Overview and
Natural Language). The Natural Language condition had the
numerically highest overall level in response accuracy of
the three conditions. In the NL condition, participants also
produced more accurate and detailed descriptions in each
of the three image sets. The accuracy of the NL condition
descriptions were consistent for both the least complex
(single polygon (Image Set 1)) and the most complex images
(line/polygon intersections (Image Set 3)). Of interest, the
difference in response accuracy for the NL condition was
not statistically different from the response accuracy in
the Haptic + Overview condition. This outcome provides
evidence in support of the functional similarity of behavioral
performance when learning with both non-visual graphical
presentation modes.

The Haptic Only condition produced the least accurate
descriptions of the three conditions across all image sets
and had the lowest overall accuracy compared to the other
two presentation conditions. Over half of the descriptions
that were generated based on the Haptic Only condition
resulted in inaccurate descriptions of the image stimuli.
There are several possible interpretations of these results.
It is possible that participants did not accurately learn
the graphical information from the Haptic only condition.
Some of the descriptions of this condition point to such a
conclusion. For instance, below are examples of inaccurate
descriptions for the image of the two parallel curved segments
( Image Set 2) in the Haptic only condition:

‘‘Like a capital D’’ (P5)
‘‘It’s sort of like an oval-ish.’’ (P14)
‘‘I guess C? The letter?’’ (P11)
‘‘There is a horizontal (line) on the bottom, and
there is a diagonal (line) going this way. . . starting
at the bottom and going to the top right.’’ (P24)

These were coded as inaccurate descriptions of the image
because they do not faithfully represent the learned stimuli
(wrong-image understanding/wrong spatial relations). The
first two examples add information to the image that was
not there (e.g., mentally adding a vertical line to the curved
lines because it fits a prior knowledge schema of a capital
D or oval). The next two are examples of inaccurate spatial
relations (reversed from the letter C, only 1 line vs. 2 lines,
and thinking one line was horizontal and the other diagonal
vs two parallel curved lines).

Another possible interpretation is that the Haptic Only con-
dition did not lead to fully elaborated mental representations.
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In other words, the mental model may have only been
partially formed based on the information provided in
the Haptic Only condition. Examining the Haptic Only
descriptions for the same image stimuli that were coded as
accurate but insufficient detail and comparing them to the
above inaccurate description provides some support for this
interpretation.

‘‘Curved line segments from the bottom left up
towards the top right, but not, like, all of the way,
like top middle I guess. And then from right to the
right bottom as well.’’ (P9)
‘‘So there’s a line that starts at the bottom right
corner. and it curves in towards the center of the
screen. and then goes upwards and kind of just to
the top of the screen. and then there’s a second
line that’s on the left that curves, sharply into the
center, sharply out towards the top left corner of the
screen.’’ (P19)

In these examples of descriptions with accurate but missing
details, the participants did not mention the parallelism of
the two curved lines which was coded as one of the defining
features or geometric properties of the image. One might ask
if perhaps the Haptic Only condition was disadvantaged in
some way in the recreation task that asked for the mental
model to be represented as aNL response?However, although
there was a lower rate of learning accuracy for the Haptic
Only condition, there were instances of both accurate and
complete detailed mental models. The following description
in the Haptic Only condition represents an example that was
coded as accurate-detailed based on that it provided the key
attributes (2 lines, curves, parallelism, vertical orientation,
centered image).

‘‘Two parallel lines going from the center. . . close
to the center bottom of the screen towards center
right of the screen.’’(P1)

The above description suggests that even in the Haptic
Only condition, it was possible for sighted participants to
interpret the image accurately, however, that this was not
the norm for our sample as compared to the other two
non-visual presentation conditions. Our results provide new
evidence that non-visual information modes can be equally
learned, accurately represented in memory, and acted upon
in highly similar, statistically identical ways by sighted
participants, i.e., the functional equivalence hypothesis of
spatial information [16]. Given the reliably worse perfor-
mance of the Haptic Only condition, our findings do not
provide across the board support for functional equivalence
or development of a common amodal spatial image [8]. These
theories emphasize the importance of the information being
compared, e.g., that all input modalities must convey the
same information and that sufficient learning is allocatedwith
each input for the potential of functional equivalence. While
more research is needed in this domain, it is possible that the
haptic-only condition would lead to equivalent performance
given additional learning time or more information, e.g.,

as is provided in the Haptic+Overview condition that showed
markedly improved performance.

This study contributes additional support for the impact of
layering of multiple sensory channels. Participants learning
in the Haptics Only condition produced the most incorrect
answers to the multiple-choice questions and the recreation
descriptions. In contrast, learning in the Haptic + Overview
condition performed at a functionally equivalent level to the
Natural Language condition. The first possible explanation
is the participants’ lack of familiarity with interpreting
graph information through vibrotactile channels. Although
most people use haptics in their phones on a daily basis,
these are often single cues, or attention focusing signals
(i.e., incoming calls in silent mode, or mobile game
interactions). Sighted users rarely use haptic information for
data extraction, tracing, or learning as a primary interaction
style, especially using touchscreens as we employed here.
Without an organizing schema for the haptic representations,
participants were left to interpret the information based on
inconsistent or inadequate search patterns. The Haptic +

Overview condition’s use of a NL image summary likely
provided just enough organizational information to activate
a previously learned schema to construct spatial images -
e.g., ‘‘This is a circle’’ or ‘‘Two parallel line segments’’.
This mental schema inevitably assisted in more effective
search behavior to extract the relevant data, were used to
help reason through the selected response questions and
provided some globally-coherent spatial information to assist
in completing the recreation descriptions task. It is also
possible that the learning accuracy and description recreation
results in the Natural Language condition were the strongest
of the three conditions because the combinations of the
simple points, lines, and regions were within the amount of
spatial information that could be held in short term memory
to form a spatial image from which to reason in and answer
themultiple-choice questions and recreate a description in the
same modality as it was originally given.

B. METHOD EFFECTIVENESS
The second research question focused on the effectiveness of
each non-visual interface in building sufficient mental models
that allowed the participants to answer questions about the
representations.
RQ2: Which non-visual presentation methods are most

effective for building up mental models in multimodal
learning environments?

Although functional equivalence has not been studied after
learning the same stimuli used here, or evaluated when
directly comparing NL and Haptic conditions, the theory
would suggest that we should observe functionally equivalent
performance given our emphasis on information-matching
between conditions. Findings showing a lack of statistically
reliable differences (i.e., null results) between the Natural
Language and Haptic+Overview presentation modes would
corroborate this hypothesis and suggest that these two
non-visual inputs are equally sufficient for supporting the
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spatial reasoning tasks required in the selected response
questions. Yet, while the Haptic + Overview condition pro-
duced functionally equivalent results, there was a significant
difference in the accuracy and level of detail in the recreation
descriptions between the Natural Language and Haptic +

Overview conditions. This finding may be due to participants
having just enough information with the brief overview and
the haptic signals to construct a mental image, however, still
be missing information to complete the full mental image to
describe accurately or with sufficient detail. There are several
ways to potentially test this interpretation in a future study,
such as asking participants to draw the mental image or to
perform a matching task with a number of similar images
to select from after they have learned the image in each
condition, e.g., an alternative forced choice task.

In this study, we do not include a full description of
the image stimuli during the Haptic + Overview condition.
Instead, we provide a brief description of the type of image
stimuli and the context that serves more as an organizing
caption than a description. This overview acts as an auditory
cue to provide a schema prompt for the haptics information
the learner will be experiencing. The results of this study
suggest that this ‘image summary’ does provide enough
information for the participant to answer the multiple choice
questions about the spatial primitives in a functionally
equivalent manner to the extended NL condition through
the organization of effective search strategies that assist
in extraction and interpretation of the spatial information
and the construction of a spatial image in memory. There
is significant research support for the efficacy of auditory
summaries from theories of multimedia learning [15] and that
are demonstrated in real world settings such as providing
auditory overviews for navigation routes [54], [63] as
well as our own experience of having participant feedback
informally request these types of overviews when we have
conducted previous studies using systems with touchscreen
graphical access. There is a distinct advantage for the layering
of spatial information within multimodal systems so that
perhaps missing information in a single modality can be
filled in using additional channels. Since we are comparing
novel stimulus-modality pairings without clear precedent, the
contributions of this study provide important new theoretical
insights into how non-visualmodalities can be used to support
spatial learning. This will help guide future implementation
of multimodal learning environments, maximizing inclusive
graphical information access and the best sensory canvas
available to both learners and educators.

C. IMAGE SET IMPACT
The final research question focused on the impact of
graphical content complexity on participant performance in
each of the three non-visual conditions.
RQ3: Does the type/complexity of the graphical content

impact performance as a function of presentation modality?
This study focused on stimuli consisting of spatial

primitives (points, lines, regions/polygons) based on the

rationale that they are the building blocks of STEM graphical
information (charts, graphs, maps). We were careful to
introduce all the presentation conditions in a practice image
set (single line segments) to ensure participants understood
how the experimental stimuli would be presented in each
condition, the actions needed to review the stimuli and answer
questions, as well as how to revisit the stimuli to complete the
question tasks before starting the experimental trials. We also
provided sufficient and matched information between our
three presentation conditions to ensure some level of baseline
learning between conditions and counterbalanced the image
sets to prevent any ordering effect. Our results suggest that
the complexity of the image sets had a simple effect on the
accuracy of the multiple-choice questions.

Participants were most successful learning closed forms
(Set 1) with the Haptic + Overview and Natural Lan-
guage conditions. The Haptic Only condition significantly
under-performed across the three image sets. We conclude
that participant performance was not affected by the order
in which the condition was experienced and the Haptic
+ Overview condition did not influence accuracy for the
Haptic Only condition and vice versa. These results further
support the benefits of layering different types of spatial
information to help construct spatial images from the simplest
forms to more complex combined element representations.
It is possible that although the Natural Language condition
produced similar accuracy (functionally equivalent to Haptic
+ Overview) across all image sets, the image set complexity
may not have been enough to reach the limits of cognitive
load. Additional studies on the two functionally equivalent
conditions with images of increased complexity (i.e., simple
graphs and charts) would help determine the threshold ability
for reasoning on spatial information through natural language
and the impact of additional information layered through
other intrinsically spatial modalities such as haptics and
vibrotactile interfaces.

D. MULTIMODAL LEARNING SYSTEM FUNCTIONALITY
While the primary research questions focused on how
well blindfolded sighted participants were able to receive,
interpret, and respond to primitive graphical representations
using only vibrotactile and natural language input, there are
a few issues to discuss about functionality of the multimodal
learning system itself. The system described in this paper was
an earlier version of the system evaluated and reported in [17]
and as such was revised based on research observations
of participant touch screen search strategies and qualitative
feedback collected from participants during the experiment
sessions. For example, there were times that participants
could accidentally exit the system by pushing the wrong
buttons on the side of the phone while holding it to explore
the screen. This was problematic because the researcher
would have to leave their observation station, restart the
system, and navigate the correct part of the protocol. In other
cases, participants reported that the lack of a boundary
about the representation on the screen made it difficult
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to understand where the target images extended or were
oriented. These observations and interface design feedback
were then incorporated into the update of the system for
subsequent experiments. Further evaluation of the system
functionality for sighted participants will be reported in
a future paper on using the system for representing chart
graphics with vibrotactile and natural language non-visual
interfaces.

VII. LIMITATIONS AND FUTURE WORK
Although precautions were taken in the study design to: 1)
provide the same information in all information presentation
conditions in order to answer the same questions for
each individual image stimuli, and 2) counterbalance the
presentation condition and image set order, the participants
were allowed to review the stimuli as often as they wanted
during the experiment. It is possible that the Natural Lan-
guage condition was somehow advantaged, thus producing
the highest levels of accuracy. We would need to further
investigate if there was a significant benefit for participants to
revisit and learn the stimuli in the NL condition vs the Haptic
Only condition. This may be true for the description accuracy
results as there was an alignment of stimuli and recreation
tasks (NL stimuli to NL description). In a future study,
we could take an opposite approach and ask participants to
draw the spatial image with their finger on a touchscreen and
capture the finger trace. We could then compare the image
recreation in a closer format to the haptics modality. In this
experiment, there was no way to do both of these recreation
tasks without exceeding the reasonable amount of time (60-
90 minutes) for the participant to be engaged in the study
trials. If the alignment of the recreation format truly had an
impact, the haptic recreation would benefit and produce more
accurate recreations in that modality and a deficit would be
seen in the NL learning mode. Another interesting question
would be to look at the recreation task from the perspective
of spatial information organization, analyzing recreation
descriptions for part/whole schema, frame of reference,
spatial relationships, and spatial information ordering. It is
possible that an intrinsically spatial analyses would be
easier and more accurate when done after learning from
a Haptic Only input modality in a layered multimodal
system. Future studies will investigate these two effective
non-visual learning conditions with graphical images of
increased complexity, such as simple STEM graphs, charts,
and maps, to study whether functionally equivalent results
persist as the amount of spatial information increases.

VIII. CONCLUSION
This paper investigated the ability of individuals to learn sim-
ple spatial information through non-visual channels in three
different presentation conditions: haptic only renderings,
natural language descriptions, and haptic with a short natural
language overview. The results of this study provide evidence
for the ability of sighted individuals to effectively use
non-visual methods in learning graphical spatial information,

with at least two of our three non-visual presentation channels
supporting accurate and similar learning outcomes. Results
of the study also provides some support for the functional
equivalence theory, as two of the three presentation condi-
tions (Natural Language and Haptic + Overview) produced
similar accuracy results. However, there was no evidence
of functional equivalence between the Haptic + Overview
condition and the Haptic Only condition. This would suggest
that the presentation of even a small amount of natural
language provides enough additional spatial information to
benefit the building of mental spatial images to aid in
reasoning and learning. It is unclear from this study if the
effectiveness comes from the presentation of any amount of
natural language or if it is the combination of the presentation
modalities that allows for the filling in of missing pieces of
spatial information to produce similar results of multisensory
learning by sighted users in multimodal learning environ-
ments. These findings further support the need for research
and development on layered information formats, multimodal
interaction methods, and multimodal UIs to advance future
universally designed STEM learning systems.
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