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Abstract
We propose hybrid digital–analog (DA) learning algorithms on Rydberg atom arrays, combining
the potentially practical utility and near-term realizability of quantum learning with the rapidly
scaling architectures of neutral atoms. Our construction requires only single-qubit operations in
the digital setting and global driving according to the Rydberg Hamiltonian in the analog setting.
We perform a comprehensive numerical study of our algorithm on both classical and quantum
data, given respectively by handwritten digit classification and unsupervised quantum phase
boundary learning. We show in the two representative problems that DA learning is not only
feasible in the near term, but also requires shorter circuit depths and is more robust to realistic
error models as compared to digital learning schemes. Our results suggest that DA learning opens a
promising path towards improved variational quantum learning experiments in the near term.

1. Introduction

Neutral atoms trapped by optical tweezers hold great potential for a scalable quantum information
processing [1–5]. Programmable quantum simulators comprised of an array of Rydberg atoms have already
scaled to several hundred qubits, enabling recent experiments that have demonstrated intriguing emergent
many-body quantum phenomena including quantum phase transitions [6–11], many-body quantum
scars [12–14], and topological phases of matter [15–19]. Rydberg atom simulators have even been shown to
naturally encode hard computational problems such as the Maximum Independent Set problem, leading
to new connections between quantum physics and NP-complete computational problems [20–25]. The
rapid progress towards larger scale Rydberg quantum processors motivates us to examine their applications
for near-term quantum algorithms. In the case of Rydberg system using Rubidium atoms, a simplified
picture of its quantum simulator is a system of atoms trapped in a desired arrangement, individually in their
ground state (denoted |0〉), that is globally driven for some finite time t under the Rydberg many-body
Hamiltonian [26]. This capability alone is enough to realize many exotic physical properties of Rydberg
arrays discussed above, and present-day simulators may be able to simulate other complex physical models,
such as those in high-energy physics [27, 28]. Beyond global driving, another high-fidelity control that can
be added to a Rydberg atom array system is single-qubit rotations. These gates operate in a space of hyperfine
states rather than the Rydberg two-level system, which we will describe in more detail in the following
sections. This ability to locally change the basis of each qubit enables a new host of applications, including
quantum machine learning (QML). Recent theoretical studies have indicated that QML, in some cases, can
provide practical benefits for certain problems [29–36]. The possibility of executing quantum computations
with practical utility motivates us to study explicit constructions of such learning algorithms. In this paper,
we explore quantum learning algorithms from near-term Rydberg atom simulators—their construction and
potential benefits over digital variational quantum circuit models [37, 38].

© 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.

https://doi.org/10.1088/2058-9565/ad9177
https://crossmark.crossref.org/dialog/?doi=10.1088/2058-9565/ad9177&domain=pdf&date_stamp=2024-11-27
https://orcid.org/0000-0002-2806-8248
https://orcid.org/0009-0007-7937-3967
https://orcid.org/0000-0003-3828-6377
https://orcid.org/0000-0001-5841-831X
mailto:lujz@mit.edu
mailto:fliu@quera.com
mailto:swang@quera.com


Quantum Sci. Technol. 10 (2025) 015038 J Z Lu et al

Figure 1. A VQA consists of a variational quantum circuit exchanging parameters with a classical optimization algorithm.

Variational quantum algorithm (VQA) is one of the most widely considered QML models.
Experimentally, the VQA recipe yields algorithms generally compatible (under reasonable circuit depth) with
near-term quantum devices [39]. A remarkably wide class of VQA and VQA-variants have been proposed in
recent years for applications that span a range from purely computational and physical problems to drug
discovery [39–46].

We begin by briefly reviewing the general structure of a VQA so that we may connect it directly to our
Rydberg construction. The VQA formulation follows two guiding principles: divide the tasks of machine
learning between quantum and classical computers, and allocate to each resource the problems it is best at
solving [39]. Depicted schematically in figure 1, a VQA, therefore, consists of a quantum circuit and a
classical computer interacting with each other. The quantum circuit contains a set of parameters that may be
varied to learn an underlying problem.

In its simplest form, a learning task involves a training and a testing component. The training portion
involves optimizing the parameters of the quantum circuit with respect to a loss function L derived from the
circuit measurements. This optimization is generally done classically with, e.g. simplex search and gradient
descent [47–50]. Such techniques require that the classical optimizer iteratively query the quantum circuit
for both its parameters and its gradient; the optimizer then updates the parameter based on the gradient
value. A classical analogy to this process might be a neural network optimized by gradient descent via the
same iterative query process, though a VQA does not have any classical neural networks in its construction.
The testing portion consists of querying the optimized quantum circuit with new input data and analyzing
the output.

1.1. VQAs with Rydberg atom system
One important task to be addressed on the quantum circuit side is the choice of parameterized circuit; that
is, choosing an Ansatz that is most suitable for learning. A trainable variational Ansatz typically is comprised
of (a) gates corresponding to a collection of optimizable parameters and (b) gates that generate
entanglement. These gates need not be disjoint generally. Correspondingly, in our model of learning on
globally-driven Rydberg atom arrays, we have two resources: (a) single-qubit rotation gates R(θ) with Euler
angles θ and (b) global time evolution e−iHt/h̄ under the Rydberg HamiltonianH (see equation (2)). Gates
of the former type (as well as any discrete multi-qubit gates) are referred to as digital gates while global
driving operations are referred to as analog gates. Analog gates are derived from the native Rydberg
Hamiltonian dynamics, and while they do not correspond to an arbitrary unitary on the qubits they are
applied on, we explore their effectiveness as a QML entangling layer. A general family of Ansätze
(parameterized over system size n and circuit depth) assuming a time-independent Hamiltonian is given by a
recursive definition over the number of layers ℓ:

An
ℓ

({
θi,j

}n,ℓ

i=1,j=0

)
=An

ℓ−1

({
θi,j

}n,ℓ−1

i=1,j=0

)
· e−iHt/h̄

·
n⊗

i=1

Ri (θi,ℓ)
(1)

with a base caseAn
0 ({θi,0}ni=1) =

⊗n
i=1Ri (θi,0). The number of layers ℓ is equivalently the number of time

evolution gates, such that the depth of aAn
ℓ is d= 2ℓ+ 1. An example for n= 4, ℓ= 2 is given in figure 2(a).

All circuits of the formAn
ℓ are referred to as hybrid digital–analog (DA) learning circuits.

In this paper, we conduct a thorough numerical study of the performance and limits of practical
quantum learning on DA circuitry that can be feasibly implemented in Rydberg atom arrays. To analyze the
capabilities of DA learning under realistic conditions, we compare DA circuits with a natural digital
counterpartDn

ℓ , shown in figure 2(b). InDn
ℓ , each time evolution operator is replaced with a layer of n− 1
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Figure 2. Visualization of (a)A4
2 assuming a time-independent Rydberg HamiltonianH and (b)D4

2 . Blocks shaded in blue are
implemented digitally in the hyperfine ground state manifold, while blocks shaded in red are implemented by analog global
driving in the ground-Rydberg two-level system.

adjacent generalized controlled-NOT gates between nearest neighbors. These generalized gates are endowed
with a global parameter ϕ such that the gate is precisely CNOT—mapping basis elements
|b1,b2〉 7→ |b1,b1 ⊕ b2〉—when ϕ = π/4, but can be more general. The extra parameter gives additional
power to the digital scheme, which in turn strengthens the performance gap between digital and DA schemes
overall.

In order to conduct a comprehensive comparative numerical study, we choose two representative
learning problems on which we apply DA learning. The first is a supervised learning problem where the
input is classical information encoded into a product state: recognition of handwritten digits from the
MNIST dataset [51]. The second is an unsupervised learning problem where the input is quantum
information: learning phase boundaries of various Hamiltonians based on the ground state as input. Both of
our algorithms can be directly implemented on a Rydberg atom array that admits global driving/time
evolution and single-qubit operations. We will show that in both cases, DA methods have benefits over
purely digital techniques in performance and in robustness to error, poising them as a promising technique
to execute VQA’s in the near term.

In section 2, we describe the time evolution generated by the Rydberg Hamiltonian and its relation to
experimental constraints, and discuss realistic noise models for both digital and DA circuitry. In section 3, we
discuss our results from learning both classical and quantum information. In section 4, we summarize our
work and discuss an outlook on DA learning.

1.2. Related work, contributions, and limitations
The idea of DA circuitry has been proposed in the literature. Hybridizing single-qubit digital gates and
analog evolution has been studied for quantum simulation purposes under simple models, such as the Ising
Hamiltonian for the simulation of spin models [52, 53]. Numerical simulations of quantum Fourier
transforms and phase estimation algorithms implemented with DA architectures have given evidence of their
comparative robustness to noise [54, 55]. It is even possible that DA quantum computation may open an
avenue to a realizable practical quantum advantage [56].

Our primary contributions are twofold. First, we provide a comprehensive comparative study of DA
architectures on representative learning problems spanning classical and quantum data. It is natural to study
performance on both forms of data; such a juxtaposition has been considered experimentally as well [57].
Second, we co-design our constructions with Rydberg devices, requiring only single-qubit digital gates and
global driving operations. We show explicitly that physically astute choices of analog pulse parameters lead to
high-performance DA circuits. The current state of the Rydberg platform moreover suggests that our
proposed learning techniques can be implemented within the next few years on Rydberg devices at the order
of hundreds of qubits or more [5, 10, 12, 15, 26]. Time evolution on Rydberg atom arrays has been
extensively studied, and high-fidelity single-qubit gates can be implemented at scale via hyperfine state
manipulation [58–61]. Consequently, we propose these architectures for the purpose of near-term realization
on Rydberg devices. At the same time, however, the robustness of our results suggests that DA architectures
may be beneficial more generally for QML tasks, and should be viewed as a generic technique to boost
learning schemes rather than an attempt to deal with the handicap of near-term device limitations.

Although both schemes have hyperparameters in the entangling layer, one might argue that choosing all
of the Hamiltonian parameters and the evolution time in the analog scheme are more challenging
computationally than the choice of ϕ in the digital scheme. For example, a simple choice of ϕ is π/4; that is
use CNOT gates. In general, if there are many hyperparameters in a model, they may be practically
challenging to optimize by brute-force computation. However, for the case of Rydberg Hamiltonians, we are
able to circumvent this problem by arguing for the optimality of specific hyperparameters guided by the
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physics of Rydberg atoms. These arguments, which we present in the following sections, are physically
motivated and yield excellent results. Consequently, this naïve difficulty when guided by physics reveals itself
to actually be a significant advantage of DA learning, allowing for improved learning without blindly
optimizing additional parameters through the leveraging of physical reasoning. Moreover, we will show that
the simple choice of ϕ = π/4 is substantially worse than the optimal choice.

2. Theory

We consider a model of a Rydberg system that is described by two distinct modes; the device can switch
between the two modes by certain laser pulse sequences. In the digital mode, an atom in the Rydberg array
can be in any one of d states and is manipulated according to the standard circuit model. In this paper, we set
d= 2 and choose two states from the Rydberg hyperfine ground state manifold to encode the digital
qubit [58, 59]. In the analog mode, each atom is described by a two-level system consisting of a ground state
|g〉 and an excited state |r〉. The dynamics of the Rydberg atom array are governed by the Rydberg
Hamiltonian [26]

H (t)

h̄
=

n∑
j=1

Ωj (t)

2

(
eiϕj(t)|gj〉〈rj|+ e−iϕj(t)|rj〉〈gj|

)
−

n∑
j=1

∆j (t) n̂j +
∑
j<k

Vj kn̂jn̂k

(2)

where Ωj is the Rabi frequency of atom j, ϕj is a phase factor,∆j is the laser detuning frequency, n̂j = |rj〉〈rj| is
the Rydberg projection operator, and

Vjk =
C6

|⃗rj − r⃗k|6
(3)

is a van der Waals interaction potential with C6 = 862690× 2πMHzµm6 [26]. The detuning∆j(t),

frequency Ωj(t) and atomic distance |⃗fi − r⃗j| are all parameters of experimental control. The time dependence
of the Rydberg Hamiltonian has been used for techniques such as adiabatic evolution of ground states [20,
62]. We will discuss the role of adiabatic evolution for the preparation of ground states as quantum training
data in the following section. However, to obtain the simplest operations with a tractable number of
hyperparameters in our DA model, we restrict to the time-independent setting. We further simplify by
enforcing site independence; that is, we let all parameters take the same value across all atoms, i.e.
Ωi =Ωj =Ω, ∀i, j and similarly for the other parameters, and set ϕj = 0.

As an operator,H depends both on the geometry of the underlying Rydberg atom array and a
dimensionless detuning parameter∆/Ω. We adopt a simple geometry—a one-dimensional chain of atoms
with open boundary conditions, spaced apart by a distance a. The lattice parameter a can be made
dimensionless by introducing a characteristic length scale, the so-called blockade radius Rb defined by

C6

R6
b

=Ω (4)

the length at which the interaction strength equals the Rabi frequency. The blockade radius physically
corresponds to the length scale at which the interaction potential term in the Hamiltonian begins to
dominate. For a ground state within this regime, among any cluster of Rydberg atoms contained in a disk of
radius Rb, with high probability, no more than one of the atoms may be in the Rydberg state [10, 12, 14].

Consequently, the Hamiltonian is fixed by a frequency parameter∆/Ω and a lattice parameter Rb/a. The
evolution operation also includes a time parameter t. Collectively, (∆/Ω,Rb/a, t) define the hyperparameters
over the DA learning model.

For the remainder of this paper, we will rely on context to determine whether the system is in the
hyperfine or ground-Rydberg state space, and refer to both two-level systems as |0〉 and |1〉. In order to
facilitate numerical simulations, we will assume that the transfer between the hyperfine and |g〉− |r〉
manifolds is performed ideally. This is not the case in physical realizations, as the transfer between the two
manifolds is performed by single qubit pulses in the presence of non-zero Rydberg interactions. These
interactions implement weakly interacting short-time Hamiltonian evolution layers before and after each
single qubit rotation layer that can be absorbed in a modified entangled evolution layer. As such, they do not
change the DA machine learning algorithm we present, nor are they expected to significantly alter its
performance. Disregarding the interacting evolution during manifold transfer allows us to treat our atoms as
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an effective two-level system instead of three-level, thus leading to significant computational savings. The
physical implementation of qubits, however, is different in the digital rotation and analog entanglement
stages of our proposal. A brief discussion of experimental realizations of a Rydberg DA system is given in
appendix A.

2.1. Noise models
To simulate realistic conditions on a Rydberg device, we adopt noise models that align with results from
experimental measurements on Aquila, a 256-atom programmable Rydberg simulator [26]. In this work,
we ignore the infidelity of single-qubit gates as they generally have much higher fidelity than multi-qubit
gates [61, 63]. For feasibility of numerical simulation, we only consider a model of coherent errors
independent among every time evolution operation that captures noise in the Rabi frequencies and
detunings as well as position perturbations of each atom. These are given as

1. noisy detuning ∆̃∼∆+N (0,0.1 MHz),
2. noisy Rabi frequency Ω̃∼ Ω · N (1,0.01)

3. and perturbed atomic coordinates according to a Gaussian process r̃j
iid∼ rj +N (0,0.1µm)

whereN (µ,σ) is a Gaussian distribution with mean µ and variance σ2. These noise parameters are
consistent with those of [26]. Although this noise model does not capture all possible sources of noise, it
includes a large and important subset of experimental errors and provides a fair comparison of digital versus
DA algorithms within our scope.

To define the digital noise model, we first establish the generalized form of the CNOT gate. The general
recipe to obtain a gate is to write it as U= e−iθHU/h̄ for a corresponding Hamiltonian HU and time θ, and to
use a physical system described by HU to implement U. As a concrete example, one may achieve a
controlled-Z gate by a two-body Ising interaction with unit time evolution and interaction strength π/4, i.e.
CZ12 = e−i π

4 (Z1+Z2)+
π
4 Z1Z2 . Similarly, we may write

CX1→2 = e−iπ4 (I1−Z1)(I2−X2) (5)

where CX1→2 is a controlled-NOT gate with the first qubit as the control. This equivalent definition of the
CNOT gate is derived in appendix B. More generally, define

CX1→2 (ϕ) = e−iϕ(I1−Z1)(I2−X2) (6)

to be the generalized CNOT gate, with ϕ ∈ [0,π/4]. As a simple but realistic digital independent noise
model, we sample θ from a Gaussian distribution with mean µ= ϕ and standard deviation σ chosen such
that the resulting gate fidelity is 99%. As with the DA case, infidelities of the single-qubit gates are neglected.
We estimated numerically the desired standard deviation of the noisy CX gate to be σ= 0.065. Our analysis
of noisy circuits introduces noise at every instance of the circuit evaluation, including both the training and
the testing phases. We do not, so as to save simulation time, re-sample noise in estimation of the gradient and
instead use the same noise on the loss function evaluation as well as its gradient in each step.

2.2. Physical hyperparameters
In appendix B, we show by direct computation that an approximately optimal choice of ϕ is π/8 for the
digital model with noise, while ϕ = π/4—the controlled-NOT gate—is optimal in the absence of noise. We
are, however, primarily interested in model comparisons in the presence of noise. Thus, henceforth,
references to the noisy digital or generalized CNOT gate refer to the CX1→2(π/8) gate, and we maintain the
standard CNOT gate for the digital circuit without noise.

We next consider the choice of hyperparameters associated with the DA model. Ω fixes the scale of the
Hamiltonian, so we set Ω= 2π × 4MHz which in turn determines Rb by equation (4). We argue that the
remaining hyperparameters are approximately decoupled, can be chosen primarily through physical
justifications rather than variational methods, and are universal. These hyperparameters are constant from
layer to layer in the circuit.

The generic task of optimizing hyperparameters for a learning model is difficult and may be performed
by brute-force grid search. However, in our case, we argue that the optimal value of each hyperparameter
does not depend strongly on those of other hyperparameters. This decoupling occurs because each
hyperparameter represents an underlying physical operation related to coupling strength or entanglement in
a distinct fashion. Consequently, rather than conduct a singleM-dimensional search forM hyperparameters,
we independently conductedM one-dimensional searches in a coordinate-wise optimization. Furthermore,
some of these searches can be simplified or eliminated by physical arguments, as we discuss below. Note that
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although this heuristic argument may be useful, it is not necessary, as it suffices to by any means obtain a set
of hyperparameters that demonstrate substantial improvement over the digital model.

First, we discuss the choice of the evolution time t. For t� 2π/Ω, the quench is so fast that it is close to
the identity and therefore does not produce sufficient entanglement. Indeed, t should be at least on the scale
of∼2π/Ω to generate sufficient entanglement. If t� 2π/Ω, the quench will cause most states (except for
quantum scar states [12, 14]) to thermalize, resulting in a loss of information. Therefore, an optimal t exists
in an intermediate zone. An intuitive choice is t= 2π/Ω itself because the quench passes through exactly one
full Rabi oscillation, a physical timescale. Hence, we adopt this choice of quench timescale in this paper.
Nonetheless, it is reasonable that any time on the scale of 2π/Ω will produce a trainable Ansatz.

Next, we consider the Hamiltonian parameters∆/Ω and Rb/a. While we cannot deduce from physical
arguments the exact optima, we are able to bound the range containing the optima, and then numerically
determine the exact values. A practically realizable regime for∆/Ω is [0,4] [9]. We find similar performance
for any∆/Ω in this region, and we choose∆/Ω= 0.8. Likewise, a reasonable regime for is between 0 and 1:
if Rb ⩽ a, the Rydberg atoms will be interacting so strongly that it will be impractical to transfer atoms
between the hyperfine ground state manifold and Rydberg manifold. Moreover, the strong interactions in the
Rb/a> 1 regime reduce the effective Hilbert space dimension, limiting the space the Ansatz can explore.
Within this choice, however, there is a physically optimal region by the following plausibility argument. As
Rb/a→ 1, the atoms move closer together and, therefore, interact more strongly, which should produce
more entanglement as a resource for learning. However, at the same time, moving atoms closer implies that
the relative effect of positional fluctuations in our noise model becomes more prominent.

To approximately optimize this tradeoff, we estimate the gate fidelity F of the quench e−iHt/h̄ (for one
layer), defined by

F (U) =

ˆ
dŨ

ˆ
dψ 〈ψ |U†Ũ|ψ〉 (7)

where dŨ denotes the measure of the noise model and dψ denotes the Haar measure. The gate fidelity
measures the average robustness of our entangling gate over all states. Our goal is to set Rb/a as close as
possible to 1 while maintaining a high gate fidelity. We expect that the gate fidelity essentially characterizes an
operator’s error robustness under a given error model for quantum learning tasks. This is because F
measures the fidelity between the noisy and noiseless output, averaged over random states and the error
distribution. In a QML training task, as the model iteratively explores the space of operators, we expect the
noisy gate to encounter many typical quantum states. Thus, the gate’s performance based on the average state
determines its typical performance during training.

We numerically estimate the gate fidelity by discretizing the integral over dŨ over 500 samples of the
noise model and show the result in figure 3. The technique is identical for DA and digital models: in each
case we sample a gate from their respective noise model discussed previously and calculate the gate fidelity.
Figure 3(a) demonstrates that the Rb/a→ 1 limit shows a dramatic drop in F , for a fixed n= 8. In particular,
around Rb/a= 0.98, the fidelity is similar to that of a digital layer. The fidelity is close to 1 around
Rb/a= 0.8, but we may expect—and confirm in the next section—that such a Rb/a results in interactions
too weak for optimal machine learning performance without noise. A reasonable trade-off is Rb/a= 0.87,
whose approximate optimality we explore further in the next section. At this tradeoff value, the gate fidelity
of the DA layer is substantially larger than that of the digital layer.

We show in the following section that a larger gate fidelity does indeed give rise to practical performance
improvements. A priori, we may already expect an advantage in the DA fidelity scaling over n as compared to
the digital. In general, the digital gate fidelity drops quickly because we require n− 1 generalized CNOT gates
per layer. Since each gate is subject to an independent source of noise, the total noise should multiply, thus
decreasing the error exponentially as∼0.99n−1. By contrast, the analog gate, being a single global gate with a
single source of error, does not have the same obvious exponential downfall and thus opens up the possibility
of improved error robustness. Indeed, figure 3(b) demonstrates that this advantage exists for a range of
system sizes n. Although we cannot determine the exact scaling of the analog gate from numerical analysis,
we can see that even if it is exponential, it has a noticeably larger base than that of the digital scheme.

Figure 3 also shows the standard deviation over the fidelities of the sampled set. With lower fidelities, the
variance of the output between each instance of noise also increases.

Being representative of a physical operation, each of the hyperparameters discussed above should remain
optimal between various choices of the underlying computational task. We observed this independence
between the two tasks we study in this work.

A final hyperparameter is the number of layers ℓ. However, ℓ lacks a physical interpretation and will
generically be task-dependent. Specifically, ℓ encodes an expressivity-trainability tradeoff. If ℓ is too small,
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Figure 3. (a) Estimated fidelity of the time evolution gate on n= 8 qubits across varying Rb/a. Errors bars denote the standard
deviation across instances of the noisy gates, which increase as the fidelity decreases. Three points of note are Rb/a= 0.80 (cross),
Rb/a= 0.87 (square), and Rb/a= 0.98 (triangle). The fidelity for an 8-qubit digital gate is also shown as the dotted horizontal
line. Notice that the time evolution gate where Rb/a= 0.98 has almost the same fidelity as the digital gate. (b) Estimated gate
fidelity, fixed at Rb/a= 0.87 for digital–analog circuits, compared across system sizes with that of digital circuits.

the model will have an insufficient number of parameters and thus lack the expressivity to perform the
learning task. However, if ℓ is too large, then the number of errors may accumulate and result in an
insufficient amount of signal to train the circuit. A large ℓ also suffers from higher-order effects such as
potential for overfitting and an intractably large parameter dimension. In general, the optimal ℓmay be
found by linear or binary search for a given task. We perform the former in the following section.

Our code used for this work 5 is freely available for usage [64].

3. Results

We explore the effectiveness of Rydberg DA learning with two different problems. In the first, we train a
quantum binary classifier on the MNIST dataset of handwritten digits [51]. In the second problem, we use
techniques of anomaly detection to identify the boundaries of quantum phase diagrams. The input of the
former problem is classical—but encoded into a product state—while the input of the latter problem is the
ground state of a quantum Hamiltonian.

Note that in studying these problems we aim to provide evidence for the generic benefits of DA circuitry
in VQA’s. Hence, we choose the given problems not necessarily for their usefulness in themselves (though
phase learning can be of useful physical interest, which we discuss below), but for their representation of
practical classical and quantum learning problems, respectively. Indeed, the construction of a problem for
which a VQA is indisputably superior to the best classical alternative remains an open problem and is out of
the scope of our present work. We remark that while our work also does not attempt to explicitly mitigate the
barren plateau problem of VQA’s, our loss functions consist only of local observables so that non-barren
plateaus remain a possibility [65].

3.1. Digit classification
The MNIST dataset contains monochromatic images of handwritten single-digit numbers and is widely used
as a machine learning benchmarking dataset. To downsample images of the MNIST dataset into a suitable

5 The numerical simulations we develop in the following section were built on Bloqade.jl and Yao.jl [82, 83] with automatic differ-
entiation techniques that can be replaced experimentally by parameter shift rules [84].
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Figure 4. VQA workflow of the quantum digit classification protocol. Blue boxes are classical; pink boxes are quantum.

Figure 5. Comparison of accuracies over various digital–analog circuit layer depths ℓ and quench times t in the classification of 3
versus 8, fixing Rb/a= 0.87,∆/Ω= 0.8, and n= 8 qubits. (a): noiseless model training accuracy, (b): noiseless testing accuracy,
(c) noisy model testing accuracy.

form for quantum circuitry, we transform the data via principle component analysis (PCA) into a set of 2n
numbers, where n is the number of qubits. Our workflow is outlined in figure 4. The PCA output values are
normalized so that they represent rotation angles, which are then encoded into product states of the form

|ψin〉=
n⊗

j=1

cos

(
θj
2

)
|0〉+ eiφj sin

(
θj
2

)
|1〉. (8)

Note that the principle components are ordered by importance, that is, the variance of the dataset projected
along the principle component’s corresponding eigenvector. We assign the first n components to the θ angles
and the last n to the φ angles. We then train the variational circuit by gradient descent methods on the
measurement output of the first qubit, using a local cross-entropy loss function

L(y,q) =− 1

m

m∑
i=1

yi logq(yi) , (9)

where yi ∈ {0,1} labels the ith digit in the training batch of sizem and q(y) ∈ [0,1] is the probability that the
first qubit in the circuit output is 1, given y as input. To estimate L, we measure the first qubit repeatedly for
each fixed yi, thereby obtaining an empirical estimate of q(yi). To output a classification among the two
possible digits a and b, we say that the circuit classifies the digit as b if q(y)⩾ 0.5 and a otherwise.

We begin by verifying our physical arguments in the previous section about the optimality of the quench
time t. As an illustrative example, consider a classification between 3 and 8, intuitively a particularly difficult
instance because one number is—in writing—approximately contained in the other. Figure 5 depicts the
landscape of classification accuracies over t as well as the layer parameter ℓ, fixing Rb/a and∆/Ω. We
observe that indeed near t= 2π/Ω= 0.25µs, the accuracy is optimal for all ℓ in the absence of noise both on
the training dataset shown in figure 5(a) and the test dataset shown in figure 5(b). This optimality is nearly
preserved up to 1% differences in the accuracy on the test dataset in the presence of noise, as shown in
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Figure 6. Accuracies for every pair of handwritten digits classified in the digital–analog model for various Rb/a and fixed
t= 2π/Ω,∆/Ω= 0.8, and n= 8. (a)–(c) neglect noise, while (d)–(f) introduce the noise model.

figure 5(c). Up to the numbers of layers we considered, increasing ℓ weakly improved accuracies, but at some
point the introduction of additional parameters will serve only to slow training and overfit data rather than
improve performance. The entire region of t= 0.15–0.35µs provides roughly equivalent performance. We
proceed by fixing t= 2π/Ω and ℓ= 12 for DA analysis. This optimality is not unique to 3 and 8; for example,
we show an additional comparison between 1 and 9 in figure 18 in the appendix.

Next, we verify the approximate optimality of Rb/a= 0.87. Figure 6 shows choices of Rb/a in the three
regimes discussed in the previous section, 0.8,0.87, and 0.98, for both noiseless (a–c) and noisy (d–f)
instances. While Rb/a= 0.8 results in little (∼1%) loss of accuracy due to noise, the performance is quite low
even without noise. On the other side of the spectrum, Rb/a= 0.98 fares very well in the absence of noise,
but suffers heavy losses in accuracy when the noise model is introduced. The choice of Rb/a= 0.87 provides
the predicted tradeoff between these effects, with high accuracy that is not lost in the presence of noise. While
not shown here, there is a neighborhood of Rb/a= 0.87 that provides similar accuracies and hence small
deviations around Rb/a= 0.87 produce similar results. The importance of this optimality is, rather, that it
exists in an intermediate area between Rb/a= 0.8 and Rb/a= 0.98, but in general the choice of Rb/a= 0.87
suffices across different problems, such as the phase boundary problem discussed later.

Fixing the physically optimal DA gate hyperparameters now, we proceed to compare the performance of
the DA model to that of the digital model. Figure 7 exhibits the accuracies across every pair of digits under
the digital model, both with and without noise. Noiselessly, we found (see appendix for an example on 1 and
9) that the digital model performs better with increasing depths up to at least ℓ= 20, but does not improve
substantially beyond ℓ= 12. As we show later in figure 8, in the presence of noise, the digital model strictly
performs best at ℓ= 12 due to the noise overpowering the benefit of additional layers beyond 12. We
therefore fix ℓ= 12 for both cases, which place them on equally optimal footing with the DA analysis.
Juxtaposing figures 6(b) and 7(a) demonstrates that the DA and digital-models in their optimal
hyperparameter regimes produce similar accuracies in the absence of noise. However, juxtaposing
figures 6(e) and 7(b) shows that in the presence of noise, the digital model suffers considerably in accuracy,
while the DA model has no significant loss.

This robustness to noise persists across a large range of ℓ. As shown in figure 8, the DA model maintains a
consistent advantage in noise robustness over the digital model for ℓ up to 20. Moreover, the robustness to
noise of the digital model begins to accelerate negatively after ℓ= 12, due to the effect of the noise onΘ(ℓn)
gates overpowering the expressiveness of additional layers. Meanwhile, the DA model improves, albeit
slightly, with increasing ℓ, suggesting that it requires a substantially larger ℓ for noise to overpower learning.
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Figure 7. Accuracies for every pair of handwritten digits classified with the digital model, both (a) without and (b) with noise.
The number of layers ℓ= 12 and qubits n= 8 are fixed for both models.

Figure 8. Comparison of classification accuracy, averaged over all pairs of digits, between Rb/a= 0.87, t= 2π/Ω,∆/Ω= 0.8,
and n= 8 digital–analog (DA) and n= 8 digital models with their respective noise models. Standard deviation, shown in the error
bars, is measured across digit pairs.

This increased depth capability implies that DA models can learn tasks that require more expressivity (i.e.
layers) due to their complex nature, extending the near-term utility of VQA’s.

In summary, with optimal hyperparameters, the DA system demonstrated a substantial improvement in
noise robustness over the digital model. In turn, it allows for improved accuracy in the near term and
potential for learning tasks that require larger numbers of layers. A simple explanation for this improvement
is the gate fidelity itself. Even for n= 8 qubits, the fidelity of a digital layer is∼0.918, while the DA layer has a
fidelity of∼0.971. Importantly, the gate fidelity of the DA layer appears to decrease substantially slower in n
than that of the digital layer. Further, the DA model seems to require fewer layers than digital models to
achieve similar performance, though the difference in this classification problem is not significant enough to
definitively come to such a conclusion.

3.2. Boundaries of quantum phases
We proceed to study a DA learning scheme on quantum data. In this scheme, an unsupervised DA VQA
classifies ground states of a chosen Hamiltonian according to their quantum phases. Quantum phases are of
fundamental importance in many-body quantum systems. They are of particular relevance in Rydberg atom
arrays, in which a plethora of exotic quantum phases have been predicted and discovered [6, 8–10, 66, 67]. To
classify phases, we apply an enhanced and appropriately quantized technique common in classical machine
learning algorithms known as anomaly detection. In the classical machine learning setting, anomaly
detection is commonly used to identify statistical outliers in datasets, with a broad range of applications such
as detecting fraudulent bank activity [68]. Recently, Kottmann et al [69] first considered a quantized version
of anomaly detection for the learning of quantum phases. We consider an analogous version built on a
Rydberg DA VQA.
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Classically, anomaly detection circuits (learning agents) are trained to recognize a specific region of the
data space that we consider to be ‘normal’. This training might be done, for example, by optimizing a neural
network to output 0 on training data sampled from the normal subspace. Effectively, the training serves to
overfit a learning agent to a desired region in space. In the testing phase, the learning agent recognizes
‘anomalous’ data (those outside the normal subspace) by outputting values that are far from zero, thus
performing a classification of normality versus anomaly [70]. If multiple types of anomalies are close in the
appropriate metric on the data space, then an anomaly detector can directly distinguish between the
anomalies by labeling each as a cluster in data space. In this sense, anomaly detection is a clustering
algorithm trained on a single cluster.

Such ideas can be extended to learn quantum information by the following procedure. First, replace the
neural network with a Rydberg DA circuitAn

d. Next, to ensure the circuit outputs zero on training data, we
use the average Rydberg density as the training loss function, given by

L
[
A
({

θij

})]
=

〈0⊗n|A† ({θij

})
P1A

({
θij

})
|0⊗n〉

n

=
1

n

n∑
k=1

||〈1k|ψout〉||2
(10)

where |ψout〉=A({θij})|0⊗n〉 is the circuit output and P1 =
∑n

k=1 |1k〉〈1k| is the total one-qubit projector
onto the Rydberg state. Minimizing equation (10) on the training data ensures that the DA circuit outputs a
number very close to 0 in the normal subspace. Moreover, experimental estimation of the average Rydberg
density can be done in a number of computational basis measurements independent of n, rendering
equation (10) a scalable loss function.

Quantum anomaly detection can be directly extended to quantum phase boundary learning by choosing
one phase arbitrarily as the ‘normal’ phase and letting the rest be anomalies of a different type. Naïvely, one
might expect that each phase would have its own distinct cluster and thus have its own range of circuit
outputs. A subtlety, however, is that the circuit may not be sufficiently expressive to have a different value for
each phase. Nonetheless, it may still take a dramatically different value when crossing the boundary between
two phases. As a result, anomaly detection generically can only hope to learn the boundaries of phases rather
than quantitatively cluster them. In practice, however, one can visually cluster the phases by qualitatively
examining the learned phase diagram.

This picture is still slightly oversimplified because the second-order phase transitions are not perfectly
discontinuous jumps but rather continuous transitions with a large gradient (with respect to the
Hamiltonian parameters) in the corresponding order parameter. This effect serves to smoothen out the
outputs of the DA learning circuit, in particular for finite systems, but does not hinder its efficacy at learning
phases; rather, the gradient landscape itself indicates the location of the boundaries.

The quantum data we associate with each point in phase space is the ground state of a chosen
HamiltonianHlearn(ϕ) (generally not the Rydberg HamiltonianH) with Hamiltonian parameters ϕ. We
demonstrate that it suffices to carve out the entire phase diagram with a single ground state of a chosen
phase. This training dataset size of 1 is particularly appealing for near-term realization because training with
large datasets becomes very resource-intensive especially on noisy devices.

We remark that DA circuitry enables an extended picture of phase clustering—in which the quantum
data and the learning are performed consecutively in one complete DA circuit—by chaining the DA learning
circuit with a step of adiabatic evolution. Adiabatic evolution enables the preparation of approximate ground
states at a given phase starting from a ground state of an easy-to-prepare phase (e.g. |0〉⊗n) by
time-dependent quench dynamics

|g(ϕ)〉= e−
i
h̄

´ 1
0 dsHlearn[s]|0〉⊗n (11)

where s parameterizes a smooth path in phase space—in which every point has a gapped Hamiltonian—such
thatHlearn[s= 0] is the Hamiltonian in the easy-to-prepare phase andHlearn[s= 1] =Hlearn(ϕ). Data
preparation can, therefore, be incorporated into the DA circuit as a preliminary analog step before the first
1-qubit layer in figure 2(a). Note, however, that this analog step is driven according to a HamiltonianHlearn

that is generally different the Rydberg Hamiltonian,H. Adiabatic evolution has been explored extensively not
only in Rydberg systems [10], but also much more generally as a technique for encoding computations into
ground states of local Hamiltonians [71–74]. Adiabatic evolution produces approximate ground states that
lead to a deformed version of the phase diagram that becomes the ground truth for learning [18, 19, 75].
This unified picture of data preparation and learning further demonstrates the utility of the DA paradigm.
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Figure 9. (a): True phase diagram of the 13-qubit Rydberg chain with open boundary conditions, plotted over the phase space of
phase parameters∆/Ω and Rb/a. Three distinct lobes, referred to as the Z2,Z3,Z4 phase regions, are visible. (b): learned phase
diagram of a ℓ= 5 digital–analog circuitAn=13

ℓ=5 . (c): learned phase diagram of a 0-layer circuit (1-qubit gates only). The green
triangles mark the training point in the learning procedure.

Although adiabatic evolution is necessary for experimental ground state preparation, the manner of
ground state preparation is not significant for purposes of algorithm analysis. Consequently, we prepare
learning data directly via exact diagonalization in numerical simulation.

The most obvious learning example would be to setHlearn =H, the Rydberg Hamiltonian itself. We first
map out a phase diagram classically by using the entanglement entropy

S [ρAB] =−Tr [ρA logρA] , (12)

where ρAB is the density matrix of the ground state of the Hamiltonian, partitioned into roughly equal-sized
subsystems, and ρA and ρB are the reduced density matrices. Figure 9(a) displays the phase diagram on a
13-qubit chain, comprised of the well-known 3 lobes of ordered phases separated by high-entanglement
boundaries, surrounded by the disordered phase [76, 77]. Each ordered phase Zn is close in fidelity to the
state |10 · · ·010 · · ·01 · · · 〉 where each string of 0’s is of length n− 1.

We apply the anomaly detection VQA on a DA circuit of depth ℓ= 5, using the same quench
hyperparameters as in the digit classification VQA. Figure 9(b) illustrates the output of the DA learning
circuit trained on a point in the Z2 lobe, demonstrating the learnability of the phase diagram. However, this
Rydberg Hamiltonian, at least for a small system size, is not a good instance upon which we can analyze the
DA VQA because all but the disordered phase are adiabatically connected to their respective
computational-basis product states. Even the disordered phase has a relatively low entanglement entropy,
being adiabatically connected to the |+〉⊗N state. As such, one might expect that no entanglement in the
learning circuit is even necessary to reproduce the phase diagram. This intuition turns out to be correct, as
shown in figure 9(c). Here, a ℓ= 0 circuit which has only a single rotation gate per qubit and no
entanglement, successfully carves out the phase diagram of the Rydberg chain.

Instead, we keep the one-dimensional spin chain structure of the atoms but consider a 2-body XXZ
Hamiltonian with periodic boundary conditions, governed by antiferromagnetic nearest-neighbor (NN) and
next-nearest-neighbor (NNN) interactions [78, 79]

Hlearn = J3
∑
r

(XrXr+1 +YrYr+1)

+α(XrXr+2 +YrYr+2)

+ J6
∑
r

[
ZrZr+1 +α2ZrZr+2

] (13)

where, X,Y,Z are the Pauli matrices, J3 and J6 give the strengths of spin-exchange and Ising interactions for
NN pairs, respectively. The strength parameter α is defined as (d1/d2)3, where d1 is NN distance and d2 is
NNN distance. This Hamiltonian cannot be learned by a non-entangling circuit, as shown in appendix C.4
figure 20.

Analysis of the XXZ Hamiltonian in the ground state has revealed the existence of four distinct phases,
shown in figure 10 [78, 79]. When J3 = 0, the system is strictly classical. In this region, two interactions
compete: the NN Ising interactions, which induce antiferrogmagnetic (zAFM) order in the z-direction, and
the NNN Ising interactions, which induce Quadrupled antiferromagnetic (qzAFM) order. The effect of each
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Figure 10. Order parameters of the ground state for the 8-qubit XXZ Hamiltonian with periodic boundary conditions. (a)OzAFM,
the zAFM order parameter (equation (15)). (b)OqzAFM, the qzAFM order parameter (equation (16)). (c)OxAFM, the xAFM order
parameter (equation (17)), a proxy for the XY-QLRO phase region. (d)OVBS, the VBS order parameter (equation (20)). In each
plot, the dashed lines represent the respective phase boundaries, defined for (a)–(d) respectively by contouring around the largest
18%, 3%, 50%, and 9% values.

interaction is determined by α. The zAFM (figure 10(a)) and qzAFM (figure 10(b)) phases are identified by
the two-point Z correlator Cz(r), defined as

Cz (r) = 〈ψ |Z0Zr|ψ 〉 (14)

where r indexes the qubit, r= 0 represents the chosen ‘central’ site in the chain due to periodic boundary
conditions (here, r= 2), and ψ is the ground state of the Hamiltonian.

The zAFM and qzAFM order parameters are defined from this correlator as

OzAFM =
n∑

r=1

eiπ rCz (r) , (15)

OqzAFM =
n∑

r=1

eiπ r/2Cz (r) , (16)

where n the number of sites in the chain.
For α∼ 0, the zAFM order dominates when J3 < J6, while a symmetric gapless XY phase with

quasi-long-range order (XY-QLRO) prevails when J3 > J6 (figure 10(c)). This quantum, highly entangled
phase does not have a local order parameter, but can be qualitatively inferred by the xAFM order parameter
that decays algebraically in the phase, and is given by

OxAFM =
n∑

r=1

eiπ rCx (r) (17)

where

Cx (r) = 〈ψ |X0Xr|ψ 〉 (18)

is the two-point X correlator.
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Figure 11. Four learned phase diagrams for the 8-qubit XXZ Hamiltonian with parameters α and J3/J6, achieved on a
digital–analog circuitAn=8

ℓ=2 without noise. The green triangles indicate the point of training. The dashed contours outlining each
phase are the same as in figure 10, demonstrating remarkably that the digital–analog circuit reproduces all of the boundaries
specified by the four order parameters at once for each training area.

The final phase region occurs roughly where α≈ 0.7 and J3/J6 →∞. This phase (figure 10(d)) is referred
to as valence bond solid (VBS), which consists of dimerized patterns of spin singlets. The VBS phase is
characterized by the two-point correlator

CVBS (r) = 〈ψ |(σ⃗1 · σ⃗0 − σ⃗0 · σ⃗−1)

× (σ⃗r+1 · σ⃗r − σ⃗r · σ⃗r−1) |ψ 〉
(19)

where σ⃗i = (Xi,Yi,Zi) is the Pauli spin matrix vector. Likewise, the VBS order parameter is defined as

OVBS =
n∑

r=1

eiπ rCVBS (r) . (20)

These order parameters are by symmetry real. In contrast to Rydberg density wave phases, VBS and QLRO
cannot be adiabatically connected to product states and are entangled. The same holds for zAFM and qzAFM
in a perfect system with periodic boundaries. For example, under such conditions the ground state of the
zAFM is a cat state∝ |0101 . . .〉+ |1010 . . .〉.

Figures 11(a)–(d) depicts the output of DA anomaly detection on the 8-qubit XXZ chain, with four
different training points chosen each in one phase region. Although the circuits were simulated noiselessly
here, we observe already two noteworthy results. First, generically to DA learning, the successful demarcation
of phases alone is a nontrivial result, because we used the same physically justified hyperparameters as in the
noiseless digit classification algorithm. This result provides stronger evidence that the quench dynamics
parameters can be optimally chosen without tailoring them to a specific problem, and support the validity of
our physical justifications. It moreover provides an explicit demonstration of the versatility of the analog
layer as a tool for entanglement generation. Second, regardless of which phase acted as the training point,
each learning outcome produced demarcations of the entire phase diagram, which if relying on order
parameters alone would have required examining multiple order parameters simultaneously to deduce. In
this sense, anomaly detection may have additional utility for the study of Hamiltonians whose phases are not
visible by a single global order parameter.
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Figure 12. Comparison of σlearn estimated numerically as a function of ℓ on digital–analogAn=8
ℓ and digitalDn=8

ℓ circuits for the
XXZ Hamiltonian. Each circuit is trained on a zAFM point. Error bars denote 1 standard deviation over randomness in the noise.
The advantage in sharpness is visible for a good hyperparameter Rb/a= 0.87, but does not persist when the choice of
hyperparameter Rb/a= 0.98 is bad.

In the absence of noise, there does not appear to be a substantial advantage in the number of layers ℓ
required for successful learning between DA and digital circuitry. This lack of advantage is not evidence
against a general advantage for DA circuitry, however, because phase boundaries of the XXZ Hamiltonian
simply appear to be learnable with relatively low entanglement in the circuit (see figure 21 in appendix C.4).
Ground states of local one-dimensional Hamiltonians generally have either constant entanglement entropy
for gapped phases or logN for gapless phases, which limits the number of layers needed to distinguish phases.
It is likely that with even more complex Hamiltonians, higher dimensions, or dynamical phase diagrams with
non-area law states, a layer advantage may emerge.

We next apply the noise models discussed in section 2 for purposes of a DA and digital circuit
comparison. To obtain a quantitative metric of performance akin to accuracy in the digit classification
problem, we define the sharpness of a learned phase diagram as

σlearn
({

θij

})
= SDϕ

(
||∇ϕL

[
An

ℓ

({
θij

})]
||2
)

(21)

where SDϕ is the standard deviation over the uniform distribution of the two-dimensional parameter space
(J3/J6,α). Intuitively, the sharpness of a learned phase diagram measures how distinctly the boundaries can
be identified. A well-trained circuit that outputs nearly gradient-free interiors and rapid-transitioning
boundaries produces very large σlearn. By contrast, a poorly trained circuit with less distinct, smoother
transitions results in lower sharpness and less informative learning results. In practice, σlearn is estimated by
calculating numerical gradients and sample standard deviations over a discretized uniform mesh grid of the
parameter space. We note that circuit noise impacts sharpness both by reducing the ability of the circuit to
distinguish phases, thereby decreasing σlearn, and introducing small local fluctuations that increase σlearn.
However, the latter effect is by definition substantially smaller than the first and can be thought of as
negligible, so that σlearn remains a well-defined measure of noise robustness in phase boundary learning.
Moreover, noise-based effects on σlearn are mitigated by averaging over multiple trials and, therefore,
primarily affect the variance of σlearn.

In figure 12, we calculate σlearn numerically on learned phased diagrams averaged over 20 independently
trained learning circuits, again with n= 8 but with the training point fixed in the zAFM phase for consistency.
We repeat this procedure five times to provide a simple error bound, shown in the error bars. We observe
that when the hyperparameter choice is good (Rb/a= 0.87)—in terms of the analysis in section 2.2—the
sharpness improves at larger depths for DA circuits, whereas the noise quickly reduces the sharpness of the
digital circuits. We are primarily interested in the large-ℓ behavior as it indicates the noise robustness for
learning problems that require greater circuit depths, e.g. 2D ground states or dynamical phases (see next
section). Consequently, DA circuits appear also to be more robust than digital circuits in learning phase
boundaries, in agreement with findings from digit classification. We observe, however, that this advantage is
lost if the choice of hyperparameter with respect to noise is poor, as shown by the grey line (Rb/a= 0.98).
Hence, we can also explicitly see in phase boundary learning that the choice of hyperparameter makes a
substantial impact on the learning advantage of DA circuits. We observe visual differences in sharpness at
ℓ= 14 between DA and digital circuitry in figure 13, namely blurrier phase boundaries and more artifacts in
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Figure 13. Learned phase diagrams of the XXZ Hamiltonian with respect to parameters α and J3/J6 for (a) digital–analog and (b)
digital circuits with n= 8, ℓ= 14 in the presence of their respective noise models. Dotted contours overlay the true phase
boundaries.

the digital case. Notably, the performance of the digital circuit with ϕ = π/4 is qualitatively worse. In
figure 17 of appendix B, we show that a digital ϕ = π/4 circuit is unable to identify the VBS phase at all.

4. Conclusion & outlook

We have observed numerically that both in digit classification and phase boundary learning, DA circuits
achieve substantial practical advantages over their digital counterparts as the quantum agents in the VQA. In
both cases, the DA circuit demonstrated a substantially greater robustness to noise. The comparatively larger
gate fidelity of the DA entangling layer provided a simple explanation of this improvement. A subtlety of the
error advantage was that it depended on the choice of Rb/a, based on the physical tradeoff of large
separations (Rb/a� 1) leading to relatively smaller position noise effects and small separations (Rb/a∼ 1)
leading to greater interaction strength. Properly trading off these effects by choice of Rb/a= 0.87 enabled the
noise advantage. Similarly, choices of t= 2π/Ω led to optimal performance of the DA circuits. While
seemingly complicated, the hyperparameter choices have physical justifications which allow them to be more
easily understood, providing an advantage over digital gates which do not have any such parameters that can
be tuned to physical optimality. Moreover, our work provides evidence that these choices are indeed roughly
independent of the learning problem, since the same choices led to comparatively advantageous performance
of DA circuits in both problems we investigated. This universality is expected, since the parameters are
inherently related to the physics of the circuit and not the problem it learns. Consequently, no re-derivation
of these hyperparameters is necessary from one learning problem to the next.

We showed also that for a problem in which circuits of a few layers ℓ do not perform well on, DA circuitry
enables learning to comparable accuracies in substantially smaller ℓ. We reiterate that the fact that DA
circuits can learn at all is itself notable. Practically, even without the DA advantages we have shown, it is
much easier to realize analog learning because it requires much fewer local control on qubits and acts as one
global operation rather thanΘ(n) local, non-commuting operations. Theoretically, our results suggest that
certain quench times and Hamiltonian parameters are admissible to learning while the rest are not, raising
questions that we discuss further below about the ranges of good hyperparameters.

A useful future direction would involve putting the physical justifications in this work on more rigorous
theoretical grounds. Specifically, it is an interesting question as to the general robustness of the optimal
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evolution time t= 2π/Ω. We justified this choice by arguing that (a) sufficiently small times would not offer
enough entanglement, (b) sufficiently large times are known to generically lead to thermalization, and (c)
2π/Ω is the natural time scale of the system. Yet this justification accounts only for the small- and large-time
limits, and does not enable us to understand what range of intermediate times are generally useful. A similar
optimality question concerns an analytical solution and more rigorous physical understanding of the
tradeoff effect between interaction strength and gate fidelity when tuning Rb/a. Similarly, with either greater
computational resources or more efficient noise simulation algorithms, a related direction of extension
consists of expanding the noise model to include incoherent sources.

Another potential direction involves deforming part of the phase boundary learning problem to examine
its versatility. One possibility is to study adiabatically prepared states for their own utility. While we discussed
the use of adiabatic evolution to generate approximate ground states that reproduce our phase diagrams, it is
in general infeasible to do so in polynomial time because the preparation of ground states is computationally
hard. A classic result in quantum complexity, for example, states that even determining whether the ground
state energy of a local Hamiltonian is below a certain threshold is QMA-hard [80], where QMA is a quantum
analog of the classical complexity class NP. Any adiabatically prepared ensemble of states produces quantum
state classification task which we can learn, though it may not correspond to a phase diagram. It is an
interesting question as to what physics we may learn from this class of quantum classification problems.

Another option for learning the ground-state phase diagram in particularly hard instances of the
Hamiltonian may be to turn to quench dynamics themselves. Consider |0〉 quenched for some intermediate
time long enough to leave a ‘signature’ of the phase behind but not long enough for thermalization and
quantum chaos to ensue. Whether or not such intermediate-time signatures even always exist is an open
question, but recent studies on spin chains have demonstrated promising results [81]. Assuming the presence
of intermediate-time quench phase signatures, an intriguing extension of quantum phase learning would be
whether and how anomaly detectors could learn the signatures without supervision. Even without
signatures, the use of intermediate-time quenched states may be useful for QML predictions of dynamical
phase transitions, although this may require input from states quenched with many different quench times.
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Appendix A. Experimental considerations

In this appendix, we briefly discuss an experimental technique for the implementation of a DA system on
Rydberg atom arrays. One such realization relies on two-photon coupling processes. A complete discussion
of these experimental considerations can be found in Bluvstein et al [63].

Figures 14 and 15 highlight the key levels in the atomic structure in 87Rb. In the analog-only
configuration, atoms are prepared in a specific ground state of the 5S1/2 manifold defined by the hyperfine
state and magnetic sublevel |g〉= |F= 2,mF = 2〉. Atoms interact by coupling them to the 70S1/2 Rydberg
state of the magnetic sublevel |r〉= |mJ = 1/2〉 via a two-photon scheme with 420 nm σ+-polarized light and
1013 nm σ−-polarized light. These states are chosen to maximize Rabi frequency at fixed laser power. In the
digital implementation, qubit states are defined by the clock states in the ground state manifold
|0〉= |F= 1,mF = 0〉 and |1〉= |F= 2,mF = 0〉 to minimize magnetic field sensitivity. Qubit rotations are
performed by a two-photon Raman process using 795 nm σ+ light that couples |0〉 and |1〉. Interactions
between qubits are enabled by a two-photon transition that couples state |1〉 to the Rydberg state |r〉.
Therefore, it is possible to program a series of pulses to enable DA control over the qubits.
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Figure 14. Experimental implementation protocol of the analog two-level system. (a) Two-photon process couples the ground
state of 87Rb atoms prepared in the hyperfine and magnetic sublevel |g⟩= |5S1/2,F= 2,mF = 2⟩ to a Rydberg state
|r⟩= |70S1/2,mJ = 1/2⟩ via an intermediate state |e⟩= |6P3/2,F= 3,mF = 3⟩ with detuning∆e with single-photon Rabi
frequenciesΩ420 andΩ1013 respectively. States are chosen to maximize Rabi frequency. (b) Effective two-level system (|g⟩ ↔ |r⟩),
with Rabi frequency Ω̃R =Ω420Ω1013/2∆e and detuning∆j.

Figure 15. Implementation protocol for a hybrid digital–analog Rydberg system. (a) Besides the Rydberg two-photon process in
the analog Hamiltonian simulator, a secondary two-photon process couples the two ground state manifolds of 87Rb namely
|0⟩= |5S1/2,F= 2,mF = 0⟩ to |1⟩= |5S1/2,F= 1,mF = 0⟩ via an intermediate state |f⟩= |5P1/2,F= 2,mF =−1⟩ with a far
off resonance detuning∆f using circularly polarized 795 nm lasers with single-photon Rabi frequenciesΩ795. (b) Effective

three-level ladder system coupling |0⟩ ↔ |1⟩ and |1⟩ ↔ |r⟩, with Rabi frequencies Ω̃c =Ω2
795/2∆f and Ω̃R =Ω420Ω1013/2∆e and

detuning∆j respectively.

Appendix B. The generalized CNOT gate

In the main text, we described a controlled-NOT gate by a π/4-time evolution under a two-qubit
Hamiltonian e−i π

4 (I1−Z1)(I2−X2). We here derive this expression. (I1 −Z1)(I2 −X2) = I−Z1 −X2 +Z1X2.
Since all these terms commute, we may factor the exponential as

e−i π
4 (I1−Z1)(I2−X2) = e−i π

4 ei
π
4 Z1ei

π
4 X2e−i π

4 Z1X2 . (B1)

Note that if A2 = I, then eiθA = cos(θ)A+ i sin(θ)A, and thus the above resolves to

e−i π
4

1√
2
(I+ iZ1)

1√
2
(I+ iX2)

1√
2
(I+ iZ1X2) . (B2)

We can readily check that the above matrix is the CNOT gate

CX1→2 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (B3)

The generalized CNOT gate is given by CX1→2(ϕ) = e−iϕ(I1−Z1)(I2−X2). Using the methods in the main text
of our paper, we vary ϕ ∈ [0,π/4] and compute the accuracy in classifying digits. Figure 16 demonstrates
that the optimal performance occurs approximately halfway in the range, giving an optimal choice of
ϕ = π/8. We observe that the performance difference relative to the simple choice of π/4 is substantial, with
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Figure 16. Average accuracies over digit comparisons of the parameterized digital circuits on the MNIST dataset with varying the
parameter θ, while keeping the number of layers constant at ℓ= 16. The vertical dashed line denotes the optimal point for the
noisy circuit at θ = π/8.

Figure 17. Learned phase diagram of the XXZ Hamiltonian with respect to parameters α and J3/J6 for a digital (ϕ = π/4) circuit
with n= 8, ℓ= 14 in the presence of noise. Dotted contours overlay the true phase boundaries. Notably, the VBS phase (red
contour) is not learned at all.

an accuracy gap of 8.5%. This gap holds true even more significantly for phase boundary learning. Figure 17
demonstrates as an example, a stark difference in the learned phase diagrams of the XXZ Hamiltonian
between π/4 and π/8 (shown in figure 13 of the main text). In the π/4 case, the VBS phase is not identified
at all. These differences highlight that a choice of π/4 over π/8 causes significant, even qualitative, losses in
QML performance. This gap strengthens the separation between digital and DA schemes, as in some devices
the choice of π/8 might need to be built out of more native gates, which could amplify noise and worsen
performance. Yet if π/4 is chosen, the performance will worsen anyway. By contrast, the DA scheme avoids
these implementation subtleties due to its native implementation on neutral atom devices.

Appendix C. Further discussion

C.1. Binary classification
C.1.1. Additional hyperparameter search
The choice for the time evolution constant may seem suboptimal when looking solely at the 3 versus 8 digit
comparison, but bringing our attention to the 1 versus 9 digit comparison, we can see that the optimal region
is much more constrained.

In figure 18, we see that the accuracy drops after 0.3 for the time evolution constant. This indicates we
should pick our time evolution parameter to be more deeply in the optimal region, especially for robustness
to noise.

Additionally, we see in figure 19 that in the noiseless 1 versus 9 comparison case, we do not see much
improvement in the test accuracy after 16 layers, and coincidentally see that this is also optimal for the noisy
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Figure 18. Hyperparameter grid search of the time evolution constant and the number of layers in the circuit on the comparison
between 1 versus 9 for (a) the noiseless model and (b) the noisy model. All models are using Rb/a= 0.87 and n= 8.

Figure 19. Comparison of the average test accuracy when using a digital circuit for the digit comparison of 1 versus 9.

model. To note the general case across digit comparisons, in figure 8, we see accuracy plateauing around
ℓ= 16 as well. However, ℓ= 16 does not seem to be optimal for the noisy case in general as seen in figure 8.

C.2. Computational details
All instances of learning used the AdaGrad optimizer from Flux with a learning rate of 0.1 for the classical
optimzation. During each training epoch, a randomized batch was used for training and to calculate the
gradient. There are 70 total training epochs where one randomized sample was taken each time. Then for
average accuracies taken in figure 5, 50 trials were taken over random starting parameters.

Also, when making any measurements during the training or test phase, a new noisy circuit is generated
such that the noise is independent for any measurements. No data from the test set is used to inform the
training process during gradient descent.

The details of numerical convergence in training are deferred to figure 22(a) the final section of the
appendix.

C.3. Phase detection
C.3.1. Phase diagram discussion
Two supplementary plots offer additional context for the phase learning previously described. First, the
phase diagram of the XXZ Hamiltonian cannot be learned using a circuit with no entangling resource.
Figure 20 depicts the result when such learning is attempted: uniform loss of 1/2 throughout the entire phase
diagram. This is in contrast to the Rydberg phase diagram, which could be learned using such a circuit, as
seen in figure 9(c).

In addition, in the noiseless scheme we have asserted that learnability is not an interesting problem for
comparison of digital versus DA circuitry. This is because even at low depths, both circuits are able to carve
out all four phases of the XXZ Hamiltonian: figure 21(a) demonstrates the DA-learned phase diagram with
circuit depth 2, while figure 21(b) shows the digitally-learned diagram at the same depth.
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Figure 20. ‘Learned’ phase diagram of the XXZ Hamiltonian using a ℓ= 0 circuit (1-qubit gates only). The green triangle marks
the training point.

Figure 21. Learned phase diagrams for (a) digital–analog and (b) digital (with ϕ = π/4) circuits, with n= 8, ℓ= 2 in the absence
of noise. Dotted contours overlay the true phase boundaries.

C.4. Computational details
Training was performed using a looped gradient descent technique, which at each step calculated the
gradient of the loss function with respect to the circuit parameters. This was inputted into Julia’s Flux
Optimizer [85, 86], which updated the circuit parameters at the end of each iteration. Training in the
Rydberg phases used 50 training iterations, whereas training in the XXZ Hamiltonian phases used 70
iterations for both noisy digital and noisy DA circuits, and 50 iterations for noiseless digital and DA circuits.
For the Rydberg Hamiltonian, figure 9(b) was trained at the Z2 phase point (2.5, 1.3538) and figure 9(c) was
trained at the disordered phase point (0.6, 1.3). For the XXZ Hamiltonian, figure 11(a) was trained on the
zAFM phase point (0.01, 0.2184), figure 11(b) on the qzAFM phase point 0.01, 0.9479), figure 11(c) the
XY-QLRO phase point (1.8447, 0.1663), and figure 11(d) the VBS phase point (1.5826, 0.6353). The details
of numerical convergence are shown in figure 22(b) in the next section.

Testing was performed using an nx × ny discretized parameter mesh, where nx = ny = 45 for the Rydberg
testing, and nx = ny = 20 for the XXZ Hamiltonian testing. Training points were chosen directly from these
meshes. The phase diagrams presented in this work represent an average of the losses achieved over 20
separate training and testing runs.
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Figure 22. (a) 3 versus 8 digit classification training convergence for digital–analog (blue) versus digital (red) circuits in the
noiseless (solid line) and noisy (dashed line) regimes. The number of qubits is n= 9, the number of layers is ℓ= 12 and
Rb/a= 0.87. (b) XXZ Hamiltonian training convergence in the zAFM phase for digital–analog (blue) and digital (red) circuits
with n= 8, ℓ= 2 in the noiseless (solid line) and noisy (dashed line) regimes. Each step represents the average loss over 20 runs.

One loss evaluation was performed in each iteration of the training loop (for DA, this was 70 iterations×
1 loss evaluation= 70 loss evaluations) and once per testing iteration (20× 20= 400 additional loss
evaluations) for a total of 470 loss evaluations per run. To achieve 1% accuracy in the loss function that
appears to be sufficient for reaching the performance here reported, a total of 10 000× 470∼ 5× 106

samples were necessary.

Appendix D. Numerical convergence

Figure 22 compares the training loss function at each iteration between digital (with ϕ = π/4) and DA
(red/blue), noiseless and noisy (dashed/solid), and on digit classification and phase learning (a/b). We
obtained each curve by averaging over 20 random runs. In addition to the other potential improvements DA
learning has shown in the main text, figure 22 also demonstrates that DA circuits may plausibly require fewer
iterations to reach a desired threshold, though a more in-depth analysis would be necessary to more
thoroughly investigate this possibility.
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