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Quantum generative models hold the promise of accelerating or improving machine learning tasks by
leveraging the probabilistic nature of quantum states, but the successful optimization of these models remains
a difficult challenge. To tackle this challenge, we present a new architecture for quantum generative modeling
that combines insights from classical machine learning and quantum phases of matter. In particular, our model
utilizes both many-body localized (MBL) dynamics and hidden units to improve the optimization of the model.
We demonstrate the applicability of our model on a diverse set of classical and quantum tasks, including a toy
version of MNIST handwritten digits, quantum data obtained from quantum many-body states, and nonlocal
parity data. Our architecture and algorithm provide novel strategies of utilizing quantum many-body systems
as learning resources and reveal a powerful connection between disorder, interaction, and learning in quantum

many-body systems.
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I. INTRODUCTION

The computational power of quantum processors is the
subject of considerable amount of recent research, in partic-
ular with regard to scaling and a potential quantum advantage
[1-7]. While the advent of a fully error corrected quantum
computer requires yet another milestone, the immediate ap-
plication of noisy quantum hardware with a clear advantage
over classical computation becomes even more crucial. In
this regard, the interface of quantum computing and ma-
chine learning has been increasingly brought into focus. For
example, the rise of hybrid variational algorithms, such as
variational quantum eigensolvers (VQE) [8] and the quan-
tum approximate optimization algorithm (QAOA) [9], which
use a parametrized quantum circuit as variational ans” atze
and optimize the parameters classically, has been considered
particularly promising as they aim to obtain heuristic and
approximate solutions.

However, the exponential dimension of the Hilbert space
and the random characteristics of parametrized quantum
circuits makes their training very challenging due to the ex-
istence of barren plateaus [10]. More recently, yet another
approach to quantum machine learning has emerged, which
is known as brain-inspired [11-15]. One interesting category
consists of quantum reservoir computing (QRC) where a fixed
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reservoir geometry scrutinizing the unitary dynamics of an
interacting quantum system allows versatile machine learning
tasks [16—-19]. While QRCs have shown many advantages,
they are mainly appropriate for discriminative tasks such as
classification or regression.

The goal of generative models, however, is to learn an
unknown data probability distribution pgn, in order to sub-
sequently sample from pgy, and thus generate new and
previously unseen data. Such tasks can, for example, be
performed by the recently introduced quantum generative
models known as Born machines [20,21]. Born machines for
many-body problems have early on shown to be successful in
conjunction with tensor network state ansétze. The elements
of these matrix product states or tree tensor networks and
their bond dimensions can be optimized during training to
effectively approximate pgn, [20-22]. While Born machines
have also been tested with parameterized quantum circuits
[23], we address here the question of whether there are other
quantum many-body states that can be used as anasatz for
Born machine to any advantage.

Quantum many-body systems display many phases in the
presence of disorder, in particular, the break-down of ther-
malization and thus localization of the wave function in the
so-called many-body localized (MBL) phase. Here, emergent
integrals of motion can be utilized as quantum memories [24].
The failure of such systems to anneal [25] has inspired their
use in QRC [19] for learning tasks, with particular enhance-
ment close to the phase transition [26].

Here, we extend quantum-inspired generative models into
the MBL phase, and introduce a hidden architecture to in-
crease the representation power of our generative model.
While many recent work has also quantum generative models
in the MBL phase [27], using a similar quenched approach,
our work differs in the hidden architecture and the characteri-
zation of learnability and expressibility.
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FIG. 1. Illustration of the MBL hidden Born machine. (a) XXZ spin chain in 1D with periodic boundary condition. The faded color spins
are the hidden units 4;, and the solid color spins are the visible units v;. (b) The probability distribution of finding individual states in the z-basis
represents the model distribution for the generative model, which is coded as normalized pixel values of an image. (c) An illustration of the
loss landscape defined by our hidden MBL generative model. The training is done by optimizing disorder configurations in the Hamiltonian
during each quantum quench, which is then used to evolve the initial state |[1/) over successive layers of quenches toward a final state |/ )

which gives rise to the desired model distribution.

In this paper, we introduce the new quantum generative
model, the hidden Born machine in Sec. II and describe our
training algorithm in Sec. IV. To illustrate the effect of hid-
den units, we introduce the randomly driven Born machine
in Sec. IVB and compare its performance with the hidden
Born machine by learning patterns of MNIST hand written
digits. Next, in Sec. V, we investigate the learning power of
the hidden Born machine both in the thermal phase and the
MBL phase, and numerically show that the thermal phase fails
to learn data obtained from quantum systems either in MBL
or in thermal phase. Tracking von Neumann entanglement
entropy and Hamming distance during training suggests that
localization is crucial to learning. In Sec. V C we further show
that while the hidden Born machine trained in the MBL phase
is able to capture the underlying structure of the parity data, a
hidden Born machine trained in the Anderson localized phase
fails to do so, shedding light on the fact that the interplay
between interaction and disorder plays an important role in
learning. Finally, we conclude and discuss possible direction
for future works.

II. HIDDEN BORN MACHINES

Born machine [28-32] is a generative model that pa-
rameterized the probability distribution of observing a given
configuration z of the system according to the probabilistic
interpretation of its associated quantum wave function ¥ (z),

2
pBorn(z) = |w'/(\zf)| s (1)

where N =", | (z)|? is the overall normalization of the
wave function. Note that A" is only required in tensor network

ansitze but not in physical systems. Training of the Born
machine is done by minimizing the discrepancy between the
model distribution pgo,(z) and the data distribution gga, (2).

In the language of Boltzmann machine [33-35], the units
that are used for generating configurations are called “visible.”
Meanwhile, adding “hidden” units prove to be a powerful
architecture for the Boltzmann machine as it provides a way
to decouple the complex interaction among the visible units
at the expense of introducing interaction between the hidden
and the visible units [36,37]. In Eq. (1), all units of the system
are used to generate configurations that are compared against
data and therefore all units are visible. In a similar spirit,
we introduce hidden units to the Born machine by defining
the probability distribution of observing a given visible spin
configuration z to be its expectation value in z basis after
tracing out the hidden units,

Dhidden(Z) = Trpy; Iz, 2

where

pvis = Trp|[¥) (], 3

is the reduced density matrix for the visible units, and I1; =
|z)(z| is the projection operator onto the z basis of the visible
part of the system [see Fig. 1(a) for an illustration of our
model]. Note that normalization is implicit in Eq. (3) for py;s
to be a density matrix.

The hidden units offer two main advantages:

(1) when traced out, the hidden units provide an optimiza-
tion advantage by acting as an effective heat bath for the
visible units, in such a way that the systems are less prone
to get trapped in local minima;
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(2) the hidden Born machine in Eq. (2) offers expressive
power advantage over the basic Born machine in Eq. (1).

We numerically confirm the mechanism in (1) by compar-
ing the performance between the hidden Born machine and
a regular Born machine with an artificially introduced heat
bath in Sec. IV B. For (2), the hidden units provide additional
degrees of freedom to parametrize generic probability distri-
butions in an efficient way (see more in Appendix A).

III. MANY-BODY LOCALIZATION PHASE

Previously, different ansétze for i) has been introduced
for the Born machine, notably tensor networks states and
states prepared by both digital quantum circuits and analog
quantum many-body systems [20,21,23,27]. In this paper, we
will be adopting the latter approach, and focus on a specific
type of quantum many-body systems that admits a many-body
localization (MBL) phase. In the following, we show that
the MBL phase has two prominent effects on the training
dynamics.

(1) Stabilizing training trajectories. On one hand, the ef-
fective heat bath from the hidden units assists the system in
escaping local minima. On the other hand, this noise might
cause the wave function to wander wildly around the Hilbert
space, making it difficult for the system to find optimal
solutions. Localization prevents such chaotic behavior and
enhances the trainability of the model, as illustrated in Fig. 5.

(2) Resemblance to associative memory. Our quantum
generative model exhibits memory characteristics such as
pattern recognition ability, similar to those observed in as-
sociative memory architectures inspired by physical systems
[38—41]. We illustrate this in Fig. 6.

Many-body localized ansiitze

It is generally believed that, thermalization in quantum
system wipes out the microscopic information associated with
the initial state. Even in the case of closed quantum system,
the information of initial state quickly spreads throughout
the entire system, implying that no local measurements can
retrieve those information [42,43]. However, it is known that
strong disorder leads to localization, preventing the system
to thermalize. Furthermore, the localization manifests itself
in the form of memory associated with the lack of transport.
While the localization in the presence of strong disorder was
first introduced in noninteracting systems by Anderson [44],
more recently, it was shown that the localization and break
down of thermalization can also happen in strongly interacting
systems, leading to new dynamical of phase of matter known
as many-body localization (MBL) [45,46].

In the MBL phase, eigenstates of the system do not sat-
isfy eigenstate thermalization hypothesis (ETH) and the wave
functions become localized in the Hilbert space. Such ergod-
icity breaking renders the system to retain memory of its
initial state, and offers advantage in controlling and preparing
desired quantum many-body states and has been also realized
experimentally [47]. The XXZ model of quantum spin chain
is well-known to develop a MBL phase when the disorder
strength exceeds the MBL mobility edge [48].

We perform numerical simulation with the XXZ-
Hamiltonian Hxxz defined as

L-1

L—1
r’qXXZ = ZJXy (S‘fﬁfﬂ + SZSH) + Z‘IZZSL‘ZSinrl’ “

where $%(a € {x,y, z}) are Pauli spin 1/2 operators acting
onspinsi€l,...,L,and L =L, + L, consists of L, visible
units and L, hidden units. J;, and J.; are couplings in the xy
plane and z direction, respectively. Then, we consider a series
of M quenches ﬁquench((*)m) in the z direction:

7:Ztotal = ,}:ZXXZ + 7:zquench((am)s (5)

where ﬁquench(ﬁ)m) =) hf”S‘; and we have denoted the tun-
able parameters in the system collectively as ©,, = {h/"}.
During each quench m, h]" are drawn i.i.d. from the uniform
distribution over the interval [—hy4, hy], where h; is the dis-
order strength. Notice that when J,; = 0, the model reduces
to noninteracting XY model with random transverse field
exhibiting single particle localization. Once we turn on the
J,; interaction, the spins couple via Heisenberg interaction
and MBL phase emerges when h, ~ 3.5 (for J; =J,, = 1)
[48-50]. See more details in Appendix B.

In Sec. IV, we will explain the training algorithm under
the time evolution implied by series of quenches in Hiota, and
learning through optimizing the values of disordered field A"
at each site.

IV. TRAINING OF HIDDEN MBL BORN MACHINE

A. Learning algorithm

The basic idea behind the training of Hidden Born ma-
chine is the following: given target distribution gy, and a
loss function L£(pmodel> Gdata) that measures the discrepancy
between model distribution and data distribution, training of
the MBL Born machine is achieved through time-evolving
the system with the Hamiltonian in Eq. (4), then optimizing
®,, over N different disorder realizations for each quench m.
After obtaining the final state at the Mth quench, we evaluate
the model distribution of the MBL hidden Born machine from
Eq. (2) and use it as our generative model [see Fig. 1(c) for an
illustration of the learning process]. We use maximum mean
discrepancy (MMD) loss as our loss function:

2

Lavp = ‘ D p@d(x) = Y qx)p(x) 6)
where x is samples for estimating the MMD loss, and ¢(x)
are kernel functions that one can choose (see more details in
Appendix C).

The learning algorithm is summarized by the pseudocode
in algorithm1 and illustrated in Fig. 2.

Given the reduced density matrix p,; of the L, visible spins
at the final layer of the quench m = M, we compute the model
distribution from Eq. (2), which gives the probability pmogel ()
of finding each of the 2% basis states z in the visible part
of the system. For learning image data, we then interpret the
probabilities as pixel values (normalized to be within 0 and
1), and reshape it into an image of size 25/ x 2+/2 [see
Fig. 1(b)]. For quantum data, we interpret these probabilities
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ALGORITHM 1. Training of MBL hidden Born machine.

Initialize the system in some initial state |/ (©,,—0)) = |¥o)
and choose @y = 0;
while m < Mdo
while n < Ndo
Sample © uniformly from the interval [—hy, h4];
Time-evolve the state [ ) = U(O)|,,) with
U= Texp(—ifor dtHow);
Trace out the hidden units
pr(:J)rl = Trhll//r(nnil><1//r(nnil l;
Compute £(O) from
pflrilc)lden (Z) = Trpr(:J)rl Hz;
n<n+1
end while
0, = argmaxewﬁ(@f,’:));
[Wnst) = U©,) |
m<«—m+1
end while
Denote the training outcome as ppoge1(2) = Trop I17.

as measurement outcomes obtained from the quantum state.
For more details, see Appendix D.

B. Randomly driven MBL Born machine

In classical machine learning, stochasticity is found to
have the effect of smoothing out loss landscape and helps to
avoid local minima [36,51,52]. When introducing the hidden
Born machine in Eq. (2), the hidden units are traced out
and effectively act as a heat bath for the remaining visible
units and provide a source for stochasticity. To understand
the source of the learnability advantage provided by the hid-
den units, we construct a Born machine with an artificially
introduced heat bath in this section. We then compare its
performance with that of the hidden Born machine, which
operates within an effective heat bath induced by the hidden

units.
ﬂl ) W) -
oy N7

e ) ) -

ey N7
9

FIG. 2. Schematics of the learning algorithm as in algorithm 1.
At the mth quench, we independently evolve N copies of the state
|¥,,) with different time-evolution operators ® sampled from the
same distribution. At the (m + 1)th quench, we pick the |¥") with
the lowest loss value [based on the loss function Eq. (6)] from the
previous quench as our new starting point and evolve again. As we
repeat this process, the learning resembles a directed random walk in

the Hilbert space.

Target
patterns

Learned
patterns

FIG. 3. Learning toy MNIST digit patterns. The top two rows
are different data instances gqu, in our toy MNIST digit patterns
dataset. The bottom two rows are the corresponding learning out-
COMe Pyogel from our MBL hidden Born machine (each digit trained
separately).

Let’s consider the Hamiltonian Eq. (4) with applied exter-
nal random drives Hgp in the x direction (we can also apply
random drives in the xy plane and the result will be similar),

Flro(t) = ) d" (D)5} (7)

To model the heat bath, we would like {d]"(z)} to be like a
white noise,

(d"(H)d!"(0)) = 2Ds (1), 8)

where D is the amplitude of the white noise and is proportional
to the temperature of the bath. In the simulation, we split the
driven interval T into intervals of auto-correlation time t, and
require that Eq. (8) holds for # > 7. Outside of this correlation
time, d}"(t) is drawn i.i.d. from N0, «/ﬁ). We refer to this
model as randomly driven Born machine (RDBM).

To illuminate on the learning power of the hidden Born
machine, here, we compare the three models: the basic Born
machine (BM), the RDBM, and the hidden Born machine
(hBM). We task all three models with a toy dataset constructed
from the images of MNIST dataset [53] (downsampled to
2L pixels). Our toy dataset consists of mean pixel values
across all different styles within a single type of MNIST digit,
see ‘target patterns’ in Fig. 3 (also see Appendix D).

We perform the training of the hidden Born machine using
the algorithm described in algorithm 1, and show the corre-
sponding learning outcomes in Fig. 3. Our results indicate our
hidden model can learn different patterns of MNIST digits
accurately (the results of basic BM and RDBM are omitted).
In Fig. 4, we compare the performance of three models by
plotting the MMD loss on the toy MNIST dataset as a func-
tion of the number of quenches, m. We find that both the
RDBM and hBM outperform the BM, with the RDBM and
hBM converging to a similar terminal loss value (although the
RDBM slightly underperforms the hBM). This observation
suggests that the stochasticity introduced by the heat bath
indeed improves learning, and the learnability advantage of
hidden units is of a thermal nature. However, the RDBM is
more computationally intensive. Modeling the white noise as
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FIG. 4. Model comparisons. (a) Basic Born machine (BM), ran-
domly driven Born machine (RDBM), and hidden Born machine
(hBM). Log-MMD loss as a function of quench layer number m.
The solid curves are averaged over 100 different realizations, with
one standard deviation included as the shades. The hidden Born
machine achieves the lowest MMD loss throughout and at the end
of the training.

expressed in Eq. (8) requires discretizing the quench time
T into small intervals of t, which generally increases the
total runtime by a factor of T/z. Therefore the hBM is more
efficient than the RDBM while being more trainable than the
basic BM.

V. LEARNABILITY IN DIFFERENT PHASES

We have already seen that the hidden Born machine in
the MBL phase can properly learn the toy MNIST dataset
(Fig. 3). An important question arises as to whether learn-
ing can happen in the thermal phase. In the thermal phase,
information spreads throughout the system, which makes it
difficult to extract. In the quenched approach as in Eq. (5),
the state of the system in the thermal phase changes wildly
between successive quenches and effectively only parameters
in the last layer of the quench would be trained. In contrast,
as the system becomes more disordered and enters the MBL
phase, the breakdown of thermalization and emergence of lo-

cal integrals of motion leads to local memory, which is useful
for directing the state toward a target corner of the Hilbert
space [Fig. 1(c)]. We aim to understand the effect of disorder
on learning by comparing the learning ability of the hidden
Born machine in the MBL and thermal phases.

In Fig. 5(a), we show a log-log plot of the final quench
layer MMD loss on the toy MNIST dataset as a function of
disorder strength h;. By varying the disorder strength, the
system in Eq. (4) can exhibit both a thermal phase (denoted as
ETH) and an MBL phase depending on whether the disorder
strength exceeds the critical value h. ~ 3.5 (for J; = J,y, =
1). We observe that the loss value has a significant change at
the transition from the thermal phase (corresponding to iy <
3.5 indicated by pink shade) into the MBL phase (indicated
by the blue shade). The relatively high value of MMD loss
in the thermal phase indicates that the hidden Born machine
fails to learn. As we increase the disorder, the MMD loss deep
in the MBL phase decreases significantly, indicating better
learning power of the MBL phase. We can attribute the better
learning power in the MBL phase to the quantum memory
and the emergent local integral of motions. In contrast to the
thermal phase, the thermalization mechanism wipes out all the
information from the initial conditions, as observed similarly
in the case of quantum reservoir computing in the MBL phase
[19].

To better quantify the learning mechanism in the MBL
phase, we investigate the time evolution of quantities un-
derlying MBL physics during the quenched steps. First, we
investigate the Hamming distance (HD) defined as

1 1
D)=5-7 (Yoloy (t)o; (0)[ o), €))

2Li

which gives a measure of a number of spin flips concerning
the initial state ¥y normalized by the length of chain L. It’s
expected that in a long time the HD approaches 0.5 in the ther-
mal phase and decreases as one increases the disorder [54]. In
Fig. 5(b), we show the trajectory of HD at the end of each
quench D™(t = T'). We observe that, evolving in the thermal
phase the HD fluctuates around the value of 0.5 as expected,
while in the MBL phase, the HD reaches a lower value of

() (b) 0.6 ()
a8 3 0.5
8., S /\/\r\/\f\ .
S g 0.4 V ;‘4
E g 50.4
972 ETH phase = 02 — MBL | MBL
- MBL phase N ' —— ETH 0.3 —— ETH
-1 0 1 2 0 100 0 100
l0g10(hdisorder) m m

FIG. 5. Training hidden Born machine in thermal and MBL phases. (a) The terminal (at the final layer of quench) MMD loss of the hidden
Born machine on the toy MNIST task is plotted as a function of disorder strength /,. The results are averaged over 100 realizations and one
standard deviation is included as shade. (b) Hamming distance concerning the initial state (normalized by L) as a function of quenches m. In
the thermal phase, states change discontinuously over successive quenches, whereas in the MBL phase, states change gradually toward the
target state that gives rise to the desired distribution. (c) Entanglement entropy per site as a function of quenches m, confirming that our system
evolves under dynamics distinctive in the thermal/MBL phases.
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about 0.33. The more significant fluctuations in the thermal
phase indicate that the system retains little information about
the most recent quench, and therefore is difficult to manipulate
toward a target state that gives desired probability distribution.
In contrast, the relatively small fluctuations in the MBL phase
suggest that the system changes gradually between succes-
sive quenches and is more amenable to directed evolution by
quenches.

One hallmark of MBL phase is the logarithmically
slow growth of von Neumann entanglement entropy (S, =
—Trpn In pp,) due to the presence of strong interaction. Notice
that p,, is the reduced density matrix at quench m, obtained
by tracing over the complementary part of the system with
respect to the subsystem of interest. This can be considered as
a slow dephasing mechanism implying that not all information
of initial state survives [55-57]. To confirm that our system
indeed evolves under MBL /thermal dynamics when trained in
these two phases, in Fig. 5(c), we track the value of S}, over
different quenches. In the MBL phase, S, shows a quick sat-
uration, while in the thermal phase the entanglement entropy
changes significantly from successive quenches, a behavior
expected from the thermal phase.

A. Pattern recognition

Pattern recognition has been implemented in a variety
of analog classical systems ranging from molecular self-
assembly to elastic networks [40,41,58-63]. It is interesting
to ask whether quantum systems possesses similar power. In
this section, we demonstrate the pattern recognition ability of
the MBL hidden Born machine. Here, we take the same toy
dataset of MNIST digit patterns as in Fig. 3. Each pattern
Er e [0, 1]2L" is a (normalized) vector in the pixel space,
where L, is the length of the visible units,and u = 1,2, ..., P
denotes the pattern index. We encode the patterns into the
hidden Born machine by setting pgan = > u &M [64]. Again,
we perform the training of the hidden Born machine using
the algorithm in algorithm 1 (see first column of Fig. 6 for
the learned patterns from ppqe). After training, we obtain
the target final state |y), along with a series of unitaries
{Z/l (0, = U } _ that defines the entire history of intermedi-
ate states during successive quenches, |¥,,) = ]—L —0 L{m o),
which upon tracing out hidden units becomes intermediate
model distributions, p,, = TrTr;,Wm)(tﬁmmZ Now given a
partially corrupted pattern £# and the state W“) that gives
rise to this corrupted pattern, | (z)|>/N = E* (see the sec-
ond column of Fig. 6 for examples of corrupted patterns),
we can identify the “closest” intermediate state |,,«) where

* = argmax,, MMD(£", p,,). Then we apply unitary time
evolution to the corrupted state [i/*) using the series of
learned unitaries starting from m* and obtain the ‘retrieved’
state |*) = ]_[?igm* Ui [*). We can then compute the cor-
responding retrieved pattern as E1 = TrTr,|¥H) (Y| I1, (see
last column of Fig. 6 for the retrieved patterns). As shown in
the top row of Fig. 6, in the case of a single pattern (a digit
0), the MBL hidden Born machine can retrieve a complete
pattern from a corrupted pattern (a partially corrupted digit 0).
As shown in the bottom row of Fig. 6, in the case of multiple
patterns (a superposition of 0 and 1), the MBL hidden Born

Learned Corrupted Retrieved
pattern &# pattern &# pattern £»
Unitary time-evolution -

Single i.
pattern u
Multiple
patterns

FIG. 6. Pattern recognition task by the MBL hidden Born ma-
chine. Given a corrupted pattern £* and its corresponding corrupted
state [*), we find the quench layer number m* such that the in-
termediate model distribution p}, resembles the corrupted pattern
most. Then we time-evolve |*) with the series of learned unitaries
U, starting from m* to obtain the retrieved state |/*), from which
we can then obtain the retrieved pattern £%. Top row: after learning
a single pattern (digit 0), a complete 0 can be retrieved from a
partially corrupted 0. Bottom row: after learning multiple patterns
(superposition of digit 0 and 1), complete O or 1 can be selectively
retrieved from partially corrupted O and 1, respectively.

machine can selectively retrieve complete patterns (0 or 1)
based on the input corrupted pattern [65].

B. Learning quantum dataset

We have demonstrated the power of MBL Born machine
in learning classical data of the toy MNIST digit patterns,
now we explore the ability of the MBL Born machine in
learning data obtained from measurements of quantum states.
While quantum state tomography is the standard method for
state reconstruction, it becomes a daunting task as the system
size increases. In this respect, quantum machine learning has
shown great success in learning quantum states from a lim-
ited amount of data [22,66-71]. In this section, we use the
hidden Born machine to learn data obtained from quantum
many-body states prepared by Eq. (5) subject to a single layer
of quench, but with disorder strengths A, different from the
phases that the hidden Born machine is trained in.

In Fig. 7, we demonstrate the learning ability of Born ma-
chine in the thermal and MBL phase. In Fig. 7 left/right, we
compare the measurement outcome sampled from the exact
simulation g4, in MBL/thermal phase (denoted as ETH)
(shown in purple), with those learned via hidden Born ma-
chine trained in MBL phase (shown in blue). In the insets, we
show the classical fidelity between the model distribution p
and data distribution ¢, F(p, ¢) = (3_, M)z. We see that
the hidden Born machine trained in MBL phase can capture
the underlying probability distribution obtained from both the
MBL and thermal phases with high fidelity (~0.98), while
the hidden Born machine trained in the thermal phase fails to
learn either. Notice that to learn the quantum state, one needs
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Learning MBL state

Learning ETH state
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MBL-MBL ETH-MBL 0.1 MBL—-ETH ETH-ETH
- i . . I .
0.0 10 20 30 40 50 60 0.0 10 20 30 40 50 60

state space

state space

FIG. 7. Learning quantum dataset. Left/right: MBL hidden Born machine trained in MBL phase learns the probability distribution
corresponding to an MBL /thermal (denoted as ETH) target state. Insets: classical fidelities between the model and the data distributions.
Model trained in the MBL phase has better learning capability than model trained in the thermal phase.

to measure the informationally complete basis as reported in
Ref. [22].

C. Learning parity dataset

In the previous sections, we have discussed the role of lo-
calization and emergent memory in learning various datasets,
however, the role played by interaction in the many-body
localized phase remains unclear. To shed light on the role of
interaction and its interplay with the disorder, here, we investi-
gate the power of MBL phase in the learning parity dataset and
compare it with both thermal and Anderson localized phase
which can be obtained by setting J.; = 0 in Eq. (4). Here, we
consider the even parity dataset, which is defined as set of
bit-string (b1, by, ..., by) of length L with b; € {0, 1}, such
that the parity function I[1(by, by, ..., b) := vazl b; mod 2
is equal to 0. While this is a classical bitstring, it appears as a
measurement outcome of particular quantum observables in a
certain basis such as the measurement outcome of GHZ state
in the x basis.

Previous studies have indicated challenging learning on
this dataset, in particular, training the Born machine based
on MPS with gradient descent optimization schemes has en-
countered failures [72], while quantum-inspired optimization
schemes such as density matrix learning has shown great
success with the caveat in their scaling [73]. Here, we inves-
tigate the power of our hidden Born machine across various
phases in learning the parity dataset. Our numerical results
(Fig. 8) demonstrate the interesting fact that both the MBL
phase and Anderson localized phase show better performance
compared to the thermal phase. The better learning perfor-
mance in these two phases suggests that the emergence of
the integral of motion and memory plays an important role
in learning. We further notice that the MBL phase has a
better performance even though the Anderson localized phase
is known to have better memory. In the latter, the strong
localization prevents the transport of information across the
system, leading to a lesser learning power. While the value
of fidelity around Fyr, = 0.75 is not too high, reflecting the
hardness of learning the parity dataset, our MBL hidden Born
machine still shows a better performance compared to MPS
Born machine which was reported a fidelity of Fyps = 0.48
[72]. Our numerical results indicate that both disorder and in-

teraction are crucial for the successful learning of our model.
The MBL phase enhances the learnability of the hidden Born
Machine because it incorporates these two properties. How-
ever, given that the XXZ model is not the only one with such
characteristics, we anticipate that the hidden Born machine,
when evolved under other Hamiltonians with disorder and
interaction—such as spin-glass Hamiltonians [74]—would
exhibit similar learnability. Intuitively, one can think of the
Hidden Born Machine as carving a path through the Hilbert
space, capitalizing on both local memory and interaction to
reach the target state.

VI. CONCLUSION AND OUTLOOK

In this work, we have introduced a novel quantum gener-
ative model, the hidden MBL Born machine as a powerful
quantum-inspired generative model. Although parameterized
quantum circuit has become one of the focal point in the realm
of quantum machine learning, their training scheme poses
many challenges as one is required to search in an exponential
Hilbert space, which resembles finding a needle in a haystack
[10]. While other variational algorithms such as QAOA of-
fer a different scheme of finding solutions in Hilbert space
which is akin to adiabatic computing, here, by utilizing unique
properties of MBL phase such as localization and memory, we

1.00 Learning parity data
0.75
2
'0.50
2
0.25
0.00 MBL ETH  Anderson

FIG. 8. Learning parity dataset. Different bars in the horizontal
axis correspond to the model trained in the MBL, thermal, and
Anderson localized phases, respectively. The vertical-axis shows the
classical fidelity of the model. A model trained in the MBL phase
exhibits the highest fidelity despite the dataset is highly nonlocal.
Comparing model performances in three phases suggests that both
disorder and interaction are important for learning.
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develop a Born machine evolving under MBL dynamics such
that by optimizing over values of disorder at each site we can
reach a desired target state in the Hilbert space.

In this work, we aimed to answer two key questions,
namely, whether MBL phase and hidden units can be used as
resource for learning, and what is the underlying mechanism
of learning. By performing various numerical experiments in
different phases, with and without hidden units, we show that
successful learning relies on three key factors, hidden units,
disorder, and interaction.

Our work opens up a new horizon in utilizing exotic quan-
tum phases of matter as quantum-inspired generative models.
While we have explored the role of disorder in the MBL
phase, an immediate question that follows is whether an-
other disordered quantum phase would be capable of learning,
which is left for future work. In addition, although we show
that our model contains states that cannot be simulated in
polynomial time by classical computer, it remains an im-
portant question of designing efficient quantum algorithms
to prepare such states. Similarly, it remains an open ques-
tion whether the MBL hidden Born machine can learn other
classically intractable distributions [32,75,76], such as the dis-
tribution generated in quantum supremacy experiments [2—-6].
Furthermore, our quenched Born machine resembles specific
adiabatic schedule, and whether we can utilize our model
as quantum variational algorithm awaits further investigation.
Although we have quantified the learning mechanism during
the training by tracking both local and nonlocal quantities
such as Hamming distance and entanglement entropy, more
quantitative studies such as the existence of barren plateau and
over-parametrization in the context of quantum kernel learn-
ing remain an important questions for future study [10,77,78].
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APPENDIX A: EXPRESSIBILITY OF MBL HIDDEN
BORN MACHINE

1. Expressibility of hidden units

The hidden Born machine Eq. (2) generalizes the basic
Born machine (BM) defined by Eq. (1), in the sense that the
class of probability distributions expressible by the basic Born
machine is a subset of that of the hidden Born machine.

Proposition 1. For the same set of visible spins v, let
pem(z) denote the model distribution realized by the basic
Born machine, and ppgm(z) denote the model distribution
realized by the hidden Born machine, then {pgm(z)} C
{PnMm(2)}.

Proposition 1 further suggests that the minimum achievable
training loss for the hidden Born machine is less than or equal
to that of the basic Born machine, a property that we will
confirm numerically in Sec. IV.

In the following, we assume only that the visible and
hidden part couple through an interaction term in the
Hamiltonian.

Let’s consider a basic Born machine consisting of only
visible units v = {v;}, with Hamiltonian #,. Now consider
adding hidden units h = {A;} to the system with Hamiltonian
#;, and the hidden units couple with the visible ones through
an interaction Hamiltonian ﬂin[. The full Hamiltonian can be
written as

Honlv, h] = H, [Vl + Hylh] + Hin[v, h],  (AD)
where all the #’s in general can be time-dependent. Let’s
assume that the basic Born machine model is described by
just the visible part of Hamiltonian in Eq. (A1), Hpm =
H,(OBM), and the hidden Born machine is described by
the full Hamiltonian, Hypm = Hon(O"™M), where @BM and
®"BM denotes the parameters in the Hamiltonian to be opti-
mized during learning.

Proof. Let’s denote the initial state for the BM as [y§) €

H,. Let LA{U = 7A'exp(—if0T dt?flv). Then, the final state of
BM is |1//;) = L?vwg ). Choose an initial product state for the

hBM, [y¢") = [y¥8) ® [Y) € Hy @ H,, for some |Y]) € Hy.
Choose @"M (0 be such that HIBM = #BM and || HEEM|| >
|[FLEEM].

Then, we have

i)~ o) @ thlvo) = [vi) @ [vj)  (A2)

where we have defined |1//‘;') = U, | l/f(’)’). With this choice, now

pvis = Teal¥ ") = [y p)(Wpl,  and  pram(2) = TroyisTlz =
[¥¥(z)|?> = pem(z), where pgy is automatically normalized
(/\/1 = 1) for physical systems as in our case. Therefore
the class of probability distributions described by BM is
contained in hBM. |

2. Mapping XXZ chain into Ising model

There has been extensive studies on the expressive power
of quantum models. In particular, quantum computational
advantage for sampling problem has been proved (based
on standard computational complexity assumptions) in a
translation-invariant Ising model [79]. In particular, we show
that the XXZ model in 2-dimension, with proper choice
of disorder parameters, can be reduced to an Ising model
that contains brickwork state that is classically intractable
Ref. [79].

Proposition 2. The XXZ model in 2D subject to quench in
z direction can be reduced to an Ising model.

We have recovered the case in Ref. [79]. Note that for
the proof in Ref. [79] to work, one also need to initialize
the system in all |+) states and subsequently perform all
measurements in the x — basis. While our numeric are mostly
restricted to the 1-dimension case as it can be studied by
exact diagonalization, the XXZ model can be realized in any
dimensions. This classically hard instance implies that our
model cannot be simulated in polynomial time by a classical
computer and therefore offers an advantage in its expressive
power.
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| Aeply
m-pulses

FIG. 9. Checkerboard partition of the 2D lattice. We apply w
pulses at the /C sites (shown in blue) to effectively turn off the
interaction in the x and y directions upon time averaging.

Proof. In 2D,

oz =) o (58] +818) + D_JS5i85 (A3
© (i.J)

where the interactions are between nearest neighbors. During
a quench Hgyenen of duration ¢, we can divide the disorder
into a time-dependent and a time-independent part,

WMty = J"(@t) + B (A4)

In the case of bipartite lattice, we can partition the
vertices into two partitions, and denote the sites in one par-
tition as KC = {ki, k2, ..., kr 2} and another partition as N =
{n1,na, ..., nyp) (assuming N even). For example, in the
case of a square lattice, K and N correspond to the blue and
white sites of the checkerboard coloring (Fig. 9).

For the set of K spins, we turn on a 7 pulse in the middle
of the quench (k € K), such that:

0 ifo<r<t
I =15 ife <t <24 A

0 if2 + Ar <t <ty

(A5)

where At < t,, is a short duration of time. With this choice of
disorder, the time evolution operator reduces to

U = e Mo (i e Du B % (A6)

Now the Pauli Z’s effectively flip the signs of the §*$* and
8¥8¥ terms in the XXZ-Hamiltonian, and upon integrating
over the duration of a quench cancels out with the correspond-
ing terms in first half of the quench. Therefore, after time
evolution of a quench, the effective Hamiltonian is left with
only Ising interactions,

1 =Y TS558+ Y BIS:. (A7)
(i J) i

APPENDIX B: MBL PHASE TRANSITION

In this section, we present the details of the numerical
simulation of XXZ model [Eq. (4)] and confirm the thermal
to MBL phase transition. We simulate the XXZ model us-
ing exact diagonalization methods provided by the QUSPIN
package [80,81]. Throughout the paper, we use parameters
Joy=J =1

One hallmark of the MBL phase is the Poission distribution
of level spacings in the eigenspectrum of the Hamiltonian

level statistics of Hyg; and Hery

e MBL_L=16
ETH_L=16

0.8 L
0.6 ° .
0.4

0.2

0.0 0.2 0.4 0.6 0.8 1.0
ra

FIG. 10. Level statistics of L =16 XXZ model subject to
quenches in the z direction. The thermal phase (denoted as ETH)
is simulated with h; = 0.1, with resulting (r,) = 0.391; the MBL
phase is simulated with h; = 3.9, with resulting (r,) =~ 0.529. Re-
sults are averaged over 1000 different realizations.

[82—84]. The level statistics Pr(r,) is defined as the normal-
ized distribution of
ry = min(Ay+1, Aa)’ B1)
maX(AaJrls Aa)

where A, = E,+ — E, are the level spacings in the eigen-
spectrum. In Fig. 10, we show the level statistics in a
simulation of L = 16 spins described by Eq. (5) subject to
a single quench M =1, at two different disorder strengths:
hy = 0.1 and 3.9 (the critical disorder strength is 4, ~ 3.5 for
J.. = J,, = 1). We see that indeed the level statistics in the
thermal phase obeys Wigner-Dyson statistics ({(r,) = 0.391),
and in the MBL phase obeys Poisson statistics({r,) = 0.529),
confirming the existence of thermal-MBL phase transition.

Another hallmark of MBL phase is the area law scaling
of von Neumann entanglement entropy (Sepy = —TrpIn p),
compared to the volume law scaling in the thermal phase. We
numerically calculate the half-system entanglement entropy in
the middle of the spectrum for the Hamiltonian in Eq. (5), and
perform a scaling analysis for different L and different dis-
order strengths i (see Fig. 11). Our numerical results agrees
with those reported in Ref. [48].

APPENDIX C: TRAINING MBL HIDDEN BORN MACHINE
1. MMD loss

Previously, KL divergence has been suggested for training
MBL Born machine as a generative model [27]. However,
KL divergence does not capture correlations within data, and
suffers from infinities outside the support of data distribu-
tion. Moreover, KL divergence requires full knowledge of
data distribution which is often unrealistic. To remedy these
situations, the maximum mean discrepancy (MMD) loss has
been proposed for training Born machines [28]. The MMD
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entanglement entropy/L

h=0.1
h=0.4
h=0.7
h=1.0
h=1.3
h=1.6
h=1.9
h=2.2
h=2.5
h=2.8
h=3.1
h=3.4
h=3.7
h=4.0
h=4.3
h=4.6

——

|

-3

FIG. 11. Scaling analysis of entanglement entropy. We plot the
entanglement entropy per site Sey /L as a function of system size L
for different disorder strengths 4. Volume law scaling in the thermal
phase (small /) leads to constant S, /L, while area law scaling in the
MBL phase (for large /) leads to decreasing Sey /L.

loss measures the distance between model distribution p and
target distribution ¢, by comparing their mean embeddings in
the feature space, and one can use samples to estimate the loss.
The (squared) MMD loss can be written as

2

Lymp = ‘

> e = Y q(x)px)

= ]Ex,x’~pk(x7 x,) + Ey,y/quk(y’ y/)
— 2E v p yngk (X, ¥), (C1)

where we have employed the kernel trick and write k(x, y) =
¢(x)Tp(x). In our model, we use a Gaussian mixture kernel
k(e,y) =13, exp(—za%lx —y|?) of four channels ¢ = 4,

with corresponding bandwidths al.2 =[0.1, 0.25, 4, 10]. The
bandwidths are chosen such that our Gaussian kernels are able
to capture both the local features and the global features in the
target distribution.

2. Parameters

In the training of our MBL hidden Born machine, we use
N =642 (6 visible spins and 2 hidden spins), and M =
100 quenches and search over N = 500 different disorder
realizations.

Generally, we found that more hidden units lead to better
learning outcome. However, for the tasks considered in this

study, further increasing the number of hidden units beyond
two does not result in substantial improvements in the results.
Nonetheless, we expect that increasing the number of hidden
units may prove beneficial for more complicated tasks, as
suggested in the future directions.

3. Runtime scaling

The runtime complexity of our learning algorithm is
primarily determined by its use of Monte Carlo searches,
resulting in an overall complexity of O(TNM). Here, T
represents the evolution time of the system during each
quench, N is the task-dependent number of Monte Carlo
samples, and M denotes the constant number of quenches.
Notably, the specific influence of T depends on the simula-
tion method employed. In the case of exact diagonalization,
T scales exponentially with system size, leading to substan-
tial computational requirements for larger systems. However,
it is anticipated that near-term analog or digital quantum
computers will significantly enhance the efficiency of these
operations, mitigating the impact of this scaling behavior.

APPENDIX D: DATA ENCODING

Here, we describe the detailed data encoding scheme and
our toy dataset of MNIST digit patterns in this section. Given
a reduced density matrix pyj; of L visible spins, we compute
the distribution of finding each of the 2¥ basis states in our
computational basis, and interpret the result as pixel values.
We then reshape this probability vector into an image of size
IL/2 5 IL/2.

On the other hand, given an image X, € R"*", where n x n
is the number of original pixels in the image, we first down-
sample it to 2%/2 x 2L/2 pixels, then normalized the pixel
values to be within O and 1.

Our toy dataset of MNIST digit patterns are constructed
as follows: we take all the training images x* from a digit
class, downsample to 2//2 x 2%/ pixels, and compute each
pixel as the average value x; = 1/P Zi:l x;* across different

styles within this digit class, where i =1, ..., 2L We then
normalized the pixelsto ¥ — X;/ Y ; ¥; and interpret the result
as gqaa- We take caution that this is different from learning the
MNIST distribution in generative models. The latter refers to
learning the joint probability distribution over all pixels in the
image, and our toy data set corresponds to taking the mean-
field limit of this joint probability distribution, which ignores
the complicated correlations among pixels. This is akin to
learning a single pattern (the averaged MNIST images shown
in Fig. 3), and the reason for taking the average pixel value is
such that we will be able to perform pattern recognition with
imperfect initial states.
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