
An In-Depth Study of Runtime Verification Overheads during
Software Testing

Kevin Guan
Cornell University

Ithaca, USA
kzg5@cornell.edu

Owolabi Legunsen
Cornell University

Ithaca, USA
legunsen@cornell.edu

Abstract

Runtime verification (RV) monitors program executions against

formal specifications (specs). Researchers showed that RV during

software testing amplifies the bug-finding ability of tests, and found

hundreds of new bugs by using RV to monitor passing tests in open-

source projects. But, RV’s runtime overhead is widely seen as a

hindrance to its broad adoption, especially during continuous inte-

gration. Yet, there is no in-depth study of the prevalence, usefulness

for bug finding, and components of these overheads during testing,

so that researchers can better understand how to speed up RV.

We study RV overhead during testing, monitoring developer-

written unit tests in 1,544 open-source projects against 160 specs of

correct JDK API usage. We make four main findings. (1) RV over-

head is below 12.48 seconds, which others considered acceptable,

in 40.9% of projects, but up to 5,002.9x (or, 28.7 hours) in the other

projects. (2) 99.87% of monitors that RV generates to dynamically

check program traces are wasted; they can only find bugs that the

other 0.13% find. (3) Contrary to conventional wisdom, RV overhead

in most projects is dominated by instrumentation, not monitoring.

(4) 36.74% of monitoring time is spent in test code or libraries.

As evidence that our study provides a new basis that future work

can exploit, we perform two more experiments. First, we show

that offline instrumentation (when possible) greatly reduces RV

runtime overhead for single versions of many projects. Second, we

show that simply amortizing high instrumentation costs across

multiple program versions can outperform, by up to 4.53x, a recent

evolution-aware RV technique that uses complex program analysis.

CCS Concepts

· Software and its engineering→ Software testing and debug-

ging;

Keywords

Runtime Verification, software testing, software evolution

ACM Reference Format:

Kevin Guan and Owolabi Legunsen. 2024. An In-Depth Study of Runtime

Verification Overheads during Software Testing. In Proceedings of the 33rd

ACM SIGSOFT International Symposium on Software Testing and Analysis

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISSTA ’24, September 16ś20, 2024, Vienna, Austria

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0612-7/24/09
https://doi.org/10.1145/3650212.3680400

(ISSTA ’24), September 16ś20, 2024, Vienna, Austria. ACM, New York, NY,

USA, 13 pages. https://doi.org/10.1145/3650212.3680400

1 Introduction

Runtime verification (RV) is a lightweight formal method that can

help find bugs early, during development, by monitoring program

executions against formally specified safety properties. An RV tool

takes the code under test, means of executing the code (e.g., unit

tests), and formal specifications (specs, for short), and raises viola-

tions if an execution does not satisfy a spec.

An RV tool first instruments the code, tests, and third-party li-

braries, so that relevant program events (e.g., method calls, field ac-

cesses, lock acquisitions) are signaled to the tool at runtime. Events

trigger (1) generation of monitors (usually automata, like finite-

state machines) based on the spec; or (2) search for previously

generated monitors that should process new events. A handler is

called to deal with violations, e.g., by performing error-recovery.

RV research traditionally focused on monitoring deployed pro-

grams. The alluring idea is that, if a handler can always soundly

recover from impending violations, then software will always be

correct with respect to monitored specs. This powerful idea has mo-

tivated decades of research, which is now being realized in practice,

such as in GrammaTech’s ARTCAT [55].

Recently, researchers showed that the bug-finding ability of test

suites can be amplified by using RV specs as additional oracles [84,

86, 101]. The reason is that, when run alone, unit tests typically only

assert that outputs computed from given inputs are as expected. But,

RV of tests finds more bugs by also checking if tracesÐsequences

of eventsÐsatisfy formal specs. So, a test whose assertions pass, but

whose execution violates an RV spec could indicate how software

may fail on untested inputs. Based on this idea, these researchers

discovered hundreds of bugs in open-source projects by using RV

to monitor passing tests against specs of correct JDK API usage.

Broad RV adoption for everyday testing, especially in today’s

rapid continuous integration (CI) cycles, is hindered by the percep-

tion that it incurs high runtime overheads. This perception persists

despite decades of tremendous algorithmic efficiency improvements

to make RV scale [10, 16, 27, 38, 41, 75, 89, 94, 99, 100, 104, 111, 112,

135, 138]. Part of the reason is that many techniques that improved

RV overhead were only evaluated on carefully curated benchmarks

that have no unit tests, e.g., DaCapo [24], MiBench [56], or RV

competition data [13, 14, 16, 46, 114]. Also, the recent work on RV

of tests were not focused on overheads [84, 86, 101], they were

evaluated on between one and 21 open-source projects [87, 89, 138],

or they did not evaluate RV realistically [73] (ğ8 explains the latter).

Given the recent demonstration of RV’s bug-finding benefits, an

in-depth and large-scale study of RV overheads during testing is

1798



ISSTA ’24, September 16ś20, 2024, Vienna, Austria Kevin Guan and Owolabi Legunsen

needed to help (1) quantify and evaluate the spread of high RV over-

heads more broadly among open-source projects; (2) understand

root causes, contributing factors, program locations, and usefulness

for bug finding of overheads that RV incurs; and (3) obtain insights

that can be leveraged to reduce these overheads.

We conduct the first in-depth study of RV overhead during test-

ing. We measure overheads while using a state-of-the-art RV tool,

JavaMOP [72], to monitor 182,547 developer written unit tests in

1,544 open-source projects (total: 10,897,631 SLOC) against 160

specs of correct JDK API usage from prior work [83, 94]. Next, we

collect traces that monitors observe. To do so, we extend JavaMOP

(ğ3.3 has rationale and details). Lastly, we use a profiler [9] to see

overheads incurred by RV components, and in program parts.

We make four main findings, among several other results.

1. RV Overhead Varies Widely. The mean overhead across all

1,544 projects is 23.6x, or 249.1 seconds. A project has the maximum

relative overhead of 5,002.9x. Another project has the maximum

absolute overhead of 28.7 hours. Legunsen et al., claim that absolute

RV overhead of up to 12.48 seconds is acceptable during software

testing [86]. By that threshold, 40.9% (or, 632) of these projects can

use RV with acceptable overhead during testing.

2. RVDuringTesting Is VeryWasteful. Only 0.13% of 3,432,878,467

collected traces are unique. The rest are wasteful repetitions of these

0.13%Ðeach trace maps to a program path and spec pair, so monitor-

ing the same path against the same spec after the first time cannot

reveal new bugs. Repeated checking in RV of deployed systems [55]

is useful to recover from violations or mitigate attacks.

3. Instrumentation Dominates. 60.5% of total RV time across all

projects is spent on instrumentation, not monitoring. (JavaMOP

instruments during class loading by default.) This finding goes

against conventional wisdom in RV research that mostly aim to

reduce overhead via faster monitoring. When RV is used in deploy-

ment, instrumentation time is a one-time startup cost, but faster

instrumentation is needed during testing.

4. Monitoring Tests and Libraries Is Costly, but Necessary.

Excluding instrumentation, 36.74% of monitoring time is spent in

test code (21.87%) or third-party libraries (14.87%). But, arguments

can be made for (excluding them could lead to false positives/nega-

tives [89]) or against (tests are not deployed, and developers often

have no control over libraries) monitoring these components (ğ4.4).

The computational complexity of the general RV problem can be

arbitrarily hard [117]. So, our findings can provide new empirical

basis for future techniques and tools that leverage the nature of RV

during testing to reduce its overhead.We highlight future directions

and make several suggestions to the RV research and development

community. Also, to begin assessing the feasibility of realizing such

techniques and tools, we perform two more experiments (ğ5).

First, we attempt offline, compile-time instrumentation for 1,532

projects with overhead less than an hour, and measure the time to

monitor pre-instrumented code during testing. Offline instrumen-

tation is much slower than JavaMOP’s instrumentation and fails in

253 projects, e.g., because instrumentation by other tools conflicted

with ours. So, even ignoring its high cost, offline instrumentation

is not always possible. For 1,279 projects that we pre-instrument,

RV overhead reduces by 8x, on average.

1 Collections_SynchronizedCollection(Collection c, Iterator i) {

2 Collection c;

3 event sync after() returning(Collection c) :

4 call(* Collections.synchronizedCollection(Collection)){ this.c = c; }

5 event syncMakeIter after(Collection c) returning(Iterator i) :

6 call(* Collection+.iterator()) && target(c) && if(Thread.holdsLock(c)) {}

7 event asyncMakeIter after(Collection c) returning(Iterator i) :

8 call(* Collection+.iterator()) && target(c) && if(!Thread.holdsLock(c)) {}

9 event useIter before(Iterator i) :

10 call(* Iterator.*(..)) && target(i) && if(!Thread.holdsLock(this.c)) {}

11 ere : (sync asyncMakeIter) | (sync syncMakeIter useIter)

12 @match {/*print violation*/} }

Figure 1: CSC Spec, written in an AspectJ-based DSL.

Second, offline instrumentation must cope with code and library

evolution, and tight CI budgets. So, we evaluate if instrumenting

only what changes per commit can reduce its cost. Compared to

recent program-analysis based evolution-aware RV techniques that

only re-monitor specs that are affected by code changes [89, 138],

incremental offline instrumentation is up to 4.53x faster. Unlike

those techniques, incremental offline instrumentation is safe: it

cannot miss new violations if tests pass and tests are deterministic.

This paper makes the following contributions:

★ Study.We conduct the first in-depth and large-scale study of RV

runtime overheads during testing, using 1,544 Java open-source

projects and 160 specs of correct JDK API usage.

★ Findings. Our results provide insights that future work can

exploit to further reduce RV overhead during testing.

★ Proofs of Concept. Our initial experiments to begin exploiting

some of our findings show promising results.

★ Data.We make all tools, scripts, and raw data from our experi-

ments publicly available to aid reproduction and further studies.

Our artifacts, including scripts, code, and data are available at this

URL: https://github.com/SoftEngResearch/rv-study-artifacts.

2 Background and Examples

2.1 An Example Spec and Its Monitoring

Figure 1 shows a spec, CSC, that we monitor; it was formalized by

Lee et al. [83, 94] and exemplifies three parts of RV specs: event def-

initions, properties, and handlers. Lines 3ś10 define related events

and when to signal them at runtime: (1) sync (lines 3ś4), after call-

ing Collections.synchronizedCollection() to get collection c;

(2) syncMakeIter (lines 5ś6), after calling c.iterator() from

code that synchronizes on c; (3) asyncMakeIter (lines 7ś8), af-

ter calling c.iterator() from code that is not synchronized on c;

and (4) useIter (lines 9ś10), after calling any method on iterators

returned by c.iterator() from code that is not synchronized on

c. Line 11 is the safety property, formalized as a regular expres-

sion; it matches if c.iterator() is called from code that is not

synchronized on c, or if c.iterator() is called from code that is

synchronized on c, but the returned iterator is later used with-

out synchronizing on c. Code that violates this property can be

non-deterministic [108]. So, when CSC monitors observe matching

traces, the handler on line 12 is invoked; it can be any user-provided,

e.g., error-recovery, code. But, for finding bugs, we print a message.

Figure 2 shows how RV amplifies tests’ bug-finding ability (we

elide some multi-threading code). There, sum (lines 1ś12) adds a

list of integers, and two unit tests assert that sum is correct on a list

(line 13) and its reverse (line 14). Such tests will almost always pass

1799



An In-Depth Study of Runtime Verification Overheads during Software Testing ISSTA ’24, September 16ś20, 2024, Vienna, Austria

1 public int sum(List<Integer> list) {

2 Collection<Integer> collection = Collections.synchronizedCollection(list);

3 /∗ INSTRUMENTATION: Collections_SynchronizedCollection.sync ∗/

4 int total = 0; Iterator<Integer> iterator;

5 synchronized(collection) {

6 iterator = collection.iterator();

7 /∗ INSTRUMENTATION: Collections_SynchronizedCollection.syncMakeIter ∗/

8 }

9 while (iterator.hasNext()) total += iterator.next();

10 /∗ INSTRUMENTATION: Collections_SynchronizedCollection.useIter ∗/

11 return total;

12 }

13 @Test public void testSum(){ assertEquals(6, sum(Arrays.asList(1, 2, 3))); }

14 @Test public void testSumRev(){ assertEquals(6, sum(Arrays.asList(3, 2, 1))); }

Figure 2: An example of monitored code and its unit tests.

Table 1: Summary statistics on 1,544 projects that we study, in

terms of no. of test methods (#Tests), end-to-end test time in

seconds (t), lines of code (SLOC), % statement coverage (𝑐𝑜𝑣𝑠 ),

% branch coverage (𝑐𝑜𝑣𝑏 ), no. of commits (#SHAs), years since

first commit (age), and no. of stars (#8).

#Tests t SLOC 𝑐𝑜𝑣
𝑠

𝑐𝑜𝑣
𝑏 #SHAs age #8

Mean 118.1 8.2 7,034.6 53.8 45.8 240.1 8.9 162.8

Med 22.0 2.0 2,273.0 58.3 48.2 95.0 9.0 29.0

Min 1 1.3 21 0.0 0.0 1 0 0

Max 17,874 1,561.9 6.2×105 100.0 100.0 17,223 26 20,198

Sum 1.8×105 12,676.5 1.1×107 n/a n/a n/a n/a n/a

and likely never reveal a subtle bug in sum: line 5 synchronizes on a

Collections.synchronizedCollection() (line 2) before obtain-

ing iterator from it, but line 9 uses iterator in non-synchronized

code. RV of these tests against CSC reveals the bug: instrumenting

sum on lines 3, 7, and 10 (shown as comments) causes CSC monitors

to observe the violating trace: sync syncMakeIter useIter. Both

tests produce this trace, but one of them suffices to find the bug. So,

RV overhead is wasted the second time w.r.t. CSC. Monitoring CSC

helped find several confirmed bugs in open-source projects [86].

2.2 JavaMOP and Other Specs in Our Study

We use JavaMOP [72, 76] as the RV tool in our study because: (1) it

is mature and widely cited; (2) it can monitor multiple specs simul-

taneously [94]; (3) it was evaluated during testing with many open-

source projects [73, 84, 86, 89, 101]; (4) it ships with specs of correct

JDK API usage, including CSC (Figure 1), that we use [83, 94]; and

(5) it incorporates decades of RV progress [32ś34, 64, 75, 77, 94, 100].

JavaMOP supports monitoring specs in different formalisms: past-

and future-time linear temporal logic (LTL), extended regular ex-

pressions (ERE), finite-statemachines (FSM), context-free grammars

(CFG), string-rewrite systems (SRS), etc.

3 Experimental Setup

We organize our study around four questions, the answers to which

could yield insights on reducing the overhead of RV during testing:

RQ1. What are the overheads of RV during testing, and how do

they correlate with various program characteristics?

RQ2. How much RV monitoring is wasted during testing?

RQ3. What proportion of RV time is spent among its components?

RQ4. What proportion of RV time is spent monitoring different

program components?

RQ1 aims to quantify the magnitude and prevalence of high RV

runtime overhead in a realistic setting during testing in many open-

source projects. RQ2 aims to measure how much RV monitoring is

(un)necessary for bug finding. Lastly, RQ3 and RQ4 aim to measure

where RV time is spent within JavaMOP and the studied projects.

We next describe our process for finding open-source projects for

our study, the set of projects that we use, our process for collecting

overhead (and other) data, and our experimental settings.

3.1 Project Selection

Initial Set of Projects. We start with 7,533 open-source Java

projects that use Maven [4] and whose last commit is after 1/1/2019.

These projects are from (1) prior work on RV [69, 86] and test-

ing [105], and (2) our GitHub API query that we use to find projects

with greater than 10 stars. We choose Maven, like prior work on

RV of test [84, 86, 87, 89, 101, 138]; future work can evaluate other

build systems (e.g., Gradle [54] or Bazel [22]).

Filtering Projects. We automatically filter out all but 1,528 of

7,533 projects in our initial set. We start by filtering out 94 with no

tests, 3,727 where build, compilation, or tests fail, 22 that are not

cloneable (they likely went private since prior work used them),

and 16 whose failure we could not quickly figure out (e.g., JVM

crashes with no easy-to-debug output). JavaMOP monitors failing

tests, but we only keep projects with passing tests, to more fairly

compare times with and without RV. We do not control for flaky

tests [23, 52, 57, 82, 93, 98, 110, 123, 125] in subsequent experiments.

Next, we run JavaMOP on the 3,674 projects that remain at this

point, and further filter out 2,001 where JavaMOP fails or finds no

events, and 145 with no statement and branch coverage.

Manual Augmentation. Several projects onwhich JavaMOP failed

during automated filtering merely time out after our initial 1-hour

limit. So, we manually investigate whether JavaMOP would work

on these projects with additional time or manual set up, finding 16

more that meet our other criteria. Adding these to the 1,528 projects

that we obtain automatically, we get 1,544 projects in our study.

3.2 Characteristics of 1,544 Evaluated Projects

Due to space limits, we only provide summary statistics about these

projects. Our artifact has detailed data on these 1,544 projects, their

GitHub URLs, and the versions that we use. Table 1 shows the

arithmetic mean (Mean), median (Med), minimum (Min), maximum

(Max), and total (Sum) for eight program characteristics (see Table 1

caption); łn/až denotes meaningless sums.

We next describe the Min row in Table 1, which may not be

self-explanatory. The minimum numbers for test methods (#Tests)

and test time (t) in Table 1 are small, but they reflect the fact that we

do not discriminate among projects based on number or duration of

tests. The minimum percentage of statement coverage (𝑐𝑜𝑣𝑠 ) shows

up as 0.0% due to rounding; it is 0.03%. The project with 0.0% branch

coverage (𝑐𝑜𝑣𝑏 ) has no branches. We measure project age in years,

so 0 means that a project is less than 12 months old at the time

of selection. Lastly, we query GitHub for projects with ≥10 stars,

but some projects that we obtain from prior work have no stars,

yielding a minimum number of stars of 0.

1800



ISSTA ’24, September 16ś20, 2024, Vienna, Austria Kevin Guan and Owolabi Legunsen

3.3 Extending JavaMOP

Theoretically, RV tools like JavaMOP check if traces violate specs.

But, in practice, RV tools do not store traces. Rather, they imple-

ment online event-by-event algorithms that detect violations when

monitors transition to error states. So, to answer RQ2, we extend

JavaMOP with a non-default trace-collection mode that records

in memory the trace that each monitor observes at runtime and

persists those traces to disk during JVM shutdown. Traces that we

collect are sequences of event and program location pairs, so there

is a 1-to-1 mapping of unique traces to monitored program paths.

Extending JavaMOP with a trace-collection mode involved non-

trivial engineering. RV is known to generate billions of events and

hundreds of millions of monitors per project during testing [89]. So,

even with an abundance of memory, trace-collection must be highly

optimized and correct. Else, RV could be too slow, induce timing-

related failures, or produce wrong verdicts if events are missed. We

optimize our trace-tracking feature to be efficient enough in time

and space for RQ2 experiments, whose times we do not report.

We validate our JavaMOP extension on a subset of projects in

two ways. First, we compare violations reported in trace-collection

mode with violations that default JavaMOP reports. We found no

difference. Second, we compare the final values of monitor and

event counters that JavaMOP optionally keeps (these are cheaper to

collect than tracking traces) with the number of traces and events

that are produced in trace-collection mode. The differences that we

found are due to test non-determinism.

3.4 Running Experiments

Answering RQ3 and RQ4 requires profiling JavaMOP runs. So, we

automate the use of async-profiler [9], an accurate, low-overhead,

and widely used (including by the IntelliJ IDE [74]) profiler for Java.

Profiling is inherently a statistical sampling approach, so multiple

runs are typically required for performance measurements. But,

our goal is not to use the profiler to measure performance (so we

are not really concerned with profiler overhead), but to compute

the proportion of time that RV spends in different parts of the

monitoring process or the monitored program. So, after running

the profiler several times on a subset of 26 projects and finding

that our conclusions remain w.r.t. these proportions, we report our

findings for all 1,544 projects based on only one profiler run.

We write scripts to (1) run JavaMOP and collect its data; and

(2) run a profiler, dump its raw data, and post-process that data. We

also write Maven extensions to (1) integrate JavaMOP with project

builds, (2) measure code coverage with JaCoCo [103], (3) perform

compile-time instrumentation (ğ5.1), and (4) integrate the profiler.

We perform all experiments in Docker containers, to aid repro-

ducibility. Our artifact contains our Docker files and how to use

them.We run all experiments involving absolute time measurement

on an Intel® Xeon® Gold 6348 machine with 512GB of RAM and

112 cores, running Ubuntu 20.04.6 LTS, Java 8, Maven 3.8.8.

4 Results

4.1 RQ1: RV Overheads

We first discuss RV overheads during testing that we found in all

1,544 projects. Then, we report on correlations between RV over-

head and various program characteristics. The general RV problem

Table 2: Overhead-related results for projects in our study:

end-to-end test time in seconds without RV (t), end-to-end

test time in seconds with RV (𝑡rv), absolute overhead in sec-

onds (𝑡rv−t), relative overhead (𝑡rv/t), no. of generated moni-

tors (#Mon), and no. of signaled events (#Event).

t 𝑡
rv

𝑡
rv−t 𝑡

rv/t #Mon #Event

Mean 8.2 257.3 249.1 23.6 5.3×106 1.4×108

Med 2.0 23.0 18.9 7.9 9,109.0 1.6×105

Min 1.3 3.0 −14.5 0.3 76 2

Max 1,561.9 1.0×105 1.0×105 5,002.9 1.4×109 6.0×1010

Sum 12,676.5 4.0×105 3.8×105 n/a 8.2×109 2.2×1011

can be arbitrarily hard [117], so positive correlations could reveal

factors that can be leveraged to reduce RV overhead in practice or

serve as good starting points for our study of causes of RV overhead.

Table 2 shows summary statistics for our overhead-related mea-

surements. There, times are computed for all 1,544 projects in our

study, while monitor and event information is for a subset of 1,542

projects where JavaMOP’s monitor and event counters produced an

output. Negative łMinž absolute overhead (𝑡 rv−t) in Table 2 (tests

are faster with than without RV) is not noise, and occurs in one

project. Negative overheads can occur if JavaMOP’s instrumenta-

tion changes garbage-collection behavior or memory layout such

that the program is accidentally optimized [75, 77, 86, 99].

We discuss five findings from the data summarized in Table 2:

1. On a positive note, 632 (or 40.9%) of 1,544 projects could start

using RV today, based on Legunsen et al.’s claim that an absolute

RV overhead of 12.48 seconds is acceptable during testing [86].

2. Even with a larger set of projects, the łMeanž relative (23.6x)

overhead is higher than the highest average overhead of 9.4x

reported in prior work on RV during testing [84, 86, 89].

3. The 462 8th, 9th, and 10th decile projects have very high łMeanž

absolute (59.90, 96.50, and 2,240.5 seconds, respectively) and rel-

ative (23.44x, 25.15x, and 134.10x, respectively) overheads.

4. Absolute RV overheads are ≥ 1 hour in 12 projects and between 10

minutes and an hour in 19 projects. The łMaxž absolute overhead

is over a day (28.7 hours), for a project whose test-running time

without RV is 46.84 seconds.

5. The łMaxž numbers of monitors and events generated are greater

than 1.4 billion and 60 billion, respectively. But, projects with

relatively few monitors and events have very high overheads.

For example, some projects in Figure 3 have few events but very

high overheads.

We conclude that high RV overhead is still a problem overall, and

warrants continued research to reduce it further. Projects with high

overheads are unlikely to adopt RV during continuous integration.

Recent evolution-aware RV techniques [89, 138] are promising, but

they have not yet been evaluated at this scale. Also, prior work

on reducing RV overhead typically focused on reducing generated

monitors or events [5, 28, 32, 34, 38, 75, 89, 111, 112], but our fifth

finding suggests that there are more factors behind RV overheads.

To begin investigating factors contributing to RV overheads, we

check correlation with nine program characteristicsÐthe number of

monitors (#Mon) and events (#Event), and seven in Table 1: number

of test methods (#Tests), end-to-end test time in seconds without

1801



An In-Depth Study of Runtime Verification Overheads during Software Testing ISSTA ’24, September 16ś20, 2024, Vienna, Austria

Table 3: Pearson’s correlation coefficient with several program characteristics.

#Mon #Event #Tests t SLOC 𝑐𝑜𝑣
𝑠

𝑐𝑜𝑣
𝑏 #SHAs age

Absolute overhead (with outliers) 0.1746 0.0982 0.0121 0.1444 0.1238 -0.0106 -0.0109 0.1534 -0.0034

Relative overhead (with outliers) 0.1344 0.0459 0.002 0.0083 0.0707 0.0123 0.0006 0.0799 0.0007

Absolute overhead (without outliers) 0.527 0.4365 0.176 0.478 0.1588 0.0851 0.0566 0.1701 0.0165

Relative overhead (without outliers) 0.351 0.3179 0.0845 0.2695 0.0884 0.0255 0.002 0.1104 -0.0166

0 2 4 6

events 1e10

0k

25k

50k

75k

100k

0 500 1000 1500

test time

0k

25k

50k

75k

100k

0 2 4 6 8

events 1e6

0

50

100

2 4 6

test time

0

50

100

Figure 3: Correlation of absolute overhead with # of events

(left) and test time without RV (right), with (top row) and

without (bottom row) outliers.

RV (t), lines of code (SLOC), branch coverage (𝑐𝑜𝑣𝑏 ), statement

coverage (𝑐𝑜𝑣𝑠 ), number of commits (#SHAs), and age.

Table 3 shows the Pearson’s correlation coefficients (computed

using Matplotlib [97]) between RV overhead and these characteris-

tics. The top two rows show the coefficients with outliers included

and the bottom two rows show themwith outliers excluded. Overall,

there is weak correlation with all considered characteristics when

outliers are included. With outliers excluded, we find that numbers

of monitors and events, and test time have weak to moderate posi-

tive correlation with overheads. So, overall there seems to be more

factors behind RV overheads than these characteristics, but more

work to speed up monitoring could help reduce these overheads.

Due to space limits, we show only scatter plots for events and

test time without RV, with and without outliers, in Figure 3. The

plot for correlation with number of monitors is similar to that of

events; other plots show even weaker correlation than that of time.

This lack of correlation means that a deeper analysis of RV

overhead is needed. So, in the other research questions (ğ4.2 ś ğ4.4),

we investigate RV overhead during testing from other angles.

4.2 RQ2: RV’s Wastefulness during Testing

We hypothesize that repetitive, wasteful monitoring is a factor in

RV overhead during testing for two reasons. First, multiple tests

often validate the same program path using different inputs. But,

checking a path multiple times against a spec is wasteful (ğ1 and ğ2).

Second, older prior work [111] showed that repeated monitoring

inside program loops contributes to RV overhead when monitoring

one spec against single executions in the DaCapo benchmarks. So,

our more realistic multi-execution and simultaneous multi-spec

monitoring could compound the impact of loops.

We test our hypothesis by conducting the first study of repetitive

and wasteful monitoring during RV of tests. To do so, we first run

Useful

0.13%
Wasted

99.87%

Useful

17.51%

Wasted

82.49%

Useful

6.9%Wasted

93.1%

Useful

41.84%

Wasted

58.16%

Useful

38.84%

Wasted

61.16%

Useful

32.42%

Wasted

67.58%

Figure 4: Proportions of sum (left), mean (middle), and me-

dian (right) of traces (top row) and events (bottom row) that

are unique (dark blue) and wasted (light blue).

the trace-collectionmode in our extended JavaMOP implementation

(ğ3.3) to obtain traces that monitors observe. (Existing JavaMOP

counters report numbers of monitors and events, not observed

traces.) Then, we analyze traces from 1,454 projects1 in two ways.

First, we compute the number of useful and wasted traces and

events across all these projects and within each project. If a trace

for a spec is observed 𝑥 times, only one of these traces is useful;

the other 𝑥 − 1 traces are wasted. Only events in useful traces are

useful; the others are wasted. Second, we qualitatively analyze the

locations and nature of wasted traces to obtain new insights that

could be exploited by future work on reducing RV overhead.

The top row in Figure 4 shows the proportion of useful and

wasted traces. There, the leftmost pie chart shows that, consider-

ing all traces in all 1,454 projects, only 4,590,494 (or 0.13%) of all

3,432,878,467 are useful. There is a one-to-one mapping of traces

to monitors, so one implication is that only 0.13% of monitors that

RV generates during testing of these projects are necessary for

bug finding. The middle and rightmost pie charts in the top row

of Figure 4 show, respectively, the proportions for the arithmetic

mean across all 1,454 projects and the median project. So, high

proportions of wasted traces are widespread among these projects.

The bottom row in Figure 4 shows the proportion of useful and

wasted events, in the same order as for traces. Interestingly, the

proportion of useful events is much higher than the proportion of

useful traces. To put this comparison in perspective, across these

projects, a hypothetically perfect future technique that only gener-

ates the 0.13% of monitors that are necessary for bug finding would

still process 38.84% of 51,203,201,000 events.

Analysis of Repetitive Traces. Our post-processing of the trace

data reveals that the average length of useful traces is over 5,200

1We could not obtain traces from the remaining 90 projects because traces exceeded
our disk space, trace-collection ran out of memory, or tests failed due to timeout.

1802



ISSTA ’24, September 16ś20, 2024, Vienna, Austria Kevin Guan and Owolabi Legunsen

Instrumentation Project Monitoring Synchronization Violation Other

60.5%

9.83%

15.49%

9.32%

(a) All projects

74.97%

12.03%

6.45%

(b) First-quartile

76.83%

10.75%

6.56%

(c) Second quartile

73.09%

15.73%

5.58%

(d) Third quartile

55.86%

8.31%
19.75%

10.49%

5.54%

(e) Fourth quartile

Figure 5: Percentage of time that JavaMOP spends performing load-time instrumentation (Instrumentation), running the

code under test (Project), handling monitors and events (Monitoring), waiting for locks (Synchronization), printing violations

(Violation), and other processes (Other). We only show percentages that are above 5%.

events long. Also, we find that testing does compound the impact of

loops. But, during our analysis, we also found an insight that could

be exploited to reduce wasted traces and events. Our data showed

that more than 50% of traces in some loop-heavy programs come

from five or fewer methods. So, future work may be able to use a

method-based analysis to reduce wasted traces in a manner that

could be more tractable than existing loop-based analysis which

is promising, but expensive, and took hours on the single-version

programs with no unit tests in the DaCapo benchmarks [111]. Also,

we believe it is now timely for research to revisit that loop-based

analysis with a view to speeding it up, e.g., by making it incremen-

tal during software evolution. Finally, we find that 1.4×106 useful

traces are in the code under test (CUT) or unit tests, 1.7×106 are in

libraries, and only 51,702 of them cross the code-and-library bound-

ary. When the frequencies of occurrence of these useful traces is

included, these numbers are 2.2×109, 5.7×108, 2.5×106. This finding

about the partitioning of traces is important: it can be a basis for

source-only or binary-only program analysis to be separately de-

signed and used to reduce wasted traces (and their events) that are

only in the CUT and unit tests, or only in the library, respectively.

We conclude from RQ2 that RV overhead is incurred on wasteful

and repetitive monitoring that is not useful for bug finding. Future

techniques that aim to reduce wasted monitoring during testing

could target the reduction of this waste.

4.3 RQ3: Time Spent in RV Components

Here, we turn our attention inwards: what proportion of time is

spent in the different components of an RV tool? Answering this

question is important to (1) help identify parts of the RV process

that future work should target; and (2) provide perspective on how

well prior algorithmic advances on RV perform during testing.

To answer RQ3, we run experiments in which we attach a profiler

to the JVM where RV is monitoring tests, and then process the raw

profiling data. We only report profiling results for 1,525 projects,

after excluding projects where raw profiling data was too large for

our custom processor to handle, or where the profiler failed.

Figure 5 shows proportions of time in different RV tool compo-

nents. There, all plots are based on sums over groups of projectsÐ

Figure 5a is for all 1,525 projects in RQ3, Figures 5bś5e are for

subsets of projects in the first, second, third, and fourth quartiles,

respectively, in increasing order of absolute RV overheads (ğ4.1).

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

20

40

60

80

100

%
o
f
to
ta
l
Ja
v
aM

O
P
ti
m
e

Instr. Project Monitoring Sync. Violation Other

Figure 6: % of JavaMOP time spent per component, aggregated

for projects in every fifth percentile; y-axis starts at 20%.

Surprisingly, we find that JavaMOP spends most of its time on

instrumentation rather than on monitoring traces. Across all 1,525

projects (Figure 5a), 60.5% of RV time is spent instrumenting the

code under test, test code, and the parts of third-party libraries that

a project uses. The proportion of time spent on instrumentation is

even higher for projects in the first, second, and third quartilesÐ

74.97%, 76.83%, and 73.09%, respectively. JavaMOP uses AspectJ [8,

79], a mature andwell-engineered tool.We confirmed that JavaMOP

does not use any experimental AspectJ settings. In fact, we use

JavaMOP (and AspectJ) as prior work did [84, 86, 89, 101].

Surveys, discussions, and techniques for improving RV instru-

mentation exist [15, 31, 104, 115, 127ś130], but we do not know any

prior work that quantifies the proportion of RV overhead that is

spent on instrumentation during testing of open-source projects.

Also, prior work on RV during testing [84, 86, 89, 101] did not break

down where RV spends its time. Yet, the findings in Figure 5 sug-

gests that lowering instrumentation costs should be one of the next

main frontiers of research on reducing RV overhead during testing.

Offline instrumentation at compile time is an alternative to the

load-time instrumentation that JavaMOP performs by default. In ğ5,

1803



An In-Depth Study of Runtime Verification Overheads during Software Testing ISSTA ’24, September 16ś20, 2024, Vienna, Austria

we find even higher costs and other problems with offline instru-

mentation, and propose practical ways to mitigate them pending

future research and development on faster instrumentation for RV.

Figure 5a also shows that RV spends 24.84% of its time on runtime

checking: managing monitor generation and event handling (Moni-

toring, 15.49%), waiting for locks to avoid concurrency problems

(Synchronization, 9.32%), and on handling violations (Violation,

0.03%, not visible in Figure 5a). These relatively small proportions

are made possible by tremendous progress made in prior work

on speeding up RV. However, research on faster but correct syn-

chronization could be productive to further reduce RV overhead.

Handling violations is negligible. But, as we show in ğ5, we find

and fix a performance bug in JavaMOP’s violation handling during

our study. Without this fix, violation handling would have inflated

the RV overheads that we report in this paper.

The coarse-grained aggregation in Figure 5 may occlude finer-

granularity observations. Given space limits, we partially address

this problem in Figure 6, showing the breakdown of RV time along

the same categories as in Figure 5 per five percentiles. There, it can

be seen that 5.1% of RV time is spent on monitoring (not instrumen-

tation) for projects between the 91st and 95th percentiles. However,

for projects above the 96th percentile, monitoring dominates the

RV overhead. We make two observations about these projects with

high monitoring costs. First, more algorithmic advances are likely

needed to scale RV beyond the projects and specs that we evalu-

ate. Second, our manual analysis of monitoring dominated projects

confirm that it is the cost of handling events and monitors that

are costly. In particular, some projects spent more than 50% of the

time monitoring a spec, including the max-overhead project in our

study, which spent a day monitoring one spec.

Figure 5 does not show any information about monitor garbage

collection [75]. But, on average, JavaMOP spends only 1.7% of its

time on garbage collection (for monitors and regular Java objects).

So, this omission does not affect our conclusions. Note, though,

that we run experiments on a server with a lot of memory, so

garbage-collection may be costlier in resource-constrained settings.

4.4 RQ4: Time Spent in Program Components

Proj Test Lib

63.26%

14.87%

21.87%

Figure 7: % of

JavaMOP time

spent in code

under test (Proj),

test code (Test),

and 3rd-party

libraries (Lib).

Ignoring instrumentation, we here inves-

tigate where in an open-source projects

monitoring time is spent. This investi-

gation is important: the time RV spends

in test code or third-party libraries was

often not measured in prior work on

RV, which often was evaluated on bench-

marks that have no libraries or unit tests.

But, RV during testing of open-source

projects must cope with tests and li-

braries, whichmay need to be monitored

(to avoid false positives or false nega-

tives [89]) and the performance costs of

doing so. To answer RQ4, we run similar

profiler-based experiments as we did for

RQ3. RQ3 concerns time spent in Java-

MOP components. Here, we are concerned with, łwhat part of

the program was running when calls to JavaMOP components are

Table 4: Data on 1,279 projects on which we evaluate compile-

time instrumentation. Table 2 describes column headers.

t 𝑡
rv

𝑡
rv−t 𝑡

rv/t #Mon #Event

Mean 6.3 54.6 48.3 12.3 3.9×106 6.4×107

Med 1.9 18.3 14.6 6.5 5,427 94,261

Min 1.3 3.0 1.6 1.1 76 2

Max 324.5 2,811.1 2,798.0 493.4 1.4×109 1.1×1010

Sum 8,076.7 69,845.3 61,768.5 n/a 4.9×109 8.2×1010

10 20 30 40 50 60 70 80 90 100

0

10

20

30

2.
32

2.
82 3.
62 4.
78 6.
8 9.
06

12
.5

18
.2
3

25
.7
9 37
.4
1

1.
02

1.
04

1.
1

1.
17

1.
31

1.
36

1.
59

1.
79

2.
18

13
.8
8

R
el
at
iv
e
o
v
er
h
ea
d
(𝑡
rv
/
t)

LTW CTW

Figure 8: Relative RV runtime overheads with load-time

(LTW) vs. after offline (CTW) instrumentation, for 1,279

projects, aggregated for every tenth percentile.

made: tests, library code, or code under test?ž. We use the 1,525

projects in RQ3 to answer RQ4.

Figure 7 shows the results, where the percentages are computed

from the sums across RQ4 projects. 36.74% of RV overhead is spent

on monitoring test code (21.87%) or third-party libraries (14.87%).

Monitoring test code or libraries may (not) be a waste. Develop-

ers can monitor them if they care about spec violations in libraries

they rely on (those violations can cause harm in deployment, and

several confirmed bugs that Legunsen et al. used RV to find are in

libraries [84, 86]). Also bugs in test code are important (e.g., such

bugs can reduce tests’ bug-finding effectiveness). Lastly, excluding

tests and libraries from monitoring can lead to false positives or

negatives during RV [89]. On the other hand, developers may not

want to monitor libraries that they have no control over (for legacy,

legal, or contractual reasons), or tests, which are often not deployed.

Regardless of the view about the wastefulness of monitoring test

code or libraries, our RQ4 results quantify at scale what parts of

a program RV spends its time in, and provides a data point that

developers and researchers could use to decide on what to monitor.

5 Discussion

5.1 Reducing Instrumentation Costs

Load-time instrumentation dominates RV overhead inmost projects

(ğ4.3), so we evaluate the potential benefits and challenges of per-

forming compile-time instrumentation offline before running tests.

We do so using 1,532 projects where absolute RV overhead is less

than 1 hour. We exclude projects with over 1 hour overhead because

they are not dominated by instrumentation and faster or offline

instrumentation cannot provide much speedup for them. Also, their

profiler output is often too large to precisely analyze.

One challenge is that offline instrumentation often fails; it fails

for 253 of 1,532 projects because of an assortment of AspectJ errors:

incompatible bytecode, typing issues, etc. Table 4 shows data, based

1804



ISSTA ’24, September 16ś20, 2024, Vienna, Austria Kevin Guan and Owolabi Legunsen

P
1

P
2

P
3

P
4

P
5

P
6

P
7

P
8

P
9

P
10

P
11

P
12

P
13

P
14

P
15

P
16

P
17

P
18

P
19

P
20

P
21

P
22

P
23

P
24

P
25

P
26

P
27

P
28

P
29

P
30

P
31

P
32

P
33

P
34

P
35

0

10

20

MOP psc1 pscℓ3 CTW(online) CTW(offline)

Figure 9: Average relative RV overhead across several versions of 35 projects: JavaMOP (MOP), evolution-aware RV (psc1 and

pscℓ3 ), and two incremental offline instrumentation strategies (CTW(online) and CTW(offline)).

0 50 100 150 200 250 300

LTW

CTW

instr. (src)

instr. (all)

Figure 10: Distribution of times (in seconds) for offline instru-

mentation (instr.), RV after offline instrumentation (CTW),

and RV with load-time instrumentation (outliers removed).

on load-time instrumentation about the 1,279 projects where our

offline instrumentation succeeds.

Figure 8 shows the potential benefits of using offline instrumen-

tation, whose times are excluded, over using load-time instrumenta-

tion during testing. There, we plot the relative overhead (𝑡 rv/t) for

every decile among these 1,279 projects, ordered by their absolute

overhead in ğ4.1. All groups in Figure 8 show reduction in relative

RV overhead; the maximum is the 9th decile, which sees a 11.83x

aggregate speedup. Individually, the project with the maximum

speedup (not shown in Figure 8) sees a 40.78x speedup. Lastly, we

observe an average speedup of 8x across all these projects.

Figure 10 shows the distribution of times to (1) instrument the

code under test, unit tests, and libraries (instr. (all)); (2) instrument

only the code under test and unit tests (instr. (src)); (3) run JavaMOP

after offline instrumentation (CTW); and (4) run JavaMOP with

load-time instrumentation (LTW). We make two main observations

from Figure 10. First, comparing łinstr. (all)ž and łinstr. (src)ž shows

that offline instrumentation of libraries is very costly, compared to

offline instrumentation of only the code under test and unit tests.

Second, running JavaMOP after offline instrumentation is much

faster than running JavaMOP with load-time instrumentation. But,

the end-to-end time of offline instrumentation (łinstr. (all)ž plus

łCTWž) is very slow, and unlikely to fit in tight CI budgets.

We conclude that offline instrumentation can reduce RV over-

head for a large subset of projects in our study. But, realizing these

speedups requires longer-term research to speed up offline instru-

mentation, especially for libraries. We next evaluate the feasibility

and potential benefits of incremental instrumentation as software

evolves, which could be a shorter-term engineering solution.

5.2 Amortizing Instrumentation Costs

To evaluate the feasibility of incremental offline instrumentation

as a way to amortize its costs during evolution, we select 35 of

the projects with the highest LTW minus CTW times in Figure 8.

(The greater the LTW minus CTW time, the more RV overhead is

dominated by instrumentation.) Then, we select up to 50 historical

versions of these projects from GitHub where at least one Java file

changed, code compiles, and tests pass with and without JavaMOP.

For all 1,210 versions of these 35 projects that we obtain, we

measure the overhead of five approaches, relative to the time to

run tests without RV: (1) run JavaMOP from scratch with load-

time instrumentation (MOP); (2) run safe but slow evolution-aware

RV (psc1); (3) run the fastest but unsafe evolution-aware RV (pscℓ3 );

(4) run JavaMOP after offline re-instrumentation of changed code

or libraries (CTW(online)); and (5) run JavaMOP after offline re-

instrumentation of only changed sources (CTW(offline)).

CTW(offline) assumes that changed libraries are instrumented

ahead of time, e.g., as part of the library update, or by downloading

them from a (hypothetical) repository of pre-instrumented jars (ğ6).

We use the names (psc1 and pscℓ3 ) of evolution-aware techniques

as in prior work [89, 138]. They work as follows. Given a set of

changed bytecode files, the set of impacted classes (IC)Ðthose

whose behavior can differ after the changesÐis first computed

using static change-impact analysis [88, 131]. Then, the set of af-

fected specs (AS)Ðthose whose events may be generated in ICÐis

computed using AspectJ. Finally, only AS is re-monitored in the

new program version (JavaMOP re-monitors all). Evolution-aware

RV is safe if it finds all violations that are new after the change.

psc1 is safer than pscℓ3 : its IC is more comprehensive and it instru-

ments AS everywhere (including libraries) except classes in the

complement of IC. However, pscℓ3 is faster than psc1: its IC is smaller,

it does not instrument AS in some IC (so it is unsafe by design),

it does not instrument AS in libraries, and it does not instrument

AS in classes that are in the complement of IC. Note that pscℓ3 is

the fastest evolution-aware RV technique that selects among specs.

Also, JavaMOP, CTW(online), and CTW(offline) are safe.

Figure 9 shows the results. There, the trends among JavaMOP and

the evolution-aware RV techniques are similar to those from prior

1805



An In-Depth Study of Runtime Verification Overheads during Software Testing ISSTA ’24, September 16ś20, 2024, Vienna, Austria

M1 M2 M3 M4 M5 M6 M7 B1 B2 B3 B4 B5 B6 B7 B8 B9

0

2

4

6

MOP psc1 pscℓ3 CTW (online) CTW (offline)

Figure 11: Incremental instrumentation on 7 mid- (M) and 9 bottom-range (B) projects in decreasing order of LTWminus CTW.

Instrumentation Project Monitoring Synchronization Violation Other

59.65%

8.44%

12.88%

9.61%

4.82% 4.6%

11.82s
7.9s

113.32s

8.9%

18.06s

1101.03s

86.46% 21.28s

9.53s
5.29%

5.88s

99.94s

55.44%

16.75s

9.29%

23.49s

13.03%
24.69s

13.7%

0 1 2 3

·104

mop

psc1

pscℓ3

Total time

Figure 12: Before we fixed a bug in JavaMOP, handling violations was a sizeable portion of RV time across all projects (square

chart). That bug dominated overheads in projects like lexburner/consistent-hash-algorithm before (left pie chart) but not after

(rightmost pie chart) we fixed it. The bar graph breaks down where evolution-aware RV spends time.

work [89, 138] (we use a disjoint set projects with higher overhead).

Overall, the results are promising. Surprisingly (as instrumenting

libraries is very expensiveÐğ5.1), even CTW(online) performs very

well: it is faster than pscℓ3 in 12 projects, faster than psc1 in 29 projects,

slower than psc1 but faster than MOP in 2 projects, and slower

than MOP in only 4 projects. CTW(offline) performs even better:

it is always faster than psc1 and faster than, or equal to pscℓ3 in 29

projects. Figure 11 shows results of incremental instrumentation on

344 versions of 16 other projects; seven are near the middle when

LTW minus CTW is sorted in descending order; others are near

the bottom. As expected, incremental instrumentation works better

when LTW minus CTW is higher. Bottom-range projects do not

benefit as much and analysis costs make them slower.

We conclude that it is worthwhile to develop instrumentation-

driven evolution-aware RV techniques and tools in the short term.

But, longer-term research on faster instrumentation seems to be

needed to speed up RV during testing.

5.3 More Benefits of Profiling RV

Profiling RV overhead helped us in two other ways. First, it helped

us discover a performance regression that had been in JavaMOP

since 2013 [119]. The bug causes JavaMOP to obtain location infor-

mation for violations (to aid debugging) by throwing an exception

and parsing the stack trace for each violation, instead of reading

from AspectJ, which already has precise location information. This

bug is costly, especially when there are many violations, and could

have caused us to report inflated RV overheads if we had not found

and fixed it. To see how, consider the square chart on the left of

Figure 12, which shows the sum across all 1,544 projects of the time

that JavaMOP spends in it own components before we fixed the

bug; 4.82% of all RV time is spent on handling violations, compared

to 0.03% after we fixed the bug.

We noticed this bug while inspecting per-project profiling re-

sults, which showed that violation handling dominated overhead

in some projects. For example, the leftmost circular pie chart in

Figure 12 shows that 86.46% (or, 1,101.0 seconds) of RV time in

lexburner/consistent − hash − algorithmwas due to violation

handling. That overhead reduced to 13.03% (or, 23.49 seconds) after

we fixed the bug, as seen in rightmost pie chart in Figure 12. . We

do not know which (if any) of the many papers that used JavaMOP

since 2013 have results that are affected by this bug.

The second way profiling helped us is for interpreting the results

of evolution-aware RV techniques. The bar plot in Figure 12, which

is a sum of where JavaMOP, psc1, and pscℓ3 spend time among RV

components, for 26 of 35 projects that we evaluated incremental

offline instrumentation on. There, psc1 does not save much monitor-

ing time, and it incurs a lot of instrumentation costs. Also, pscℓ3 ’s

monitoring-time reduction is somewhat obscured by instrumen-

tation time. This, as far as we know, is the first component-level

explanation for these evolution-aware RV techniques’ savings.

5.4 Assumptions and Other Considerations

This paper assumes that users will likely want to use RV during

continuous integration (CI), which is increasingly widely used to-

day [66, 67]. An alternative is to only run RV periodically. We

assume the CI setting for two reasons. First, like with regression

testing [58, 59, 81, 85, 91, 92, 109, 124, 126, 137, 139ś141], running

RV during CI can help find/fix bugs earlier. Finding/fixing bugs

1806



ISSTA ’24, September 16ś20, 2024, Vienna, Austria Kevin Guan and Owolabi Legunsen

often grows costlier as time-to-discovery grows, and running RV

only periodically risks finding bugs later. Second, using lightweight

formal methods during CI has helped bring other techniques closer

to everyday use [107], and we hope that doing so will help RV

make similar impact. But, even for periodic runs, reducing RV over-

heads can still be helpful, especially when (rapidly) evolving code

is deployed multiple times daily, e.g., [102].

This paper also assumes that users will likely want to check all

available specs, especially if those specs ship with the RV tool like in

JavaMOP. The alternative is to run our experiments, or for users to

run RV, only with a fewer number of important specs (all 160 specs

are not equally important [84, 86]). But, our experience shows that it

is hard for researchers to determine which specs are more important

than others per project. For example, [83] classifies specs in our

study in decreasing order of violation severity as łerrorž, łwarningž,

or łsuggestionž. Yet, łsuggestionž specs helped find bugs [84, 86,

101] at similar rates as łerrorž specs [84]. Also, developers are

often not formal-methods experts and may find it even harder

than researchers to determine important specs. So, we think that

developers are likely to just run all available specs.

6 Suggestions for Future RV Research

Based on our study, we suggest several directions for research on

further reducing RV overhead, to increase the chance of adoption.

Speeding Up Instrumentation. Future research and development

should be invested into speeding up instrumentation, which is high

and constitutes the main proportion of RV overhead during testing

in many open-source projects (ğ4.3). Speeding up instrumentation

may not have been a major concern in RV research, which often

targets RV in deployment where instrumentation cost is incurred

once during startup. But, RV during testing in today’s rapid CI

cycles will re-incur instrumentation costs from scratch, and could

become a hindrance to broad developer adoption of RV.

Longer term, new frameworks that are fast or algorithms to speed

up current instrumentation frameworks like AspectJ are needed.

The RV community already started working in this direction. The

recent work on BISM [127ś130] is one example, but it still lacks

robust tool support (e.g., it is not open sourced at this time of

writing) and it was not yet evaluated at scale during testing of

open-source projects. More work in this direction is needed.

In the interim, two directions can help speed up current instru-

mentation frameworks that have well-engineered tool support (like

AspectJ). First, our proofs of concept (ğ5.1 and ğ5.2) motivate (incre-

mental) compile-time instrumentation. But, several other problems

with compile-time instrumentation must be addressed and better

tool support for incremented compile-time instrumentation during

CI is needed. Second, incremental compile-time instrumentation

will not reduce the high costs of instrumenting libraries, and differ-

ent RV users will wastefully re-instrument the same libraries. We

next suggest an engineering solution to the second problem.

Open Repository of Instrumented Libraries. A public service

and repository of pre-instrumented libraries (e.g., jars) would help.

Several models are possible; we discuss two. (1) If an instrumented

library is not in the repository, a user instruments it and uploads it

to the repository with the list of specs used. The repository assures

security and trust in the uploaded libraries. (2) The repository

exposes a list of available specs for users to select from, the user

provides a URL to the library (e.g., on Maven Central), and the

repository produces an instrumented version of the jar and stores

it for future download. A community process is needed to work out

the details and ensure success. But, the gains can surpass the cost

of setting up and maintaining such a repository.

New RV Techniques for Software Testing. Future techniques

for making the monitoring aspects of RV (handling monitors and

events, synchronization) scale better could leverage findings in

this paper (e.g., the repetitiveness of checked program paths or

the concentration of monitoring effort in few methods). In a sense,

following recent work on RV of tests, this paper evaluates RV during

testing using a technique that was designed for production runs. It

may be possible to develop new RV techniques that are designed

from ground up for use during software testing and CI.

Reporting RV Performance Improvement Results. Future

work on speeding up RV during testing should be evaluated on

open-source projects (not just benchmarks that have no unit tests

or use no libraries) and report results that are accompanied by in-

formation obtained from the kinds of profiling that we do in this

paper. Doing so would help to better evaluate impact on practice

and to better interpret the results (in terms of what RV components’

cost is being reduced), as we show for evolution-aware RV in ğ5.4.

7 Threats to Validity and Limitations

External. Our study results may not generalize beyond projects

that we evaluate. To mitigate this threat, we study a set of open-

source projects with more than 5 times the number used in prior

work on RV during testing. Further, there was wide diversity among

the projects that we evaluate in terms of various program charac-

teristics (see Table 1). The specs that we use are about standard Java

library API usage (allowing us to evaluate many projects); different

results may be obtained for project-specific specs or other JDK API

usage specs. The set of specs that we use is the largest publicly

available one, and prior work [84, 86] showed that they are better

than automatically mined specs. Future work can use more specs

or project-specific specs.

We study RV overhead using developer written tests; different

results may be obtained for automatically generated tests. Many

RV tools and techniques other than JavaMOP exist; RV overheads

may differ for others. But, several RV tools cannot check multiple

specs simultaneously or have not been evaluated large sets of open-

source projects. Also, JavaMOP is one of the most widely cited RV

tools. Regardless of RV tool, instrumentation is a prerequisite for

RV, so speeding it up should be beneficial more broadly. Finally,

our results may not generalize to other programming languages

beyond Java, or to other build systems.

Internal. We write scripts and Maven extensions to automate

our experiments. Those artifacts and their output were reviewed

several times, and we will release them for external validation.

We extended JavaMOP to obtain traces (ğ3.3). Our changes do not

modify instrumentation code (JavaMOP is very modular), and is

not responsible for the high instrumentation costs that we observe.

Limitations. We only study RV overheads, not any other poten-

tial hindrances to its use in practice. Usability of RV and its spec

languages is a subject of other research [86, 101, 132]. We do not

1807



An In-Depth Study of Runtime Verification Overheads during Software Testing ISSTA ’24, September 16ś20, 2024, Vienna, Austria

re-litigate spec quality [84, 86]: RV finds 10,733 violations during

our experiments, but inspecting them is out of scope of this paper.

8 Related Work

RV during Software Testing. The potential to use RV during

testing was previously recognized [6, 7], and is often mentioned

in RV papers. But, only with relatively recent advancements in

RV technology that enabled efficient simultaneous monitoring of

multiple specs [94] did researchers start focusing on problems that

arise when RV is used during testing in modern software devel-

opment environments. Legunsen et al. demonstrated that RV am-

plifies the bug-finding ability of test suites [84, 86] and that focus-

ing RV on code changes could help scale RV better as software

evolves [87, 89, 138]. Our study is complementary and orthogo-

nal: we perform a first-principles examination of the prevalence,

usefulness, and breakdowns of RV overhead during testing.

Legunsen et al. [84, 86] show that RV lacks high-quality specs

and generates many false alarms during testing. So, Miranda et

al. [101] use machine learning to rank violations in order of like-

lihood of being true bugs. These works focus on human time for

inspecting violations, but our focus is on runtime overheads. Some

works integrate RV directly into unit testing frameworks, e.g., for

Python [116] and for JUnit [39]; future work can evaluate them.

RV Research More Broadly. There has been decades of active re-

search on RV, and several surveys, introductions, and competitions

exist [14ś16, 44ś46, 90, 114]. Beyond integration with testing, some

major directions in RV research (1) develop monitoring algorithms

for spec languages [19, 21, 63, 64, 68, 80, 99, 100, 118, 121, 133],

(2) theoretically analyze what properties are monitorable [1, 2, 20,

40, 43, 47, 60, 65, 117, 120], (3) develop techniques, algorithms, and

data structures to speed up RV [27, 28, 32, 38, 41, 75, 77, 94, 111, 112,

135], (4) develop RV for different application domains [17, 37, 38, 48ś

51, 53, 71, 122, 134, 136], (5) investigate other styles of RV that differ

from JavaMOP’s [3, 10ś12, 18, 30, 35, 36, 42, 61, 70, 96, 106, 113],

and (6) develop frameworks and tools [5, 25, 33, 62, 76, 78, 138].

Our study is enabled by these advancements, but our goal is

different: we seek to evaluate and understand the overheads of

a popular style of RV during testing today. Our work hopefully

encourages other researchers to perform similar evaluations for

other styles and application domains of RV. Some RV techniques

probabilistically sample monitors and events [5, 29] in long-running

production environments. The degree of repetition among traces

that we found suggests that future work could investigate sampling

approaches during testing as well.

Other Studies of RV during Testing. Javed and Binder [73] eval-

uate JavaMOP and two other RV tools on 1,775 Maven open-source

projects. But, they monitor one spec at a time and only use two

specs. They do not analyze RV overhead in depth as we do, and their

evaluation setting is not realistic: one would have to repeatedly run

all tests for each spec. So, using their setting we would have seen

at least 160x overhead per project (since we monitor 160 specs).

On the flip side, they evaluate memory overhead, which is not a

concern for us: tests in modern open-source projects are typically

not run in memory-constrained environments. Although Javed and

Binder evaluate more projects than we do, the product of specs and

projects in this paper (1,544 x 160) is larger than theirs (1,775 x 2).

Unlike theirs, our study also evaluates multiple versions of some

projects and develops proofs-of-concept for reducing RV overhead.

Instrumentation forRV. Cassar et al. [31] survey instrumentation

strategies in RV. Navabpour et al. [104] propose an instrumentation

approach for a sampling-based RV technique. Bodden et al. [26]

propose an approach to lower RV overhead in deployment by hav-

ing many users run partially instrumented code. Marek et al. [95]

develop a domain-specific language for instrumentation that incurs

less overhead in a non-RV setting than AspectJ, but the overall

instrumentation costs remain high. None of these prior works con-

cern testing and they do not quantify, at scale, the proportion of RV

overhead that is due to instrumentation. But, it may be possible for

future work to learn from these works to reduce instrumentation

overheads during RV of tests.

9 Conclusions and Future Work

RV’s high runtime overhead is widely seen as a major hindrance

to its adoption. Our large-scale and in-depth study quantifies and

analyzes those overheads during testing, in terms of their preva-

lence, usefulness for bug finding, and components. Among other

things, we find that the cost of instrumentation (not monitoring)

is responsible for RV’s overheads in most evaluated projects, and

that monitoring effort is repetitively wasted in a manner that is

not useful for finding bugs. Further, we investigate proofs of con-

cept for reducing these overheads in the short term, and suggest

longer-term future directions.

Data Availability

Our accompanying artifact contains an appendix with additional

plots, raw data from our experiments, and our experimental infras-

tructure (see link at bottom of Section 1).

Acknowledgments

We thank Marcelo d’Amorim, Saikat Dutta, Alan Han, Pengyue

Jiang, Yu Liu, Steven Long, Valeria Marquez, Sasa Misailovic, Ayaka

Yorihiro, and the anonymous reviewers for their help, comments,

and feedback. This work is partially supported by an Intel Rising

Star Faculty Award, a Google Cyber NYC Institutional Research

Award, and the United States National Science Foundation (NSF)

under Grant Nos. CCF-2045596 and CCF-2319473.

References
[1] Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, and

Karoliina Lehtinen. 2019. Adventures in monitorability: from branching to
linear time and back again. PACMPL 3, POPL (2019).

[2] Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, and
Karoliina Lehtinen. 2019. An operational guide to monitorability. In SEFM.

[3] Chris Allan, Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha
Kuzins, Ondřej Lhoták, Oege de Moor, Damien Sereni, Ganesh Sittampalam,
and Julian Tibble. 2005. Adding Trace Matching with Free Variables to AspectJ.
In OOPSLA.

[4] Apache Software Foundation 2024. Apache Maven. http://maven.apache.org/.
[5] Matthew Arnold, Martin Vechev, and Eran Yahav. 2008. QVM: An Efficient

Runtime for Detecting Defects in Deployed Systems. In OOPSLA.
[6] Cyrille Artho, Howard Barringer, Allen Goldberg, Klaus Havelund, Sarfraz

Khurshid, Mike Lowry, Corina Pasareanu, Grigore Roşu, Koushik Sen, Willem
Visser, et al. 2005. Combining test case generation and runtime verification.
TCS 336, 2-3 (2005).

[7] Cyrille Artho, Doron Drusinksy, Allen Goldberg, Klaus Havelund, Mike Lowry,
Corina Pasareanu, Grigore Roşu, and Willem Visser. 2003. Experiments with
test case generation and runtime analysis. In Abstract State Machines.

1808



ISSTA ’24, September 16ś20, 2024, Vienna, Austria Kevin Guan and Owolabi Legunsen

[8] AspectJ Guide 2005. Chapter 5. Load-Time Weaving. https://eclipse.dev/aspectj/
doc/released/devguide/ltw.html.

[9] Async-Profiler Team 2024. Sampling CPU and HEAP profiler for Java. https:
//github.com/async-profiler/async-profiler.

[10] Pavel Avgustinov, Julian Tibble, and Oege de Moor. 2007. Making trace monitors
feasible. In OOPSLA.

[11] Howard Barringer, Allen Goldberg, Klaus Havelund, and Koushik Sen. 2004.
Rule-Based Runtime Verification. In VMCAI.

[12] Howard Barringer, David Rydeheard, and Klaus Havelund. 2010. Rule Systems
for Run-timeMonitoring: From Eagle to RuleR. Journal of Logic and Computation
20, 3 (2010).

[13] Ezio Bartocci, Borzoo Bonakdarpour, and Yliès Falcone. 2014. First International
Competition on Software for Runtime Verification. In RV.

[14] Ezio Bartocci, Yliès Falcone, Borzoo Bonakdarpour, Christian Colombo, Nor-
mann Decker, Klaus Havelund, Yogi Joshi, Felix Klaedtke, Reed Milewicz, Giles
Reger, Grigore Roşu, Julien Signoles, Daniel Thoma, Eugen Zalinescu, and Yi
Zhang. 2019. First international Competition on Runtime Verification: Rules,
benchmarks, tools, and final results. IJSTTT 21, 1 (2019).

[15] Ezio Bartocci, Yliès Falcone, Adrian Francalanza, and Giles Reger. 2018. Intro-
duction to Runtime Verification. In Lectures on Runtime Verification.

[16] Ezio Bartocci, Yliès Falcone, and Giles Reger. 2019. International Competition
on Runtime Verification. In TACAS.

[17] David Basin, Felix Klaedtke, and Eugen Zălinescu. 2015. Failure-aware runtime
verification of distributed systems. In FSTTCS.

[18] David Basin, Felix Klaedtke, and Eugen Zălinescu. 2017. Runtime verification
of temporal properties over out-of-order data streams. In CAV.

[19] Omar Bataineh, David S Rosenblum, and Mark Reynolds. 2019. Efficient de-
centralized LTL monitoring framework using tableau technique. TECS 18, 5s
(2019).

[20] Andreas Bauer. 2010. Monitorability of Omega-regular languages. arXiv preprint
arXiv:1006.3638 (2010).

[21] Andreas Bauer and Ylies Falcone. 2012. Decentralised LTL monitoring. In FM.
[22] Bazel 2024. Bazel Home Page. https://bazel.build.
[23] Jon Bell, Owolabi Legunsen, Michael Hilton, Lamyaa Eloussi, Tifany Yung, and

Darko Marinov. 2018. DeFlaker: Automatically Detecting Flaky Tests. In ICSE.
[24] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang,

Kathryn S. McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel
Frampton, Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han
Lee, J. Eliot B. Moss, Aashish Phansalkar, Darko Stefanović, Thomas VanDrunen,
Daniel von Dincklage, and Ben Wiedermann. 2006. The DaCapo Benchmarks:
Java Benchmarking Development and Analysis. In OOPSLA.

[25] Eric Bodden. 2011. MOPBox: A Library Approach to Runtime Verification. In
RV.

[26] Eric Bodden, Laurie Hendren, Patrick Lam, Ondřej Lhoták, and Nomair A.
Naeem. 2007. Collaborative Runtime Verification with Tracematches. In RV.

[27] Eric Bodden, Laurie Hendren, and Ondrej Lhoták. 2007. A Staged Static Program
Analysis to Improve the Performance of Runtime Monitoring. In ECOOP.

[28] Eric Bodden, Patrick Lam, and Laurie Hendren. 2008. Finding Programming
Errors Earlier by Evaluating Runtime Monitors Ahead-of-time. In FSE.

[29] Borzoo Bonakdarpour, Samaneh Navabpour, and Sebastian Fischmeister. 2013.
Time-triggered runtime verification. In FMSD, Vol. 43.

[30] Glenn Bruns and Patrice Godefroid. 2001. Temporal logic query checking. In
LICS.

[31] Ian Cassar, Adrian Francalanza, Luca Aceto, and Anna Ingólfsdóttir. 2017. A
survey of runtime monitoring instrumentation techniques. arXiv preprint
arXiv:1708.07229 (2017).

[32] Feng Chen, Patrick O’Neil Meredith, Dongyun Jin, and Grigore Roşu. 2009.
Efficient formalism-independent monitoring of parametric properties. In ASE.

[33] Feng Chen andGrigore Roşu. 2003. TowardsMonitoring-Oriented Programming:
A paradigm combining specification and implementation. In RV.

[34] Feng Chen and Grigore Roşu. 2009. Parametric trace slicing and monitoring. In
TACAS.

[35] Marcelo d’Amorim and Klaus Havelund. 2005. Event-based runtime verification
of Java programs. In WODA.

[36] Ben d’Angelo, Sriram Sankaranarayanan, César Sánchez, Will Robinson, Bernd
Finkbeiner, Henny B Sipma, Sandeep Mehrotra, and Zohar Manna. 2005. LOLA:
runtime monitoring of synchronous systems. In Temporal Representation and
Reasoning.

[37] Luis Miguel Danielsson and César Sánchez. 2019. Decentralized stream runtime
verification. In RV.

[38] Normann Decker, Jannis Harder, Torben Scheffel, Malte Schmitz, and Daniel
Thoma. 2016. Runtime Monitoring with Union-Find Structures. In TACAS.

[39] Normann Decker, Martin Leucker, and Daniel Thoma. 2013. jUnit RVśadding
runtime verification to jUnit. In FM.

[40] Volker Diekert and Martin Leucker. 2014. Topology, monitorable properties and
runtime verification. TCS 537 (2014).

[41] Matthew B. Dwyer, Rahul Purandare, and Suzette Person. 2010. Runtime Verifi-
cation in Context: Can Optimizing Error Detection Improve Fault Diagnosis?.

In RV.
[42] U. Erlingsson and F. B. Schneider. 2000. IRM enforcement of Java stack inspection.

In IEEE S&P.
[43] Yliès Falcone, Jean-Claude Fernandez, and Laurent Mounier. 2012. What can

you verify and enforce at runtime? IJSTTT 14 (2012).
[44] Yliès Falcone, Klaus Havelund, and Giles Reger. 2013. A Tutorial on Runtime

Verification. In Engineering Dependable Software Systems.
[45] Yliès Falcone, Srđan Krstić, Giles Reger, and Dmitriy Traytel. 2018. A Taxonomy

for Classifying Runtime Verification Tools. In RV.
[46] Yliès Falcone, Dejan Ničković, Giles Reger, and Daniel Thoma. 2015. Second

International Competition on Runtime Verification. In RV.
[47] Adrian Francalanza, Luca Aceto, Antonis Achilleos, Duncan Paul Attard, Ian

Cassar, Dario Della Monica, and Anna Ingólfsdóttir. 2017. A foundation for
runtime monitoring. In RV.

[48] Adrian Francalanza, Jorge A Pérez, and César Sánchez. 2018. Runtime verifica-
tion for decentralised and distributed systems. Lectures on Runtime Verification
(2018).

[49] Ritam Ganguly, Anik Momtaz, and Borzoo Bonakdarpour. 2021. Distributed
runtime verification under partial synchrony. In OPODIS.

[50] Ritam Ganguly, Yingjie Xue, Aaron Jonckheere, Parker Ljung, Benjamin Schorn-
stein, Borzoo Bonakdarpour, and Maurice Herlihy. 2022. Distributed Runtime
Verification of Metric Temporal Properties for Cross-Chain Protocols. In ICDCS.

[51] Ritam Ganguly, Yingjie Xue, Aaron Jonckheere, Parker Ljung, Benjamin Schorn-
stein, Borzoo Bonakdarpour, and Maurice Herlihy. 2024. Distributed runtime
verification of metric temporal properties. J. Parallel and Distrib. Comput. 185
(2024).

[52] Google Testing Blog 2008. TotT: Avoiding Flakey Tests. http://goo.gl/vHE47r.
[53] Felipe Gorostiaga and César Sánchez. 2018. Striver: Stream runtime verification

for real-time event-streams. In RV.
[54] Gradle 2024. Gradle Home Page. https://gradle.org.
[55] Grammatech 2024. ARTCAT: Autonomic Response To Cyber-Attack. https:

//grammatech.github.io/prj/artcat.
[56] Matthew R Guthaus, Jeffrey S Ringenberg, Dan Ernst, Todd M Austin, Trevor

Mudge, and Richard B Brown. 2001. MiBench: A free, commercially representa-
tive embedded benchmark suite. In Workshop on Workload Characterization.

[57] Alex Gyori, Ben Lambeth, August Shi, Owolabi Legunsen, and Darko Marinov.
2016. NonDex: A tool for detecting and debugging wrong assumptions on Java
API specifications. In FSE Demo.

[58] Alex Gyori, Owolabi Legunsen, Farah Hariri, and Darko Marinov. 2018. Evaluat-
ing regression test selection opportunities in a very large open-source ecosystem.
In ISSRE.

[59] Mary Jean Harrold, James A. Jones, Tongyu Li, Donglin Liang, Alessandro Orso,
Maikel Pennings, Saurabh Sinha, S. Alexander Spoon, and Ashish Gujarathi.
2001. Regression Test Selection for Java Software. In OOPSLA.

[60] Klaud Havelund and Doron Peled. 2023. Monitorability for Runtime Verification.
In RV.

[61] Klaus Havelund, Doron Peled, and Dogan Ulus. 2017. First order temporal logic
monitoring with BDDs. In FMSD.

[62] Klaus Havelund and Grigore Roşu. 2001. Monitoring Java Programs with Java
PathExplorer. In RV.

[63] Klaus Havelund and Grigore Roşu. 2001. Monitoring Programs Using Rewriting.
In ASE.

[64] Klaus Havelund and Grigore Roşu. 2002. Synthesizing Monitors for Safety
Properties. In TACAS.

[65] Thomas A Henzinger and N Ege Saraç. 2020. Monitorability under assumptions.
In RV.

[66] Michael Hilton, Nicholas Nelson, Timothy Tunnell, Darko Marinov, and Danny
Dig. 2017. Trade-offs in continuous integration: assurance, security, and flexi-
bility. In FSE.

[67] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny Dig.
2016. Usage, costs, and benefits of continuous integration in open-source
projects. In ASE.

[68] Hsi-Ming Ho, Joël Ouaknine, and James Worrell. 2014. Online monitoring of
metric temporal logic. In RV.

[69] How good are Specs? 2016. Supplementary Material for Paper [86]. https:
//www.cs.cornell.edu/~legunsen/spec-eval.

[70] Samuel Huang and Rance Cleaveland. 2022. Temporal-logic query checking
over finite data streams. IJSTTT 24, 3 (2022).

[71] Soha Hussein, Patrick Meredith, and Grigore Roşu. 2012. Security-Policy Moni-
toring and Enforcement with JavaMOP. In PLAS.

[72] JavaMOP 2024. JavaMOP Team. https://github.com/runtimeverification/
javamop.

[73] O. Javed and W. Binder. 2018. Large-Scale Evaluation of the Efficiency of
Runtime-Verification Tools in the Wild. In APSEC.

[74] JetBrains 2024. How IntelliJ IDEA profiler works. https://www.jetbrains.com/
help/idea/cpu-and-allocation-profiling-basic-concepts.html.

[75] Dongyun Jin, Patrick O’Neil Meredith, Dennis Griffith, and Grigore Roşu. 2011.
Garbage Collection for Monitoring Parametric Properties. In PLDI.

1809



An In-Depth Study of Runtime Verification Overheads during Software Testing ISSTA ’24, September 16ś20, 2024, Vienna, Austria

[76] Dongyun Jin, Patrick O’Neil Meredith, Choonghwan Lee, and Grigore Roşu.
2012. JavaMOP: Efficient Parametric Runtime Monitoring Framework. In ICSE
Demo.

[77] Dongyun Jin, Patrick O’Neil Meredith, and Grigore Roşu. 2012. Scalable Para-
metric Runtime Monitoring. Technical Report. Computer Science Dept., UIUC.

[78] Murat Karaorman and Jay Freeman. 2004. jMonitor: Java runtime event specifi-
cation and monitoring library. In RV.

[79] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G Griswold. 2001. An overview of AspectJ. In ECOOP.

[80] Moonjoo Kim, Mahesh Viswanathan, Hanene Ben-Abdallah, Sampath Kannan,
Insup Lee, and Oleg Sokolsky. 1999. Formally specified monitoring of temporal
properties. In ECRTS.

[81] David Chenho Kung, Jerry Gao, Pei Hsia, Jeremy Lin, and Yasufumi Toyoshima.
1995. Class firewall, test order, and regression testing of object-oriented pro-
grams. JOOP 8, 2 (1995).

[82] Wing Lam, Reed Oei, August Shi, Darko Marinov, and Tao Xie. 2019. iDFlakies:
A framework for detecting and partially classifying flaky tests. In ICST.

[83] Choonghwan Lee, Dongyun Jin, Patrick O’Neil Meredith, and Grigore Roşu.
2012. Towards Categorizing and Formalizing the JDK API. Technical Report.
Computer Science Dept., UIUC.

[84] Owolabi Legunsen, Nader Al Awar, Xinyue Xu, Wajih Ul Hassan, Grigore Roşu,
and Darko Marinov. 2019. How Effective are Existing Java API Specifications
for Finding Bugs During Runtime Verification? ASE Journal 26, 4 (2019).

[85] Owolabi Legunsen, Farah Hariri, August Shi, Yafeng Lu, Lingming Zhang, and
Darko Marinov. 2016. An Extensive Study of Static Regression Test Selection in
Modern Software Evolution. In FSE.

[86] Owolabi Legunsen, Wajih Ul Hassan, Xinyue Xu, Grigore Roşu, and Darko
Marinov. 2016. How good are the specs? A study of the bug-finding effectiveness
of existing Java API specifications. In ASE.

[87] Owolabi Legunsen, Darko Marinov, and Grigore Roşu. 2015. Evolution-aware
monitoring-oriented programming. In ICSE NIER.

[88] Owolabi Legunsen, August Shi, and Darko Marinov. 2017. STARTS: STAtic
Regression Test Selection. In ASE.

[89] Owolabi Legunsen, Yi Zhang, Milica Hadzi-Tanovic, Grigore Roşu, and Darko
Marinov. 2019. Techniques for Evolution-Aware Runtime Verification. In ICST.

[90] Martin Leucker and Christian Schallhart. 2007. A brief account of runtime
verification. In FLACOS.

[91] Hareton K.N. Leung and Lee White. 1990. A study of integration testing and
software regression at the integration level. In ICSM.

[92] Yu Liu, Jiyang Zhang, Pengyu Nie, Milos Gligoric, and Owolabi Legunsen. 2023.
More precise regression test selection via reasoning about semantics-modifying
changes. In ISSTA.

[93] Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. 2014. An
empirical analysis of flaky tests. In FSE.

[94] Qingzhou Luo, Yi Zhang, Choonghwan Lee, Dongyun Jin, Patrick O’Neil Mered-
ith, Traian Florin Şerbănuţă, and Grigore Roşu. 2014. RV-Monitor: Efficient
Parametric Runtime Verification with Simultaneous Properties. In RV.

[95] Lukáš Marek, Alex Villazón, Yudi Zheng, Danilo Ansaloni, Walter Binder, and
Zhengwei Qi. 2012. DiSL: A domain-specific language for bytecode instrumen-
tation. In AOSD.

[96] Michael Martin, Benjamin Livshits, and Monica S Lam. 2005. Finding application
errors and security flaws using PQL: a program query language. In OOPSLA.

[97] Matplotlib Team 2024. Matplotlib: Visualization with Python. https://matplotlib.
org.

[98] Atif M. Memon andMyra B. Cohen. 2013. Automated testing of GUI applications:
models, tools, and controlling flakiness. In ICSE.

[99] P.O. Meredith, Dongyun Jin, Feng Chen, and G. Roşu. 2008. Efficient Monitoring
of Parametric Context-Free Patterns. In ASE.

[100] Patrick Meredith and Grigore Roşu. 2013. Efficient Parametric Runtime Verifi-
cation with Deterministic String Rewriting. In ASE.

[101] Breno Miranda, Igor Lima, Owolabi Legunsen, and Marcelo d’Amorim. 2020.
Prioritizing Runtime Verification Violations. In ICST.

[102] Miranda, Joāo 2014. How Etsy Deploys More Than 50 Times a Day. https:
//www.infoq.com/news/2014/03/etsy-deploy-50-times-a-day.

[103] Mountainminds GmbH & Co. KG and Contributors 2017. JaCoCo Java Code
Coverage Library. http://www.eclemma.org/jacoco/.

[104] Samaneh Navabpour, Chun Wah Wallace Wu, Borzoo Bonakdarpour, and Sebas-
tian Fischmeister. 2011. Efficient Techniques for Near-Optimal Instrumentation
in Time-Triggered Runtime Verification. In RV.

[105] Pengyu Nie, Rahul Banerjee, Junyi Jessy Li, Raymond J. Mooney, and Milos
Gligoric. 2023. Learning Deep Semantics for Test Completion. In ICSE.

[106] Vinit A Ogale and Vijay K Garg. 2007. Detecting temporal logic predicates on
distributed computations. In DISC.

[107] Peter W O’Hearn. 2018. Continuous reasoning: Scaling the impact of formal
methods. In LICS.

[108] Oracle 2024. Collections API. https://docs.oracle.com/en/java/javase/17/
docs/api/java.base/java/util/Collections.html#synchronizedCollection(java.
util.Collection).

[109] Alessandro Orso, Nanjuan Shi, and Mary Jean Harrold. 2004. Scaling regression
testing to large software systems. In FSE.

[110] Fabio Palomba and Andy Zaidman. 2017. Does refactoring of test smells induce
fixing flaky tests?. In ICSME.

[111] Rahul Purandare, Matthew B. Dwyer, and Sebastian Elbaum. 2010. Monitor
Optimization via Stutter-equivalent Loop Transformation. In OOPSLA.

[112] Rahul Purandare, Matthew B. Dwyer, and Sebastian Elbaum. 2013. Optimizing
Monitoring of Finite State Properties Through Monitor Compaction. In ISSTA.

[113] Giles Reger, Helena Cuenca Cruz, and David Rydeheard. 2015. MarQ:Monitoring
at Runtime with QEA. In TACAS.

[114] Giles Reger, Sylvain Hallé, and Yliès Falcone. 2016. Third International Compe-
tition on Runtime Verification. In RV.

[115] David Georg Reichelt, Lubomír Bulej, Reiner Jung, and André van Hoorn. 2024.
Overhead Comparison of Instrumentation Frameworks. In ICPE.

[116] Adam Renberg. 2014. Test-inspired runtime verification: Using a unit test-like
specification syntax for runtime verification. Master’s thesis. KTH, Sweden.

[117] Grigore Rosu. 2012. On safety properties and their monitoring. Scientific Annals
of Computer Science 22, 2 (2012).

[118] Grigore Roşu and Saddek Bensalem. 2006. Allen Linear (Interval) Temporal
Logic ś Translation to LTL and Monitor Synthesis. In CAV.

[119] Runtime Verification Inc. 2024. Performance regression that we find in JavaMOP.
https://github.com/runtimeverification/rv-monitor/commit/884f9622f.

[120] Fred B. Schneider. 2000. Enforceable Security Policies. TISSEC 3, 1 (2000).
[121] Koushik Sen, Grigore Roşu, and Gul Agha. 2003. Generating Optimal Linear

Temporal Logic Monitors by Coinduction. In Advances in Computing Science.
[122] Koushik Sen, Abhay Vardhan, Gul Agha, and Grigore Rosu. 2004. Efficient

decentralized monitoring of safety in distributed systems. In ICSE.
[123] August Shi, Alex Gyori, Owolabi Legunsen, and Darko Marinov. 2016. De-

tecting Assumptions on Deterministic Implementations of Non-deterministic
Specifications. In ICST.

[124] August Shi, Milica Hadzi-Tanovic, Lingming Zhang, Darko Marinov, and
Owolabi Legunsen. 2019. Reflection-Aware Static Regression Test Selection. In
OOPSLA.

[125] August Shi, Wing Lam, Reed Oei, Tao Xie, and Darko Marinov. 2019. iFixFlakies:
A framework for automatically fixing order-dependent flaky tests. In FSE.

[126] August Shi, Peiyuan Zhao, and Darko Marinov. 2019. Understanding and Im-
proving Regression Test Selection in Continuous Integration. In ISSRE.

[127] Chukri Soueidi and Yliès Falcone. 2023. Bridging the Gap: A Focused DSL for
RV-Oriented Instrumentation with BISM. In RV.

[128] Chukri Soueidi and Yliès Falcone. 2023. Instrumentation for RV: From Basic
Monitoring to Advanced Use Cases. In RV.

[129] Chukri Soueidi, Yliès Falcone, and Sylvain Hallé. 2023. Dynamic Program
Analysis with Flexible Instrumentation and Complex Event Processing. In ISSRE.

[130] Chukri Soueidi, MariusMonnier, and Yliès Falcone. 2023. Efficient and expressive
bytecode-level instrumentation for Java programs. IJSTTT 25, 4 (2023).

[131] STARTS Team 2024. STARTSÐA tool for STAtic Regression Test Selection.
https://github.com/TestingResearchIllinois/starts.

[132] Leopoldo Teixeira, Breno Miranda, Henrique Rebêlo, and Marcelo d’Amorim.
2021. Demystifying the challenges of formally specifying API properties for
runtime verification. In ICST.

[133] Prasanna Thati and Grigore Rosu. 2004. Monitoring Algorithms for Metric
Temporal Logic Specifications. In RV.

[134] Adriano Torres, Pedro Costa, Luis Amaral, Jonata Pastro, Rodrigo Bonifácio,
Marcelo d’Amorim, Owolabi Legunsen, Eric Bodden, and Edna Dias Canedo.
2023. Runtime Verification of Crypto APIs: An Empirical Study. TSE 49, 10
(2023).

[135] Chun Wah Wallace Wu, Deepak Kumar, Borzoo Bonakdarpour, and Sebastian
Fischmeister. 2013. Reducing Monitoring Overhead by Integrating Event- and
Time-Triggered Techniques. In RV.

[136] Nofel Yaseen, Behnaz Arzani, Ryan Beckett, Selim Ciraci, and Vincent Liu. 2020.
Aragog: Scalable runtime verification of shardable networked systems. In OSDI.

[137] S. Yoo and M. Harman. 2012. Regression Testing Minimization, Selection and
Prioritization: A Survey. STVR 22, 2 (2012).

[138] Ayaka Yorihiro, Pengyue Jiang, Valeria Marques, Benjamin Carleton, and
Owolabi Legunsen. 2023. eMOP: A Maven Plugin for Evolution-Aware Runtime
Verification. In RV.

[139] Jiyang Zhang, Yu Liu, Milos Gligoric, Owolabi Legunsen, and August Shi. 2022.
Comparing and combining analysis-based and learning-based regression test
selection. In ASE.

[140] Lingming Zhang. 2018. Hybrid Regression Test Selection. In ICSE.
[141] Chenguang Zhu, Owolabi Legunsen, August Shi, and Milos Gligoric. 2019. A

framework for checking regression test selection tools. In ICSE.

Received 2024-04-12; accepted 2024-07-03

1810


	Abstract
	1 Introduction
	2 Background and Examples
	2.1 An Example Spec and Its Monitoring
	2.2 JavaMOP and Other Specs in Our Study

	3 Experimental Setup
	3.1 Project Selection
	3.2 Characteristics of 1544 Evaluated Projects
	3.3 Extending JavaMOP
	3.4 Running Experiments

	4 Results
	4.1 RQ1: RV Overheads
	4.2 RQ2: RV's Wastefulness during Testing
	4.3 RQ3: Time Spent in RV Components
	4.4 RQ4: Time Spent in Program Components

	5 Discussion
	5.1 Reducing Instrumentation Costs
	5.2 Amortizing Instrumentation Costs
	5.3 More Benefits of Profiling RV
	5.4 Assumptions and Other Considerations

	6 Suggestions for Future RV Research
	7 Threats to Validity and Limitations
	8 Related Work
	9 Conclusions and Future Work
	References

