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Abstract
We consider the following stochastic heat equation

du(t, x) = S82u(t, x) + b(u(t, x)) + o (u(t, X)) W(t, x),

defined for (z, x) € (0, 00) X R, where W denotes space-time white noise. The function
o is assumed to be positive, bounded, globally Lipschitz, and bounded uniformly away
from the origin, and the function b is assumed to be positive, locally Lipschitz and
nondecreasing. We prove that the Osgood condition

|5

—— <00
1 by
implies that the solution almost surely blows up everywhere and instantaneously, In
other words, the Osgood condition ensures that P{u (¢, x) = oo forallt > Oand x €
R} = 1. The main ingredients of the proof involve a hitting-time bound for a class of
differential inequalities (Remark 3.3), and the study of the spatial growth of stochastic
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convolutions using techniques from the Malliavin calculus and the Poincaré inequali-
ties that were developed in Chen et al. (Electron J Probab 26:1-37, 2021, J Funct Anal
282(2):109290, 2022).
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1 Introduction

We consider the following stochastic heat equation

— 2% (1.1)

Qu(t,x) = 20%u(t, x) + but, x)) + o, x)W(,x) for (r,x) € (0,00) x R,
subject to u(0, x) = ug(x) forall x € R.

The noise term is space-time white noise; that is, W is a centered, generalized
Gaussian random field with

Cov[W(t, x), W (s, y)] =80t — s)g(x —y) forallz,s >0andx,y € R.
Throughout, we assume that ug, o and b satisfy the following hypotheses:
Assumption 1.1 The initial profile uq is a non-random bounded function.

Assumption 1.2 ¢ : R — (0, 00) is Lipschitz continuous, and satisfies 0 < infr o <
SUpR 0 < 00.

Assumption 1.3 b : R — (0, 00) is locally Lipschitz continuous, as well as nonde-
creasing.

We recall that a random field solution to (1.1) is a predictable random field u =
{u(t, x)};>0.xer that satisfies the following integral equation:

u(t, x) = (Gy * up)(x) +/ Gis(y —x)b(u(s, y))dsdy +Z(t, x), (1.2)
0,HxR

where
T(t, %) = f Gys(y — ) (u(s, y)) W(ds dy),
0,n))xR

the symbol * denotes convolution, and

2
— 2
Gr(Z)ZM forallr > 0and z € R.
nr
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When b and o are Lipschitz continuous, general theory ensures that the SPDE
(1.2) is well posed; see Dalang [5] and Walsh [20]. However, general theory fails to
be applicable when b and/or o are assumed to be only locally Lipschitz continuous.
Here, we can exploit the fact that b is nondecreasing in order to ensure the existence
of a “minimal solution” u under Assumptions 1.2 and 1.3. The beginning of the
proof of Theorem 1.5 in §5 contains the details of the construction of the minimal
solution. But we can summarize that effort succinctly as follows: Consider (1.1) with
b replaced by b A n and denote the solution by u,. Because b An 1 band b A n is
globally Lipschitz continuous, u;, is a classical solution and can be shown to increase
pointwise to a random field u. Moreover, u is a mild solution to (1.1) whenever the
latter makes sense; see §5. The random field u is the minimal solution in the sense
that any other solution theory that agrees with general theory when b is Lipschitz,
has a comparison theorem, and yields a solution v satisfies v > u. We can now turn
to the main objective of this paper and prove that, under Assumptions 1.2 and 1.3,
the classical Osgood condition (1.3) of ODEs ensures that u, and hence v, blows up
everywhere and instantaneously.

There is a large and distinguished literature in PDEs that focuses on these types of
questions; see for example Cabré and Martel [2], Peral and Vazquez [17], and Vazquez
[19]. To the best of our knowledge, the present paper contains the first instantaneous
blowup result for SPDEs of the type given by (1.1). For PDEs, various different
definitions for instantaneous blowup are used but all these notions basically mean
that the solution blows up for every # > 0. We provide a different definition that is
particularly well suited for our purposes.

Definition 1.4 Letu = {u(t, x)};>0. xR denote a space-time random field with values
in [—o0, 0o]. We say that u blows up everywhere and instantaneously when

P{u(t,x) =ocoforeveryt > 0and x € R} = 1.

Our notion of instantaneous, everywhere blowup is sometimes referred to as instan-
taneous and complete blowup.

We are not aware of any prior results on instantaneous nor everywhere blowup in
the SPDE literature. However, broader questions of blowup for SPDEs have received
recent attention. Recent examples include Ref.s [6, 9—12], where criteria for the blowup
in finite time with positive probability or almost surely are studied. And De Bouard and
Debussche [8] investigate blowup in H'(R?) for the stochastic nonlinear Schrodinger
equation, valid in arbitrarily small time, and with positive probability; see also the
references in [8].

In order to state our result precisely, we need the well-known Osgood condition
from the classical theory of ODE:s.

Condition 1.5 A function b : R — (0, 00) is said to satisfy the Osgood condition if

f“d_y (1.3)
1 b(y) =% .

where 1/0 = oo.
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It was proved in Foondun and Nualart [11] that, when o is a positive constant, the
Osgood condition implies that the solution to (1.1) blows up almost surely. Earlier, this
fact was previously proved by Bonder and Groisman [ 10] for SPDEs on a finite interval.
In the reverse direction, and for the same equations on finite intervals, Foondun and
Nualart [11] have shown that if o is locally Lipschitz continuous and bounded, then
the Osgood condition is necessary for the solution to blow up somewhere with positive
probability.

Recall Assumptions 1.2 and 1.3. The aim of the present paper is to show that the
Osgood condition in fact implies that, almost surely, the solution to Eq. (1.1) blows
up everywhere and instantaneously.

Theorem 1.6 If b satisfies the Osgood Condition 1.5, then the minimal solution to
(1.1) blows up everywhere and instantaneously almost surely.

A few years ago, Professor Alison Etheridge asked one of us a number of questions
about the time to blow up and the nature of blowup for stochastic reaction—diffusion
equations of the general type studied here. This paper provides an answer to Professor
Etheridge’s questions in the case that o satisfies Assumptions 1.2 and 1.3.

Remark 1.7 (On Assumption 1.2) Whereas Assumption 1.2 is likely not necessary for
instantaneous everywhere blowup, something like this assumption is clearly needed.
In fact, there is good reason to believe that the blowup phenomena for (1.1) changes
completely when o deviates sharply from Assumption 1.2; see for example Dozzi and
Lépez-Mimbela [9] for this phenomenon in the context of a related SPDE in which
o(u) =u.

Remark 1.8 (On Assumption 1.3) Itis easy to use Theorem 1.6 to improve itself beyond
the monotonicity constraint of Assumption 1.3. For example, consider (1.1) when the
reaction term is b(x) = 1 + x2. Clearly, b fails to verify Assumption 1.3. However,
b(x) = b(x) = 1 + [max(x, 0)]?, and the function b does satisfy Assumption 1.3.
Thus, it is possible to use a comparison argument to show that Theorem 1.6 applies
and implies the instantaneous, everywhere blowup of (1.1) when b(x) = 1 + x2.
We do not know if the strict positivity part of Assumption 1.3 can be replaced with
non-negativity.

Let us now describe the main strategy behind the the proof of Theorem 1.6. We
may recast (1.2) as

u= TermA + Term B + Term C,

notation being clear. Term A is deterministic, involves the initial condition, and plays
no role in the blowup phenomenon because the initial condition is a nice function. In
the PDE literature, there are many results about blowup that hold because the initial
condition is assumed to be singular. Here, the initial data is a very nice function with
no singularities. In our setting, blowup occurs for very different reasons, and is caused
by the interplay between the stochastic Term B, which is the highly non-linear term,
and the other stochastic Term C, which is regarded as a Walsh stochastic integral.
interplay. More precisely: (i) A spatial ergodicity argument ensures that at any time
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t > 0 there will be spatial intervals over which Term C reaches an arbitrary (fixed)
height; (ii) The explosive drift ensures that the solution rapidly reaches infinity in
those spatial intervals; and (iii) The instantaneous propagation of the heat equation
will ensure the everywhere blowup of the solution.

As part of our analysis, we prove that, when b is in fact a Lipschitz continuous
function that satisfies the Osgood condition (1.3), the process x — u(t, x) is almost
surely unbounded for every ¢ > 0. The proof of this fact makes use of ideas from the
Malliavin calculus and Poincaré inequalities developed in a recent paper by Chen et
al. [4]. The limiting procedure used to define the solution then allows us to use the
growth property of b to show blowup of the solution and thus complete the proof of
the main result.

We end this introduction with a plan of the paper. In §2 we study ergodicity and
growth properties for a family of stochastic convolutions and we use some of these
results to show that, when b is Lipschitz and the initial condition is a constant, the
solution to (1.1) is spatially stationary and ergodic. In §4 we develop a hitting-time
estimate for a family of differential inequalities and subsequently use that estimate in
order to obtain a lower bound for . The remaining details of the proof of Theorem 1.6
are gathered in §5, using the earlier results of the paper.

Throughout this paper, we write

IX1, = {EqX1")}"? forall p > 1and X € LP(Q).

For every function f : R — R, Lip(f) denotes the optimal Lipschitz constant of f;
that is,

Lo =  sp MO —S@I

—oco<a<b<oo b—a

In particular, f is Lipschitz continuous iff Lip(f) < oco.

2 Spatial growth of stochastic convolutions
2.1 Spatial ergodicity via the Malliavin calculus

We introduce following Nualart [16] some elements of the Malliavin calculus that
we will need. Let H = L?>(Ry x R). For every Malliavin-differentiable random
variable F', we let D F denote the Malliavin derivative of F', and observe that DF =
{D, ;F};~0.;er 1s a random field indexed by (r,z) € Ry x R.

For every p > 2, let D7 denote the usual Gaussian Sobolev space endowed with
the semi-norm

IFIIY , := E(FI?) + E(IDF%).
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We will need the following version of the Poincaré inequality due to Chen et al. [4,

2.D)]:

o0 o0
| Cov (F1, )| 5/ dr/ dz || Dy, Fi|l2|| Dy F2|l2  forevery Fy, F in "2,
0 —00

(2.1)

Next, let us recall some notions from the ergodic theory of multiparameter pro-
cesses (see for example Chen et al. [3]): We say that a predictable random field
Z = {Z(t, X)}¢,x)e(0,00) xR 18 spatially mixing when the random field x — Z(z, x)
is weakly mixing in the usual sense for every ¢ > 0. This property can be stated as
follows: For all k € N, r > 0, 51, g" € R, and Lipschitz-continuous functions
81, --» 8 : R — R that satisfy g;(0) = O and Lip(g;) = 1 forevery j =1, ..., k,

| llim Cov [G(x), G(0)] = 0, (2.2)
where
k .
) =[]giz@t.x+£), xek (2.3)
j=1

Whenever the process x — Z(¢, x) is stationary and weakly mixing for all # > 0, it
is ergodic.

Finally, we will require the following elementary identity for products of the heat
kernel

* 2 2 / t—r 2
/_oo [Gi—s(x = V)] [Gs—+(y — )] dy = =G =1 [Gi—r(x —2)]".

(2.4)
See Chen et al. [4, below (2.7)].
2.2 Ergodicity of stochastic convolutions
Let Z = {Z(t, x)}(t,x)e(0,00)xR be a predictable random field that satisfies
c1 < inf Z(t,x) < sup Z(t,x) <, (2.5)

T (1.x)€(0,00)xR (t,x)€(0,00) xR

for two positive and finite constants cj and c¢; that are fixed throughout. Set 17(0, x) =
0, and consider the associated stochastic convolution

I7(t,x) = / Gi—s(y—x)Z(s,y) W(dsdy) foreveryr > Oand x € R.
0,n))xR

(2.6)
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The main aim of this section is to study the growth properties of the random field
x — Iz(t,x). Next we develop natural conditions under which the random field
x — Iz(t, x) is stationary and ergodic at all times ¢ > 0.

Proposition 2.1 Assume that x — Z(t, x) is stationary for all t > 0. Assume also
that Z(t, x) € D!.» forall p > 2,t > 0and x € R, and that its Malliavin derivative
DZ(t, x) has the following property: For every T > 0 and p > 2 there exists a
number Ct p > 0 such that

1Dy Z(t, )Mlp < C1,p Gr—r(x — 2), (2.7)

foreveryt € (0,T) and x € R and for almost every (r,z) € (0,t) x R. Then the
process x — Z(t, x) is ergodic for everyt > 0, and x — Iz(t, x) is stationary and
ergodic for every t > 0.

Proof Thanks to the Poincaré inequality (2.1), the proof of ergodicity follows the same
pattern as [3, Proof of Theorem 1.3]. Therefore, we describe the argument quickly
mainly where adjustments are needed.

We start with the process Z and use a similar argument as Chen et al. [3, Proof
of Corollary 9.1]; see also Chen et al. [4, Theorem 1.1]. Define G(x) as was done in
(2.3). It then follows from (2.7) that there exists a constant cr x > 0 such that

k k

1D G2 = Y | [ €2 x + &)l | 1D, -2, x + &) ||

Jo=1 \j=1.j#Jjo

k
<ecrx ) Gir(x+E —2),
j=1

valid forall0 <r <t < T and x,z € R.!
We can combine the Poincaré inequality (2.1) and the semigroup property of the
heat kernel to find that

koo _
| Cov G0, GO = erpe 3 /0 Gogor)(x + & — £ dr.

J.t=1

This yields (2.2), whence follows the ergodicity of x — Z(t, x) for every ¢ > 0.

! The notation ¢,k may refer to a constant that changes from line to line but in any case depends only on
(T, k).
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608 M. Foondun et al.

Next, we show that the process x — Iz(¢, x) is stationary for all # > 0. The proof
of this fact follows the proof of Lemma 7.1 in [3] closely. First, let us choose and fix
some y € R and apply (7.2) in [3] as follows:

(Iz00))(t,x)=1z(t,x +y) = / Gi—s(x+y—2Z(s,z—y+y) W(dsdz)
0,)xR

= / Gi—s(x —2)Z(s,z+y) Wy(ds dz)
0,r)xR
= / Gi—s(x —2)(Z 0 6y)(s, 2) Wy (ds dz),
0,/)xR
where 6, denotes the shift operator (see Chenetal. [3]), and W, is the associated shifted
Gaussian noise [3, (7.1)]. The spatial stationarity of Iz follows from the facts that W
and W, have the same law and the random field Z o 6, has the same finite-dimensional
distributions as Z because Z is assumed to be spatially stationary.
We now turn to the spatial ergodicity of the process Iz. By the properties of the

divergence operator [16, Proposition 1.3.8], Iz(¢, x) € D'“f forall k > 2,¢ > 0, and
x € R. Moreover, the Malliavin derivative DIz(t, x) a.s. satisfies

Dralzt.0) = Goorx = 0220+ [ G5 =D, 205 ) W(ds dy).
(r,t)x

In principle, the above is valid for a.e. (r, z) but in fact the right-hand side can be
used to define the Malliavin derivative everywhere a.s. And that is what we do here.
In particular, for any integer k > 2, the Burkholder-Davis-Gundy inequality and the
estimate (2.7) together imply that

t 1/2
2
1Dy 17 (t, X)ll2k < ¢Gr—p(x —2) + cx (/ de dy [Gi—s(x = V] 1Dy - Z(s, y)|\§k>
r R

' 12
<G (x—2) +ceri (/ ds /{R dy [Gr—s(x = N [Gomr (v — z)]z) .

Thanks to (2.4), this yields

‘ — 12
|u»@ho~nmksaGFAx—z»+kaFAx—m(/'Jzarfgﬁijjdg 28

< ek Gror(x — (L4 (¢ — 1)V,

Define

k
T =[]eUzt.x+&))  for x €R,
j=1
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using the same g] e, gk and & Lo, Ek that were introduced earlier. In this way we
can conclude from (2.8) and elementary properties of the Malliavin derivative that

k k
1D, T2 < > | [T 18Uz x + &)l | 1D 212G x +E0) ok

Jo=1 \J=L.j#jo

k
<era Y Gir(x+& -2+ @ —n'"h
j=1

valid forall0 <r <t <Tandx,z € R.
Now we apply (2.1) together with the semigroup property of the heat kernel to see
that

k t .
| Cov [T(x), TO)I| < crx Y / Go—r)(x +& —EHA+ = dr.
je=179

Therefore, lim |y o Cov [J(x), J(0)] = 0, and hence follows the ergodicity of
x — Iz(t, x) for every t > 0. This concludes the proof. O

2.3 Ergodicity of the solution

In this section, we consider Eq. (1.1) with constant initial condition p € R. That is,
u(t,x) =p +/ Gi—s(y —)b(u(s, y))dsdy + Z(z, x), (2.9)
0,1 xR
where
I(t,x) :/ Gi—s(y —x)o(u(s, y)) W(dsdy).
0,1 xR

The aim of this section is to show that when o and b are Lipschitz continuous
the solution to (2.9) is spatially ergodic. This follows from an application of Proposi-
tion 2.1. Note that because we are discussing Lipschitz continuous b, there is no need
to describe what we mean by solution; that is done already in Walsh [20].

According to Bally and Pardoux [1] (see also Nualart [16, Proposition 1.2.4]), under
these conditions u(z, x) € D' for all p>2,t>0,and x € R, and the Malliavin
derivative Du(t, x) satisfies

Dy u(t,x) = G—r(x —2)o(u(r, 2)) + / Gi—s(y — x)Bs,yDr,zu(sr y)dsdy

(r,)xR

+ / Gios(y — )8y Dy cu(s, y) Widsdy)  as,
(r,)xR
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for a.e. (r,z) € (0,7) x R where B and X are a.s. bounded random fields. We have
the following estimate on the Malliavin derivative.

Lemma 2.2 Ifo and b are Lipschitz continuous, then for every T > 0 and p > 2 there
exists Ct,p > 0 such that

| Dy cult, x)”p = CT,thfr(x —2)

forallt € (0,T) and x € R, and for almost every (r,z) € (0,¢) x R.

Proof The proof follows closely the proof of Lemma 2.1 in Chen et al. [4] but we
must account for a few of the changes that are caused by the drift b: By Minkowski’s
inequality,

2

H / Gys(y — x)By.y Dy ott(s, y) ds dy
r,H)xR p

t o0 2 )
<e / ds / 4y [Gr—sCx = TP 1Dy zuets, VI
r —00

This is the same expression that appears in the right-hand side of (2.6) in [4]. Therefore,
the rest of the proof follows the analogous argument in [4, Proof of Lemma 2.1]. O

We are now ready to state the main result of this section.

Corollary 2.3 Ifo and b are Lipschitz continuous, then the random fields x — u(t , x)
and x — Z(t, x) are stationary and ergodic for every t > (.

Proof Stationarity follows from Chen et al. [3, Lemma 7.1], and ergodicity is a direct
consequence of Lemma 2.2 and Proposition 2.1. O

2.4 Spatial growth of stochastic convolutions

We are ready to state the main result of this section.

Theorem 2.4 For every predictable random field Z that satisfies the boundedness
condition (2.5) and for which x +— Iz(t, x) is stationary and ergodic for all t > 0,
there exists n = n(cy, ¢3) > 0 such that

P {limsup inf inf Iz(t,c+x) = oo} =1,

c—o0 te(a,a+(na)?) x€(0,na)

valid for every non-random number a > 0.

Remark 2.5 A crucial part of the message of Theorem 2.4 is that n depends only on
c1, ¢z from (2.5) and is, in particular, independent of the choice of Z.

The proof of Theorem 2.4 requires a few prefatory steps that we present as a series
of lemmas. Once those lemmas are under way, we are able to prove Theorem 2.4
promptly.
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Lemma 2.6 For every ¢y > c1 > 0 there exist Cp, C1 > 0 such that

Ci A2 <P{I tx) > (1) )1/4)\} - C> A2
—exp| —— ,x) = (/7 = P\ =52 )
Trx P\ T2 ) =T T2 P\ 722

uniformly for all t, A > 0 and x € R, and for every predictable random field Z that
satisfies (2.5).

Proof Choose and fix r > 0 and consider

Myp=0 and M, = Gi—s(y—x)Z(s,y) W(ds dy) for 0 <r <t.
0,r)xR

Because Z is uniformly bounded, the above is a continuous, Lz-martingale with
quadratic variation

(M), = /,ds/ dy [Gi—s(y = )P1Z(s, »I*  for 0<r <t.
0 —00

Because

/rd /md [Grs(y — 1)1 /rids \F 2T fero<r <t
S _ — X = — —_ r ,
0 —00 Y=y 0 At —s) T T -~

the inequalities (2.5) yield

%[ﬁ—«/ﬁ]sw)ri%[*f"m] for0=r=r. @10

The Dubins, Dambis-Schwarz theorem, see [18], ensures that M, = B({(M),) for a
standard, linear Brownian motion B. Since /z(¢, x) = M, is the terminal point of our
martingale M, and because (2.10) implies that (M), < c%JU_n, we learn from the
reflection principle and the scaling property that

P{Iz(t, %)z 2(t/m) 2} = PL sup BO) = eat/m)' =\/2/77/ ez,
0<r=c3\/ijm A

A standard estimate yields the upper bound. For the lower bound we observe in like
manner to the preceding that

Plizt, 0 = ert/m) 2]

> P{B (cyi/n) = 2010/ ]
B (wi/m) - B (i/m)| = erie/m)' s

x P sup

2 2
veley,63]
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612 M. Foondun et al.

o
w _2
e Z/2dz7

B V2w Joa
where @ = P{Squeu,(cz/cl)Z] |B(v) — B(1)| <1} € (0, 1). This proves that
p {Iz(t,x) > cl(z/n)l/“x} >3 lexp(—22/2)  forall A > I,

where the implied constant depends only on ¢; and ¢. When A € (0, 1), it suffices to
lower bound the integral by a constant. O

Lemma 2.7 Choose and fix a non-random number co > 0. Then,

I7(t,x) —17(t, 2)
|x_z|1/2

k
sup sup E < ) < (2cgh) 2,

>0 —oco<x#z<00
for every k € [2,00) and for all predictable random fields Z that satisfy
SUPpeR, xR |Z(p)| = co.

Remark 2.8 We emphasize that Lemma 2.7 assumes that Z is bounded. This is a
much weaker condition than (2.5), as the latter implies also that, among other things,
inf ,cr, xR Z(p) is a.s. bounded from below by a strictly positive, deterministic num-
ber. The next lemmas also in fact require only this weaker boundedness condition.

Proof Choose and fix t > 0 and x # z € R, and let Z be as described. By the

Burkholder-Davis-Gundy inequality in the form [7], for every real number k > 2,

t [oe)
1zt x) = Iz(t, 27 < 4k /0 ds / dy [Gi—s(y — x) — Gi—s(y — DV Z(s , VI3
—00
o0 o0
< 4c%;k/ ds/ dy [Gy(y — x +2) — Gy (NI
0 —00
2
_ 2cgk /‘00 ds [OO o efséz )1 _ eifD)/2 2
s 0 —00

[Plancherel’s theorem]

Sk [ 1ol
) &2

dé = 2c3k|x — z|.
This proves the lemma. O

Lemma 2.9 Choose and fix a non-random number co > 0. Then,

I7(t +h,x)—17(¢t,x)
A

k
sup supE( ) < (Scék)k/2,

t,h>0xeR

for every k € [2,00) and for all predictable random fields Z that satisfy
SUPpeR,; xR |Z(p)I| = co.
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Instantaneous everywhere-blowup of parabolic... 613

Proof Choose and fix 7, h > 0 and x € R, and a predictable random field Z as above,
and then write

Mzt +h,x) =1zt )|k <T1 + T2,

where

s

k

T = H/ [Gt+h—s (y—x)—Gi—s(y — x)] Z(s,y) W(dsdy)
0,1)xR

k

T = H / Grins(y — X)Z(s . y) W(ds dy)
(t,t+h)xR

By the Burkholder-Davis-Gundy inequality in the form [7], for every real number
k>2,

t o0
T2 < 4k /0 ds f 4y [Grans(y — ¥) — Grs(y — O 125 . DI
—00

< 4ck [0 ds / dy [Gysn() — Gy

2c2k [°° o 2
= (0 / ds f dé e_séz ‘1 — e_hgz/ 2‘ [Plancherel’s theorem]
T 0 —00
2.2 2k 0] — _u2y 2
Z\/—Co/| 0D
b4 0 y
22 ¢tk (1 > d 82 2k
< : <—+ / %)f = 0" Vn,
b4 3 1y 3

where we have used the bound 1 — exp(— y2) < y%2 A 1 in order to obtain the last
concrete numerical estimate. Similarly, we obtain

t+h 00
T} < 4k / ds f dy [Grin—s(y — PP Z(s, WIIZ
t —00

5 h 00 5 26’%]{ 2h 00 22
< 4cpk A ds dy [Gs+n (W] = ), ds dée
—00 —00

2k (M ds 42— 1)cjk i

ST h s JT

We finally obtain
82 42 -1
I12(t +h, %) = Iz(t, )l < covk | 2, N (V22D |y
37 JT
This complete the proof. o
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Define

1/4 1/2

o(p) = Ip11'* + I pal forall p = (p1, p2) € R?,

and for convenience, we use the following notation, Iz (p) := Iz(p1, p2).

Lemma 2.10 For every non-random numbers cy,m > 0 and § € (0, 1),

Iz(p) — Iz(q) |*

supEexp | o su
b ¥ lo(p — 1170

Z,0 p,q€[0,1]x1
O<o(p—g)=<1

where supy | denotes the supremum over all predictable random fields Z that satisfy
SUP ,eR, xR |Z(p)| < co and over all intervals | C R that have length < m, and « is
any positive number that satisfies

(1- 2—5/2)2
2
2%ec;

IS

Proof Since (a + b)k < 2k(ak + bk) forallk > 1 and a, b > 0, Lemmas 2.7 and 2.9
together and Jensen’s inequality imply that
1/2
I7(p) — Iz(q) |**
(2.11)

(o) e

< Clézk(4k/2 T+ 10K2)KK/2 < (13¢0) kK72,
valid for all real numbers k > 1, distinct p, g € Ry x R, and predictable Z that satisfy
SUp ,eRr, xR 1Z(P)| = co.

We are going to use a suitable form of Garsia’s lemma [14, Appendix C], and
will begin by verifying the conditions that can be found in that reference. Note that
0(0) = 0 and g is subadditive: o(p +¢q) < o(p) + 0(g) forall p, g € R. We use the
notation of [14, Appendix C] and let

I7(p) — 1z(q)
o(p—q)

B,(s) = {y eR%: o(y) < s} forall s >0,

and for all real numbers £k > 1,

Tk :/ dp/ dg
[0,1]x1 [0,1]x1

We know that Z; < oo a.s. for every k > 1. In fact, (2.11) ensures that

I7(p) — Iz(q) |*
o(p—q) '

E(Zi) < m*(13co)* k"%, (2.12)
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for all real numbers k > 1, distinct p,q € R+ x R, and predictable Z that satisfy
SUp ,er, xR 1 Z(P)| < 0. 1f (s, y) € Ry x R? satisfies |yi] < (s/2)* and |y2| < (5/2)
then certainly y € B,(s). Similarly, if y € B,(s), then certainly |y;| < s* and
ly2| < s2. This argument shows that (s/2)° < |Bo(s)| < s®foralls > 0, where | - - - |
denotes the Lebesgue measure on R2. Consequently, foro | B, (s)]7%/% ds < oo for one,
hence all, ro > 0, if and only if £ > 12 and

(k—12)/k

"o d "o 2k
/ & < 212/1‘/ s12/k g < Lo forevery ro > O and k > 12
o |Bo(s)¥/k 0 k—12

= 4’ék_12)/k for every ro > 0 and k > 24.

Apply Theorem C.4 of [14] with p(z) = z — so that C;, = 2 there — in order to see
that

o ds _
1/k 1/k (k—12)/k
sup  |Iz(p) — I2(q)] < 32T / & g7k, as..
p.gel0.r1x0 ko Jo IBo(s)| ¥k k0
o(p—q)=<ro

for every non-random k > 24 and ry > 0. In particular, we learn from (2.12) that

E sup [|Iz(p) — Iz(@)F | < 128§ PE(Z) < m*(1664co)*ry~12KM/2,
P,q€[0,1]x1
o(p—q)=<ro

for every k > 24 and ry > 0, and all intervals [ of length m, and all predictable fields
Z that satisfy sup peRy xR |Z(p)| < co. We freeze all variables and define for every
§e@,)andn e Zy,

1/k
k
I7(p) —12(q)
Sns=1E sup ===
p.q€l0,1]x1 le(p — q)]
27 T p(p—g)=27"
It follows that as long as k > 24,
1/k
S5 <20 VEVLE L sup  Jiz(p) — Iz(@ < 21270 o2k~ nla=(12/01 /.
P,q€l[0,1]x10
o(p—q)=<27"

Sum the preceding over all n € Z to see that, as long as k > (24/58) > (12/6) Vv 24,

1/k
_ k 12—§ 2/k 12
E sup IZ(P) IZ(‘I) < 2 com \/]; < 2 Comz/k\/];_
pgctne 1o(p — I = T bR = T
o(p—g)=l1
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Replace k by 2k and restrict attention to integral choices of k in order to see that

2k
I2(p) = Iz(q) [* <m2(225/2¢2co) K 2 0K

E =z =7
lo(p — )] —°

p.q<€l0,1]x]1 1 —279/2

o(p—q)=1

for every integer k > 12/6, as well as all » > 0, all intervals [ of length m, and all
predictable fields Z that satisfy sup peRy xR [Z(P)] = co, where where we have used
the inequality k* < e¥k! valid for all positive integers k. An appeal to the Taylor series
expansion of the exponential function v > exp(av?) yields

E I(p) — Iz(q) |” m?
expla  sup TS| | S < 00,
pelo x| le(p —q)] 1—aQ
o(p—q)=1
for every « that satisfies « < Q~!. This proves the lemma. 0

We are ready to conclude this section.

Proof of Theorem 2.4 Lemma 2.6 ensures that

9

a\l/4)  CreM*/CeD)
p Iz(a,c)>M(—) >
T 1+M

foralla > 0,c € R, and M > 1. In particular,

a1/
P{ inf inf Iz(z,x)gM(—) }
T

te(a,a+e*) xe(c,c+e2)
Cre—CM?*/@ch)
<l-—
- 14+2M
a\1/4
+P sup sup |Iz(t,x)—1Iz(a,c)| zM(—) .
b4

te(a,a+e*) xe(c,c+€2)

Chebyshev’s inequality yields the following:

a\1/4
P{ sup sup |Iz(t,x)—Iz(a,C)|ZM(—) }
b

te(a,a+e*) xe(c,c+€2)

Iz(t,x) = Iz(a.c) | _ M(a/m)"*
<P sup sup >
te(a,a+e*) xe(c,c+€2) \/Q ((t,x)—(a,0) V2e

I7(t,x)—Iz(a,c)
Vo((t,x)—(a,c)

<Eexp|oa sup su
te(a,a+e*) xe(c,c+€2)

2
( otM%/a/rr)
xexp(——— —).
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forall M > 1 anda, ¢, &, « > 0. Choose and fix

(1 —271/4)2 o [a
o=———"—-— and e=—|—. (2.13)
2
2%ec3 8 V=

and apply Lemma 2.10 [with § = % and cp = c2] in order to see that there exists
K = K(c1, ¢2) > 1 such that

—2M 2 2,2

P{ inf inf Iz(t,x)fM(— <1 i
T

te(a,a+e?) xe(c,c+e?)

IA

| —e-emed | CL _ po—em?/ed

3M ’
forall M > 1 and a > 0. In particular, there exists My = My(c1, ¢2) > 1 such that
forall M > 1anda > 0,

Cre~C@M)?/ @)

oM

a1/
sup P{ inf inf Iz(t,x)§M<—) }<1_
b

a,c>0 te(a,a+e*) xe(c,c+e?)

for all M > M. To be sure, we remind also that ¢ = ¢(a, c1, ¢2) is defined in (2.13).
In any case, this readily yields

an1/4
inf P {lim sup  inf inf Iz, x)> M (—) }
a>0 T

c—oo te(a,atet) xe(c,c+e?)

Cre—CM?*/@eh
ST TR

(2.14)

for all M > M. Since we are assuming that the infinite-dimensional process x >
I7(-, x) is ergodic, we can improve (2.14) to the following without need for additional
work:

a1/
P{limsup inf inf Iz(t,x)>M<—) }:1,
T

c—>o00 te(a,ate*) xe(c,c+e2)

forall M > My and a > 0. We now can send M — oo to deduce the theorem from
the particular form of ¢ that is given in (2.13). O

3 A lower bound via differential inequalities

In this section, we continue to assume that b is Lipschitz continuous and increasing.
Our aim is to prove the following key result.

Theorem 3.1 Ifb : R — (0, 00) is Lipschitz continuous and non decreasing, then for
every non-random number a > 0, there exists a non-random number ¢ = ¢(a) > 0
— not depending on the choice of b — that satisfies the following for every M >
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luollzoo(R): lim,_, o+ €(a) = O, and there exists an a.s.-finite random variable ¢ =
c(a, M) > 0 independent of b, such that

N+p dy

inf inf  wu(t,x) > sup :N > M : <
M+p DY)

8} a.s. [sup@ =0],
tela+te.a+2¢] xe(c,c++/2)

where p := inf, cg ug(x).
The following result will be useful for the proof of the above theorem.

Lemma 3.2 Fix two numbers N > A > 0 and suppose B : Ry — (0, 00) is Lipschitz
continuous andnon decreasing. Let T = fliv ds/B(s), and supposethat F : Ry — R4
solves

t

F(i)=A +/ B(F(s))ds  forall t €[0,2T].
0

Then inf;c[r 271 F(t) = N.

Remark 3.3 Lemma 3.2 can recast in slightly weaker terms as a statement about the
differential inequality,

F'>BoF on Ry,
subject to F(0) > A.

In this case, F(t) > N for all times ¢ between T = ffiv ds/B(s) and time 27T

Proof Choose and fix an A > 0. The ordinary differential equation G(t) = A +
fé B(G(s)) ds has a unique, strictly increasing, continuous solution up to its blowup
time. Using the differential equation, G'(t) = B(G(s)), we find that the time T =
sup{r > 0: G(t) < N} < oo.Forevery N > A,and G(T) = limgy7 G(s) = N. We
also have that G(#) > N forallz € [T, 2T]. A comparison theorem yields F > G on
[0, 2T], and completes the proof. m]

Proof of Theorem 3.1 We first assume that the initial data is equal to a constant p € R.

Choose and fix @ > 0. According to Corollary 2.3 and Theorem 2.4, we can associate
to a a non-random number £ = £(a) > 0 such that

lim e=0 and limsup inf inf Z(t,c+x)=o00, as. (3.1)
a—0+ c—>oo te(ate,a+2e) xe(0,/z)

Also choose and fix a number M > 0. According to Theorem 2.4, we can find a
random number ¢ > 0 such that

inf inf  Z(t,c+x)>M as. (3.2)
te(ate,a+2¢) xe(0,,/¢)
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Because b > 0 and b is nondecreasing,

ua@+t,c+x)> ,0+/ Gati—s(y —x —c)b(u(s,y)dsdy+Z@a+1t,c+x)
0,t4+a)xR

Zp—i—/ [RG,_S(y—x)b(u(a+s,c+y))dsdy+I(a+t,c+x)
(0,r)x

t
zp—i—/b inf wu(a+s,c+72)
0 2€(0,4/¢)

NG
def dy Gi—s(y —x)+Z(a+1t,c+x),
0

a.s., forevery t, ¢ > 0 and x € R. If in addition x € (0, v/¢) and ¢ € (0, 2¢), then

NG —x+./E
/0 Grosly —x)dy = / Gros(y) dy

X

0 0
> f Gros(y)dy = / Gi(y)dy = £ € (0, 1),
—Je /2

for all s € (0, r). Therefore, (3.2) tells us that, for all x € (0, \/¢) and 7 € (0, 2¢),

t
u(a+t,c+x)2£/b inf wu(@a+s,c+z))ds+ M+ p.
0 2€(0,4/¢)

In other words, we have shown that the function

f@)= inf wu(@a+t,c+x) [t>0]
x€(0,4/¢)

satisfies

t
f)y=M+p+ 6/ b(f(s))ds uniformly for all ¢ € (0, 2¢).
0

Thanks to (4.2), we can find N > M such that fN+p[b(y)]_1 dy < e, whence

M+p
f}gj:g [Zb(y)]_1 dy < ¢/L. Therefore, Lemma 3.2 assures us thatinf, e /¢ 2¢/¢) f (1) >

N and hence

inf inf u(s,y) > N as.
s€la+(e/€),a+(2e/0)] ye(c,c++/e/E)

Because lim,_, 0+ ¢ = 0 [see (3.1)], this yields the theorem in the case that the initial
data is constant.

For the general case that the initial condition is bounded, using a standard compar-
ison theorem we can deduce the proof of the theorem. O
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4 Minimal solutions, and proof of Theorem 1.6

We begin by revisiting the well posedness of (1.1) under Assumptions 1.2 and 1.3.
After that, we prove Theorem 1.6 and conclude the paper.

4.1 Minimal solutions

Let %, denote the collection of all functions f : R — (0, co) that are nondecreasing
and locally Lipschitz continuous. In particular, Assumption 1.3 is shortened to the
assertion that b € Z,.. We also define .Z to be the collection of all elements of %,
that are [globally] Lipschitz continuous.

Throughout this subsection, we write the solution to (1.1) as uj, provided that (1.1)
well posed for a given b € Z,.. As a consequence of the theory of Walsh [20], (1.1) is
well posed for example when b € .Z’; see also Dalang [5]. Moreover, uy, is the unique
solution provided additionally that SUP;(0,7) SUPxeR llu(t, x)|]]» < oo forall T > O.
Finally,

P{up <u.}=1 for all b, ¢ € £ that satisfy b < c;

see Mueller [15] and [13].

Now suppose that b € L., as is the case in the Introduction. Let 5™ = b A n for
every n € N. The monotonicity of b implies that every b™ e & for every n € N,
and b™ < b when n < m. Since u »m < Upe whenever n < m, it follows that the
random field

u(t,x) = nlggo upm (£, X)

exists and has lower-semicontinuous sample functions. Note also thatif ¢ € .Z satisfies
¢ < b, then u, < u. This proves that

u = sup uc.
ce’

Therefore, we refer to u as the minimal solution to (1.1) when b satisfies Assump-
tion 1.3.

Next we describe why u can justifiably be called the minimal “solution” to (1.1).
Minimality is clear from context. However, “solution” deserves some words.

If b is in addition Lipschitz continuous, then u is the solution to (1.1) that the
Walsh theory yields and there is nothing to discuss. Now suppose b € %}, and recall
b™ e £. We may observe that

p™ (MW) (t, x)) < pm (ub(m (t, x)) whenever n < m,
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off a single null set that does not depend on (b, n, m). Since

b(x) +n —|b(x) —n|

pm™ — ,
(x) 5
it follows that
lim 5™ (uym (1,)) = b(u(t,x)) ~ forallr > 0andx €R, @.1)
n—

again off a single null set. Therefore, the monotone convergence theorem yields

lim Gr—s(y — )b (i (5, y)) ds dy = / Gr—s(y — )b(u(s, y)) dsdy,
n—=00 [0 xR 0,0)xR

where b(co0) = sup b.
Next, let us consider the [0, oco]-valued random variable

t=inf{r >0: u(t,y) =00 forsome y e R},

where inf @ = 0. Because u is lower semicontinuous, one can show that 7 is a stopping
time with respect to the filtration of the noise, which we assume satisfies the usual
conditions of martingale theory, without loss of generality. Of course, t is the first
blowup time of u. Since o is a bounded and continuous function,

2

lim H/ Gi—s(y =)o (upm (s, y)) —o(ul(s, y)] W(dsdy)
0,tAT)xR

n—00
2

~E ( f( ey G030 =0T Him [ 5. ) = o (s y)Pds dy) =0,
VEAT) X

where || & (- ) = 0. Taken together, these comments prove thatif t > 0 —thatis if the
solution to (1.1) does not instantly blow up — then u satisfies (1.2) for all x € R and all
times 7 < 7.2 In this sense, our extension of the solution theory of Walsh [20] indeed
produces solutions for b € %, if there is chance for non-instantaneous blowup, and
the smallest such solution is u.

Theorem 1.6 says that if b € %, satisfies the Osgood condition (1.3), then the
minimal solution satisfies u(t) = oo for all t > 0.

Now suppose the Osgood condition holds, and consider any solution theory that
extends the Walsh theory and has a comparison theorem. The preceding comments

2 In fact, one can show that the lim inf of the stochastic integrals in the mild formulation of u™ is finite
a.s. See the end of the proof of Theorem 1.6. This implies the stronger statement that, for all # > 0 and
x eR,

u(t, x) = (Gr % ug)(x) + / Gys(y — X)b(u(s, y)) dsdy + a finite term,

(0,0)xR

where b(co) = supb. Theorem 1.6 implies that both sides of the above identity are infinite when (1.3)
holds.
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prove that if that solution theory produces a solution v, then that solution satisfies
u < v and hence v(¢) = oo for all # > 0 by Theorem 1.6. This is a precise sense
in which Theorem 1.6 says that “the solution” to (1.1) blows up instantaneously and
everywhere.

We can now conclude the paper with the following.

4.2 Proof of Theorem 1.6

We now prove the everywhere and instantaneous blow up of u under (1.3), where the
symbol u denotes the minimal solution to (1.1). Recall the process u™ = uyw from
the previous subsection. Choose and fix an arbitrary number @ > 0, fixed but as small
as we would like, and let ¢ = ¢(a) > 0 be chosen according to Theorem 3.1. Recall,
in particular, the following relationship between a and ¢ = ¢(a):

lim ¢ =0.
a—0t

In light of (1.3), we may choose and fix M > |[ugl|zo(R) such that

— < é, (4.2)

where we recall that p = inf,cR ug(x).
The construction of # and Theorem 3.1 together yield a random constant ¢ =
c(a, M) > 0 — independent of b — such that the following holds for every n € N:

inf inf  u(t,x)> inf inf u"™(,x)
telate,a+2¢e] xe(e,c+4/e) te(a+e,a+2¢) xe(c,c+4/¢)
N+p dy
>supyN > M : o) < a.s.
M+p DV(Y)

Let n 1 oo to see from the monotone convergence theorem that

N+p dy
inf inf  u(t,x) > sup {N > M : — < 8} =00 a.s.
l‘G[a+8,(l+2€]x€((;,(;+\/E) M+p b(y)

This proves that the blowup time is a.s. < a + 2¢ and that the solution blows up
everywhere in a random interval of the type (c, ¢ + +/¢). Consequently, for every
non-random ¢ > a + 2¢ there a.s. is a random closed interval /(t) C (0, co) and a
non-random closed interval (1) = [a + &, a + 2¢] C (0, ) such that

inf u(s, x) =00 a.s. 4.3)
(s,x)el(t)xI(t)

Since a can be as small as we would like, and because lim,_,¢ & = 0, we have shown
instantaneous blowup. We now show that the blowup happens everywhere. For every
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n € N, the random field u™ solves

u™(t, x) = (G, % up)(x) + / Gi—s(y — )™ @™ (s, y)) ds dy
0,H)xR

H Gy =00 s ) Widsdy)
0,)xR
By the monotone convergence theorem, for t > a +2¢ and x € R,

/ Gir—s(y — 0b™ @ (s, y)) ds dy
0.0)xR

> / Gir—s(y — 0b™ @ (s, y))ds dy 1 oo,
I(t)x1(t)

as n — oo; see (4.1) and (4.3). At the same time, standard estimates such as those in
§2 show that

2
supE [ sup / Gi_s(y — x)a(u(”)(s, v)) W(ds dy) < 00,
0,0)xR

nelN (t,x)eK

for every compact set K C Ry x R. Therefore, Fatou’s lemma ensures that a.s.,

liminf sup / Gi—s(y —x)o(u™ (s, y)) W(ds dy) < oo.
0.6)xR

=00 (t x)ek

It follows that inf ¢ u = o0 a.s. for all compact sets K C R4 x R. This concludes the
proof. O
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