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Abstract

We study small-ball probabilities for the stochastic heat equation with multiplicative
noise in the moderate-deviations regime. We prove the existence of a small-ball
constant and relate it to other known quantities in the literature. These small-ball
estimates are known to imply Chung-type laws of the iterated logarithm (LIL) at
typical spatial points; these points can be thought of as “points of flat growth.” For
this result in a similar context in SPDEs see, for example, the recent work of Chen
[3]. We establish the existence of a new family of exceptional spatial points where the
Chung-type LIL fails.
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1 Introduction and main results

Let X = {X(t)}+e7 be a real-valued stochastic process with continuous sample
functions, where 7 is a compact, separable metric space. By a small-ball probability
estimate we mean an approximation of log P{sup,c+|X(¢)| < ¢} that is ideally valid
uniformly for all small ¢ (say 0 < € < 1). We seek to find asymptotic bounds, and
the set 7 can also depend on the parameter . Such results were first developed by
Chung [4] for the simple walk and for Brownian motion on IR, in order to prove so-called
Chung-type laws of the iterated logarithm (LIL). More specifically, Chung’s work [4]
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Small-ball constants, and exceptional flat points of SPDEs

for a 1-dimensional Brownian motion X (set 7 = 7 (¢) = [0, ¢] with the usual Euclidean
distance) implies that, with probability one,

lim inf (loglogd) v sup |X(s)| = Z

el0 € s€[0,e] \/g
The literature on small-ball probabilities and Chung-type LILs has since grown consid-
erably; see the survey paper of Li and Shao [20] for the development of the theory up
to earlier 2000s in the context of Gaussian processes. Dereich, Fehringer, Maroussi,
and Scheutzow [6], Klartag and Vershynin [13], and Kuelbs and Li [14] discuss various
connections between small-ball probability estimates and other parts of mathematics,
specifically approximation theory and quantization problems in Banach space theory.
Much of the preceding is concerned mainly with the so-called L*° theory for Gaussian
measures. A recent survey by Nazarov and Petrova [24] describes up-to-date information,
particularly for the closely-related L2-type theory of small-ball estimates for Gaussian
measures. Here, we pursue aspects of some L*°-type problems for stochastic PDEs of a
parabolic type.

Let T = [-1,1] 2 R/(2Z) denote the one-dimensional torus and consider the following

parabolic stochastic PDE (or SPDE) on Ry x T:

duu(t,x) = Du(t,x) + o(u(t,z))W(t,z) forallt>0, zeT,

(1.1)
subject to u(0,z) = ug(x) for all z € T.

where the forcing is comprised of a space-time white noise W = {W(t, Z) }>0 zeT ON
R x T with an interaction term ¢ : R — R that is a non-random and Lipschitz continuous
function, and an initial data ug : T — R that is non-random and Lipschitz continuous.

Our goal is to continue the recent analyses of Athreya, Joseph, and Mueller [2], Chen
[3], and Foondun, Joseph, and Kim [7] to study small-ball probabilities for a nonlinear
system, such as (1.1), and discuss how they relate to sample function properties of the
solution to the SPDE (1.1).

Athreya et al prove in [2] that, if in addition 0 < inf o < supo < oo and ug = 0, and if
the Lipschitz constant for ¢ is sufficiently small, then there exists a number K > 1 such
that uniformly for alle € (0,1) and 7" > 0,

KT T
—1 .
wton (-5 ) <P{£Eé%]'““)'Cm“}“e"p (7). o2

where || f||c(r) = sup,er | f()|, and u(t) denote the function x +— u(t, z) for every t > 0.
Foondun et al [7] investigate associated small-ball questions wherein the sup norm
|l - lle(r) is replaced by a Holder norm. And the main result of Chen [3] implies that, in
the same setting as was considered by Athreya et al [2], the following Chung-type LILs
holds: There exists a non-random number k, € (0, 00) such that

1 1 1/6
lim inf (log [logel) 7 sup sup |u(t,x)|=ke  as. (1.3)
€40 € t€[0,e%] z€[0,e2]
In the case that ¢ is constant — and in fact for much more general Gaussian random
fields that are strongly locally non deterministic — some of this type of analysis was
carried out by Lee and Xiao [16] slightly earlier.’

1Small-ball probability estimates are also available for a particular family of Gaussian processes that solve
semilinear hyperbolic SPDEs. They have a different form from the results here and in Athreya, Joseph, and
Mueller [2], Chen [3], and Foondun, Joseph, and Kim [7], and require very different methods of analysis; see
Martin [22], which is based in part on a celebrated earlier theorem of Talagrand [28] on the small-ball problem
for the Brownian sheet.
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These references show that, under appropriate conditions, one can establish small-
ball probability estimates that are sharp, at the logarithmic level, up to a multiplicative
constant [2, 7, 16]. Moreover, one can deduce Chung-type LILs for the solution to (1.1)
under natural conditions [3, 16]. In this paper, we study (1.1) dynamically as a process
t — u(t,x), one value of x at a time, and show that:

(1) The resulting processes have a tight small-ball estimate with a more-or-less explicit
small-ball constant; see Theorem 1.1 below. This appears to be a first example of a
family of infinite-dimensional Markov processes that have tight, explicit small-ball
probability rates, together with identifiable small-ball constants; and

(2) In addition to a more traditional Chung-type LIL (Corollary 1.2), we prove that
one can find exceptional points = € T at which other Chung-type LILs hold; see
Theorem 1.3. This finding illustrates a new phenomenon that seems to be intimately
linked to the infinite-dimensional setting, and also requires novel proof ideas that
require multiple applications of the Baire category theorem and delicate, and
different, subsequencing arguments for establishing upper and lower bounds that
ultimately lead to Chung-type LILs.

In order to describe our results, let F' = {F(¢)};>¢ denote a fractional Brownian motion
of index 1/4; see Mandelbrot and VanNess [23]. That is, F is a continuous, centered
Gaussian process such that F(0) = 0 and

E(|F(t) - F(s)]?) = [t —s|'/?  foralls,t > 0.
We can deduce from the works of Li [18], Li and Linde [19], and Shao [25] that

A= —lime*logP< sup |F(t)| <ep existsandisin (0,00). (1.4)
30 t€f0,1]

The number ) is the so-called small-ball constant for F'. It should be possible to combine
(1.4) and Monte Carlo methods in order to find a reasonable approximation to ), but the
exact numerical value of A is not known.

Theorem 1.1. In addition to the preceding assumptions, suppose that ¢ is bounded.
Choose and fix an unbounded, non-increasing, deterministic function ¢ : (0,1) — (0, 00)
that satisfies the following:

o(g) = O (|loge|) ase 0. (1.5)
Then, for every x € T,

1 e\ 2 y
ggolgmlogla{t%u(t,x) @)l < (55) }— 2o (g,

where ) is the small-ball constant that was introduced in (1.4).

As far as we know, the first paper on small-ball probabilities was Chung [4], where
the object of main interest was the simple walk on Z and, through that, the Brownian
motion on the line. Chung [4] was also the first to notice that small-ball probabilities can
be used to yield a matching law of the iterated logarithm (LIL). Thus, it should not come
as a surprise that Theorem 1.1 too implies a Chung-type LIL. Though we pause to point
out that additional effort is required to show the next corollary, as it is valid under fewer
technical hypotheses than is Theorem 1.1.

Corollary 1.2. Regardless of whether or not ¢ is bounded,

1 1 1/4 2\ 1/4
lim inf (og|0g5|) sup |u(t,z) —ug(z)| = (> lo(uo(x))], (1.6)
el0 IS t€[0,¢] s
a.s. for every x € T, where \ was defined in (1.4).
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To be sure of the order of the quantifiers, we note that Corollary 1.2 says that for
every non-random point z € R there exists a P-null set off of which (1.6) holds. We may
view such points x as points of [relatively] “flat growth,” for example as compared with
points where iterated logarithm fluctuations are observed; see [8]. Corollary 1.2 and
Fubini’s theorem together show that the collection of all points € T that satisfy (1.6)
has full Lebesgue/Haar measure. The remainder of our effort is concerned with studying
many of the points z € T that are exceptional in the sense that they fail to satisfy (1.6).
A standard method for finding such points is to appeal to the theory of limsup random
fractals [11] and adapt it to the present small-ball setting for SPDEs. For large-ball
problems, this adaptation was done in [8], and we feel that similar methods will yield
exceptional points = € T for which the rate const x (¢! log|loge|)*/* is replaced by rate
const x (¢~ !|loge|)!/* for suitable choices of “const.” We have not tried to do that here.
Instead, we document the existence of a more subtle family of exceptional points x € T
whose existence requires new proof ideas. In order to present that family we need some
notation.

From now on, we will use the symbol ~~ to denote subsequential limits. More precisely,
whenever a,a;,as, - € R, then we might write “a,, ~» a as n — o0” as shorthand for
“liminf, . |a, —al =0.”

Theorem 1.3. Choose and fix a non-random, nonnegative, extended real number x €
[0,00]. Then, regardless of whether or not ¢ is bounded, there exists a deterministic
sequence e, — 0 such that there a.s. exists a random x € T that satisfies

1 1 . 1/4
(L) sup fute,o) — wo(o)] = 3Pl asn oo 0D
n te[0,en)

If x € [0,2)\/~], then there in fact a.s. exists a random = € T such that

loe |1 1/4
lim inf <0g|0g6> sup |u(t,z) — ug(x)] = x40 (uo(x))|. (1.8)
el0 € te[0,e]

We pause to insert a few problems that have eluded us.

Open Problem 1. Can (1.7) be upgraded to (1.8) when x > 2)\/m? We suspect the
answer is “no.”

Open Problem 2. An informal comparison with limsup random fractals suggests that
if we replaced log|loge,| and log|loge| respectively by |loge,| and |loge| in the left-
hand sides of (1.7) and (1.8), then the set of x € T where the left-hand sides of (1.7)
and/or (1.8), altered as mentioned, are equal to a given number ¢ always has non-trivial
Hausdorff dimension for a continuum of suitable choices of c. Moreover, by suitably
adjusting ¢, we can ensure that those Hausdorff dimensions can take any value in [0, 1].
The presence of log log instead of log would imply that there should be many more points
x € T where (1.7) and (1.8) holds. Therefore, we conjecture that the set of points z € T
at which either condition (1.7) or (1.8) holds has full Hausdorff dimension.

Above and throughout, we view T as the set [—1, 1] and identify it with the abelian
group R/(2Z) in the customary manner: We use the additive notation for T, and in
fact move back and forth from interpreting T as the real interval [-1, 1] to the abelian
group R/(2Z). In particular, we write “x — y” instead of “z — y (mod 2)” or “zy~—1”
for z,y € T, and designate 0 (not 1) as the group identity. We also denote by dz
an infinitesimal element of a Haar measure on T and do not distinguish between the
Lebesgue measure on [—1,1], normalized to have total mass 2 and the Haar measure on
T, similarly normalized.
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We frequently set log, (a) = log(a V exp(e)) for all a > 0.

Suppose A is a compact metric space and g : A — R is continuous. Then we often
write ||g]|¢(p) in place of sup, .5 |g(2)| whenever B C A. When B = [a, 0] is a subinterval
of R we might write ||g||¢[a,) in place of ||glc([a,5))- Throughout, the L¥(Q)-norm of a
random variable Z € L*((2) is denoted by || Z||; := {E (| Z|¥)}"/* forall 1 < k < .

Let us conclude the Introduction with an outline of this paper. In Section 2, we
investigate small ball probabilities for the constant-coefficient case ¢ = 1 in (1.1). In
Section 3, we consider the linearization of the nonlinear equation (1.1) and present
detailed estimates for the difference between the nonlinear one and its linearization (see
Proposition 3.1). We will use these estimates, along with the results from Section 2, to
prove Theorem 1.1. Sections 4 and 5 are dedicated to the proofs of Corollary 1.2 and
Theorem 1.3 by using Theorem 1.1 and introducing some novel ideas.

2 The linear case

As is commonly done [5, 30], we interpret the SPDE (1.1) as the following random
integral equation:

u(t) = (prrun)@)+ [ g g)oluls ) W(dsdy), @1
(0,t)xT
for allt > 0 and x € T, where p denotes the heat kernel on T; that is, for all » > 0 and
x,y €T,

exp{—a?/(4r)}

pr(x,y) = Z G.(x —y+ 2n), where G,(a) = — T (2.2)

n=—oo

for every a € R. It is well known that in short times, the increment u(¢,x) — up(x) of
the solution to (1.1) is very close to a constant multiple of the solution to the following
linearized version of (1.1); see [9, 12]. Therefore, we reserve the letter Z specifically for
the solution to the following SPDE.

WZ(t,x)=02Z(t,x) + W(t,x) forallt >0, x € T,
subject to Z(0,2) =0 forall z € T.

According to (2.1), we may write the solution Z as the following Wiener integral process,
Z(t,x)= / pi—s(x,y) W(dsdy) forallt >0, (2.3)
(0,t)xT

where the kernel p was defined in (2.2). In this section, we study the specialization
of Theorem 1.1 to the Gaussian random field Z, viewed as an approximation for the
process u.

Proposition 2.1. Choose and fix an unbounded, non-increasing, deterministic function
¢:(0,1) — (0,00) that satisfies (1.5). Then,

lim, [¢(=)) " log P {||Z(#)lcto. < (£/6(e)*} = —20/m,

e—0t
where )\ was defined in (1.4).

As Z is a nice Gaussian random field, we will prove Proposition 2.1 by following
a similar route to that taken in [16], and then appeal to the results in [19, 21, 25] in
order to prove the existence of the small-ball constant and then to identify that constant.
It should be pointed out that scaling plays a role in the methods of the latter three
references. Thus, a certain amount of additional effort is expended in order to overcome
the lack of scaling for 7.
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2.1 The linear heat equation on free space

So far, W(t ,x) = 6§7wW(t ,x) where W denotes a space-time Brownian sheet that is
indexed by (¢,z) € R4+ x [—1,1]. Without loss of generality, and in a standard manner,
we can extend the domain of definition of the Brownian sheet W so that it is in fact
a space-time Brownian sheet on the full space Ry x R. This canonically extends the
domain of the definition of the white noise W to all of R x R as well. With this in mind,
let us consider the stochastic heat equation,

(2.4)

OH(t,x)=0?H(t,z)+W(t,z) forallt>0, z€R,
subject to H(0,x) =0 for all z € R.

The solution to this SPDE is, by virtue of definition and similarly to (2.1), the following
Gaussian random field which is defined as a Wiener integral process,

H(t,z) = / Gi_s(x,y)W(dsdy) forallt>0andzx € R, (2.5)
(0,t) xR

where G was defined in (2.2). The following result is a precise small-ball estimate for the
process H at a given spatial point, say x = 0, in terms of the same small-ball constant A
that was introduced in (1.4).

Proposition 2.2. lim. (¢ log P{SUPte[o,u |H(t,0)] < e} =—2\/7.

It is well-known that one can decompose ¢ — H(t,0) as a constant multiple of a
fractional Brownian motion F' with index 1/4 plus a continuous Gaussian random field
T that is independent of Z and has C'°° sample functions away from ¢ = 0; see [17]
(Lemma 2.3 below). One can expect the small-ball probability of the rougher process F'
to dominate that of the smoother Gaussian process 7. Therefore, it remains to make this
assertion rigorous. This effort is complicated by the fact that, near ¢ = 0, the random
field T is not smooth; in fact, T" and F' are equally smooth locally near ¢ = 0. The crux of
the argument hinges on estimating how quickly 7" begins to “look like a C'*® process,”
together with a suitable quantitative way to interpret the quoted sentence. This effort
will be summarized in Proposition 2.4 below. Proposition 2.2 is proved subsequently in
§2.3.

We begin by studying an auxiliary process 7T

2.2 An auxiliary Gaussian process

Let V denote a one-parameter white noise on RR; that is, V is the weak derivative of
a two-sided Brownian motion indexed by R. Consider the centered Gaussian process
T = {T(t)}+>0 that is defined by 7'(0) = 0 and

1 [ [1—e )

We shall assume throughout that V' and the noise W in (2.4) are independent. Let us
recall the following structural decomposition of H(t) in terms of the process T and a
fractional Brownian motion of index 1/4.

Lemma 2.3 (Lei and Nualart [17]). The centered Gaussian process 1' is continuous.
Moreover, its restriction to [, 0c) is almost surely C* for every n > 0. Finally,

H(t,0) + T(t)

B == /m

[t > 0]
defines a standard fractional Brownian motion of index 1/4.
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The final part of Lemma 2.3 is proved via a direct computation of the covariance
function of F'. With this aim in mind, let d denote the usual canonical distance that is
associated to the Gaussian process T; that is,

d(s,t)=|T(t) —T(s)l2 foralls,t>0. (2.7)
The regularity assertions of Lemma 2.3 were proved by showing that:

(@ d(s,t) St— 5\1/4 uniformly for all s,¢ > 0; and

(2.8)
(b) d(s,t) < Cy|t — s| whenever s,t > 7,

where (), is a number that depends on 7 but not (s, ¢). The main result of this section is
the following lower bound on the small-ball probability of 7'. Note that, in addition to the
assertions in Lemma 2.3, parts (a) and (b) of (2.8) show that while F'is smooth away from
the origin, it scales roughly as fractional Brownian motion of index 1/4 near the origin.
Nevertheless, the following shows that the small-ball probability of T is significantly
larger than that of a fractional Brownian motion with index 1/4.

Proposition 2.4. There exists a constant L. > 1 such that
P{|T|clon <r} > L "exp(—L/r) forallr > 0.

The proof of Proposition 2.4 requires a few preliminary steps. The first is a care-
ful estimate on the canonical distance that improves (2.8); it is in fact the following
interpolation between (a) and (b) of (2.8).

Lemma 2.5. There exists a number ¢ > 0 such that

1/4 |t — s| 3
d(S,t)<C|t—S| / 1/\(/\t) fOra]lS,t>O.
S

Proof. The definition of the Wiener integral in (2.6) yields the following: For every

t,e 20,
_emer?/2)
d(t +¢,t) = J/( )eyzdy.

Since 1 — exp(—c) < 1 Acforall ¢ > 0, this yields

52 /\/Zt/a

[d(t +¢,t)]? < < 5k

—Z/ dy—'_i _J1+J27

V2t/e y?

notation being clear from context. On one hand, uniformly forallt > ¢ > 0,

g2 oy 2 g2
1<47ﬂf‘73/2/ ye dyo<t3/2 and
\[ e—y2 dy - ﬁ —2t/a < 72
\2t/e y t ~3/2

where we have appealed to I’'Ho6pital’s rule to estimate J,, as well as the fact that
A2 exp(—A) < 1 uniformly for all A > 1. On the other hand, when ¢ > t, we have

2 \/2t/e \/’ _ o d
€ e
1<73/2/ y?dy S Ve, Ja < dy SVt gwﬁ,
Amt \2t/e y V2t/e Y
valid uniformly for all ¢ > ¢ > 0. The lemma follows from putting together the two
cases. O
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We plan to use Lemma 2.5 to compute a sharp metric entropy bound for the process
T on [0,¢]. In order to do that, we will need a good covering method which will turn out
to depend on the solution to a nice difference equation. Choose and fix a number ¢ > 0
and consider the initial-value problem,

/ 3/4

g =cg on (0,00), subjectto g(0) =0,

whose only strictly increasing solution is g(t) = (ct/4)*. The following is an asymptotically
analogous result for a discrete version of the preceding ODE.

Proposition 2.6. Choose and fix some ¢ > 0 and define a; = 1 and a,+1 = a, + caf/4 for
everyn € N. Then, a,, ~ (cn/4)* asn — oo in IN.

Proof. By induction, a,+1 > a, for all n € IN. We first show that lim,, _,~ @, = co. Indeed,
an, =2 a; = 1foralln € N and hence a1 — a, = caf’/ 4 > c. This proves the sub-optimal
result that a,, > cn for all n € IN, which is nevertheless good enough to ensure that
an, —> 0O as n — oo.

Now we extend the sequence {a,}nen to a function f : [1,00) — [1,00) by linear

interpolation. Specifically, let

f(t)=ap +eclt— LtJ)a?[t/f forallt > 1,

where |t| denotes the greatest integer < ¢. Note that f is differentiable on (1,00) \ IN,
and
f(s) = cafg‘ = c[h(s)]P/4[f(s)]*/*  forall s € (1,00)\N, (2.9)

where

ht) = 2L — a1t

PO apy + et - [t)a}l]

Since 0 <t—[t] < land aj;) — oo ast — oo, we have h(t) — 1 boundedly as t — co. And
of course h(t) < 1 forallt > 1. We can write (2.9) as df/f3/* = ch®/* ds and integrate
from 1 to ¢ [ds] in order to find that

£(t) = (1 + 2 /1 t[h(s)]3/4 ds>

forevery t € [1,00) \IN and hence every ¢t > 1 by continuity. Since f(n) = a,, foralln € N
and h(s) — 1 boundedly as s — oo, this proves the result. O

forevery t > 1.

4

Recall the Gaussian process T and associated intrinsic metric d respectively from
(2.6) and (2.7). Let AV denote the metric entropy of the process {T'(t)}:c[o,1]. That is,
for every r > 0, define N (r) to be the minimum number of open d-balls of radius r > 0
needed to cover the closed interval [0, 1]. We shall recall the following result which is
stated explicitly in Talagrand [29, Lemma 2.2], whose proof follows from combining the
entropy estimates of Talagrand [27, Section 3] together with a deep theorem of Kuelbs
and Li[14]. A detailed concrete proof of the following can be found in Section 7 of the
lecture notes by Ledoux [15].2

Lemma 2.7 (Talagrand [27]). Suppose N < 9 on (0,1) for a function ¢ : (0,1) — Ry
that satisfies ¢(r) =< 1(r/2) uniformly for all r € (0,1). Then there exists K > 0 such that
P{[|T|lcpo1) < e} = K~ exp(—K(e)) forall e > 0.

Armed with Lemma 2.7, we can present the following.

2In fact, the 2-parameter process (T © T)(t,s) = T(t) — T(s) satisfies P{||T © Tlleo2) < € =
K~ exp{—K1(e)}. Lemma 2.7 follows from this formulation since 7'(0) = 0.
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Proof of Proposition 2.4. It suffices to prove that the asserted inequality of the proposi-
tion is valid for all € € (0,1/2). With that aim in mind, let us choose and fix a real number
¢ € (0,1) [N.B.: note € (0,1/2)], and define ag = 0, a; = 1. Then define iteratively

aj41 = a; + caf-/4 for all j € IN, where ¢ > 0 was defined in Lemma 2.5. Also define
=a;(2¢/c)* forjeZ,.

According to Lemma 2.5, d(tg,t1) < 2¢, and

At ty41) < cltyin = 51/85" =
In other words d( J ,tjr1) < 2e forall j € Z,. It follows readily from this that M (e) <
1+ max{j > 0: a; < (¢/(2€))*}, uniformly for all ¢ € (0,1). Proposition 2.6 assures us
that a; > j* uniformly for all j € IN large. Therefore, we can see that there exists C > 0
such that NV (¢) < C/e uniformly for every € € (0,1). Apply Lemma 2.7 with ¢(¢) = C/e
to conclude the proof. O

=2 forall j € IN.

2.3 Proof of Proposition 2.2

With the results of the preceding subsections under way, we are ready to verify
Proposition 2.2. But first we pause to recall the following specialization of [1].

Lemma 2.8 (Anderson [1]). If X is a centered Gaussian random variable X with values

in C[0,1], then P{||X + fllcjo,1) < 7} < P{||X|lc[o,5) < r} forevery f € C[0,1] and r > 0.

Define T as was done in (2.6), using a noise V' that is independent of W and hence

also of the solution H to (2.4). Let F' be the corresponding fractional Brownian motion

with index 1/4, as was introduced in Lemma 2.3. Because H and 7T are independent

processes, we first condition on 7" and then appeal to Anderson’s inequality (Lemma 2.8)
in order to see that, foralle > 0,

PPl < (/2 e} < sup PLIHC.0)+ fllows <}
fecjo, (2.10)
—P{HH 0)llcpoa) <€} -

This yields a lower bound on the small-ball probability for ¢ — H(¢,0) in terms of the
better-studied small-ball probability for fractional Brownian motion. For a complemen-
tary inequality let us choose and fix some number p € (0,1) and observe from the
independence of H and T that for all ¢ > 0,

P{IH(-,0)llcio,1) < pe} - P{IITllcro,) < p)e} < {‘F”C()l] (77/2)1/45},

Apply Proposition 2.4 with » = (1 — p)e in order to find a number L > 0 such that for all
>0,

P{IH (0o < pe} < LP {|IF e < (m/2)1/4e} - eb/10-04], 2.11)
Relabel € as pe in order to see from (2.10) and (2.11) that for all ¢ > 0,
P{IFllcpon < (/2)"/*} <P {IH(,0)llcpo,y <}
P{IIPllop. < (7/2)!/%e/p} ebe/10=01),

Apply (1.4) to see that, ase | 0,

~2X+0(1)
T ~X

22t +0(1
<e'logP {|H(-,0)[l o) < e} < JRerelt)

s

Since p € (0, 1) was arbitrary, we may let p tend upward to 1 in order to complete the
proof of Proposition 2.2. O
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2.4 Proof of Proposition 2.1

We now prove Proposition 2.1. The first step is to establish the analogue of Proposition
2.1 for the more regular process H. The following summarizes that result.

Lemma 2.9. For every unbounded, non-increasing, deterministic function ¢ : (0,1) —
(0,00),

lim, [9()] " log P {1 (-,0)lcio < (£/6()/*} = —22/m.

e—=0t

Proof. The random field H inherits scaling properties from white noise and the free-space
heat operator. In particular,

{p*1/4H(pt,p1/2x); t>0,x¢€ ]R} 4 {H(t,z);t>0, z € R}, (2.12)
for all p > 0. In particular, for every ¢ > 0,

P{IHC,0)lcpq < (/6D } = PLIH(, 0)llopy < [6(=)] 7/}

The result follows from the above, Proposition 2.2, and the fact that ¢(¢) — oo as
e—0F. 0

In the next step in the proof of Proposition 2.1 we show that H(¢,0) is very close to
Z(t,0). Since H and Z are Gaussian, it suffices to measure closeness using the variance.

Lemma 2.10. E(|H(¢,0) — Z(t,0)|?) < 5t forallt > 0.

Proof. We can compare (2.3) to (2.5) in order to see that E(|H (t,0)— Z(t,0)|?) < 4J1+Ja,

where
/ 47r3/
J2=/ dS/ dy [Gi—s(y)]*.
0 ly|>1
Both terms can be estimated by direct means. Indeed,
2 5
0[S ()2
/o / Z T™Jo |I =

tods
Jz/ds/ dszy2=/ dz Gs(=),
2 0 ly|>1 S 0o V8ms Jiz>v2 )

thanks to the fact that [G(y)]? = (47s)"'/2G4(yv/2) for all s > 0 and y € R, and a change
of variables. Since Y " | exp{—n?/(4s)} < [, exp{—y?/(4s)} dy = /7s, it follows that
J1 < 2t. And a familiar Gaussian tail bound yields

/ dz Ga(2) < exp{—1/(25)},
z[>v2

and hence

Iy < / t ( L ) ds 1 oy
X €x - S EX2)
? 0 P\ 725 V8ms  v/8em
thanks to the elementary fact that s—'/2 exp{—1/(2s)} < e~'/2 for all s > 0. Combine the
bounds for J; and J5 in order to deduce the lemma. O
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In the next stage of the proof of Proposition 2.1 we show that the somewhat crude
approximation offered by Lemma 2.10 is good enough to yield the closeness of the
respective small-ball probabilities of ¢t — H(¢,0) and ¢t — Z(¢,0). In fact, a little extra
effort produces the following much better result.

Lemma 2.11. Let ¢ : (0,00) — R4 be an unbounded, nonincreasing, deterministic
function that satisfies the local growth condition (1.5). Then,

1

lim sup Veo(@og P {IH — Zlloqoaxr > (/6! < -1
£

Proof. Let D(t,x) = H(t,x) — Z(t,z) for all ¢t > 0. Clearly, D is a continuous and
centered Gaussian process with
E (|D(t,z)|*) < 5t, and

(2.13)
E(|D(t,2) = D(s,y)|*) S|t —s['/* + |z —yl,

valid uniformly for all s,¢ € [0,1] and =,y € T. The first inequality in (2.13) is from
Lemma 2.10 and stationarity, and the second is a well-known fact that is used frequently
in the regularity theory of SPDEs [30, pp. 319-320]. Therefore, Dudley’s theorem yields
a positive number ¢ such that

0<E sup supD(s,y) < c\elog5|1/2 uniformly for all e € (0,1/e];
s€[0,e] yeT

see for example Ledoux [15]. Moreover, by concentration of measure [15] and (2.13),

>z}

) < 2e=2"/(105)  for all z,e > 0.

P < sup sup
s€(0,e] yeT

D(s,y) —E [ sup sup D(s, y)]
s€[0,e] yeT

22

<2 -
exp < 28up,¢o,.) Var[D(s,0)]

Thus we see that, for every z > 0 and € € (0, 1/e],
P{IH = Zlloo.xm) > clelogel/? + 2} < 20757/00),

This and the moderate-deviations condition (1.5) together imply the lemma. O

We have laid the groundwork and are now prepared for the following conclusion to
the results of this section.

Proof of Proposition 2.1. Choose and fix an arbitrary number p € (0,1). In accord with
Lemmas 2.9 and 2.11,

PLIZC,0)llcion < (/6(e)* ]

<P{IHC0)llopa < (14 ) (/0 } + P LIH(,0) = Z(,0)llcp.a > p(/6(2) '}

(2A\/7) 4+ o(1) p*+o(1)
gexp{—w¢(s)}+exp{—6€¢<5)} ase 0.

Since p € (0,1) can be as close to zero as we want, this and (1.5) together imply that

limsup[p(2)] " 1og P {1 Z(-,0)llco.e1 < (e/0(e))/*} < 20/
el0
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Likewise, we appeal to Lemmas 2.9 and 2.11 as follows:

2N/ o(1
exp {‘W“E)} =P {IH(.0)llcp. < (1 p) (¢/8() "}

<P{IZ(,0)lcro. < (/6(2) " } + P {IH(,0) = Z(2,0)llcq > p(e/6(e) '}

<P{||Z<-7o>||cm,s]<<a/¢<a>>”4}+exp{—p+60<” W} as = L0,

Since p € (0, 1) can be as close to zero as we want, this and (1.5) together imply that
liminf.o[¢(e)] " log P{| Z(-,0)l|lcjo,¢) < (¢/0(€))'/*} > —2A/, and concludes the proof of
the proposition. O

3 Linearization, and proof of Theorem 1.1

Consider the space-time random field & that is defined by setting, for all ¢ > 0 and

zeT,
E(t,x) =u(t,z) — (pr *ug)(x) — o(ug(z))Z(t, ).

Thus, the random variable &(t,x) measures the linearization error of the solution to
(1.1) at the space-time point (¢,z) € Ry x T. It is known that &(¢,z) =~ 0 when ¢ = 0; this
was done independently and nearly at the same time in [12] and [9]. The method of [12]
provided detailed bounds for the moments of sup |&| but with suboptimal ¢-dependent
rates, and the method of [9] provided a.s. estimates for sup |£’|, with nearly sharp control
of the size of sup |&|, but only under extra smoothness conditions on o; specifically o was
assumed to be in C7 for a large enough r > 3. Our next proposition improves both of
these results. It yields a rate that is unimproveable to leading order, does not require
additional smoothness for o, and provides quantitative bounds on P{& ~ 0}. More
precisely, we have

Proposition 3.1. If o is bounded, then for every v > 0 there exists a = a(v) € (0,1) such
that
P {”gnc([mt]x'ﬂ‘) > at!/? log+(1/t)} < t” uniformly for everyt € (0,1).

The proof of Proposition 3.1 requires a few preliminary calculations. Before we
commence with those, let us quickly deduce the following analogue of a result in [9] but
valid with no additional smoothness assumptions on ¢ and with a slightly tighter error
rate at the sharp leading order of ¢t!/2.

Corollary 3.2. Regardless of whether or not ¢ is bounded, there exists an a.s.-finite
random variable V such that || (t)||c(r) < Vt'/? log, (1/t) uniformly for all t € [0,1].

Proof. The proof uses a stopping-time argument. Choose and fix a real number N > 0,
and define uy the same as u - see (1.1) — but with ¢ replaced by oy

o(N) ifz> N,
on(z) =4 o(z) if —N < o(x) <N,
o(—N) ifz < —N.
That is, un(0) = ug, and
ux(t,2) = (e uo)(e) + [ e ) (u(s. ) Widsdy),
(0,6)xT

fort > 0 and z € T. Define

Ty =inf{t = 0: |un(®)|lcr) > N} [inf @ = o0].
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Then, Ty is a stopping time with respect to the filtration F generated by the noise. Basic
properties of the Walsh stochastic integral and the continuity of v and u together imply
that

P{un(t) =u(t) forallt < Ty} =1, (3.1)

whence also Ty = inf{t > 0 : [|u(t)[|c(r) > N} almost surely. Therefore, we apply
Proposition 3.1 with v = 1 in order to see that there exists a > 0 such that

P{ sup |6(®)locr > ac'?logel; Ty > 1}
t€[0,e]

=P { 51[1p] lun (t) = pe* uo — o(uo) Z ()| o) = ac'/?|loge|; Ty > 1}
te[0,e

<P { sup lun (t) —pi *uo — o (u0) Z ()|l oy = ae”Qllogel} Se
te[0,e]

uniformly for all € € (0,1). Replace € by exp(—n) as n ranges over IN and sum over n to
deduce from the Borel-Cantelli lemma that

1€ ®llcr)

lim s .
im sup sup R

n—00 te[0,exp(—n)]

<a as.on{Ty >1}. (3.2)

Ifexp(—n — 1) < e < exp(—n) and n € IN, then

Ie@lom ll€®llccry
s€[0,¢] 51/2|1og5| = s [0.0xp (=) e—(n=1)/2,

Therefore, (3.2) implies that

&
P{limsup sup I (S)HC(T) < a

o K0 < b vy meanso

Because (3.1) and the a.s.-continuity of v together imply that limy_,., Ty = oo a.s., this
proves that
1€(s)llecr) a
limsup sup ———— < — a.s.
el0  s€l0,e] 51/2\log5| h \/E
In particular, the above limsup is finite almost surely. This is another way to state the
corollary. O

Now we begin proof of Proposition 3.1 in earnest. Let us define a metric A on
space-time R x T by setting

A((t,z),(s,y) = |t —s|"/* + |z —y|'/? foralls,t>0andz,yeT.

It might help to recall that we are using the additive notation for elements of T. In
particular, |z — y|'/? is shorthand for |z — 3 (mod 2)|'/? whenever =,y € T.

The following is a consequence of the large-deviations result of Sowers [26] and
well-known relations between tails of a Gaussian law and its moments. Results of the
following type are well known and typically used to prove that the process w is continuous
all the way up to and including the boundary of [—1, 1], keeping in mind also that +1 are
identified with one another here.

Lemma 3.3 (Sowers [26]). If o is bounded, then

lu(t, z) —uls,y)lk S VEA((E,2), (s, 1)),

uniformly for all x,y € T, s,t > 0, and k > 2.
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Next, we present an exponential tail estimate for the linearization error &, valid when
o is bounded.

Lemma 3.4. If o is bounded, then there exists v > 0 such that

) <o

8t x) = / Proa(,y) [o(us,9)) — o (u(0, 2))] W(dsdy),
(0,6)xT

E(t, )
sup sup Eexp (fy ’
te(0,1] z€T Vit

Proof. Compare (2.1) with (2.3) in order to see that

forall ¢ > 0 and x € T. Thanks to the Young’s inequality for stochastic convolutions (see
Khoshnevisan [10, Proposition 5.2]), we have the following for every real number &k > 2,
t>0,andz e T:

el <4k [ as [ ay st o) lotuts.0) = otu0.2)
< 4k[Lip(o / ds/dy pie_s(x,y)]? |uls,y) —u(0, x)||k (3.3)

< / ds /T dy [pr—s(z,1)A(0,2), (5, 1))

Thanks to (2.2), (t,a) — pr(a) — G,(a) is bounded uniformly on R, x T. In this way, we
find that

||5tx||k<k2/ds/ dy [Gs(y)]? (VE— s+ yl) +k2/ds/dy (Vs +yl),

uniformly for all t > 0, z € T, and k£ > 2. Direct computation yields the bound,

t
/ ds/ dy (Vs + |y|) < t*/2 +¢,  valid uniformly for all ¢ > 0.
0 T

Similarly, we find that for all ¢ > 0,

/ds/ dy [G 2\/;—/ mG2s( )ds < t, and

/ as / ay [Ga()]2ly] = / ds / dy [G1 (y/v/5) 21|
:/0 ds/_ood“’ G (w) 2] o ,

where the constants of proportionality do not depend on ¢. It follows from the preceding
effort that there exists B > 0 such that

sup supE (|€(t,)|¥) < (Bk)*t*/? uniformly for all k > 2
te(0,1] z€T

By Jensen'’s inequality, the preceding in fact holds uniformly for all¢t > 0, z € T, and
k > 1. Among other things, this and Stirling’s formula together yield a constant C' > 0

such that i
E(t
sup supE ‘ (t,2) < CFk! uniformly for all k € Z. .
t€(0,1) z€T \/i
Choose and fix an arbitrary v € (0,C) and sum the above inequality over all k € Z in
order to deduce the lemma. O
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Remark 3.5. We can make an adjustment to the preceding proof in order to see that
the distribution of & (¢, «) in fact has sub-Gaussian tails when o is bounded. However,
in order to achieve a sub-Gaussian tail that is valid uniformly in ¢ € (0, 1] all the way
down to ¢t = 0, we need to normalize &(t,x) differently. A more precise statement is this:
There exists v > 0 such that

2

) < 0. (3.4)

To prove (3.4) we simply adjust the first line of (3.3) by bounding out the difference of
the o’s. In this way we obtain the following, thanks to the semigroup property of the
heat kernel and a standard bound on the heat kernel on T at small times: Uniformly for
allte (0,1, x €T, and k > 2,

&(t, x)
$1/4

sup sup Eexp | +/
te(0,1] zeT

t
1€, 2)]; < 168up\0(2)|2k/ dS/ dy [pr—s(z . y)”
z€R 0 T

t
— 16 sup \a(z)|2k:/ p25(0,0)ds < k.
zeR 0

This inequality yields (3.4). By itself, the rate t1/4 renders the bound (3.4) useless since
the individual terms that define & are each of the order ¢!/ in law when ¢ ~ 0. However,
the observation has its uses. For example, (3.4) is good enough to ensure that, among
other things, &(t, ) has sub-Gaussian probability tails.

The preceding remark can be followed up by our next lemma which describes uncon-
ditional sub-Gaussian tails for the distribution of the spatio-temporal increments of &
when ¢ is bounded.

Lemma 3.6. If o is bounded, then there exists a number ~, > 0 such that

&(t,x) — &(s,y) ’
FEex su su 0.
Plo Bt ™ | At 1) (5.9)ylog, /AL 0) . 5.0) | |

T#Y

Proof. Since the random field Z is defined in the same way as the random field « but
with ¢ = 1, Lemma 3.3 implies that

1Z(t,2) = Z(s, )|l S VEA((E, ), (s,9)),

uniformly for all x,y € T, s,t > 0, and k£ > 2. Therefore, the boundedness and Lipschitz
continuity of ¢ yield the bounds,

llo(uo(x))Z(t, x) — o (uo(y))Z(s, )l
< lo(uo(2))Z(t, x) — o (uo(x))Z(s,y)llk + o (uo(x)) — o(uo(w)IIIZ(s, )k
SVEA((t,2), (s, 9) + e =yl Z(s. 9],

valid uniformly for all k > 2, s > 0, and y € T. Since Z is a Gaussian random field, a
standard computation yields

1Z(s,9)llx S VENZ(s,y)]2 S VEs4,
uniformly for all & > 2, s > 0, and y € T. It follows that

lo(uo(2)) Z (¢ ) = o (uo(9)) Z (s, y) Ik < VEA((E, 2), (5,9)),
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uniformly for all k£ > 2, s,¢t € (0,1], and z,y € T. It is well known that, because vy is
Lipschitz continuous,

|(pe * wo)(2) = (ps * uo)(y)| S A((E,2) 5 (s,9)),

uniformly for all s,¢ € (0,1] and x,y € T.3 Therefore, the preceding bounds together
yield the inequality

1€t 2) = E(s )l S VEA((E,2), (s, 9)),

valid uniformly for all s,¢ € (0, 1] and =,y € T. Now a standard metric entropy argument
completes the proof. O

We are ready to establish the following, which is a slightly weaker fixed-time version
of Proposition 3.1, and paves the way toward proving afterward that proposition in
complete generality.

Lemma 3.7. If o is bounded, then for every v > 0, there exists a number K = K(v) > 1
such that

P {||5(t)||C(T) > KVi log+(1/t)} < ¥ uniformly for all t € (0,1).

Proof. Lemmas 3.4 and 3.6, and Chebyshev’s inequality together yield a number C' > 0
such that

sup sup P {|<§"(t,x)| > 2,8\/7?} Sexp(—Cp), and

t>0 xz€T
(3.5)
P sup |&(t,x) — E(t,y)| > 0y/elog(l/e) p S exp (—CO?),
z,yeT:
lz—y|<e
uniformly for every 3,6 > 0. Define
T, = Uic[-nn—1nz {i/n} for alln € IN,
and remember that because of the group topology of the torus, the ends of T = [-1,1]

are identified with one another. This shows that every point in T is within n~! of some
point in T,,. Because the cardinality of T, is < 4n uniformly for all n € IN, we can deduce
from (3.5) that

P{ls o > 2 Vi)

Vit

Qlw

gP{maX|é‘7(t,x)|>B\/i}+P sup |E(t,x)—E(t,y)| =
z€T, C z,y€eT:
le—y|<1/n
2

< ne—B/2 __Btm

S ne + exp ( C log+(n) ,
uniformly for all ¢ € (0,1), 8 > 0, and n € IN. We apply the preceding with

B =p(t) =2klog, (1/t) and n=n(t)=C|1/t],

where k > v V 1 is a fixed number, in order to deduce the result. O

3This follows for example, from the fact that we can write (p: * uo)(z) = Eug(x + B:) for a Brownian
motion {B;}+>¢ on T with speed 2, so that [(p; * ug)(z) — (ps * uo)(y)| < |luo(z + Bt) —uo(y + Bs)|l1 <
lwoll g1/2 gy {11 Bt — Bslli + |z — y|}1/2, by the triangle inequality.
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We are ready to establish Proposition 3.1.
Proof of Proposition 3.1. Lemma 3.6 implies that there exists C' > 0 such that
P sup [|6(s) = E) o) =0 log(1/e)]/? b S e, (3.6)

s,r€(0,1]:
ls—rl<e

uniformly for all e € (0,1) and 6 > 0. Now, let us choose and fix some ¢ € (0,1), define
Sn,t = UjE[O,n]F‘I]N {jt/n} foralln € IN,

and observe that every point in [0, ¢] is certainly within 1/n of some point in S, ;. Because
the cardinality of S, ; is < n uniformly for all » € IN, we can deduce from Lemma 3.7 and
eq. (3.6) that for every v > 0 there exists K = K(v) > 0 such that

P {8l conxm > 2KV 108, (1/6) } <P {6llc(s,  m > KvETog, (1/1) |
+P {sup srste 1600 = E)llowm) > Kvi log+<1/t>}

|s—r|<1/n

5nt”+2+exp<CK2 vn t|log, (1/t 2),
ooy {108+ (1/0)

uniformly for all n € IN and ¢t € (0,1). We may now choose and fix an integer M =
M (v) > [2v/(CK?)]?, and apply the preceding with n = M [t~2] in order to complete the
proof. O

Proposition 3.1 forms the bulk of the effort of proving Theorem 1.1. Now that we
have proved the proposition, we can conclude the proof of Theorem 1.1, which is the
first primary offering of this work.

Proof of Theorem 1.1. We can observe that
P {sup e lu(t, @) = (b1 wo) ()] < (e/9(e))"/*
<P {supieppq o (uo(@) Z (8, 2)| < (¢/6(2))' " + as'/?| og |}
+P {Supte[o 16, 2)] > a€1/2|10g5|}

Thanks to (1.5), the first probability on the right-hand side decays at least as rapidly
as exp{—(2Ao*(uo(z))/7) + o(1))¢(¢)}. Therefore, we choose v > 2\|o(ug(x))|/7 too see
that, as long as we pick a large enough (which we will), Lemma 3.7 assures us that, as
elo,

P {SuPte[o’d [u(t, @) — (pe * uo)(2)| < (g/¢(g))1/4}
< oxp {_ <2)\[U(uo(x7z)]4 + 0(1)) oe )} e exp{ <2A[o(uo(:€))]4 + 0(1)) M} |

see (1.5). In order to derive a complementary bound, we write

P {supseo.) lo(uo(@)) 2 (¢, 2)| < (¢/(2))"/* + as'/?|loge|}
< P {supeqo.q lult, 2) — (pr o) ()] < (e/0(2))*}
+ P {supeo o |61, 2)] > as'/?|loge] |
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and proceed in parallel to the previous part. This completes the proof since (1.5) assures
that

sup [lpt o — uoll ey < Li(uo)VE = o ((e/0())/*),
te0,e]

as ¢ | 0. This completes the proof. O

4 Proof of Corollary 1.2

As was mentioned in the Introduction, one might anticipate some version of Corollary
1.2, viewed as a natural byproduct of Theorem 1.1. However, it turns out that the proof
of Corollary 1.2 requires the introduction of a few subtle ideas that are not altogether
standard. Therefore, we use this section to hash out the details of that argument.
Throughout this section, let us define

' 1/4
Wt () forall t > 0,
)=\ togTlog, /o)

and recall the Gaussian random field H from (2.4) and (2.5). The following is the main
step of the proof of Corollary 1.2.
Proposition 4.1. Forevery z € R,

H(t 22\ /4
liminf sup |H{E, )] = <) a.s.
cl0 yeo,e  W(e) @

Before we prove Proposition 4.1, we pause to quickly verify Corollary 1.2. Then, we
concentrate on proving Proposition 4.1, which is the main portion of the work.

Sketch of a conditional proof of Corollary 1.2 given Proposition 4.1. We may apply Lem-
ma 2.11 [with ¢(t) = 6~ *loglog, (1/t)] to see that for every 6 > 0 there exists K = K(J) >
0 such that

P< sup |H(t,z)— Z(t,z)| = 0(e) p < Kexp R ) (4.1)
te[0,e] v/ Kelog|loge|

uniformly for all ¢ € (0,e~*). Because § > 0 is arbitrary, the Borel-Cantelli lemma then
implies that, with probability one,

sup [[H(t) = Z(t)llc(r) = o(¢(e))  ase |0

Because £/?|loge| < ¥(¢) as € | 0, the preceding and Corollary 3.2 together yield
Corollary 1.2. We leave the remaining details to the interested reader. O

Now we start to prove Proposition 4.1. From here on, let us choose a fixed real
number a > 0, and define

t, = exp (—n”") for every n € IN. (4.2)
Because « > 0, a Taylor expansion yields

by .

;—H <exp (—(1+ a)n®) uniformly for all n € IN. (4.3)
Lemma 4.2. For every ¢ € (0,1) there exists M = M(§, «) such that, uniformly for all
n €N,

exp ((1 +a)n®/2
P{HH||C([0,tn+1]x[—1,1]) = (W(tn)} < M exp <— p(( ) / )> .

M /log, (n)
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Proof. 1t is not hard to see that Var(H (t,0)) oc v/¢ uniformly for all ¢ > 0; this is very well
known, but also follows essentially immediately from the scaling property (2.12) of the
random field H. It is also well known that, for every fixed T' > 0, | H(t,z) — H(s,y)||2 S
|t — s[*/4 4|2 — y|'/? uniformly for all z,y € R and s,¢ € [0, 7]. In fact, Lemma 3.3 asserts
this in a more general context where ¢ can be nonlinear. A suitable version of Dudley’s
metric entropy theorem [15, Theorem 6.1] yields a constant L > 0 such that

E (|Hllcqogx(-1.1)) < Lt'/*\/log, (1/t)  forallt e (0,1).

Now we may apply concentration of measure [15] in order to see that there exists £ > 0
such that

022
P{ H Cian = LA og by |12 } <2exp [ — . (44
I H |l ([0,tn1]x [~ 1.1]) mp1llogtn 1/ 7 + 2 x|~ = (4.4)

foralln € NN [2,00) and z > 0. Thanks to (4.3),

1/4
ln

Logtrn 2 = (%25 ) T log 02 log g )/ 0t,)

(1+a)n® kA

2L

y Uta),

<o - ) (12 tog ) u(t,) <
uniformly for all n large enough, and how large depends only on (0, «). Therefore, we
plug into (4.4) z = 6¢(t,)/2, and deduce the asserted inequality of the lemma for large
n after a few lines of computation. We may increase the constant M, if it is needed, in

order to obtain the lemma for all n € IN. O

Next we adopt a localization idea of Lee and Xiao [16], and define a family {H, }en
of space-time Gaussian random fields by setting

Ho(t,7) = / Goo oy — ) W (dsdy), 4.5)
[tn+1,t)><R

forall (¢,z) € [tpy1,tn] X R. If n>> 1 then H, ~ H. The following is a careful way to say
this, and contains also a tight quantitative bound on the approximation error, necessary
for small-ball probability estimates that follow.

Lemma 4.3. For every ¢ € (0, 1) there exists M = M (4, «) > 0 such that, uniformly for
alln € IN,

ex 1+a)n®/2
P{|HHn||c<[tn+1,tn]x[_1,m>6w<tn>}<Mexp< p((1+ajn?/ )>.

M /log, (n)

Proof. Because H(t,z) — Hu(t,x) = [, g Gi-s(y —2)W(dsdy) foralln € N, t €
[tn+1,tn) and x € R, the Wiener isometry implies that

t

B (|2~ 0 = [ as [ Ty [Croaly - ) = | caas

_tn+1

owing to the semigroup property of the heat kernel. Since G,(0) = (87s)~'/2, it follows

that
ty
B (|H(t,z) — Hy(t,2)]?) o VE— /= tns = 7;1 < Vot

uniformly for all ¢ € [t,,11,¢,], n € N, and 2 € R. Apply (4.3) to see that

sup supE (|H(t,z) — Hy(t,2)]*) S Vinexp (—3(1 4 a)n®), (4.6)

t€[tny1,tn] TER
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uniformly for every n € IN. Thanks to this and a metric entropy argument [15], we can
find constants L; and L such that

E”H H HC( n+1» n]x[ ]

< Lyt 4 logt,|'/? exp (-1 +a)n®) < Lt/ 4n0+0)/2 oxp (-1 +a)n®),

uniformly for every n € IN. Therefore, (4.6) and concentration of measure [15] together
ensure that there exists a number K > 0 such that

p {||H — Hyllo @t tnixo1) = Lt/ 0+ 2 exp (—1(1 + a)n®) + z}

222

22 nite/2
<2 - <2exp |~ |,
PN Ty sup swpE(JH(t,2) — Ha(t,2)]?) P\ TR

t€[tny1,tn] zER

uniformly for all z > 0 and n € IN. Let € (0,6) be an arbitrary number and apply the
above with 2 = n'/44)(t,,) and appeal to the fact that ¢/ 'n®/2 exp{—n'**/2} < z for all n
large in order to deduce the assertion of the lemma for all sufficiently large n. We may
increase M further, if we need to, in order to see that the lemma’s statement is valid for
every n € IN. O

We are now able to formulate a restricted small-ball estimate, for H, that we shall
need shortly.
Lemma 4.4. For every v > 0,

201+ «)

Jim 10 - logP {0 0ft 1 00) < ¥8(t0)} = — p—

Proof. Choose and fix v > 0. Since

P{[|H(-,0)llco,6,) < v(tn)} SPLIHC, 0 et <700},

and because loglog 1/, = (1+«) log n, Proposition 2.2 and scaling - see (2.12) - together
imply that
201+ «)
myd

One can obtain a similar bound in the other direction as follows: Owing to Lemma 4.2,
for every ¢ € (0,) there exists M > 0 such that uniformly for all n € IN,

P{|H(-, )||C[t,t+1, tn] < YY(tn )}
SP{IH(,0)lco,,) < (v +8)¢(tn)} +P{H(,0)lco,t,.1) = 00(tn)}

exp ((1 +a)n°‘/2)> |
M /log (n)

1
< liminf
n—oc log

~log P {|[H (-, 0) e, or.,) < V(tn)} 4.7)

<P{IHC,0)lleqo,e,) < (v +0)d(tn) } + M exp (

This proves that

. 1 2201+«
timsup - 1og P { [ 0) o1 0, < 1(En)} < — a0 4.8)

n—oo logn S a(y+0)t

The quantity on the left-hand side does not depend on § € (0,~). We therefore obtain
the lemma from (4.7) and (4.8) upon letting « | 0. O

When n > 1, the small-ball probability bound of Lemma 4.4 for the random field H
yields an analogous probability bound for the closely related field H,,, viz.,
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Lemma 4.5. For every v > 0,

201+ a)
nhﬁrgo 10 logP {IHAC 0ty ] S 70(E) } = R

Proof. Lemma 4.3 ensures that for every 0 < § < + there exists M > 0 such that,
uniformly for all n € IN,

P{HHH('7O)||C[tn+1,t \'Yw(tn)}
SP{IHC, 0l 0 < (v +0)9(tn) }
+P{I[Hu(-0) = H(-,0)l0ft, 1 1,t] = 00(tn) }

exp (1 + a)n”‘/2)> |
M /log (n)

SPLIHC0)lct, 000 < (v +0)¥(tn) } + M exp <

Therefore, Lemma 4.4 ensures that

lim sup l logP {||H SOt stn] < ’yw(tn)}

n—oo
201+ )
< < = -
= 7}1—>H<;o log Log P {1 (-, O)llcttn s ta) < (v +)(tn)} w(y + )%
In like manner, we can prove that
201+ « .
PO i dog P {IHC0) ey < (7 )01}

(7 —0)t  nooo log

< liminf
n—00 log

—10g P { Hn (-, 0)l et sr.00) < V¥ (E) } -
Let § | 0 in order to deduce the lemma from the preceding two displays. O
With the preceding preliminary results under way, we can now present the following.
Proof of Proposition 4.1. By the stationarity of z — H(-,x), it suffices to prove that
liminf sup |H(t 0l = (2)\> v a.s. 4.9)
€0 4e[0,e] ¢(5> m

The basic properties of the Wiener integral ensure that the events

{weQ: Ha(,0)llcr, @) <y(ta)},  n=12,...,

are independent for every fixed choice of v > 0. Therefore, Lemma 4.5 and a standard
appeal to the Borel-Cantelli lemma for independent events together yield

1/4
liminf  sup Hn(t,)()) = (2)\(1+a)) a.s.
n ™

N0 e[ttt ¢(t

Lemma 4.3 and the Borel-Cantelli lemma together imply that

||H( ,0) — Hn(t R .)||C([tn+17tn]><[_171]) = 0(’1/)(tn)) asn — oo  a.s.

Therefore, we combine the preceding with Lemma 4.2 in order to deduce the following:

H(t,0 H,(t,0 2A(1 1/4
liminf sup M < liminf  sup |Hn(t,0)] = ( (1+ a)> a.s.
€0 4e(0,e] Y(e) N0 e tprt,tn] Y(tn) m
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Since the left-most quantity is independent of the sequence {¢, },en — and in particular
of o —we let a | 0 to see that

o [H(£,0) _ 23\
liminf sup ————— < [ — a.s.
€0 4el0,e] P(e) ™

This proves half of the assertion of (4.9). The other half follows readily from Proposition
2.2, the scaling property (2.12) of H, and a direct application of the Borel-Cantelli
lemma. O

5 Proof of Theorem 1.3

Throughout this section, we choose and fix a real number 6 > 0, and define

D(n) =U jez,. {j27"} foralln€Z,, sothat|D(n)| ~ 62" asn — oco.
0<j<02"

Also here and throughout, we choose and fix a second real number ¢ > 0 and define
D,(1),Dy(2), ... to be the following “slowed down” version of D(1), D(2),.. .:

D,(m) =D(n) whenever m € IN satisfies 2"/7 < m < 2(n+1/a,

Note in particular that:

1. Dy(m) C Dy(m + 1) for every m € Z;

2. U2_D,(m) coincides with the set of all dyadic rationals in [0, §]; and

3. |Dg(m)| < m?, uniformly for all m € IN.
We will use these properties, sometimes without explicit mention, in the sequel. Finally,
we choose and fix a > 0 throughout this section, and recall the sequence {t,,},en =
{tn(@)}nen from (4.2).

Proposition 5.1. As n — oo,

logP{ min sup |H(t,z)| < W(tn)}

logn 2€Dg(n) t€[tn+t1,tn]
! ! 2A(1
= ;rio() logP { min sup |Hp(t,z)| < y¥(tn) p — — <(JZOZ) _ q> 7
ogn 2EDg(n) tE[tn+1,tn] ™

provided that v > 0 renders the above limit negative; that is, provided that v satisfies

1/4
0<~< <2A(;:O‘)> . (5.1)

The proof of Proposition 5.1 requires first taking three preliminary steps which, in
turn, hinge on the introduction of two new objects. Namely, we define for every n € NN,

R(n) = [:17 — \/tn|10gtn\ , T+ \/tn|10gtn\] , and

(5.2)
o) = [ Graly — 2) W(dsdy),
[tn+1,t)><7?,(’ﬂ)
for all (t,z) € [tnt1,tn] X R. Recall the random fields {H,}52 from (4.5). Our next
result shows that H,, and I, are close, on a suitable scale, and with high probability. The
following constitutes the first step of the proof of Proposition 5.1.
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Lemma 5.2. For every 6 € (0,1) and for every closed interval J C R, there exists
M =M(0,a,J) >0 such that

p {HHn - In”C([th,tn]XJ) > ‘W)(tn)} < M exp <

exp (nlJra) > ’

M/log, (n)
uniformly for all n € IN.

Proof. Without too much loss in generality we consider only the case that J = [—1,1].
The general case is proved by making simple adjustments to the following.
Thanks to (4.5) and (5.2),

t—tny1
B(Ha(t0) - Lt.a)) = [ as dy Gy
0 yER:|y|>2+/ty log(1/ts,

tn—tnt1
<7 dy G (y))*
0 yER:|y|>2+/ty log(1/ts)

fn=tnir g b tylog(1/t,)\ d
o</ ds dy G. (y/\/i)s/ exp <_0g</>) ds
0 V8 JyeRily|>2\/tn Tog(1/tn) 0 s Vs

uniformly for all ¢ € [t,41,t,]), © € R, and n € NN, thanks to the well-known fact that
P{|X| > r} < 2exp(—r?/(4s)) for all 7 > 0 if X has a centered normal distribution with
variance 2s for some s > 0. If s < ¢,,, then exp(—t, log(1/t,)/s) < t,. This yields

sup supE(|Hn(t,x) —In(t,x)|2) §ti/2, (5.3)
t€tnt+1,tn] TER

valid uniformly for every n € IN. Therefore, a metric entropy argument [15] yields the
following: Uniformly for all n € N,

_n1+o¢
Bl Hy = Lnlloqt, o tax -1 St/ *V/log(1/t,) St/ e "

with room to spare. Now we apply concentration of measure [15] in conjunction with
(5.3) in order to see that there exist K; = K;(a) > 0 [i = 1, 2] such that, uniformly for all
n € Nand z > 0,

_plte K22 /432
I {HHn — Lllcnsn tnix -1 = Kit)/*e /4y Z} < 20 K27/t (5.4)

Choose and fix some ¢ € (0,1). For all sufficiently large n € IN,

1+« 6
th:/‘l exp (_n4 ) < 5w<tn)7

and how large depends only on (§,«). Therefore, we plug z = §¥(t,)/2 into (5.4) in
order to conclude the proof. O

Our next lemma provides the second step in the proof of Proposition 5.1.

Lemma 5.3. For every v > 0,
Tim (logn) M ogP {11+, 0) [, 4] < 1(En)} = ~2A(1+ )/ (27,

Proof. The proof of Lemma 5.3 follows the same pattern as did the proof of Lemma 4.5,
but uses respectively Lemma 4.5 and Lemma 5.2 in place of Lemmas 4.3 and 4.4. We
leave the remaining details to the interested reader. O
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The following probability evaluation is the third, and final, preliminary step in our
proof of Proposition 5.1.

Lemma 5.4. We have

lim
n—oo logn

logP{ min sup |L,(t,2)| < ’Y?/J(tn)} =— (

2EDG(n) t€[tn+t1,tn]
for every « that satisfies (5.1).

Proof. If x1,x2, ... € R satisfy the following for all distinct ¢,j € N,

n1+(x
|z; — 24| = 2+/ty|logt,| = 2exp (—2> n(l+e)/2,
then {I,(-,z;)}$2, are obtained by integrating white noise over disjoint sets. In par-

ticular, the above condition on 1, zs,... ensures that {I,(-,z;)}32, are i.i.d. random
variables. If z,y are two distinct points in D,(n), then

14+«
|z —y| > 27 lale2n) = =0 5 gexp (_n 5 ) n(1+e)/2,

valid for all n large, where how large depends only on («,q). Thus, we can see that
{I.(-,7)}zep,(n) is an i.i.d. sequence and hence, for every v > 0,

P {minreﬂqm) SUPteft, 1,1, |1t 2)] <
—1-(1-p {supte[tm,tn] Ia(t,2)| < wun)})

[Dg(n)]

1+

=1- <1 — exp {—2)\( gn ) [by Lemma 5.3],
Ty

as n — co. Since there exists C' > 0 since |Dy(n)| > Cn? for all n € N, condition (5.1)
implies that

a(n)]

lim inf
n—oo logn

log P {minwqu(n) SUPye(t,4,t0] n(t: @) < “W(tn)}

SWEIES NN

Ty

(5.5)

Conversely, since |Dy(n)| =< n? uniformly for n € IN, Boole’s inequality and the
apparent stationarity of x — I,,( -, z) yields the following, valid uniformly for all n € IN:

P {minen, () SWbrer, .0, (@) < 05(tn) }

(5.6)
S TP {11 (-, 0)lttan tn] < V() }
Therefore, in light of (5.5), it remains to prove that
. _ 201 + «
timsup(log 1) log P {1, Ot < 100} < -0 )
n— o0

Let us choose and fix some 6 € (0,+), as close to zero as we wish but fixed, and appeal
to Lemma 5.2 in order to find a constant M = M (6, «a) > 0 such that

P AT 0)l et ) < 700 (En) }

1+«
SP{Hn(-,0) eyt < (v +0)(tn)} + Mexp <_6XP(")> 7

M/log, (n)
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uniformly for all n € IN. This and Lemma 4.5 together imply that

. 1 201+ )
1 logP {||L.(-,0 < th)t < ————.
m sup g log {0t tn) < ¥(E0) } 0 1 0)1
Send 0 | 0 to deduce (5.7) and hence the lemma. O

We are ready to prove Proposition 5.1.

Proof of Proposition 5.1. Choose and fix 0 < § < -, where § is fixed but small enough to
ensure that

(1 1/4
mq

Lemma 5.2 assures us that there exists M = M (J,«) > 0 such that, uniformly for all
nc NN,

P {minwe’Dq(n) Supte[tw,+1,tn,] |Hn(t 3 I)| < ’Yw(tn)} (5.9

(5.8)

1+a
. exp (n
< P {mlnIEDq(n) Supte[tn+17tn] |In(t’x)| < (’Y + 5)¢(tn)} + Mexp <_ ( ) )

M /log (n)

14+«
. exp (n
<P {mlnxqu(n) SUPieft, 0] [Hn(t, @) < (7 + 25)¢(tn)} +2M exp <_]\4fog+(n))> .

Therefore, Condition (5.8) and Lemma 5.4 together imply that the quantity in the middle
line of (5.9) behaves, as n — oo, as n~{®+o(1) where

201+ o)
L) =q— ——=.
O = m T
Consequently,
ligl_ilip Tog log P {minwqu(n) SUDte(tyy,t0] [HIn(t, T)] < W(tn)} < (), (5.10)

1
lim inf
n—oo logn

Send 4 | 0 such that (5.8) holds. The first line of (5.10) yields the following, valid under
Condition (5.1) alone:

log P {minxepq(n) SUDse(r, e [Hn(t )| < (7 + 25)1/}(tn)} > —0().

lim sup

msup log P {minxqu(n) SUDe [t 41,t0] [ (t,2)| < ’ﬂ//(tn)} < —£(0).

And we can set 4/ = v 4 26 to deduce from the second line in (5.10) that

lim inf

00 logn IOgP {minIE’Dq(n) Supte[tﬂ,+1,tn] |Hn(t ) $>| < 7’¢(tn)} = 75(5)3

for every pair (7', §) that satisfies
2A(1 + )\ M/
mq '
Once again send 6 | 0 to deduce from the preceding effort the following: For every v > 0
that satisfies (5.1),

. 1
lim
n—oo logn

2§<7’<35+(

Ha(t,2)] < y(tn) | = ~£(0).

log P {minrqu(n) SUPtE[tn+1,tn]

To complete the proof, we rehash the above argument but replace the role of the ordered
pair (H,, ,I,) with that of (H , H,,) and use Lemma 4.3 instead of Lemma 5.2. We leave
the remaining details to the interested reader. O
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Recall that ~~ denotes subsequential convergence. With that in mind, we have the
following which is a stronger form of (1.7) when o = 1 and the SPDE is on the line rather
than the torus.

Lemma 5.5. With probability one, the random set

. H(t,2)| (220 +a)\"*
{x €R: tes[l(Jl,E)w,] PY(tn) ( m(1+q) ) asm oo

is dense in R.

Proof. Choose and fix two numbers

0<p1 <1< po, (5.11)
and define 1
22(1
i = <(+O‘)> fori =1,2. (5.12)
7(pi +q)
Note that v; > 7».
Consider next the events E1 ;, Es;, ... [i = 1,2], where for every n € N,

oy = {w € Q: mitgep, ) Surep, o0, [Ha(t,2)(@) < (t) |, and
Ens= {w € 0t miyep, () SWrep,., o) [ Halt,2)|(w) < w/)(tn)} .

Thanks to (4.5) and basic properties of Wiener integrals, the events {E, ;}°2, are
independent (say). Moreover, Proposition 5.1 tells us that for: =1, 2,

P(E,;) =n"f"°M  asn - .

Therefore, (5.11) and a standard appeal to the Borel-Cantelli lemma together yield the
following:
P(NoL,UR, E11) =1 and P(NSZ, UL, Ei2)=0. (5.13)

Now consider the random sets defined by

An (pr;p2) = {3: ER: yi(tn) < sup  |Hp(t,z)|(w) < ’YW(tn)}y (5.14)

tE€[tn41,tn]
for all n € IN and p1, p2 that satisfy (5.11). Then, (5.13) says that, with probability one,
An(p1,p2) NDy(n) # @ for infinitely many n € IN.
Since D, (n) C Dy(n + 1), this implies that
Us, Ak(p1, p2) NU_1Dy(m) # @ for infinitely many n € IN, almost surely.

And because U°_, D, (m) coincides with the collection of all dyadic rationals in [0, 6], it
follows that

Us,, Ak(p1,p2) N[0,0] # @ for infinitely many n € IN, almost surely.

Because the random field z — H(-,z) is stationary, the above continues to hold if we
replace [0, 0] by any non-random, bounded, open interval J C R. This implies in turn
that, with probability one,

U, Ak(p1,p2) NJ # & i.0., V bounded open interval J C R with rational ends,
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”

where “i.0.” denotes “infinitely often,” and refers to the occurrence of the event in
question for infinitely-many [random] n € IN. A consequence of this is that, with
probability one,

Ure, Ak (p1, p2) is dense in R i.o.

Since the [random] set U2 Ai(p1,p2) is open for every n € IN, the Baire category
theorem ensures that, with probability one,

NVp1.p2)e@Q?: Moy Une, Ak(p1, p2) is dense in R. (5.15)
0<p1<l<p2

Thanks to (5.12), we have proved that with probability one,

H,(t, . ,
zeR: sup MwCl/‘lasn—)oo is dense in R,
te( w(tn)

tn+1 ;tn]

where C' = 2;\((11:(;). Therefore, Lemma 4.3, and a standard appeal to the Borel-Cantelli

lemma together yield the following a.s. statement:

zeR: sup chl/ﬁl asn — oo p is dense in R. (5.16)
t€[tn+1,tn] ¢<tn)

Yet another appeal to the Borel-Cantelli lemma, this time in conjunction with Lemma 4.2,
implies that with probability one sup;c( ¢, ,1SUPse—1,1) [H (t,2)| = o(¥(t,)) as n — oo.
This and (5.16) together yield the lemma. O

The following verifies a stronger form of (1.8) when ¢ = 1 and the SPDE is on R
rather than T.

Lemma 5.6. With probability one, the random set

H 9 1/4
v eR: liminf sup LD _ ( A ) ase =0 (5.17)
el0 tef0,e] Y(e) m(1+q)

is dense in R.

Proof. The proof is similar to that of Lemma 5.5, but requires making a number of subtle
changes that we describe next. Perhaps most notably, and in contrast with the proof of
Lemma 5.5, we will use different sequences for the upper and the lower bounds on the
supremum of |H]|.

For the upper bound, we follow the proof of Lemma 5.5 and let 7; be as was defined
in (5.12) where p; € (0,1), but rather than use the random sets A, from (5.14), we
define new random sets fln as follows:

Ay (p1, ) = {x €R: supyepo |H(t,z)|(w) < ’yll/)(tn)} . (5.18)

We are including the parameter «, inherited through the choice of the sequence {t, }nen
[see (4.2)], for reasons that will become manifest soon. We follow closely the proof of
Lemma 5.5 in order to find that with probability one,

U, Ax(p1,a) is densein R i.o..

Next, we introduce a sequence that is notably distinct from {¢,,}> ;: First, choose and
fix two numbers c and p- that satisfy

0<c<1<po,
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and define

sp=c" and vy = (”‘)1/4
! " \rl2ta))

Consider the event El, EQ, --- where

E, = {w € Q: mingep, (n) SUPse0 ,s,] [1H (5, 2) (W) < VQw(sn)} for every n € IN.
As was done in (5.6), we may appeal to Lemma 2.9 in order to deduce that
P(E,) =n"*"1  asnp - co.
Therefore, the Borel-Cantelli lemma yields
P (m;‘;l Uz, El) —0.
Define random sets B;(p2), B2(p2),... C R via

Bngb);:{xezm; vyﬁ@n)<supmﬁh%lﬁ¥@,xﬂ} for n € IN.
Then a similar argument as the proof of Lemma 5.5 shows us that, with probability 1,
U2, Bi(p2) is dense in R i.o.

If there is a realization [w € Q] for which the random open sets U Ay (p;, ) and
U2, Bi(ps) are dense, then, for that very realization, the random set {U2 Ay (p1)} N
{U2,,Bi(p2)} is dense in R thanks to the Baire category theorem and the fact that
U, Ar(p1,a) and U®  Bi(ps) are open sets for every n,m > 1. Therefore, we may
apply the Baire category theorem, in much the same way as we just did, one more time

in order to establish that, with probability 1,

Naeqs Ny pr)eQ?: Mpe1m=1 {Uzinfik(pl ,a)} N{UZ,,Bi(p2)} is dense in R.
0<p1<1<p2

We can deduce (5.17) from the above, once we unpack the preceding. O

Proof of Theorem 1.3. First, let us observe that with probability one, the random set

Z(t 2A(1 14
z€T: sup 1Z( ,x)|w( ( +a)) asn — oo p is dense in T. (5.19)
tel0,tn] V(tn) m(1+q)
Indeed, we may appeal to Lemma 2.11
1/4
— € oe Vo
li —logPl||H—-Z > — < ——.
81%1 log | log ¢| °8 {” leqoem <log | 10g5> } 10

In turn, this inequality and a standard application of the Borel-Cantelli lemma together
imply that [|[H — Z||¢(j0,e]x) = 0((¢)) a.s. as € | 0. Therefore, Lemma 5.5 implies (5.19).
Set
20(1+ «)
7(1+q)’
and observe that x can take any value in (0, co). This is because the numbers ¢ > 0 and
a > 0 [see (4.2)] can be chosen otherwise arbitrarily.
Next we use Corollary 3.2 in order to deduce from (5.19) that

X:

{” € T supyep ) [ult, o) = (pe * uo) ()| /1 (tn) ~ x'/*o(uo(2))] @s n — OO}
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is dense in T. Because ug is Lipschitz continuous, this implies that almost surely,

{2 € T suprepo [t 2) = o (2)| /1(tn) ~ XM/ 4o (uo(x))] as n = o0}

is dense in T. This proves (1.7) of Theorem 1.3 in the case that x € (0,00). And
when y € (0,2)\/7), the very same argument works to prove (1.8), except we appeal to
Lemma 5.6 in place of Lemma 5.5 everywhere and make adjustments for the change
accordingly.

For the proof of (1.8), the case xy = 2\/7 is covered already by Corollary 1.2. For the
proof of (1.7), the cases where xy = 0 and x = oo remain to be verified; all else has been
proved so far. The remaining two cases are handled analogously by making adjustments
to the preceding arguments. Therefore, we will describe the changes for the proof of
(1.7) in the case that x = 0 and leave the requisite argument for the remaining case
[(1.7) when x = oo] to the interested reader.

Choose and fix some p; € (0, 1) and define, in analogy with (5.14),

An(a) = {2 € R subepy, ) [Halt, 2)|() < Mtb(tn) }

where now we are emphasizing the dependence of 4,, on ¢ and not p;. Thanks to (5.13),
another category argument yields the following adaptation of (5.15):

Ng>0 NS, U2, Ar(q) # @ is dense in R.
q€Q

Therefore, we obtain, using the same argument as before, the following adaptation of
(5.16):

{a: € R:supyep, o [H(E,2)[/1(t,) ~ 0asn — oo} is dense in R a.s.,
and hence
{x € R: supyepo ) [H(t, 2)|/1(t,) ~ 0asn — oo} is dense in R a.s.,

thanks to the same argument that was used at the very end of the proof of Lemma 5.5.
We now go through the proof of Theorem 1.3 line by line, making only very small changes
to adapt the argument, in order to formally justify setting ¢ = oo in order to finish the
proof of the case where y = 0. This completes our presentation. O
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