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In this work we investigate anharmonic vibrational polaritons formed due to strong light-matter interactions

in an optical cavity between radiation modes and anharmonic vibrations beyond the long-wavelength limit. We

introduce a conceptually simple description of light-matter interactions, where spatially localized cavity radiation

modes couple to localized vibrations. Within this theoretical framework, we employ self-consistent phonon

theory and vibrational dynamical mean-field theory to efficiently simulate momentum-resolved vibrational-

polariton spectra, including effects of anharmonicity. Numerical simulations in model systems demonstrate the

accuracy and applicability of our approach.

I. INTRODUCTION

Strong coupling between light and matter inside optical cav-

ities lead to the formation of polaritons, light-matter hybrid

quasiparticles that exhibits a wide variety of exotic physi-

cal and chemical effects [1–16]. Examples include changes

in absorption spectra [17, 18], possible modification of both

ground [1, 8, 19–21] and excited state chemical reactivi-

ties [8, 22, 23], enhanced exciton [4, 24–26] and charge car-

rier [27] transport, modification of crystallization and melting

processes [28, 29], and long-range exciton energy transfer [30].

However, many of these effects remain elusive experimentally

due to a lack of clear theoretical understanding despite the

significant effort and progress in recent years [31–39].

Currently, many theoretical and experimental works oper-

ate in mutually incompatible parameter regimes, resulting in

contradictory observations [2, 3, 35, 36]. While many the-

oretical studies employ a single emitter and a single cavity

mode description [31, 32, 34, 39–43], a majority of experi-

ments operate in the collective regime, where an ensemble

of molecules are coupled to an ensemble of cavity radiation

modes [1, 8, 19, 20, 23]. Recent works have demonstrated

that a multi-mode-multi-molecule description (i.e., beyond

long wavelength approximation) is necessary to capture var-

ious experimentally-observed photo-physical properties, such

as cavity modified exciton transport [4, 25, 44, 45], polariton

relaxation and thermalization [46, 47], polariton lasing [48],

polariton condensation [49], angle resolved polariton spec-

tra [50, 51], and polaritonic up-conversion [52]. Thus, describ-

ing polariton systems beyond the long wavelength approxima-

tion may be relevant in various cavity modified chemical and

physical effects in molecules and materials and may be key to

resolving discrepancies between theoretical and experimental

work.

Despite notable progress in multiscale polaritonic simu-

lations [46, 53, 54], simulating a large ensemble of cavity
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radiation modes and molecules remains a computationally

formidable task. New theoretical frameworks may offer oppor-

tunities to develop computationally and conceptually conve-

nient approaches. In this work, we develop a theoretical frame-

work where light-matter interactions occur between localized

cavity radiation modes and vibrations. While this description

is formally equivalent to a dipole-gauge Hamiltonian beyond

the long wavelength approximation, it allows for more effi-

cient spatial truncation and spatial coarse graining of the light-

matter hybrid systems. Using this new description, we employ

vibrational dynamical mean-field theory (VDMFT) [55, 56] to

study anharmonic phonon-polaritons [57–60] formed by cou-

pling the vibrations of a periodic lattice to quantized radiation

modes inside an optical cavity. Within this approach the spec-

tra of an extended light-matter hybrid system is simulated via

an impurity model, which maps the dynamics of the periodic

system to that of a single unit cell coupled to a self-consistently

defined bath of harmonic oscillators. It is worth noting that the

typical dipole-gauge Hamiltonian beyond the long wavelength

approximation, where cavity radiation modes are spatially de-

localized as has been used recently to simulate vibrational

polaritons [54], is incompatible with VDMFT, which requires

a spatially localized description as offered within our new de-

scription of light and matter.

Here, we benchmark our approach in a simple model molec-

ular system coupled to cavity radiation modes. Using our

approach, we compute momentum-resolved phonon-polariton

spectra and find them to be very accurate in comparison to

the exact spectra computed using molecular dynamics simu-

lations. We show that effects of anharmonicity in the molec-

ular system, which are often ignored, play a crucial role in

determining both energies and linewidths in the momentum-

resolved phonon-polariton spectral function, which have im-

plications for heat transport and other phenomena, and that

harmonic approximations often employed to fit experimental

data can break down. We also find that the presence of anhar-

monicity leads to a nonlinear relationship between the Rabi

splitting and light-matter coupling strength in contrast to the

linear relationship predicted in a simple coupled harmonic os-

cillator model. Our work also illustrates the shortcoming of

simple light-matter models to extract light-matter couplings

in experiments and underscores the importance of accurately
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modeling molecular and photonic degrees of freedom as well

as their interactions.

The rest of this paper is structured as follows. In Section II,

we discuss the model light-matter hybrid system used in our

work. In Section III, we introduce a new light-matter Hamil-

tonian that describes spatially localized photons interacting

with matter. In Section IV we briefly describe self-consistent

phonon theory and vibrational dynamical mean-field theory.

In Section V, we present our numerical results and discuss

their implications. Finally, in Section VI, we summarize our

work and document our conclusions.

II. MODEL

We consider a one-dimensional periodic chain of atoms in

a cavity that is perpendicular to the confined direction of the

cavity. In this work, for simplicity, we consider a 2D world

where cavity confinement is along the G direction and two

mirrors are placed along the H direction (Fig. 1a). A cavity

radiation mode has momentum k = :Gx̂ + :Hŷ and photon

frequency l2 (k) = 2

√

:2
G + :2

H (we set the refractive index

[A = 1), where :G = =c/!G and :H = 2=′c/!H with =, =′

as positive integers. Here, !G is the distance between the

two mirrors, and we use periodic boundary conditions along

the H direction with a supercell length of !H . Due to the

relevant energy scales, we consider only = = 1, such that

:G = c/!G ≡ l0/2 and l2 (:H) =

√

l2
0
+ 22:2

H . Further,

we only consider the transverse electric polarization, although

the analysis would be similar if we considered the transverse

magnetic polarization.

We consider a light-matter Hamiltonian beyond the long

wavelength approximation [2, 51, 61], which is given by (using

atomic units ℏ = 1 and mass-weighted coordinates)

� = �! + �" + �!−" + ��(� (1)

�! =

∑

:

l2 (:)
(

0̂
 
:
0̂: +

1

2

)

(2)

�" =
1

2

∑

9

(

¤A2
9 + l2

<A
2
9 + 6A4

9 +¬
2
< (A 9 − A 9+1)2

)

(3)

�!−" =

∑

:

∑

9

[
√

2l0l<l2 (:) cos \:

×
(

0̂
 
:
4−8:' Ġ + 0̂:4

8:' Ġ
)

A 9 (4)

��(� =

∑

:

∑

9 , 9′
2[2l0l< cos2 \:4

8: (' Ġ−' Ġ′ )A 9A 9′ . (5)

This Hamiltonian was derived under the assumption that the

electromagnetic field varies slowly over a single unit cell [51,

61, 62] and is consistent with the form of the many-molecule

and many-mode Pauli-Fierz Hamiltonian [2, 63, 64], which is

beyond the long wavelength approximation. Here, �! is the

Hamiltonian that describes the cavity, where : ≡ :H , and 0̂
 
:

and 0̂: are the creation and annihilation operators, respectively,

of a cavity mode with momentum : . Further, \: is the angle

between the polarization of cavity mode : and matter dipoles

oriented in the H direction.

�" is the matter Hamiltonian for the isolated chain of atoms

and, in principle, can take any form. Here, we use a model

of coupled, local oscillators, where 9 is an index over lattice

sites, and A 9 =

√

1
2lģ

(1̂ 
9
+ 1̂ 9 ) is the displacement from equi-

librium of an atom at site 9 , and 1̂
 
9

and 1̂ 9 are the vibrational

creation and annihilation operators, respectively, of the atomic

vibration at site 9 .

The light-matter coupling is given by �!−" , where [ indi-

cates the coupling strength between the field and the matter,

[ ≡ 1/
√
Y0l0+ , where + is the cavity volume, and ' 9 is the

equilibrium position of atom at site 9 . ��(� describes the

dipole self-energy.

j

FIG. 1. (a) Schematic representation of a material coupled to a

quantized radiation mode inside an optical cavity. Schematic repre-

sentations of a lattice of vibration modes coupled to a set of cavity

radiation modes within (b) the dipole-gauge Hamiltonian beyond the

long-wavelength approximation and (c) the real-space light-matter

Hamiltonian introduced in this work. The single cavity mode - single

matter vibration limits are illustrated on the right.

Note that this Hamiltonian goes beyond the long wavelength

approximation, as noted by the complex phase factor, 48:' Ġ ,

which describes the spatial variation of the radiation.

III. TRANSFORMING TO REAL-SPACE

We transform the Hamiltonian given by Eq. (1) to real-space

using canonical transformations between cavity mode opera-
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tors, G: =

√

1
2lę (: ) (0̂

 
−: + 0̂:), and unitary transformations

between real-space and Fourier-space, G 9 =

√

1
#

∑

: 4
8:' Ġ G: .

A. Cavity Hamiltonian

We start by transforming the Hamiltonian of the isolated

cavity:

�! =

∑

:

l2 (:)
(

0̂
 
:
0̂: +

1

2

)

(6)

=

∑

9

1

2

(

¤G2
9 + l2

0G
2
9

)

+ 22

2

∑

:

:2G−:G: . (7)

Now, we will focus on the final term of the above equation,

whose Fourier transform we will take by rewriting the expres-

sion as a derivative approximated using a second-order central

finite difference:

∑

:

:2G−:G: =
1

#

∑

:

∑

9 , 9′
:248: (' Ġ−' Ġ′ )G 9G 9′

= − 1

#

∑

:

∑

9 , X 9

m248:0X 9

m (X 9)2
G 9G 9−X 9

≈ − 1

02

∑

9

(

G 9G 9+1 − 2G2
9 + G 9G 9−1

)

, (8)

where 0 is the lattice constant (i.e., the distance between adja-

cent lattice sites), and X 9 = 9 − 9 ′. This procedure can also be

viewed as a real-space discretization of the continuous cavity

field Hamiltonian with field variables averaged over the unit

cell of the matter. This averaging restricts the momenta of the

cavity modes to −c/0 < : < c/0 (i.e., to the first BZ of the

matter). Larger momentum cavity that were lost in the averag-

ing have energies that are too high to couple to the matter, as

illustrated in Fig. 2. While in principle any lattice parameter

can be used for the chain of cavity atoms, we choose it to be

the same as that of the chain of matter atoms for convenience.

Thus, the full cavity Hamiltonian in real-space is given by

�! =
1

2

∑

9

(

¤G2
9 + l2

0G
2
9 +

22

02
(G 9 − G 9+1)2

)

, (9)

indicating that the isolated cavity mode can be described using

a one-dimensional chain of “cavity” atoms with localized, har-

monic vibrations and nearest-neighbor harmonic interactions.

Note that the second derivative in Eq. (8) can be approximated

using higher-order central finite difference, which would intro-

duce longer range harmonic interactions between cavity atoms,

but this higher-order expansion is not necessary, as described

further below in Sec. V.

B. Light-matter coupling

Next, we address the light-matter coupling:

�!−" =

∑

:

∑

9

[
√

2l0l<l2 (:) cos \:

×
(

0̂
 
:
4−8:' Ġ + 0̂:4

8:' Ġ
)

A 9 (10)

=

∑

9

2[

√

#l3
0
l<G 9A 9 , (11)

where we have made use of the identity cos \: = l0/l2 (:).

C. Dipole self-energy

Finally, we can transform the dipole self-energy term:

��(� =

∑

:

∑

9 , 9′
2[2l0l< cos2 \:4

8: (' Ġ−' Ġ′ )A 9A 9′ (12)

≈
∑

9

2[2#l0l<A
2
9 , (13)

where we have assumed l2
0
/l2

2 (:) ≈ 1, which is true for

2:H j l0.

Thus, we have transformed the light-matter Hamiltonian

into a purely real-space Hamiltonian that mirrors that of a

one-dimensional lattice, where each unit cell consists of two

atoms — one “cavity” atom (a localized cavity radiation mode)

and one “matter” atom — that are bilinearly coupled to each

other, and like atoms in adjacent unit cells are coupled to one

another via harmonic interactions:

� =
1

2

∑

9

(

¤G2
9 + l2

0G
2
9 +

22

02
(G 9 − G 9+1)2

)

+ �"

+
∑

9

2[

√

#l3
0
l<G 9A 9 +

∑

9

2[2#l0l<A
2
9 . (14)

The structures of the light-matter couplings in the original

dipole gauge and our real-space picture are illustrated in Fig. 1.

It is important to note that unlike the dipole gauge Hamiltonian,

where light-matter couplings do not scale with the number of

matter degrees of freedom # , in Eq. (14) the light-matter cou-

pling scales with
√
# . This provides an enticing perspective

on a fundamental question in polariton chemistry [65]:

Can collective light–matter coupling, which couples cavity

radiation and molecular degrees of freedom (DOF) in a delo-

calized fashion, lead to a modification of chemical reactivity

that operates locally?

This question above is posed in the context of reducing the

dipole-gauge Hamiltonian in Eq. (1) to a single molecular and

photonic degree of freedom. The consequence of such an

approximation (illustrated in Fig. 1b) is that the light-matter

interaction term reduces to
∑

:

∑

9

[
√

2l0l<l2 (:) cos \:
(

0̂
 
:
4−8:' Ġ + 0̂:4

8:' Ġ
)

A 9

→ [l0

√

2l< cos \0

(

0̂ + 0̂
)

A0 , (15)
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4

such that the coupling between a single molecule and a single

cavity mode is weaker by a factor of 1/
√
# when comparing

to the collective Rabi-splitting. In contrast, when the same

approximation is made in the real-space light-matter Hamilto-

nian,

∑

9

2[

√

#l3
0
l<G 9A 9 → 2[

√

#l3
0
l<G0A0 , (16)

the single molecule-single cavity mode coupling scales as
√
# ,

as illustrated in Fig. 1c. Note that [ ∝ 1/
√
+ such that the single

molecule-localized cavity mode coupling is proportional to the

density
√

#/+ (i.e., concentration) of matter DOF inside the

optical cavity. Here, # represents the number of molecular

DOF placed in the plane of the mirrors and that the number

molecular DOF in the direction perpendicular to the mirrors’

plane would lead to a dilution of the light-matter coupling.

Overall, beyond its computational utility, the theoretical de-

scription introduced here opens up new questions regarding

cavity-modified chemical phenomena. To what extent these

localized cavity modes modify chemical reactivity locally also

remains an open question.

IV. MODELING LATTICE (POLARITON) DYNAMICS

We characterize the polariton system by calculating its lat-

tice dynamics according to different levels of theory.

A. Harmonic dynamics

A harmonic description of the polariton lattice dynamics is

given by the dynamical matrix,

DU,U′ (:) =
∑

9

48: (' ĠĂ−'0Ă′ ) m2V
mD 9 UmD0U′

, (17)

where : is a wavevector in the first Brillouin zone (BZ), U, U′

index the atoms at each lattice site (i.e., either the cavity or the

matter atom), and D 9 U is the displacement of atom U at lattice

site 9 away from its equilibrium position, ' 9 U. Derivatives of

the lattice potential, V, are evaluated at the equilibrium lattice

configuration.

Diagonalization of the dynamical matrix yields the phonon

modes and frequencies as the eigenvectors and the square

root of the eigenvalues, respectively. Thus, the coordinate

of phonon mode _ is given by

D_ (:) = #−1/2
∑

9 U

2U,_ (:)4−8:' ĠĂD 9 U , (18)

where c(:) are the eigenvectors of D(:).

B. Self-consistent phonon theory

The harmonic picture can be improved upon using self-

consistent phonon (SCP) theory [66–70], which treats anhar-

monicity at a static mean-field theory level. Temperature-

dependent anharmonic frequencies and eigenvectors are cal-

culated by self-consistently solving the equation

+_,_′ (:) =l2
_ (:)X_,_′

+ 1

2

∑

:′

∑

_′′ ,_′′′
¨_,_′ ,_′′ ,_′′′ (:,−:, : ′,−: ′)

× ï&∗
_′′ (: ′)&_′′′ (: ′)ð , (19)

where l_ (:) is the harmonic frequency of mode _ at : ,

¨_,_′ ,_′′ ,_′′′ (:,−:, : ′,−: ′) is the reciprocal representation of

the fourth-order interatomic force constants computed using

the harmonic eigenvectors of the dynamical matrix, and

ï&∗
_′′ (: ′)&_′′′ (: ′)ð =

∑

`

*_′′ ,` (: ′)
:�)

¬
2
` (: ′)

*`,_′′′ (: ′) ,

(20)

where U (:) are the eigenvectors of V (i.e., the unitary matrix

that transforms the harmonic phonon eigenvectors into the

anharmonic ones), and ¬` (:) is the renormalized frequency

of anharmonic mode ` at : . The above equation assumes the

high-temperature limit of classical statistics. In this simple

model the fourth-order force constant simplifies to

¨_,_′ ,_′′ ,_′′′ (:,−:, : ′,−: ′) =
#−12<,_ (:)2<,_′ (−:)2<,_′′ (: ′)2<,_′′′ (−: ′)126 ,

(21)

where 6 is the on-site anharmonicity parameter in the matter

chain [Eq. (3)]. Here, 2<,_ (:) is the element of the _ eigen-

vector of the dynamical matrix at : that corresponds to the

matter atom.

C. Vibrational dynamical mean-field theory

This improved phonon basis from SCP can be used in

combination with vibrational dynamical mean-field theory

(VDMFT) [55] to compute the anharmonic lattice dynamics of

the polariton system, including finite lifetimes and additional

frequency shifts that are not captured by SCP.

In VDMFT, we calculate the anharmonic phonon Green’s

function (GF) [71] of the periodic lattice,

D(:, l) =
∫ ∞

0

3C
1

:�)
ï ¤u(:, C)u) (−:, 0)ð , (22)

where ï·ð denotes an equilibrium average at temperature ) .

This GF also satisfies a Dyson equation,

D−1 (:, l) = l2
1 −Ā

2 (:) − 2Ā(:)π(:, l) , (23)

where Ā
2 (:) is the dynamical matrix, including the mean-

field contribution from SCP, and π(:, l) is the self-energy

describing the additional, dynamical contributions to the an-

harmonicity. As there are two atoms in each unit cell, the GF,

dynamical matrix, and self-energy are all 2 × 2 matrices.

In DMFT, the dynamics of the periodic system are mapped

onto those of a single unit cell (the “system”) coupled to a
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FIG. 2. (a) The harmonic dispersion relation across the full Brillouin zone for the polariton lattice model given by Eq. (14) with l0 = l<

and [ = 0.1. The cavity and matter modes are shown in the pink and green solid lines, respectively, and the polariton states are shown in the

black dotted lines. The analytical expression for the cavity dispersion is given by the darkest pink line, the dispersion for the cavity chain with

nearest-neighbor interactions is given in the lightest pink, and dispersions for chains with longer-range interactions are given by successively

darker pink lines. (b) The harmonic dispersion relation in the region of the Brillouin zone around the � point, which shows the energy region

that is relevant for the polariton problem.

fictitious, self-consistently defined bath of harmonic oscillators

with a tailored spectral density [55, 56, 72–75]. The local

self-energy in the single unit cell, π(l), is computed through

the solution of this so-called “impurity problem,” which is

generally much simpler to solve than the periodic problem due

to the small number of degrees of freedom in the system. This

local self-energy is used to approximate the anharmonicity in

the lattice GF, π(:, l) ≈ π(l); in this manner, the lattice

GF and impurity problem are updated iteratively until self-

consistency is achieved.

Our VDMFT approach provides a nonperturbative de-

scription of the local self-energy that describes frequency

shifts, finite lifetimes, and mode-mixing due to anharmonic-

ity. Through comparison to molecular dynamics (MD) simu-

lations, which describe the exact dynamics for classical nuclei,

VDMFT has been shown to be extremely accurate at a frac-

tion of the cost [55, 56]. Furthermore, while MD requires the

simulation of large supercells for high resolution of the Bril-

louin zone (BZ), the VDMFT GF is accessible at all points

in the BZ. Finally, while this work focuses on computing the

classical anharmonic dynamics, VDMFT can be used to treat

anharmonic nuclear quantum effects [55], which can only be

described approximately using other techniques [76, 77].

V. RESULTS

In this work, we motivate the choice of parameters in

Eq. (14) using those of liquid water [17]. We set the lattice

constant to 0 = 5.669 a.u. (3 Å, the water nearest-neighbor dis-

tance), the harmonic frequency tol< = 440 meV (3550 cm−1,

the O-H bond stretch frequency), the nearest-neighbor inter-

action to ¬< = 215 meV (hydrogen bond energy), and the

anharmonicity parameter to 6 = 4.3l3
<. As shown below, we

use these parameters for the matter in combination with differ-

ent cavity frequencies (at : = 0),l0, and light-matter coupling

strengths, [. We emphasize that our goal is not to explain any

experimental studies of vibrational strong coupling in water

but to demonstrate our approach on a simple model that uses

physically relevant parameters.

First, we calculate the harmonic dispersion relation of the

polariton lattice model given by Eq. (14) with the cavity fre-

quency tuned to be resonant to the harmonic frequency of the

matter chain (l0 = l<) and a light-matter coupling strength

of [ = 0.1. Fig. 2a illustrates the noninteracting cavity and

matter dispersions in light pink and green, respectively, and the

hybridized polariton dispersions are shown in the black dotted

lines. Focusing on the dispersion of the noninteracting cavity

mode, we see that it aligns well with the analytical expression

for the dispersion of the cavity (given by the dark pink line,

lan
0
(:) =

√

l2
0
+ 22:2) at the center of the Brillouin zone (BZ)

but underestimates this value at larger values of : . However,

as discussed in Sec. III A, this dispersion is systematically im-

provable through higher-order approximations of the second

derivative that appears in Eq. (8), which would induce longer-

range harmonic interactions between cavity atoms. Thus, a

higher-accuracy description of the cavity modes at higher :

values requires a description that is more “delocalized” in

real-space, as well.

However, as shown in Fig. 2b, the BZ region of interest is

that for which the cavity mode has energies near to those of the

matter mode, allowing for hybridization and the formation of

the polariton bands. This energy range corresponds to a small

region of the BZ that is very close to the � point (i.e., the center

of the BZ). We see that in this region, the nearest-neighbor

approximation made in Eq. (14) produces a cavity dispersion
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6

FIG. 3. (a) Spectral functions at 300 K for the isolated matter chain calculated using MD (left) and VDMFT (right). The dotted lines show the

harmonic dispersion relation, whereas the dashed lines show the renormalized dispersion calculated using SCP at 300 K. (b) Spectral functions

at : = c/0 (left) and : = � (right) calculated using MD and after the first and second iterations of VDMFT, indicating convergence of VDMFT

and its excellent agreement with exact MD simulations.

that coincides with the analytical expression. Additionally, in

this region an energy splitting between the upper and lower

polariton states appears, as expected.

Next, we include the effects of anharmonicity in our anal-

ysis. We perform SCP calculations of the isolated chain of

matter atoms, and we find that the quartic anharmonicity in the

matter chain causes a hardening of the harmonic frequency by

135 meV at 300 K, so that lSCP
m = l0

m + 135 meV. We then use

the quasiparticle basis obtained using SCP in combination with

VDMFT to compute the anharmonic GF and spectral function

of the matter chain, A(:, l) = −c−1Tr[ℑD(:, l)], following

the approach described in detail in our previous work [56]. As

shown in Fig. 3b, we see convergence of the anharmonic spec-

tral function in one iteration, and we see excellent agreement

with the exact anharmonic spectral function computed using

MD across the entire BZ. Furthermore, the SCP+VDMFT cal-

culation is significantly more affordable than MD simulation:

While using MD to compute the spectral function required

the simulation of 50 atoms with periodic boundary conditions,

using VDMFT required the simulation of only 1 atom coupled

to a bath. Additionally, as the VDMFT GF is accessible at all

points in the BZ, the VDMFT spectral function is at higher

resolution than that calculated using MD.

Our SCP+VDMFT approach captures frequency renormal-

ization caused by anharmonicity, predicting a slightly smaller

shift of lVDMFT
m = l0

m + 110 meV, as well as finite lifetimes

due to phonon-phonon scattering. The finite lifetimes manifest

as the broad linewidths in the anharmonic spectral function,

which here correspond to lifetimes of 100 fs and are in agree-

ment with experimental measurements of the lifetimes of the

O-H stretch vibration in bulk water [78].

As the chain of cavity atoms is purely harmonic and the

light-matter coupling is relatively weak, we assume that it

does not affect the self-energy of the isolated chain of mat-

ter atoms (i.e., that the light-matter coupling does not affect

anharmonicity beyond the static mean-field level). Thus, to

account for anharmonicity in the polariton model, we perform

SCP calculations of the coupled light-matter system, and we

use that quasiparticle basis along with the self-energy calcu-

lated for the isolated matter chain to compute the anharmonic

GF and spectral function.

Figure 4 shows the harmonic and anharmonic dispersion

relations of the polariton model for a variety of cavity fre-

quencies, l0, and light-matter coupling strengths, [. The

harmonic dispersion relation is illustrated in the dotted lines,

the renormalized SCP dispersion is shown in the dashed lines,

and the full, anharmonic spectral function calculated using

SCP+VDMFT is illustrated by the color maps. When the

cavity is tuned to be resonant to the harmonic frequency of

the matter chain, l0 = l0
m (top row of Fig. 4), the cavity

and the matter bands cross away from the � point due to the

anharmonic frequency renormalization of the matter band. In-

terestingly, as [ increases, the lower polariton state retains

the cavity’s narrow linewidth (i.e., long lifetime) near : = �

and broadens away from the � point as it gains more matter

character. The converse is true for the upper polariton state.

This result demonstrates how cavities can be used to form

polariton states with tailored lifetimes (or tailored levels of

anharmonicity), in addition to tailored energies and dispersion

relations. Fig. 4 also illustrates that the phonon band of the

isolated matter chain, which is relatively flat across the BZ,

becomes more dispersive upon hybridization with the cavity

mode. This result indicates that while the bare phonons of

the matter chain are relatively likely to localize due to disor-

der, the phonon-polaritons are less sensitive to disorder. The

changes in dispersion, which are captured by simulations be-
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FIG. 4. Spectral functions for the polariton lattice model at different light-matter coupling strengths and cavity frequencies. The dotted lines

show the harmonic dispersion relation, the dashed lines show the renormalized dispersion calculated using SCP at 300 K, and the colored heat

maps show the anharmonic spectral functions calculated using SCP+VDMFT at 300 K.

yond the long wavelength approximation, suggest the potential

for enhanced thermal transport.

When the cavity is tuned to be resonant to the VDMFT

frequency, l0 = lVDMFT
m (middle row of Fig. 4), the Rabi

splitting occurs at the � point, as expected, and the lower

and upper polariton states have similar linewidths. Again,

as the light-matter coupling decreases away from : = �, the

polariton states take on linewidths that reflect whether they

are primarily of light or matter character. Similar behavior is

observed when the cavity is tuned to be resonant to the SCP

frequency, l0 = lSCP
m (bottom row of Fig. 4).

To better understand the dependence of the polariton an-

harmonic spectral functions on the light-matter coupling, we

illustrate the spectral functions at the � point, �(: = �, l), in

Fig. 5. As discussed above, whenl0 = l0
m, the energy gap be-

tween upper and lower polariton bands, as well as the linewidth

of the lower polariton bands, increases slightly with increasing

[, but there is minimal effect at : = � as the cavity is essentially

tuned to be off-resonant with the matter chain. When the cav-

ity is tuned to be resonant with the frequency that maximizes

the matter anharmonic spectral function, l0 = lVDMFT
m , the

spectral function at : = � remains symmetric as [ increases,

both in terms of the energy shifts and linewidths of the po-

lariton states. The polariton spectral function shows similar

behavior at l0 = lSCP
m , especially for larger [ values.

Finally, we consider the Rabi splitting, which we de-

fine as the difference between the upper and lower polari-

ton state frequencies at : = � at different levels of theory,

¬R = lUP (: = �) − lLP (: = �). Note that when the cavity

is tuned to the bare harmonic frequency of the matter chain

(l0 = l0
m) and the effects of anharmonicity are considered,

the minimum separation between the upper and lower polari-

ton bands occurs away from : = �. Thus, our definition of

the Rabi splitting may differ from others. As illustrated in the

left panel of Fig. 6, when l0 = l0
m, the Rabi splitting ¬

0
R
= 0

in the noninteracting limit ([ = 0) and increases linearly with

[, as expected. However, ¬SCP
R

and ¬
VDMFT
R

have large values

in the noninteracting limit due to the anharmonic frequency

renormalization and increases only slightly with stronger light-

matter coupling.

Interestingly, the middle panel of Fig. 6 shows that for

l0 = lVDMFT
m , the Rabi splitting ¬

VDMFT
R

increases very

slightly with light-matter coupling for small [ values. This is

because of the significant spectral overlap between the broad

matter band and the narrow cavity mode. As [ > 0.03, the

Rabi splitting increases significantly with linear behavior. This

result demonstrates that the expected linear dependence of the

Rabi splitting on light-matter coupling strength does not hold,
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FIG. 5. The anharmonic spectral function at : = � calculated using SCP+VDMFT at 300 K for different light-matter coupling strengths and

cavity frequencies.

FIG. 6. The Rabi splitting as a function of light-matter coupling calculated from the harmonic dispersion (blue circles), SCP dispersion (red

triangles), and SCP+VDMFT spectral function (turquoise squares).

even for weak coupling, when anharmonicity is included. This

is reminiscent of Fano resonance phenomena, when coupling

between a discrete and a continuum state leads to unique line-

shapes of the scattered states.

Finally, when l0 = lSCP
m , the right panel of Fig. 6 shows

that ¬SCP
R

increases linearly with [, analogous to ¬
0
R

for when

l0 = l0
m, which makes sense as SCP is an effective harmonic

theory. However, ¬VDMFT
R

has non-monotonic behavior with

increasing [. For small light-matter coupling strengths, the

Rabi splitting becomes negligibly small as the cavity and mat-

ter bands are significantly mixed due to their spectral over-

lap. However, for [ > 0.05, the ¬
VDMFT
R

and ¬
SCP
R

values

coincide. Clearly, including anharmonic effects, both for fre-

quency renormalization and broadening, are important to an

accurate analysis of polariton dispersions.

VI. CONCLUSIONS

In conclusion, we have presented a new theoretical frame-

work for modeling vibrational polariton systems beyond the

long wavelength approximation, which is important to un-

derstanding a variety of experimentally-observed phenom-

ena. We performed a simple transformation to the standard

dipole gauge light-matter Hamiltonian, which includes many

molecules coupled to several :-dependent cavity modes, to

show that it can be modeled as two coupled periodic lattices

in real space, a molecular lattice coupled to a lattice of spa-

tially localized radiation modes. This Hamiltonian provides

an alternative physical picture for light-matter coupling, and

provides new insight regarding the scaling of light-matter cou-

pling with the number of molecules inside the cavity. This

localized framework may be useful for understanding how de-

localized, collective light-matter coupling results in changes

of local chemical reactivities, and will be the subject of future

work.

Within this framework, we show that VDMFT is a simple

tool for calculating momentum-resolved spectra of the polari-

ton system. VDMFT includes a nonperturbative description of

anharmonicity, and it is both accurate and efficient, especially

when considering sampling of the BZ in the energy region

that is relevant for the polariton problem. Furthermore, nu-

clear quantum dynamics can be straightforwardly incorporated

into the VDMFT framework [55] to understand their effects
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on polariton spectra.

Through the application of VDMFT to a simple molecu-

lar model, we demonstrate that inclusion of anharmonicity in

the matter degrees of freedom significantly affects vibrational

polariton states and their spectra. Considering temperature-

dependent frequency renormalization due to anharmonicity

strongly alters the frequency at which to tune the cavity to

be resonant. Beyond frequency renormalization, anharmonic-

ity can impart broad linewidths on the spectral functions of

both the matter and cavity degrees of freedom due to finite

lifetimes caused by phonon-phonon scattering. We show that

these linewidths can be tuned via coupling to harmonic cavity

modes, which would have implications on a variety of other

observables, including thermal transport properties, the calcu-

lation of which is the subject of future work.

Additionally, spectral overlap between narrow cavity and

broad molecular states affects the Rabi splitting between hy-

bridized polariton states and its behavior with increasing light-

matter coupling strengths, which deviates from the linear de-

pendence on light-matter coupling strength that is predicted by

harmonic analysis. Thus, accurately simulating anharmonicity

can affect the design of polariton states for optimized cavity-

modified properties.
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[60] B. Le Dé, C. J. Eckhardt, D. M. Kennes, and M. A. Sentef, J.

Phys. Mater. 5, 024006 (2022).
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