Simulating anharmonic vibrational polaritons beyond the long wavelength approximation
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In this work we investigate anharmonic vibrational polaritons formed due to strong light-matter interactions
in an optical cavity between radiation modes and anharmonic vibrations beyond the long-wavelength limit. We
introduce a conceptually simple description of light-matter interactions, where spatially localized cavity radiation
modes couple to localized vibrations. Within this theoretical framework, we employ self-consistent phonon
theory and vibrational dynamical mean-field theory to efficiently simulate momentum-resolved vibrational-
polariton spectra, including effects of anharmonicity. Numerical simulations in model systems demonstrate the

accuracy and applicability of our approach.

I. INTRODUCTION

Strong coupling between light and matter inside optical cav-
ities lead to the formation of polaritons, light-matter hybrid
quasiparticles that exhibits a wide variety of exotic physi-
cal and chemical effects [1-16]. Examples include changes
in absorption spectra [17, 18], possible modification of both
ground [1, 8, 19-21] and excited state chemical reactivi-
ties [8, 22, 23], enhanced exciton [4, 24-26] and charge car-
rier [27] transport, modification of crystallization and melting
processes [28, 29], and long-range exciton energy transfer [30].
However, many of these effects remain elusive experimentally
due to a lack of clear theoretical understanding despite the
significant effort and progress in recent years [31-39].

Currently, many theoretical and experimental works oper-
ate in mutually incompatible parameter regimes, resulting in
contradictory observations [2, 3, 35, 36]. While many the-
oretical studies employ a single emitter and a single cavity
mode description [31, 32, 34, 39-43], a majority of experi-
ments operate in the collective regime, where an ensemble
of molecules are coupled to an ensemble of cavity radiation
modes [1, 8, 19, 20, 23]. Recent works have demonstrated
that a multi-mode-multi-molecule description (i.e., beyond
long wavelength approximation) is necessary to capture var-
ious experimentally-observed photo-physical properties, such
as cavity modified exciton transport [4, 25, 44, 45], polariton
relaxation and thermalization [46, 47], polariton lasing [48],
polariton condensation [49], angle resolved polariton spec-
tra [50, 51], and polaritonic up-conversion [52]. Thus, describ-
ing polariton systems beyond the long wavelength approxima-
tion may be relevant in various cavity modified chemical and
physical effects in molecules and materials and may be key to
resolving discrepancies between theoretical and experimental
work.

Despite notable progress in multiscale polaritonic simu-
lations [46, 53, 54], simulating a large ensemble of cavity

radiation modes and molecules remains a computationally
formidable task. New theoretical frameworks may offer oppor-
tunities to develop computationally and conceptually conve-
nient approaches. In this work, we develop a theoretical frame-
work where light-matter interactions occur between localized
cavity radiation modes and vibrations. While this description
is formally equivalent to a dipole-gauge Hamiltonian beyond
the long wavelength approximation, it allows for more effi-
cient spatial truncation and spatial coarse graining of the light-
matter hybrid systems. Using this new description, we employ
vibrational dynamical mean-field theory (VDMFT) [55, 56] to
study anharmonic phonon-polaritons [57-60] formed by cou-
pling the vibrations of a periodic lattice to quantized radiation
modes inside an optical cavity. Within this approach the spec-
tra of an extended light-matter hybrid system is simulated via
an impurity model, which maps the dynamics of the periodic
system to that of a single unit cell coupled to a self-consistently
defined bath of harmonic oscillators. It is worth noting that the
typical dipole-gauge Hamiltonian beyond the long wavelength
approximation, where cavity radiation modes are spatially de-
localized as has been used recently to simulate vibrational
polaritons [54], is incompatible with VDMFT, which requires
a spatially localized description as offered within our new de-
scription of light and matter.

Here, we benchmark our approach in a simple model molec-
ular system coupled to cavity radiation modes. Using our
approach, we compute momentum-resolved phonon-polariton
spectra and find them to be very accurate in comparison to
the exact spectra computed using molecular dynamics simu-
lations. We show that effects of anharmonicity in the molec-
ular system, which are often ignored, play a crucial role in
determining both energies and linewidths in the momentum-
resolved phonon-polariton spectral function, which have im-
plications for heat transport and other phenomena, and that
harmonic approximations often employed to fit experimental
data can break down. We also find that the presence of anhar-
monicity leads to a nonlinear relationship between the Rabi
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modeling molecular and photonic degrees of freedom as well
as their interactions.

The rest of this paper is structured as follows. In Section II,
we discuss the model light-matter hybrid system used in our
work. In Section III, we introduce a new light-matter Hamil-
tonian that describes spatially localized photons interacting
with matter. In Section IV we briefly describe self-consistent
phonon theory and vibrational dynamical mean-field theory.
In Section V, we present our numerical results and discuss
their implications. Finally, in Section VI, we summarize our
work and document our conclusions.

II. MODEL

We consider a one-dimensional periodic chain of atoms in
a cavity that is perpendicular to the confined direction of the
cavity. In this work, for simplicity, we consider a 2D world
where cavity confinement is along the x direction and two
mirrors are placed along the y direction (Fig. 1a). A cavity
radiation mode has momentum k = k& + k4 and photon

frequency w.(k) = c4[k% + k3 (we set the refractive index
n, = 1), where k, = nr/L, and k, = 2n'n/L, with n,n’
as positive integers. Here, L, is the distance between the
two mirrors, and we use periodic boundary conditions along
the y direction with a supercell length of L. Due to the
relevant energy scales, we consider only n = 1, such that

ke = /Ly = wo/c and wc(ky) = \Jw}+c?k}. Further,

we only consider the transverse electric polarization, although
the analysis would be similar if we considered the transverse
magnetic polarization.

We consider a light-matter Hamiltonian beyond the long
wavelength approximation [2, 51, 61], which is given by (using
atomic units /i = 1 and mass-weighted coordinates)

HZHL+HM +HL—M+HDSE (1)

1
Hy= ) we(k)(@jac+ ) (2)

k
1 ) 2 2 4 2 2
HM:E;(rj+wmrj+grj+gm(rj_rj+l)) 3

HL—M = Z Z n Zwowmwc(k) Cos 9](
ko J

x (@} e ™*Ri + are™ Riyr; 4)

Hpsg = Z Z 2n% wow y cos® ekeik(R.i—Rj')rjrj, .0
k J.J’

This Hamiltonian was derived under the assumption that the
electromagnetic field varies slowly over a single unit cell [51,
61, 62] and is consistent with the form of the many-molecule
and many-mode Pauli-Fierz Hamiltonian [2, 63, 64], which is
beyond the long wavelength approximation. Here, Hy, is the
Hamiltonian that describes the cavity, where k = k,, and cfk
and dy, are the creation and annihilation operators, respectively,
of a cavity mode with momentum k. Further, 6y is the angle

between the polarization of cavity mode k and matter dipoles
oriented in the y direction.

H ) is the matter Hamiltonian for the isolated chain of atoms
and, in principle, can take any form. Here, we use a model
of coupled, local oscillators, where j is an index over lattice

sites, and rj = /ﬁ (l?j. + IA)A,V) is the displacement from equi-

librium of an atom at site j, and l;j. and b j are the vibrational
creation and annihilation operators, respectively, of the atomic
vibration at site j.

The light-matter coupling is given by Hy,_ys, where n indi-
cates the coupling strength between the field and the matter,
n = 1/veowoV, where V is the cavity volume, and R; is the
equilibrium position of atom at site j. Hpsg describes the
dipole self-energy.
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FIG. 1. (a) Schematic representation of a material coupled to a
quantized radiation mode inside an optical cavity. Schematic repre-
sentations of a lattice of vibration modes coupled to a set of cavity
radiation modes within (b) the dipole-gauge Hamiltonian beyond the
long-wavelength approximation and (c) the real-space light-matter
Hamiltonian introduced in this work. The single cavity mode - single
matter vibration limits are illustrated on the right.

Note that this Hamiltonian goes beyond the long wavelength

approximation, as noted by the complex phase factor, ¢™*Ri,
which describes the spatial variation of the radiation.

III. TRANSFORMING TO REAL-SPACE

We transform the Hamiltonian given by Eq. (1) to real-space
using canonical transformations between cavity mode opera-
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tors, xx = m(a_ P dy), and unitary transformations

between real-space and Fourier-space, x; = 4/ % S eFRixg.

A. Cavity Hamiltonian

We start by transforming the Hamiltonian of the isolated
cavity:

1

Hy =) we(k)(ajax + 5) (6)
k

: 2
= Z z(xi + w%x?) + % Z k*x_gx, . @)
j k

Now, we will focus on the final term of the above equation,
whose Fourier transform we will take by rewriting the expres-
sion as a derivative approximated using a second-order central
finite difference:

1 ik(Ri—
N 5 ST ke RR )
k k j.J’
aZeikadj

1
Y Z Z a(o)2 irimei

k Jj.6j

z—aizZ(xjxj+1—2x3+xjxj,|), (8)
J

where a is the lattice constant (i.e., the distance between adja-
cent lattice sites), and 6j = j — j’. This procedure can also be
viewed as a real-space discretization of the continuous cavity
field Hamiltonian with field variables averaged over the unit
cell of the matter. This averaging restricts the momenta of the
cavity modes to —m/a < k < n/a (i.e., to the first BZ of the
matter). Larger momentum cavity that were lost in the averag-
ing have energies that are too high to couple to the matter, as
illustrated in Fig. 2. While in principle any lattice parameter
can be used for the chain of cavity atoms, we choose it to be
the same as that of the chain of matter atoms for convenience.

Thus, the full cavity Hamiltonian in real-space is given by

1 . c?
HL=52(x5+w(2)x§+;(xj—xj+1)2), )
J

indicating that the isolated cavity mode can be described using
a one-dimensional chain of “cavity” atoms with localized, har-
monic vibrations and nearest-neighbor harmonic interactions.
Note that the second derivative in Eq. (8) can be approximated
using higher-order central finite difference, which would intro-
duce longer range harmonic interactions between cavity atoms,

™ but this higher-order expansion is not necessary, as described
- further below in Sec. V.
=
o

B. Light-matter coupling

Next, we address the light-matter coupling:

Hy _y = Z Z NV2wowmwe (k) cos Oy
k J

x (@} e *Ri y age™ Ry, (10)
= 22771/Nw3wmxjrj, (11
J

where we have made use of the identity cos 8 = wo/w. (k).

C. Dipole self-energy

Finally, we can transform the dipole self-energy term:

Hpsk = Z Z 20w €8> Ore K RiTRiDp s (12)
i

~ Z 2n2Nw0a)mr§ , (13)
J

where we have assumed wj/w?(k) ~ 1, which is true for
cky < wy.

Thus, we have transformed the light-matter Hamiltonian
into a purely real-space Hamiltonian that mirrors that of a
one-dimensional lattice, where each unit cell consists of two
atoms — one “cavity” atom (a localized cavity radiation mode)
and one “matter” atom — that are bilinearly coupled to each
other, and like atoms in adjacent unit cells are coupled to one
another via harmonic interactions:

1 2, 20 € 2
szg(xj+w0xj+;(xj—xj+l) )+ Hu

+ Z ZU,INw(S)wmxjrj + Z 2772Na)oa)mr§ . (14)
J J

The structures of the light-matter couplings in the original
dipole gauge and our real-space picture are illustrated in Fig. 1.
Itis important to note that unlike the dipole gauge Hamiltonian,
where light-matter couplings do not scale with the number of
matter degrees of freedom N, in Eq. (14) the light-matter cou-
pling scales with VN. This provides an enticing perspective
on a fundamental question in polariton chemistry [65]:

Can collective light-matter coupling, which couples cavity
radiation and molecular degrees of freedom (DOF) in a delo-
calized fashion, lead to a modification of chemical reactivity
that operates locally?

This question above is posed in the context of reducing the
dipole-gauge Hamiltonian in Eq. (1) to a single molecular and
photonic degree of freedom. The consequence of such an
approximation (illustrated in Fig. 1b) is that the light-matter
interaction term reduces to

Z Z NV2wowmw. (k) cos 6y (dZe_ika +age™Ri)r;
k J

— nwo2wp, cos By (a* +a)ro, (15)
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such that the coupling between a single molecule and a single
cavity mode is weaker by a factor of 1/vN when comparing
to the collective Rabi-splitting. In contrast, when the same
approximation is made in the real-space light-matter Hamilto-

nian,
Z 2771/Nw8wmxjrj - 2U\,Nw8wmx0r0 ) (16)
J

the single molecule-single cavity mode coupling scales as VN,
asillustrated in Fig. 1¢c. Note that 7 oc 1/4/V such that the single
molecule-localized cavity mode coupling is proportional to the
density 4/N/V (i.e., concentration) of matter DOF inside the
optical cavity. Here, N represents the number of molecular
DOF placed in the plane of the mirrors and that the number
molecular DOF in the direction perpendicular to the mirrors’
plane would lead to a dilution of the light-matter coupling.

Overall, beyond its computational utility, the theoretical de-
scription introduced here opens up new questions regarding
cavity-modified chemical phenomena. To what extent these
localized cavity modes modify chemical reactivity locally also
remains an open question.

IV. MODELING LATTICE (POLARITON) DYNAMICS

We characterize the polariton system by calculating its lat-
tice dynamics according to different levels of theory.

A. Harmonic dynamics

A harmonic description of the polariton lattice dynamics is
given by the dynamical matrix,

2

Do (k) = Z eik(Rj(rRoa/)L , a17)
’ K ou jaau()a/
where k is a wavevector in the first Brillouin zone (BZ), «, o’
index the atoms at each lattice site (i.e., either the cavity or the
matter atom), and u ;, is the displacement of atom « at lattice
site j away from its equilibrium position, R .. Derivatives of
the lattice potential, V, are evaluated at the equilibrium lattice
configuration.

Diagonalization of the dynamical matrix yields the phonon
modes and frequencies as the eigenvectors and the square
root of the eigenvalues, respectively. Thus, the coordinate
of phonon mode A is given by

wa(k) =N~ 3 cqalk)e ™ Ricuj,, (18)

ja
where c(k) are the eigenvectors of D (k).
B. Self-consistent phonon theory

The harmonic picture can be improved upon using self-
consistent phonon (SCP) theory [66—70], which treats anhar-

monicity at a static mean-field theory level. Temperature-
dependent anharmonic frequencies and eigenvectors are cal-
culated by self-consistently solving the equation

Vo (k) =i (k)oax
1 ! 7’
+ = E E Dy (ky =k, k' —k")

2 ka7

X{(Q (k) Qan (K)),  (19)

where w,(k) is the harmonic frequency of mode A at k,
Dy v a7 v (k,—k, k', —k’) is the reciprocal representation of
the fourth-order interatomic force constants computed using
the harmonic eigenvectors of the dynamical matrix, and

kT

——— Uy (k')
Q)

(Q (K)Qar (K')) = " Upr (k')
M
(20)
where U (k) are the eigenvectors of V' (i.e., the unitary matrix
that transforms the harmonic phonon eigenvectors into the
anharmonic ones), and €, (k) is the renormalized frequency
of anharmonic mode u at k. The above equation assumes the
high-temperature limit of classical statistics. In this simple
model the fourth-order force constant simplifies to

Dy (k, =k, k' k") =

N7 e 2 (k) p (=k)em o (K" )em am (k") 128 ,
21

where g is the on-site anharmonicity parameter in the matter
chain [Eq. (3)]. Here, ¢, (k) is the element of the A eigen-
vector of the dynamical matrix at k that corresponds to the
matter atom.

C. Vibrational dynamical mean-field theory

This improved phonon basis from SCP can be used in
combination with vibrational dynamical mean-field theory
(VDMEFT) [55] to compute the anharmonic lattice dynamics of
the polariton system, including finite lifetimes and additional
frequency shifts that are not captured by SCP.

In VDMFT, we calculate the anharmonic phonon Green’s
function (GF) [71] of the periodic lattice,

D(k,w)=/Ooodth%T(u(k,t)uT(—k,0)), (22)

where (-) denotes an equilibrium average at temperature 7.
This GF also satisfies a Dyson equation,

D (k,w) = w*1 - Q% (k) - 2Q(k)7(k, w) , (23)

where Q2(k) is the dynamical matrix, including the mean-
field contribution from SCP, and 7 (k, w) is the self-energy
describing the additional, dynamical contributions to the an-
harmonicity. As there are two atoms in each unit cell, the GF,
dynamical matrix, and self-energy are all 2 x 2 matrices.

In DMFT, the dynamics of the periodic system are mapped
onto those of a single unit cell (the “system”) coupled to a

9¥:/Giv) G20z Iudy L0



EX [k
5
1 4
e 20 DS N et B '.-"’
= . / "n. i
"_-' - i £
Z15 w108 F: i S
i —— '\_ A 1 i
ST/ I \ r.."f
= ey I-..-' kY K,
i i i 'y F
= % r aon 4 .
+ 4 S -
At Rgrnnis?
5 4 "'-."-,_I_..r'
;j_': N . S
H 200
T r =‘a Tia r T ia

b omentum k

Momentum & [#5 = 10 1)

FIG. 2. (a) The harmonic dispersion relation across the full Brillouin zone for the polariton lattice model given by Eq. (14) with wg = wm
and 7 = 0.1. The cavity and matter modes are shown in the pink and green solid lines, respectively, and the polariton states are shown in the
black dotted lines. The analytical expression for the cavity dispersion is given by the darkest pink line, the dispersion for the cavity chain with
nearest-neighbor interactions is given in the lightest pink, and dispersions for chains with longer-range interactions are given by successively
darker pink lines. (b) The harmonic dispersion relation in the region of the Brillouin zone around the I" point, which shows the energy region

that is relevant for the polariton problem.

fictitious, self-consistently defined bath of harmonic oscillators
with a tailored spectral density [55, 56, 72—75]. The local
self-energy in the single unit cell, 7 (w), is computed through
the solution of this so-called “impurity problem,” which is
generally much simpler to solve than the periodic problem due
to the small number of degrees of freedom in the system. This
local self-energy is used to approximate the anharmonicity in
the lattice GF, m(k,w) ~ m(w); in this manner, the lattice
GF and impurity problem are updated iteratively until self-
consistency is achieved.

Our VDMFT approach provides a nonperturbative de-
scription of the local self-energy that describes frequency
shifts, finite lifetimes, and mode-mixing due to anharmonic-
ity. Through comparison to molecular dynamics (MD) simu-
lations, which describe the exact dynamics for classical nuclei,
VDMEFT has been shown to be extremely accurate at a frac-
tion of the cost [55, 56]. Furthermore, while MD requires the
simulation of large supercells for high resolution of the Bril-
louin zone (BZ), the VDMFT GF is accessible at all points
in the BZ. Finally, while this work focuses on computing the
classical anharmonic dynamics, VDMFT can be used to treat
anharmonic nuclear quantum effects [55], which can only be
described approximately using other techniques [76, 77].

V. RESULTS

In this work, we motivate the choice of parameters in
Eq. (14) using those of liquid water [17]. We set the lattice
constanttoa = 5.669 a.u. (3 A, the water nearest-neighbor dis-
tance), the harmonic frequency to w,, = 440 meV (3550 cm™ I
the O-H bond stretch frequency), the nearest-neighbor inter-
action to Q,, = 215meV (hydrogen bond energy), and the

anharmonicity parameter to g = 4.3w>,. As shown below, we
use these parameters for the matter in combination with differ-
ent cavity frequencies (at k = 0), wo, and light-matter coupling
strengths, 7. We emphasize that our goal is not to explain any
experimental studies of vibrational strong coupling in water
but to demonstrate our approach on a simple model that uses
physically relevant parameters.

First, we calculate the harmonic dispersion relation of the
polariton lattice model given by Eq. (14) with the cavity fre-
quency tuned to be resonant to the harmonic frequency of the
matter chain (wg = w,,) and a light-matter coupling strength
of n = 0.1. Fig. 2a illustrates the noninteracting cavity and
matter dispersions in light pink and green, respectively, and the
hybridized polariton dispersions are shown in the black dotted
lines. Focusing on the dispersion of the noninteracting cavity
mode, we see that it aligns well with the analytical expression
for the dispersion of the cavity (given by the dark pink line,

wi (k) = Jw] + c2k?) at the center of the Brillouin zone (BZ)

but underestimates this value at larger values of k. However,
as discussed in Sec. IIT A, this dispersion is systematically im-
provable through higher-order approximations of the second
derivative that appears in Eq. (8), which would induce longer-
range harmonic interactions between cavity atoms. Thus, a
higher-accuracy description of the cavity modes at higher k
values requires a description that is more “delocalized” in
real-space, as well.

However, as shown in Fig. 2b, the BZ region of interest is
that for which the cavity mode has energies near to those of the
matter mode, allowing for hybridization and the formation of
the polariton bands. This energy range corresponds to a small
region of the BZ that is very close to the I" point (i.e., the center
of the BZ). We see that in this region, the nearest-neighbor
approximation made in Eq. (14) produces a cavity dispersion
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FIG. 3. (a) Spectral functions at 300 K for the isolated matter chain calculated using MD (left) and VDMFT (right). The dotted lines show the
harmonic dispersion relation, whereas the dashed lines show the renormalized dispersion calculated using SCP at 300 K. (b) Spectral functions
at k = nr/a (left) and k = T" (right) calculated using MD and after the first and second iterations of VDMFT, indicating convergence of VDMFT

and its excellent agreement with exact MD simulations.

that coincides with the analytical expression. Additionally, in
this region an energy splitting between the upper and lower
polariton states appears, as expected.

Next, we include the effects of anharmonicity in our anal-
ysis. We perform SCP calculations of the isolated chain of
matter atoms, and we find that the quartic anharmonicity in the
matter chain causes a hardening of the harmonic frequency by
135 meV at 300K, so that w3C? = w9 + 135 meV. We then use
the quasiparticle basis obtained using SCP in combination with
VDMEFT to compute the anharmonic GF and spectral function
of the matter chain, A(k,w) = -7~ 'Tr[ID(k, w)], following
the approach described in detail in our previous work [56]. As
shown in Fig. 3b, we see convergence of the anharmonic spec-
tral function in one iteration, and we see excellent agreement
with the exact anharmonic spectral function computed using
MD across the entire BZ. Furthermore, the SCP+VDMFT cal-
culation is significantly more affordable than MD simulation:
While using MD to compute the spectral function required
the simulation of 50 atoms with periodic boundary conditions,
using VDMFT required the simulation of only 1 atom coupled
to a bath. Additionally, as the VDMFT GF is accessible at all
points in the BZ, the VDMFT spectral function is at higher
resolution than that calculated using MD.

Our SCP+VDMEFT approach captures frequency renormal-
ization caused by anharmonicity, predicting a slightly smaller
shift of wYPMFT = ()0 + 110 meV, as well as finite lifetimes
due to phonon-phonon scattering. The finite lifetimes manifest
as the broad linewidths in the anharmonic spectral function,
which here correspond to lifetimes of 100 fs and are in agree-
ment with experimental measurements of the lifetimes of the
O-H stretch vibration in bulk water [78].

As the chain of cavity atoms is purely harmonic and the
light-matter coupling is relatively weak, we assume that it

does not affect the self-energy of the isolated chain of mat-
ter atoms (i.e., that the light-matter coupling does not affect
anharmonicity beyond the static mean-field level). Thus, to
account for anharmonicity in the polariton model, we perform
SCP calculations of the coupled light-matter system, and we
use that quasiparticle basis along with the self-energy calcu-
lated for the isolated matter chain to compute the anharmonic
GF and spectral function.

Figure 4 shows the harmonic and anharmonic dispersion
relations of the polariton model for a variety of cavity fre-
quencies, wg, and light-matter coupling strengths, 1. The
harmonic dispersion relation is illustrated in the dotted lines,
the renormalized SCP dispersion is shown in the dashed lines,
and the full, anharmonic spectral function calculated using
SCP+VDMEFT is illustrated by the color maps. When the
cavity is tuned to be resonant to the harmonic frequency of
the matter chain, wy = w% (top row of Fig. 4), the cavity
and the matter bands cross away from the I" point due to the
anharmonic frequency renormalization of the matter band. In-
terestingly, as 7 increases, the lower polariton state retains
the cavity’s narrow linewidth (i.e., long lifetime) near k = I
and broadens away from the I" point as it gains more matter
character. The converse is true for the upper polariton state.
This result demonstrates how cavities can be used to form
polariton states with tailored lifetimes (or tailored levels of
anharmonicity), in addition to tailored energies and dispersion
relations. Fig. 4 also illustrates that the phonon band of the
isolated matter chain, which is relatively flat across the BZ,
becomes more dispersive upon hybridization with the cavity
mode. This result indicates that while the bare phonons of
the matter chain are relatively likely to localize due to disor-
der, the phonon-polaritons are less sensitive to disorder. The
changes in dispersion, which are captured by simulations be-
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FIG. 4. Spectral functions for the polariton lattice model at different light-matter coupling strengths and cavity frequencies. The dotted lines
show the harmonic dispersion relation, the dashed lines show the renormalized dispersion calculated using SCP at 300 K, and the colored heat
maps show the anharmonic spectral functions calculated using SCP+VDMFT at 300 K.

yond the long wavelength approximation, suggest the potential
for enhanced thermal transport.

When the cavity is tuned to be resonant to the VDMFT
frequency, wo = wyPMFT (middle row of Fig. 4), the Rabi
splitting occurs at the I" point, as expected, and the lower
and upper polariton states have similar linewidths. Again,
as the light-matter coupling decreases away from k = I, the
polariton states take on linewidths that reflect whether they
are primarily of light or matter character. Similar behavior is
observed when the cavity is tuned to be resonant to the SCP
frequency, wp = w3 (bottom row of Fig. 4).

To better understand the dependence of the polariton an-
harmonic spectral functions on the light-matter coupling, we
illustrate the spectral functions at the I" point, A(k =T", w), in
Fig. 5. As discussed above, when wg = Y, the energy gap be-
tween upper and lower polariton bands, as well as the linewidth
of the lower polariton bands, increases slightly with increasing
n, but there is minimal effectat k = I" as the cavity is essentially
tuned to be off-resonant with the matter chain. When the cav-
ity is tuned to be resonant with the frequency that maximizes
the matter anharmonic spectral function, wy = joDMPT, the
spectral function at k = I' remains symmetric as 7 increases,
both in terms of the energy shifts and linewidths of the po-
lariton states. The polariton spectral function shows similar

behavior at wy = wiCT, especially for larger 17 values.

Finally, we consider the Rabi splitting, which we de-
fine as the difference between the upper and lower polari-
ton state frequencies at k = I' at different levels of theory,
Qr = wyp(k =T) — wrp(k =T'). Note that when the cavity
is tuned to the bare harmonic frequency of the matter chain
(wo = wgl) and the effects of anharmonicity are considered,
the minimum separation between the upper and lower polari-
ton bands occurs away from k = I'". Thus, our definition of
the Rabi splitting may differ from others. As illustrated in the
left panel of Fig. 6, when wgy = Y, the Rabi splitting Q% =0
in the noninteracting limit (7 = 0) and increases linearly with
n, as expected. However, Q3P and QYPMFT have large values
in the noninteracting limit due to the anharmonic frequency
renormalization and increases only slightly with stronger light-
matter coupling.

Interestingly, the middle panel of Fig. 6 shows that for
wy = wyPMFT | the Rabi splitting QgDMF T increases very
slightly with light-matter coupling for small 5 values. This is
because of the significant spectral overlap between the broad
matter band and the narrow cavity mode. As n > 0.03, the
Rabi splitting increases significantly with linear behavior. This
result demonstrates that the expected linear dependence of the
Rabi splitting on light-matter coupling strength does not hold,
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even for weak coupling, when anharmonicity is included. This
is reminiscent of Fano resonance phenomena, when coupling
between a discrete and a continuum state leads to unique line-
shapes of the scattered states.

Finally, when wg = w3F, the right panel of Fig. 6 shows
that Q3 increases linearly with , analogous to QY for when
wo = w?n, which makes sense as SCP is an effective harmonic
theory. However, QYPMFT has non-monotonic behavior with
increasing n. For small light-matter coupling strengths, the
Rabi splitting becomes negligibly small as the cavity and mat-
ter bands are significantly mixed due to their spectral over-
lap. However, for n > 0.05, the QYPMFT and Q3CP values
coincide. Clearly, including anharmonic effects, both for fre-
quency renormalization and broadening, are important to an
accurate analysis of polariton dispersions.

VI. CONCLUSIONS

In conclusion, we have presented a new theoretical frame-
work for modeling vibrational polariton systems beyond the
long wavelength approximation, which is important to un-

derstanding a variety of experimentally-observed phenom-
ena. We performed a simple transformation to the standard
dipole gauge light-matter Hamiltonian, which includes many
molecules coupled to several k-dependent cavity modes, to
show that it can be modeled as two coupled periodic lattices
in real space, a molecular lattice coupled to a lattice of spa-
tially localized radiation modes. This Hamiltonian provides
an alternative physical picture for light-matter coupling, and
provides new insight regarding the scaling of light-matter cou-
pling with the number of molecules inside the cavity. This
localized framework may be useful for understanding how de-
localized, collective light-matter coupling results in changes
of local chemical reactivities, and will be the subject of future
work.

Within this framework, we show that VDMFT is a simple
tool for calculating momentum-resolved spectra of the polari-
ton system. VDMFT includes a nonperturbative description of
anharmonicity, and it is both accurate and efficient, especially
when considering sampling of the BZ in the energy region
that is relevant for the polariton problem. Furthermore, nu-
clear quantum dynamics can be straightforwardly incorporated
into the VDMFT framework [55] to understand their effects
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on polariton spectra.

Through the application of VDMFT to a simple molecu-
lar model, we demonstrate that inclusion of anharmonicity in
the matter degrees of freedom significantly affects vibrational
polariton states and their spectra. Considering temperature-
dependent frequency renormalization due to anharmonicity
strongly alters the frequency at which to tune the cavity to
be resonant. Beyond frequency renormalization, anharmonic-
ity can impart broad linewidths on the spectral functions of
both the matter and cavity degrees of freedom due to finite
lifetimes caused by phonon-phonon scattering. We show that
these linewidths can be tuned via coupling to harmonic cavity
modes, which would have implications on a variety of other
observables, including thermal transport properties, the calcu-

lation of which is the subject of future work.

Additionally, spectral overlap between narrow cavity and
broad molecular states affects the Rabi splitting between hy-
bridized polariton states and its behavior with increasing light-
matter coupling strengths, which deviates from the linear de-
pendence on light-matter coupling strength that is predicted by
harmonic analysis. Thus, accurately simulating anharmonicity
can affect the design of polariton states for optimized cavity-
modified properties.
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