
Service Function Chain Placement in Edge Computing: A
Topological Dependency-Informed Approach

Weibin Ma, Lena Mashayekhy
Department of Computer and Information Sciences, University of Delaware, Newark, Delaware 19716, USA

{weibinma, mlena}@udel.edu

Abstract—The integration of Network Function Virtualization
(NFV) and Mobile Edge Computing (MEC) allows for efficient,
advanced network services via Service Function Chains (SFCs).
SFCs are sequences of ordered network functions designed
to provide specific network services. However, the placement
of SFCs is critical, especially for latency-sensitive applications
such as telemedicine, due to spatial proximity between service
functions, their processing order, and limited edge resources. This
paper addresses the multi-SFC placement problem in MEC-NFV
networks, aiming to reduce both deploying cost and routing cost.
We propose an innovative algorithm based on topological sort,
called TD-NFP, to solve this problem. The experimental results
show that the proposed TD-NFP approach outperforms other
benchmarks.

Index Terms—Mobile Edge Computing, Network Function Vir-
tualization, Service Function Chain Placement, Directed Acyclic
Graph, Topological Sort.

I. INTRODUCTION

Mobile Edge Computing (MEC) represents a pivotal shift in
distributed cloud architecture, bringing significant computation
and storage resources to the edge of networks through lo-
calized mini-datacenters or cloudlets [1]–[3]. Simultaneously,
Network Function Virtualization (NFV) is transforming the
management and operation of networks [4], [5]. NFV re-
places traditional network devices with Virtualized Network
Functions (VNFs), providing efficient, cost-effective network
operations.

The integration of MEC and NFV (i.e., MEC-NFV) allows
for efficient, advanced network services via Service Function
Chains (SFCs) [6]. An SFC comprises an ordered set of VNFs
that must execute in a specific sequence to provide a network
service. Each VNF in an SFC performs a specific function and
passes its output to the next VNF in the sequence. These VNFs
are executed on commodity servers within cloudlets to satisfy
the service requests of mobile users. Consider a smart city
application scenario, where a variety of network services are
required for different functions. Smart traffic control systems
require one sequence of network functions to prioritize, secure,
and establish connections for real-time traffic video feeds,
while emergency response systems require another sequence
to direct, secure, and balance large data loads for high-
priority alerts and video feeds from emergency scenes. These
sequences, or SFCs, might share common network functions
and need to operate simultaneously.

A significant research gap exists in efficiently placing mul-
tiple SFCs among cloudlets, which is more complex compared

to traditional placement of independent VNFs due to the
dependencies among VNFs in a chain and the constraints on
available resources in cloudlets. The placement of SFCs can
have a profound impact on network performance, influencing
factors such as latency and load balancing, and the two
key costs—deploying and routing. The deploying cost arises
from deploying VNFs in cloudlets, while the routing cost
originates from the sequential transfer of outputs for each
SFC. Lowering total cost involves enabling multiple SFCs to
share some common VNFs [7], [8], making the SFC placement
problem more challenging. Inefficient SFC placement could
lead to higher latency and unbalanced resource utilization,
which could significantly degrade user experience and overall
network performance. This motivates our study on developing
efficient and effective multi-SFC placement strategies in MEC-
NFV networks.

In this paper, we propose a novel approach to the SFC
placement problem in MEC-NFV networks to reduce the
deploying and routing costs while considering the complexities
introduced by SFCs that share common VNFs. Instead of
placing each SFC as a whole or placing SFCs sequentially,
we introduce an approach constructing multiple SFCs into
a Directed Acyclic Graph (DAG), called S-DAG, and then
we propose an efficient topology-based approach to divide
the complex multi-SFC placement problem into multiple in-
dependent VNF placement sub-problems. Each sub-problem
focuses on solving the VNF placement problem while consid-
ering the dependencies between VNFs from the same SFC.
Specifically, we introduce the topological sort algorithm to
detach dependencies and group a set of independent VNFs.
At each level, topological sort ensures that VNFs do not
have any dependencies between each other. Then we focus on
placing VNFs while considering the dependencies during the
calculation of total cost for placing each VNF in each cloudlet.
Our study is, to the best of our knowledge, the first to address
the multi-SFC placement problem by constructing a DAG for
SFCs and using a topological sort. This innovative approach
is driven by a crucial need for more efficient and effective
SFC placement strategies to improve network performance in
MEC-NFV networks.

The rest of the paper is organized as follows. Section II
reviews related work. The system model and problem formu-
lation are described in Section III. In Section IV, we describe
the proposed topological dependency-informed approach, TD-
NFP. The performance evaluation is carried out in Section V.



Section VI concludes the paper and suggests future directions.

II. RELATED WORK

In this section, we review existing studies that are related
to our work from different standpoints.

VNF Placement. Many studies have primarily focused on
efficient deployment of VNFs in MEC-NFV networks [9]–
[12]. These studies have tackled various aspects, including
capacitated allocation problem, minimization of latency, and
reliability requirements. Fairstein et al. [9] formulated the
VNF placement among MEC servers with capacitated re-
sources and proposed multiple approximated algorithms to
solve it. Yala et al. [10] investigated the VNF placement
problem in MEC-NFV networks and formulated it as an
optimization problem with the objective of minimizing access
latency and maximizing service availability. They developed a
genetic algorithm to achieve near-optimal solutions. Huang et
al. [11] studied the reliability-aware VNF placement problem
in MEC by considering the specific reliability requirements of
mobile users. They proved the NP-hardness of the problem
and proposed an approximation algorithm with a logarithmic
approximation ratio. However, these studies mainly focused
on individual VNF placement, and the dependencies among
VNFs within the same network service were not considered.

SFC Placement. More recently, the SFC placement problem
in MEC-NFV networks has received increasing attention [13]–
[15]. Chen et al. [13] showed the SFC problem is NP-
Complete and formulated it as a graph-based problem. They
devised a heuristic algorithm that achieves a tradeoff between
optimality and running time. Wang et al. [14] studied the SFC
problem in MEC-NFV networks and reformulated it into two
sub-problems. To solve them, they proposed a Hungarian-
based algorithm. Yin et al. [15] also investigated the SFC
problem in MEC-NFV networks while considering the SFC
availability. They proposed a backup model to improve the
SFC availability while reducing resource consumption. More-
over, a dynamic programming-based algorithm was developed.
However, these works either concentrated solely on operating /
deploying costs associated with VNF placement, routing costs
resulting from dependencies, or sequentially placing SFCs.

Handling VNF Dependencies. Some studies have consid-
ered the dependencies among VNFs in the SFC placement
problem [7], [16], [17]. A closely related study [7] to our
work grouped SFCs in NFV-based Networks by proposing
a heuristic solution built on the classic k-means algorithm.
However, it is worth noting that our work substantially differs
from this work. While [7] mainly aimed at identifying the
optimal groups for the SFCs based on particular metrics, our
approach extends this concept by adding a strong focus on
the efficient placement of VNFs from SFCs in resource-limited
edge networks. More importantly, we offer a novel perspective
on the complexity of dependencies in the SFC placement
problem. By transforming the SFC placement into a more
manageable S-DAG placement problem, we are able to detach
dependencies when solving it. This not only enhances the
efficiency of our solution but also presents a new approach to

handle dependencies in the SFC placement problem in MEC-
NFV networks.

In summary, prior studies either focused on the individual
VNF placement without considering the dependencies among
VNFs, placing the SFC as a whole, or placed SFCs sequen-
tially. In this paper, we design a novel approach to address
the SFC placement problem in MEC-NFV networks. Our
approach uniquely considers both the dependencies among
VNFs within the same SFC and the limited resources of edge
networks.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a MEC-NFV network consisting of a network
operator responsible for managing service deployment and
a set of cloudlets distributed within the MEC-NFV net-
work, providing various computation and storage resources
for processing requested edge services. The cloudlets are
interconnected by a high-speed network such as a wide-area
network (WAN) or a local area network (LAN) [18]–[21].
We denote a set of cloudlets by M = {1, ...,M}. Each
cloudlet j ∈ M has varying resource capacity Bj ∈ B (e.g.,
computational or storage resources), where B represents the
set of resource capacities for all cloudlets. We denote a set
of VNFs by V = {V1, ..., VK} where K is the total number
of VNF types in the MEC-NFV network. We denote a set of
SFCs by N = {v1, ...,vN} where each SFC is composed of
a sequence of ordered VNFs. Specifically, an SFC vi ∈ N
is represented by a set of ordered VNFs vi = 〈Vi1 , ..., Vil〉,
such that for ik ∈ {i1, ..., il}, we have 1 ≤ ik ≤ K and
Vik ∈ V . Note that all VNFs in an SFC obey a specific
order for that SFC. The required deployment resources for
each VNF Vik ∈ V in each cloudlet j ∈ M is denoted
as Wikj ∈ W , with W representing the set of resource
requirements for all VNFs. Thus, the deployment of each
VNF Vik of SFC vi on a cloudlet j must not exceed its
available resources Bj .

We define xikj ∈ {0, 1} as the VNF selection decision
variable such that xikj = 1 if VNF Vik of SFC vi is selected
from cloudlet j, and 0 otherwise. This variable determines
whether to select VNF Vik in cloudlet j for processing SFC vi

or not.
The deploying cost model represents the cost associated

with deploying a VNF in a cloudlet. The deploying cost
for placing VNF Vik of SFC vi in cloudlet j and the total
deploying cost for placing SFC vi are represented as cdikj and
Cd

i , respectively. As a result, Cd
i can be calculated by:

Cd
i =

∑
Vik
∈vi

∑
j∈M

xikjc
d
ikj

(1)

The routing cost model accounts for the dependency be-
tween consecutive VNFs in the same SFC. Each VNF in an
SFC performs a specific function and transfers its output to the
next VNF in the sequence. The routing cost model indicates
the cost of transferring the output of one VNF to the next in
the chain.



We denote the routing cost of transferring the output of
VNF Vik−1

of SFC vi from cloudlet j′ (where VNF Vik−1
is

placed) to cloudlet j (where VNF Vik is placed) as crj′j . The
total routing cost for SFC vi is denoted as Cr

i and defined by:

Cr
i =

∑
Vik
∈vi

∑
j∈M

xikj(
∑

Vik−1
∈vi

∑
j′∈M

xik−1j′c
r
j′j) (2)

Obviously, there is no routing cost incurred when two consec-
utive VNFs of the same SFC are placed in the same cloudlet.

We now formulate the SFC placement problem. Our goal
is to minimize the total cost, which is the summation of the
total deploying cost and the total routing cost if triggered.
The dependencies between VNFs within each SFC is cap-
tured through the decision variable xikj . The SFC placement
problem is defined as follows:

Minimize C =
∑
i∈N

(Cd
i + Cr

i ) (3)

Subject to:∑
j∈M

xikj = 1, ∀Vik ∈ vi, i ∈ N , (4)∑
i∈N

∑
Vik
∈vi

xikjWikj ≤ Bj , ∀j ∈M, (5)

xikj ∈ {0, 1}, ∀Vik ∈ vi, i ∈ N , j ∈M. (6)

The objective function (3) is to minimize the total costs
of placing all SFCs in MEC-NFV networks. Constraint (4)
ensures that each VNF is deployed and processed in only
one cloudlet at once. Constraint (5) guarantees that the total
required deployment resources for all VNFs in each cloudlet
do not exceed its resource capacity. This prevents overloading
any single cloudlet and ensures that each deployed VNF has
sufficient resources for its operation. Constraint (6) is to ensure
that the decision variable is binary.

The above SFC placement problem is NP-hard, which
can be proved through a polynomial-time reduction from a
well-known NP-hard problem called Generalized Assignment
Problem (GAP) [22]. Moreover, it becomes more challenging
to consider the dependency between consecutive VNFs in the
same SFC when calculating the routing cost. To solve this
challenging problem, we propose a topological dependency-
informed approach (TD-NFP) that will be introduced in the
next section.

IV. TOPOLOGICAL DEPENDENCY-INFORMED NETWORK
FUNCTION PLACEMENT

We introduce our proposed Topological Dependency-
informed Network Function Placement (TD-NFP) approach
that leverages graph theory to efficiently place SFCs on
resource-limited cloudlets in MEC-NFV networks. Our ap-
proach involves two main steps: first constructing SFCs into
a DAG formation, called S-DAG, to capture dependencies
between VNFs, and then employing an efficient topological-
based approach to properly place the VNFs based on the

Algorithm 1 Topological Dependency-informed Network
Function Placement (TD-NFP)

1: Input: M,N ,W,B
2: C = 0 /*Total cost*/
3: Initialize A, I, P as empty dictionaries ∅
4: Initialize Q as an empty queue
5: S-DAG G(V,E)← DAGConstructor(N )
6: for each v ∈ V do
7: for each successor w of v in S-DAG do
8: I[w] += 1
9: P [w].insert(v)

10: for each v ∈ V do
11: if I[v] = 0 then
12: Q.enqueue(v)
13: while Q is not empty do
14: /*Grouping VNFs*/
15: L← ∅ /* collect VNFs for current level*/
16: S ← Q.size()
17: for i = 1 to S do
18: v ← Q.dequeue()
19: L.insert(v)
20: for each successor w of v in S-DAG do
21: I[w] -= 1
22: if I[w] = 0 then
23: Q.enqueue(w)
24: /*Placement of VNF Groups*/
25: (C,A)← Place(M,W,B, L, P,A)
26: C += C
27: A ← A∪A
28: Output: C,A

constructed S-DAG to cloudlets. For simplicity, we assume
that provided SFCs can be constructed as a single DAG. This is
a reasonable assumption as any cycles in the constructed DAG
can be broken down into multiple DAGs. The implementation
of our TD-NFP is summarized in Algorithm 1.

The algorithm is provided with four inputs: M, a set of
cloudlets;N , a set of SFCs;W , a set of resources requirements
for all VNFs; and B, a set of resource capacities for all
cloudlets. TD-NFP initializes several variables: A to store the
assignment of VNFs of the S-DAG to cloudlets (Line 3), Q
as an empty queue for processing the VNFs (Line 4), and I
and P two dictionaries (Line 3), where I maps each VNF to its
indegree, indicating the number of unprocessed predecessors it
has, while P maps each VNF to its predecessor(s), which will
be used to calculate routing costs. Initially, TD-NFP constructs
an S-DAG, G(V,E), from the given set of SFCs N using the
DAGConstructor algorithm, shown in Algorithm 2.

After obtaining the constructed S-DAG, TD-NFP calculates
the indegree and a set of predecessor(s) for each VNF in S-
DAG (Lines 6-9). VNFs with zero indegree (first level nodes)
are immediately ready for deployment and are added to the
queue to be processed in the first iteration (Lines 10-12). The
algorithm proceeds to the deployment phase for all the VNFs



Algorithm 2 DAGConstructor

1: Input: N
2: G← an empty dictionary ∅
3: for each SFC vi ∈ N do
4: for each VNF Vik in SFC vi do
5: if Vik /∈ G then
6: G[Vik ]← an empty {create a node}
7: G[Vik−1

].append(Vik ) {add an edge}
8: Output: G

Algorithm 3 Place

1: Input: M,W,B, L, P,A
2: H ← an empty cost dictionary ∅
3: for each VNF v ∈ L do
4: Pv ← P [v] the predecessors of VNF v in S-DAG
5: for each cloudlet j ∈M do
6: H[v, j] = cdvj deploying cost of placing VNF v in

cloudlet j
7: for each predecessor u of v in Pv do
8: j′ ← A[u] cloudlet that u is placed in
9: H[v, j]+= crj′j routing cost of sending data from

u in cloudlet j′ to v in cloudlet j
10: (C,A)← Assign(L,W,B, H)
11: Output: C,A

added to the queue.
For each level of the constructed S-DAG, TD-NFP uses

a topological sorting approach to group VNFs that have no
unprocessed predecessors (i.e., zero indegree) and hence can
be placed independently (Lines 14-23). Specifically, it forms
a group of VNFs with no predecessor(s) into L (Line 19),
meanwhile, the indegree value of each successor of these
VNFs is decreased by 1 (Line 21) and a set of new VNFs
with no predecessor(s) are appended into Q for processing for
the next level (Lines 22-23). After completing the grouping
phase for a level, TD-NFP calls the VNF Placement function,
Place, presented in Algorithm 3, to solve the VNF placement
sub-problem (Lines 25) for the collected VNFs of each group.
The Place function returns the cost and assignment for each
VNF in the current group.

This two-phase approach ensures that TD-NFP places VNFs
onto cloudlets in an efficient and cost-effective manner. At
the end, TD-NFP returns the obtained cost value and the
corresponding placement assignment for all VNFs.

DAGConstructor, Algorithm 2, initializes an empty dictio-
nary G for constructing the S-DAG. This dictionary stores the
mapping of each VNF to a set of its successors by using a
VNF as a key and a set of its successors as its associated
values. In doing so, it traverses each SFC vi ∈ N . For every
VNF Vik in the SFC, if the VNF does not already exist
as a key in G, it is added to the dictionary and associated
with an empty list (Lines 5-6). Subsequently, a directed edge,
representing the dependency between the VNF Vik and its
predecessor Vik−1

is added into G (Line 7). Upon completing

SFC 6

6

9

10

8

1

2

4

3

5

6

7

8

9

10

S-DAGSFC 1

1

2

4

5

SFC 2

1

3

4

5

SFC 4

6

3

8

SFC 3

6

2

8

SFC 5

6

7

8

Fig. 1: Example of the S-DAG representation for six SFCs.

this process for all VNFs across all SFCs, the constructed S-
DAG G is returned. The example shown in Fig. 1 represents
a system with ten VNFs and six SFCs composed of a subset
of these VNFs (left side) and the constructed S-DAG (right
side). As shown in the figure, the SFCs share some VNFs to
complete their processes, and we obtain four groups of VNFs
as follows: {1, 6} → {2, 3, 7, 9} → {4, 10} → {5, 8} based
on the topological sort.

Place function, Algorithm 3, takesM,W,B, and the current
group of VNFs, L, as inputs. It begins by initializing a cost
dictionary H to empty for computing and storing the total
cost associated with deploying all VNFs in the group L to
all cloudlets in M (Line 3). Each element H[(v, j)] of the
cost dictionary represents the total cost of placing VNF v
in cloudlet j, including both deploying cost and routing
cost from the VNF’s predecessors. The predecessors of each
VNF v are derived from the S-DAG and are represented
as Pv (Line 4). These predecessors need to process and pass
data to VNF v. The value H[(v, j)] encompasses the direct
deploying cost, cdvj , of placing VNF v in cloudlet j and the
routing costs, crj′j , incurred when transferring data from v’s
predecessors to VNF v (Lines 5-9). The routing cost is an
aggregate value, accumulated based on the placement of the
predecessors. Upon determining the total cost values of placing
VNFs on cloudlets stored in H , Place function solves the
VNF placement problem by calling Assign() function. The
Assign() function returns the minimum total cost and the
corresponding placement assignments for the VNFs (Line 10).
This function can be formulated as a general assignment
problem (GAP) and solved using approximation algorithms
or heuristics.

V. EXPERIMENTAL RESULTS

To evaluate the performance of our approach, TD-NFP, for
solving the multi-SFC placement problem with dependencies,
it is compared with the following benchmarks:
• Optimum (OPT) Policy: This benchmark represents the

theoretical best-case scenario. For each VNF of SFCs,
the OPT finds an optimal placement minimizing the total
cost as defined in Eq (3). The optimal results are obtained
using the commercial solver CPLEX.

• Least Load (LL) Policy: This policy places each VNF
of the SFCs in a cloudlet which currently serves the
fewest VNFs. This strategy is a common load balancing
approach aimed at ensuring a fair distribution of VNFs
among available cloudlets.



Deploying Cost Routing Cost Total Cost
Cost types

0

50

100

150

200

250

300

350

Av
er

ag
e 

co
st

 v
al

ue

OPT
LL
OPP
TD-NFP

Fig. 2: Obtained cost

• Optimal Path Placement (OPP) Policy: S-DAG is com-
posed of a set of paths, representing the SFCs, covering
all VNFs. In this policy, each path (i.e., an individual
SFC) is placed optimally among cloudlets to minimize
the total sum.

All experiments were conducted using Python 3.9.4 on an
Apple M1 Pro Chip with 16 GB RAM.

A. Experimental Setup

We consider multiple heterogeneous cloudlets deployed
within the MEC networks, with multiple SFCs with limited
number of different VNFs. For instance, an SFC for a surveil-
lance application consists of six distinct VNFs [23]. For our
experiments, the MEC initially has 10 cloudlets. There are
15 VNF types, and each SFC has a chain length varying
from 1 to 10 VNFs chosen from the available VNF types.
We consider 200 unique S-DAGs. To further analyze the
algorithms, we examine different scenarios with the number of
cloudlets ranging from 4 to 24, the number of distinct VNFs
(VNF types) varying from 10 to 35, and the number of SFCs
ranging from 5 to 100.

The total resource capacity for each cloudlet follows a
uniform distribution between 5 to 25 units. The resource
requirements for each VNF are uniformly selected to be be-
tween 1 to 3 units. Operational and routing costs are modeled
as follows. The deploying cost for each VNF, considering
potential multiple predecessors within an S-DAG, is uniformly
selected from 5 to 15 units. Similarly, the routing cost between
any two cloudlets is uniformly selected from 1 to 4 units. We
repeat each scenario 30 times to obtain the average results.

B. Experimental Analysis

We evaluate the performance of our approach compared to
the benchmarks considering various metrics.

Fig. 2 exhibits the average deploying cost (Eq (1)), routing
cost (Eq (2)), and total cost (objective value in Eq (3)) obtained
by the approaches across 200 distinct S-DAGs. LL performs
the worst due to its focus on evenly distributing VNFs
among cloudlets, neglecting deploying and routing costs. OPT
presents the optimal total costs. OPP excels in deploying cost
by optimally placing each individual SFC. However, since
it does not account for dependencies from other SFCs, it

5 20 40 60 80 100
Number of SFCs

10 5

10 3

10 1

101

103

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

) OPT
LL
OPP
TD-NFP

Fig. 3: Execution time

incurs a higher routing cost. Both OPP and our proposed TD-
NFP perform well with their obtained cost being near to the
optimal (obtained by OPT). This is due to the fact that they
both place VNFs among cloudlets considering the deploying
cost and routing cost. However, TD-NFP outperforms OPP by
solving VNF placement sub-problems with consideration of
dependencies between VNFs from the same SFC, leading to
a lower average total cost.

We analyze the execution time for solving the multi-
SFC placement problem, with respect to number of SFCs.
Fig. 3 shows the obtained results. LL, while not optimizing
deploying and routing costs, achieves the fastest solution at
about 0.05 milliseconds. OPP calculates a solution in roughly
0.2 milliseconds. Our proposed TD-NFP achieves a stable
solution in about 0.1 second, making it more practical for
real-world applications compared to OPT, which takes over 10
seconds for larger problem sizes. TD-NFP achieves this by
detaching dependencies and breaking the original problem into
smaller sub-problems, which significantly reduces execution
time for solving the placement problem.

We further investigate the impacts of several important
parameters on the total cost in Fig. 4. The average cost
obtained by the approaches are evaluated using the same S-
DAGs. Each scenario is repeated 30 times, and the average
results are reported.

Fig. 4a shows the impact of varying the number of cloudlets.
The average cost typically decreases as the number of cloudlets
increases, except for the results of LL. An increased number
of cloudlets offer more placement options, enhancing the
likelihood of obtaining lower-cost assignments. OPP does not
consistently yield reduced cost as the number of cloudlets
increases due to its limited optimization concerning the routing
cost. Fig. 4b shows that the average cost increases with
an increase in the number of VNF types. This is likely
because more VNF types can result in SFCs with longer chain
lengths, leading to higher deploying and routing costs. Fig. 4c
illustrates the impact of increasing the number of SFCs on
total cost. An increase in the count leads to a higher number
of VNFs being shared among the SFCs, and subsequently,
it results in increased dependencies within the S-DAGs. The
results show with an increase in the number of SFCs, the total



4 8 12 16 20 24
Number of Cloudlets

100

150

200

250

300

350
Av

er
ag

e 
OPT
LL
OPP
TD-NFP

(a) different cloudlets

10 15 20 25 30 35
Number of VNF types

0

100

200

300

400

500

Av
er

ag
e 

OPT
LL
OPP
TD-NFP

(b) different VNF types

5 20 40 60 80 100
Number of SFCs

100

200

300

400

500

Av
er

ag
e 

OPT
LL
OPP
TD-NFP

(c) different SFCs

Fig. 4: Sensitivity analysis of objective value (C)

costs of placement increase. LL performs worse compared to
other benchmarks. Our TD-NFP consistently outperforms OPP
and is close to OPT, demonstrating its effectiveness in handling
complex scenarios with high-intensity S-DAGs, where more
dependencies between VNFs exist.

In summary, TD-NFP consistently demonstrated its efficacy,
offering competitive placement solutions close to optimal.

VI. CONCLUSION

In this paper, we addressed the SFC placement problem
in MEC-NFV networks. To handle the complexity of placing
multiple SFCs among cloudlets, we constructed SFCs as S-
DAGs and transformed the problem to a more tractable S-
DAG placement problem. Our novel topological dependency-
informed approach, TD-NFP, efficiently detaches dependen-
cies and divides the SFC placement problem into smaller sub-
problems. Experimental analysis demonstrates that TD-NFP
outperforms other benchmarks, achieving lower costs while
remaining scalable under different settings.

VII. ACKNOWLEDGMENT

This research was supported in part by NSF grant CNS-
2145268.

REFERENCES

[1] N. Sharghivand, L. Mashayekhy, W. Ma, and S. Dustdar, “Time-
Constrained Service Handoff for Mobile Edge Computing in 5G,” IEEE
Transactions on Services Computing, vol. 16, no. 3, pp. 2241–2253,
2023.

[2] D. Bhatta and L. Mashayekhy, “A Bifactor Approximation Algorithm for
Cloudlet Placement in Edge Computing,” IEEE Transactions on Parallel
and Distributed Systems, vol. 33, no. 8, pp. 1787–1798, 2022.

[3] W. Ma and L. Mashayekhy, “Video Offloading in Mobile Edge Com-
puting: Dealing with Uncertainty,” IEEE Transactions on Mobile Com-
puting, pp. 1–14, 2024.

[4] J. Li, S. Guo, W. Liang, Q. Chen, Z. Xu, W. Xu, and A. Y. Zomaya,
“Digital Twin-Assisted, SFC-Enabled Service Provisioning in Mobile
Edge Computing,” IEEE Transactions on Mobile Computing, vol. 23,
no. 1, pp. 393–408, 2024.

[5] T. V. Doan, G. T. Nguyen, M. Reisslein, and F. H. P. Fitzek, “SAP:
Subchain-Aware NFV Service Placement in Mobile Edge Cloud,” IEEE
Transactions on Network and Service Management, vol. 20, no. 1, pp.
319–341, 2023.

[6] H. Hantouti, N. Benamar, and T. Taleb, “Service Function Chaining in
5G & Beyond Networks: Challenges and Open Research Issues,” IEEE
Network, vol. 34, no. 4, pp. 320–327, 2020.

[7] Y. Chen, J. Wu, and R. Biswas, “Grouping Service Chains of Multiple
Flows in NFV-Based Networks,” IEEE Transactions on Network Science
and Engineering, vol. 8, no. 1, pp. 377–388, 2020.

[8] D. Harutyunyan, N. Shahriar, R. Boutaba, and R. Riggio, “Latency-
Aware Service Function Chain Placement in 5G Mobile Networks,” in
Proc. of the IEEE Conference on Network Softwarization, 2019, pp.
133–141.

[9] Y. Fairstein, D. Harris, J. Naor, and D. Raz, “NFV Placement in
Resource-Scarce Edge Nodes,” in Proc. of the IEEE/ACM International
Symposium on Cluster, Cloud and Internet Computing, 2020, pp. 51–60.

[10] L. Yala, P. A. Frangoudis, and A. Ksentini, “Latency and Availability
Driven VNF Placement in a MEC-NFV Environment,” in Proc. of the
IEEE Global Communications Conference, 2018, pp. 1–7.

[11] M. Huang, W. Liang, X. Shen, Y. Ma, and H. Kan, “Reliability-Aware
Virtualized Network Function Services Provisioning in Mobile Edge
Computing,” IEEE Transactions on Mobile Computing, vol. 19, no. 11,
pp. 2699–2713, 2019.

[12] N. Kiran, X. Liu, S. Wang, and C. Yin, “VNF Placement and Resource
Allocation in SDN/NFV-Enabled MEC Networks,” in Proc. of the IEEE
Wireless Communications and Networking Conference Workshops, 2020,
pp. 1–6.

[13] Z. Chen, S. Zhang, C. Wang, Z. Qian, M. Xiao, J. Wu, and I. Jawhar,
“A Novel Algorithm for NFV Chain Placement in Edge Computing En-
vironments,” in Proc. of the IEEE Global Communications Conference,
2018, pp. 1–6.

[14] M. Wang, B. Cheng, W. Feng, and J. Chen, “An Efficient Service
Function Chain Placement Algorithm in a MEC-NFV Environment,” in
Proc. of the IEEE Global Communications Conference, 2019, pp. 1–6.

[15] X. Yin, B. Cheng, M. Wang, and J. Chen, “Availability-aware Service
Function Chain Placement in Mobile Edge Computing,” in Proc. of the
IEEE World Congress on Services, 2020, pp. 69–74.

[16] H. Hawilo, M. Jammal, and A. Shami, “Network Function
Virtualization-Aware Orchestrator for Service Function Chaining Place-
ment in the Cloud,” IEEE Journal on Selected Areas in Communications,
vol. 37, no. 3, pp. 643–655, 2019.

[17] F. Tian, J. Liang, and J. Liu, “Joint VNF Parallelization and Deployment
in Mobile Edge Networks,” IEEE Transactions on Wireless Communi-
cations, vol. 22, no. 11, pp. 8185–8199, 2023.

[18] T. Ouyang, Z. Zhou, and X. Chen, “Follow Me at the Edge: Mobility-
Aware Dynamic Service Placement for Mobile Edge Computing,” IEEE
Journal on Selected Areas in Communications, vol. 36, no. 10, pp. 2333–
2345, 2018.

[19] W. Ma and L. Mashayekhy, “Truthful Computation Offloading Mecha-
nisms for Edge Computing,” in Proc. of the IEEE Intl. Conference on
Edge Computing and Scalable Cloud, 2020, pp. 199–206.

[20] D. Bhatta and L. Mashayekhy, “Physics-Inspired Mobile Cloudlet
Placement in Next-Generation Edge Networks,” in Proc. of the IEEE
International Conference on Edge Computing and Communications,
2022, pp. 159–168.

[21] E. Farhangi Maleki, W. Ma, L. Mashayekhy, and H. La Roche, “QoS-
aware Content Delivery in 5G-enabled Edge Computing: Learning-based
Approaches,” IEEE Transactions on Mobile Computing, pp. 1–13, 2024.

[22] G. T. Ross and R. M. Soland, “A branch and bound algorithm for the
generalized assignment problem,” Mathematical programming, vol. 8,
no. 1, pp. 91–103, 1975.

[23] D. T. Nguyen, C. Pham, K. K. Nguyen, and M. Cheriet, “Placement and
Chaining for Run-Time IoT Service Deployment in Edge-Cloud,” IEEE
Transactions on Network and Service Management, vol. 17, no. 1, pp.
459–472, 2019.


