EHRHART POSITIVITY FOR A CERTAIN CLASS OF PANHANDLE
MATROIDS

DANIEL MCGINNIS

ABSTRACT. We give a combinatorial formula for the Ehrhart coefficients of a certain
class of weighted multi-hypersimplices. In a special case, where these polytopes coincide
with the base polytope of the panhandle matroid Pany ,,—2 ., we show that the Ehrhart
coeflicients are positive.

1. INTRODUCTION

The Ehrhart polynomial (introduced by Ehrhart in [Ehr62]) of a polytope P C R™ with
integral vertices is an invariant of P which counts the number of integer coordinates lying
inside integer dilates of P. Specifically, the Ehrhart function of P, denoted by ehr(P,t)
takes as input a positive integer ¢ and outputs the quantity

ehr(P,t) =#(tPNZ"),

namely, the number of integer coordinates lying in ¢ P. Ehrhart proved that this function is
actually a polynomial in ¢t whose degree is the dimension of P. Therefore, for d = dim(P),
we may write

ehr(P,t) = agt? + ag_ 1t + - + ag.

An important feature of the Ehrhart polynomial is that aq = Vol(P) and aq_1 = 1 Vol(0P)
(see [BR15] [BS18] for proofs and more information). It is also known that ag = 1, but the
remaining coefficients can be negative in general. Thus, an interesting problem which has
received a significant amount of attention is to determine families of polytopes having the
property that their Ehrhart polynomials have positive coefficients. These polytopes are
then called Fhrhart positive. Additionally, it is of interest to determine a combinatorial or
geometric meaning to the Ehrhart coefficients of Ehrhart positive polytopes. See [Liul9]
for a survey on Ehrhart positivity.

In this paper we extend further upon the work of [FM22], where it is shown that the
Ehrhart polynomials of polytopes of the form

e {xE 0.0] % - x [0.¢.] | Zm:’“}.
i=1

for positive integers ci,...,c, and k are Ehrhart positive, and a combinatorial formula
is given for the coefficients as well. Note that when ¢; = -+ = ¢, = 1, we recover the
hypersimplex Ay, so the work of [FM22] extends the results of [Fer21], in which the
Ehrhart positivity of hypersimplices is proven using a generating function approach. A
combinatorial proof of the the Ehrhart positivity of hypersimplices is given in [HMM 23]
which relies only on an inclusion-exclusion argument. In this paper we attempt to further
our current understanding of the Ehrhart coefficients of the hypersimplex by providing a
more explicit combinatorial interpretation for these values. Additionally, in the analysis
of the Ehrhart polynomial for paving matroids in [HMM™23], a class of matroids called
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panhandle matroids were conjectured to be Ehrhart positive. For positive integers £ < r <
n, The base polytope for the panhandle matroid Pany ., is given by

{xG [0, 1] | ixi:k, i x; < 1.}
i=1

i=r+1

Note the class of panhandle matroid polytopes contain the class of hypersimplices, which
can be seen to be the case by taking r =n — 1.

The class of polytopes described above are examples of alcoved polytopes introduced in
[LP07], and more specifically, they are contained in the class of polytopes called weighted
multi-hypersimplices defined in the same paper.

One main result of this paper is to provide a combinatorial description for the Ehrhart
coefficients of the weighted multi-hypersimplices of the following form:

{(xl,...,xn)|O§:1:Z~Scl-foralllSign—2,0§xn_1+xn§1and Zx,:k}

i=1

for positive integers ¢y, ..., ¢, o and k.

In the case that ¢ = (1,...,1), this polytope coincides with the base polytope associated
to the panhandle matroid Pany,_2,, and we are able to use our derived combinatorial
formula to show that in this case, the polytope is Ehrhart positive. Although a promis-
ing approach to proving Ehrhart positivity for the general panhandle matroid Pany ,, via
a solely enumerative combinatorial conjecture is outlined in [HMM™23], our method of
proof takes a substantially different route and follows more along the lines with the rea-
soning of [FM22]. We hope that the ideas presented here will aid future research toward
proving Ehrhart positivity for panhandle matroids and other classes of weighted multi-
hypersimplices.

We note that the panhandle matroids are certain lattice path matroids [HMM*23] and
hence, they lie within the class of positroids, introduced in [Pos06]. It is conjectured in
[F'JS22] that positroids are Ehrhart positive (a matroid is said to be Ehrhart positive if its
associated base polytope is Ehrhart positive).

Conjecture 1.1 (Conjecture 6.3 in [FJS22]) Positroids are Ehrhart positive.

Since we prove that a certain class of panhandle matroids are Ehrhart positive, our
result supports Conjecture 1.1. Notched rectangle matroids, defined in [FL23] (presented
as cuspidal matroids in [FS22]), are another class of lattice path matroids which contain
panhandle matroids as a subclass. In both [FL23] and [F'S22], the class of notched rectangle
matroids (cuspidal matroids) are conjectured to be Ehrhart positive, hence, the results of
this paper supports this conjecture as well.

It was originally conjectured in [DLHKO09] that all matroids are Ehrhart positive, more-
over, the even stronger conjecture that the larger class of generalized permutahedra are
Ehrhart positive was stated in [CL18]. However, both of these conjectures are shown to be
false in [Fer22] where examples of matroids with negative Ehrhart coefficients with rank
between rank 3 and corank 3 are provided. However, it is shown in [FJS22] that matroids
with rank 2 are Ehrhart positive, and it is noted in the same paper that all matroids of
rank 2 are in addition positroids.

Throughout the progression of ideas in [CL18], [CL21], [Fer21], [FJS22], [HMM*23] and
[FM22], it became clearer that the Ehrhart positivity of these matroid polytopes requires
the introduction of complicated combinatorial structures whose enumeration yields a de-
scription of the Ehrhart coefficients, along with a proof of this positivity. We note and em-
phasize that in [FM22], such a combinatorial structure is particularly involved; moreover,
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in [HMM™23] the conjectured structure is challenging to understand. Our new main contri-
bution is the description of a combinatorial gadget whose enumeration yields an arguably
more elegant description of the coefficients of the Ehrhart polynomial of the hypersimplex,
and we show how this allows extensions to other weighted multi-hypersimplices. It will
become apparent to the reader that the search of a more general structure that covers more
(if not, all) weighted multi-hypersimplices would demand a deep and possibly cumbersome
combinatorial insight.

It is worth mentioning that the study of the h*-polynomial for polytopes related to those
discussed above is an intriguing and active area of research, although we obtain no new
results in this direction. For instance, the h*-polynomial of hypersimplices is shown to
have very interesting combinatorial properties in [Li12] and also in [Ear17] [Kim20] using a
different approach. The methods of [Kim20] are also used in [FM22] to find a combinatorial
interpretation for the coefficients of the A*-polynomial of Ry, .. Further research on the h*-
polynomial for alcoved polytopes can also be found in [FJS22] [SS21] for instance.

2. THE EHRHART COEFFICIENTS FOR HYPERSIMPLICES REVISITED

Recall that the hypersimplex Ay, is the polytope given by

Apn = {a: 0> a= k} .
=1

To write the formula for the Ehrhart polynomial of Ay ,, we first set up the following
notation. Let P(Zb = Zagil<---<in§b 11+ -1y, and let [:J denote the number of permutations
of [n] with m cycles, known as the unsigned Stirling numbers of the first kind. Recall that
AL = (1)

The Ehrhart polynomial for the hypersimplex Ay, is given by

(1) ehr(Agn, 1) ki ( >(k—z‘)tn__¢1+n_1)

) SV WG (LR v

This is proven for instance in [Fer21].

Notation for permutations. For a permutation o, let C (o) be the set of cycles in the
cycle decomposition of o. Additionally, if we write a permutation p = [ps,...,p,] in one-
line notation, the descent set of p, Des(p), is the set of indices 1 < ¢ < n — 1 such that
pi > pit1, and des(p) will denote the cardinality of Des(p), i.e., des(p) = |Des(p)|. In
general, parentheses are used to denote the cycles of a permutation written explicitly in
its cycle decomposition, and brackets are used to denote a permutation written in one-line
notation

The main combinatorial object of this paper is introduced in Definition 2.1 below.

Definition 2.1. A cycle-ordered, weighted permutation of [n] is a triple (o, p, w) where

e o is a permutation of [n].

e p is a permutation of [m] satisfying p(m) = 1 where m = |C(o)| is the number of
cycles of o.

e w:C(0) = Nj is a function.



For each cycle ¢ € C(0), we call w(c) the weight of ¢. The total weight of (o, p, w), which
we denote by w(o), is the sum of the weights of each cycle, namely,

wo) = Y w(c).

ceC(o)
If we denote k = w(o) + des(p), then we say (o, p,w) is of type (n,m, k).

We can think of p as ordering the cycles of ¢ according to the smallest elements of the
cycles. For example, if o = (1 3)(2 6)(4 5) and p = [3 2 1], then the order of the cycles of
o according to p is (4 5)(2 6)(1 3). Essentially, the order of the cycles according to their
smallest elements matches the order of the elements from p when p is written in one-line
notation. The reason why we add the condition that |C'(o)| +— 1 under p is simply because
these will be be the only orders of the cycles that will be relevant to us throughout the
paper. We also note that because |C(c)| — 1, the cycle of o containing 1 will always come
last in the corresponding ordering of its cycles.

Weighted permutations (without an ordering on the cycles) were defined in [HMM™23],
providing another way to view previously defined combinatorial objects from [Fer21], which
are enumerated by the weighted Lah numbers.

Here, we add an ordering to the cycles of weighted permutations to provide a more
explicit combinatorial description for the coefficients of the Ehrhart polynomial of certain
polytopes, including hypersimplices.

Let ¢ = (¢q,...,¢,) be a tuple of positive integers. A cycle-ordered, weighted permuta-
tion (o, p,w) of [n] is said to be c-compatible if

w(c) < ZC" for all ¢ € C(0).
1€c
We note that the notion of c-compatibility was initially defined in [FM22].
Theorem 2.2 The coefficient of t™ in (n — 1)l ehr(Ay . t) is the number of (1,...,1)-
compatible cycle-ordered, weighted permutations (o, p,w) of type (n,m + 1, k).
Proof. We have that
(n — 1)lehr(Ag . t)

n—1 k—1

m i N —1—1
- Zt Z(_l) (@) (k —1) P—i—&-ll,n—l—i
m=0 =0
— tm -1 i bk — )™ -1 ]Pj Pnflfmfj
S ()0 R

e e LA
S o]l

We will show that for a fixed set A C [n], the quantity (k — z)m[lf]] [ ﬁ:’; +j] is the
number of cycle-ordered, weighted permutations (o, p,w) of type (n,m + 1,k) with the

following properties. Here, (c) =) .. 1 denotes the length of .

e | — j cycles consist only of elements in A.
e The remaining m + 1 — (i — j) cycles consist only of elements from [n] \ A.



e For each cycle ¢ of o consisting of elements of A, w(c) > ¢(c).

First we show this for the case that ¢ = 0, i.e., we demonstrate that £™ [mil} is the
number of cycle-ordered, weighted permutations (o, p, w) of type (n,m + 1, k).
Now, [mil] is the number of permutations of [n] with m+1 cycles, and k™ is the number
of functions f that assign each of the cycles that do not contain 1 a value between 0 and
k—1 and assigns the cycle containing 1 the value k. Let v; < --- < v, be the distinct values
that were assigned to the cycles. Order the cycles that were assigned vy in an increasing
manner according to their smallest element. Order the cycles that were assigned v in the
same way, and place them after the cycles that were assigned v;. We continue in this way
to obtain an ordering ¢y, ..., ¢,11 of the cycles of o (recall that 1 € ¢,,11). Let p be the
permutation of [m + 1] corresponding to this ordering. We define the weight w(¢;) of ¢; to

be vy, and the weight of ¢; for ¢ > 1 is given by

w(e;) = flei) = f(eim1) — 1 if i — 1 € Des(p),
' flei) — fleiz1) otherwise.

We have that w(o) = 37 w(e;) = flems1) — | Des(p)| = k — | Des(p(a))|. Thus (o, p, w)
is of type (n,m + 1, k). Furthermore, any cycle-ordered, weighted permutation (o, p, w) of
type (n, m+ 1, k) with its cycles and ordering given by ¢i, ..., ¢,,11 can be obtained in this
way from the function f defined by f(c;) = [Des(p) N {1,...,i = 1} + >, w(c;).

Note that for a given set A of size 1, [Zij] [m ﬁ__ii ﬂ} is the number of permutations of [n]
with m+1 cycles where i—7j cycles consist only of elements from A, and the remaining cycles
consist only of elements from [n]\ A. Thus, by a similar reasoning to the arguments above,
we have that (k—7)™ [lij} [m +”1__i. +j} is the number cycle-ordered, weighted permutations of
type (n,m+1,k—1), where i — j cycles consist only of elements from A, and the remaining
cycles consist only of elements from [n] \ A. Now, for each cycle ¢ of o that consists only
of elements in A, we define w’(¢) = w(c) + £(¢). Otherwise, we define w’(¢) = w(c). The
resulting cycle-ordered, weighted permutation (o, p, w’) satisfies the bullet points above.

Thus, we have demonstrated that the quantity (k — i)™ Lf]] [m +”f_’;. ﬂ.] is the number of
cycle-ordered, weighted permutations that satisfy the above bullet points.

For a cycle-ordered, weighted permutation (o, p,w) where o = ¢; -+ - ¢pa1, let I be the
set of indices j for which w(c;) > (c;). For each, J C I, (o,p,w) contributes (—1)I! in
the sum of the coefficient of t™ above in the term where A = J;;¢; and i = [A| (we are
slightly abusing notation by associating ¢; with the set of its elements).

Therefore, the total contribution of (¢, p,w) to the sum is chz(_1)|J|> which is 0 if
|I] > 1 and 1 if I = (. This completes the proof of the theorem. O

Let A(n, k) denote the Fulerian numbers, namely, the number of permutations of [n]
with &k descents, and let W (n, m+1, ¢) denote the number of (1,...,1)-compatible weighted
permutations (o, w) of [n] (here there is no ordering p of the cycles) with m + 1 cycles.
The numbers W (n, m + 1, ¢) are precisely the weighted Lah numbers defined in [Fer21]. It
is shown in [Fer21] that the coefficient of ™ in (n — 1)! ehr(Ay ,, t) is given by

k—1
> W(n,m+1,0A(m k—1-1).

=0

This result is proven in part by the use of Worpitzky’s identity (see [GKP94] for instance)
to further break up and rewrite equation (2). We see that this already implies Theorem 2.2.
Indeed, W (n,m+1,0)A(m, k—1—£) is the number of cycle-ordered, weighted permutations
(o, p,w) with total weight ¢ where the permutation of {2,...,n} given in one-line notation
by [p1,--.,Pn_1] has k —1— ¢ descents. This means that p = [py, ..., p,] has k — ¢ descents
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since p, = 1. Thus, (o,p,w) is of type (n,m + 1,k) with total weight ¢. Since we are
summing up over all £, we obtain the result of Theorem 2.2.

Remark 2.3. We note that the proof of Theorem 2.2 implicitly contains a proof of Wor-
pitzky’s identity, which states that for positive integers & and m
m—1 .
k41
=S A(m, i .
> ama())
Indeed, by reasoning similar to that of the proof of Theorem 2.2, k™ counts the number of
pairs (p, w) consisting of a permutation p of [m+1] where p(m+1) = 1 and a weight function
w : [m+ 1] — Ny such that | Des(p)| + Y71 w(i) = k. On the other hand, A(m,q)(*"") =

i=1 m
A(m,m—1—1) (k_(mnfme) is the number of such pairs (p, w) where | Des(p)| = m — i since
(ki(mn;iHm) is the number of ways to distribute k& — (m — i) total weight among m + 1
elements. Since we are summing up over ¢, we obtain Worpitzky’s identity.

In light of the previous remark, the proof of Theorem 2.2 is similar in spirit to the proof
that [t™](n — 1)!ehr(Apn,t) = Soha W(n,m + 1,€)A(m, k — 1 — £) in [HMM*23] since
they both involve the use of Worpitzky’s identity to some extent along with an inclusion-
exclusion argument. However, the proof we provide allows us to interpret the coefficient of
t™ in equation (2) more explicitly and keeps us from having to needlessly rewrite formulas
via Worpitzky’s identity later in the paper. Moreover, this interpretation of the coefficients
allows for extensions to other weighted multi-hypersimplices as we will show.

Remark 2.4. For a tuple of integers ¢ = (c1, ..., ¢y), let Ry be the polytope defined by

Rie = {xe [0,c1] x -+ x [0,¢,] | le:k}
=1

In [FM22], the authors show that the Ehrhart polynomial ehr(Ry ,?) has positive coeffi-
cients by expressing the coefficients with a combinatorial formula in terms of c-compatible
weighted permutations of [n]. Here, we describe the analogue of Theorem 2.2 for the
polytopes Ry c.

For an integer v, let pc;(v) be defined as

(3) Poilv) = # {f e (“ﬂ) e = }

For example, if ¢ consists of all 1’s, then pc;(i) = (7). It is shown in [FM22] that the
Ehrhart polynomial of Ry can be written as

ehr(Rie t) = i<_1)i i (t(k: —v)+n—1-— z) peil®),

i=0 v=0 n—1
and the coefficient of t™ in this polynomial is
1 k n
=) Zo(k =)™ Y (=1 PN pe(v),
V= 1=0
Using the same reasoning as in the proof of Theorem 2.2, the quantity
k n
Dk=o)™ > (1) P pe(v)
v=0 =0

is the number of c-compatible cycle-ordered, weighted permutations of type (n,m + 1, k).



Specifically, following the proof of Theorem 2.2, we have that

And

1 n—1i
k _ m
(k=) |:Z'—j} [m+1-z’+]}
is the number of cycle-ordered, weighted permutations of type (n,m + 1, k) such that for
a fixed set A € (7;) where >, ¢, = v we have the following properties:

e | — j cycles consist only of elements in A.
e The remaining m + 1 — (i — j) cycles consist only of elements from [n] \ A.
e For each cycle ¢ of o consisting of elements of A, w(¢) =3, . cu

For a cycle-ordered, weighted permutation (o, p,w) where o = ¢1 -+ ¢pa1, let I be the
set of indices j such that w(c;) > Zuaj ¢y. Then for each J C I, we have that (o, p,w)

contributes the value (—1)I in the term of the sum above where A = Uies & v = uea Cus
and i = |A|. Hence, the total contribution is 0 if || > 1 and the contribution is 1
otherwise, namely, when (o, p, w) is a c-compatible cycle-ordered, weighted permutations
of type (n,m + 1, k).

3. FORMULAS FOR EHRHART POLYNOMIALS

Let a = (aq,...,a,) be an r-tuple of positive integers such that a; + --- + a, = n and
let ¢ = (¢, ..., ¢) be an r-tuple of positive integers. We denote what we call the weighted
multi-hypersimplex of type (k, a,c) as the polytope

n ar+-+a;
Arae = xGRZo:inzkand Z zj<cforalll1<i<r,,

j=1+a1+-+a;_1

where ag := 0. We note that these polytopes were explicitly defined in [LP07].
Here, we would like to find a formula for the Ehrhart polynomial of A, or at least
show how it can be computed for particular cases.

For a given integer u, the number of nonnegative integer solutions to ijl x; = u is

(u+ai—1

, ) We can use this fact to compute
a;—1

a1+--+a;
ehr(Agac,t) = T €75, Zx, = kt and Z zj<cgtforall<i<r

Jj=l4+a1++ai—1

for any positive integer ¢ as a coefficient of a product of polynomials.
Indeed,

ehr(Apac:t) = [2] H (Zt (j ;a—iz 1) xj) |

i=1 \j=0



8

We can write Zjio (H‘”’l)xj = (aiil)! (1t - aoittal) = - 71)|Da171 (1—1‘Cit+ai >’

a;—1 1—x
where D¥ denotes the kth derivative with respect to z. Therefore, we have the following
theorem.

Theorem 3.1 For a positive integer k and r-tuples a and c,

kt - 1 a;—1 1— x0it+ai
ehr(Agac,t) = [z*] ][ le —— )/

i=1

We will now use Theorem 3.1 to explicitly compute the Ehrhart polynomials of the poly-
topes of the form Ay -2 ¢ (1m=2) denotes n — 2 copies of 1). Although one could
use Theorem 3.1 to explicitly write down the Ehrhart polynomial of Ay 5. for other fixed
choices of a, the formulas become quite cumbersome. Since our combinatorial analysis in
what follows does not seem to have a straightforward generalization, we focus only on this
particular case. Let ¢/ = (cq,. .., ¢, 2) be the first n—2 entries of c. We have the following:

n—2
1 — gattl 1 — (cp1t + 2)x1" 4 (¢, 1t + 1)aen—11F2
(G ]| a7 )
i=1

— [.rkt] (1 _11,),1 (f[ (1 o xcit—H) o (Cn—lt 4 2)x0n71t+1 f[ (1 . xcit—&-l)

=1 =1

n—2
+ (cn_lt + 1)Icn71t+2 H (1 B xcitJrl) )

=1
k-1 1
; (k—v)t—i+n—1
I | e i(0)
- n—1
=0 v=0
k—1 k—cpn_1—1 .
i (k_U—Cn—ﬁt—Z—l—i—n—l
St Y ) pesi(v)
=0 v=0
k—1 k cp—1—1 .
i (k—v—cp)t—1—24+n-—1
et )0 Y " pe)
i=0 v=0
1 n—1 k-1 k-1
aC (ZWZ(—W (k= )" P pea(v)
"\ m=0 i=0 v=0
n—1 k—1 k—cp—1—1
—Cpo1 YD (1) (k=0 = o)™ PP per s(0)
m=0 =0 v=0
n—1 k—1 k—cp_1—1
—ZZth(_l)z (k—U—Cn 1)mPnln 2— zpC"( )
m=0 =0 v=0
k—cp—1—1
+Cant’”“Z Y (k—v— e ) PR per (V)
i=0 v=0

n—1 k—1 k—cn—1—1
+Ztm (_1)1 (k—U—Cn 1)mP:Lz—11n 3—iPc’ l( )>



4. A COMBINATORIAL FORMULA FOR THE EHRHART COEFFICIENTS

When ¢,,_1 = 1, we will use the above formula in the proof of Theorem 4.2 below. First
we will need the following definition for the statement of Theorem 4.2.

Definition 4.1. For a = (1”2 2) and ¢ = (c1,...,¢u_2,1), we will say that a cycle
¢ € C(o0) of a cycle-ordered, weighted permutation (o,p,w) is properly (a, c)-weighted if
the following conditions are satisfied:

(1) If neither n — 1 or n are in ¢, then w(c) <>, ¢.
(2) If n — 1 or n (or both) are in ¢, then w(c) <1+ . . o oG

If a cycle is not properly (a, c)-weighted then we say it is improperly (a, c)-weighted. More-
over, a cycle-ordered, weighted permutation (o, p,w) is said to be (a, c)-compatible if each
cycle of o is properly (a, c)-weighted.

We make Definition 4.1 solely for the purpose of articulating Theorem 4.2. We do not
attempt to generalize this definition for other values of a and c since we are not confident
on what the definition should be in general.

We are now ready to state and prove Theorem 4.2.

Theorem 4.2 The coefficient of t™ in (n—1)!ehr(Ay (1(1-2 2) (c1....cn_s1): 1) can be described
as the following.

Ifk<n—1o0orm+1>1, let Sy be the set of (a,c)-compatible cycle-ordered, weighted
permutations of type (n,m+1,k). Otherwise, if k =n—1 and m+1 =1, let Sy be the set
of cycle-ordered, weighted permutations of type (n,1,n — 1) (note that these cycle-ordered,
weighted permutations are not (a, c)-compatible).

Let Sy be the set of cycle-ordered, weighted permutations of type (n,m + 1,k) such that

the cycles of o not containing n — 1 are properly (a, c)-weighted,
n — 1 and n are in different cycles,

the cycle containing n — 1 is improperly (a, c)-weighted,

the cycle ¢ containing n satisfies

w(c) = Z Ci.

1€C,i#£n

Let S3 be the set of cycle-ordered, weighted permutations (o,p,w) of type (n,m, k) such
that

the cycles not containing n — 1 or n are properly (a, c)-weighted,
n — 1 and n are in distinct cycles,

the cycle containing n — 1 is improperly (a, c)-weighted,

the cycle ¢ containing n satisfies w(c) <3 i iz Ci-

If m > 1, let Sy be the set of cycle-ordered, weighted permutations (o, p,w) of type
(n,m, k) such that n — 1 and n are in the same cycle, which is improperly (a, c)-weighted,
and the remaining cycles are properly (a, c)-weighted. Otherwise, if m =1, let Sy = ().

Then we have that

[tm](n — 1)!ehI’(Ak7(1n—272)7(cl7'._7%_271),t) = ’Sl‘ + ‘SQ’ — ‘Sg| — ’54‘ = ’Sl U SQ‘ — |Sg U 54’

Proof. As we saw before, the Ehrhart polynomial of (n — 1)!A jm-2) 9 (
to

C1roon_a,1) 18 equal

I
~
3
—~

|
—_
~—
S

(k=)™ PPl ipera(v)



(k_v_l)mpnzn 2— 1pc"( )

+
1L
R
E
17

z*() v=0
k—1 k—
+2 Z Y ()Y (kv = )P pe(v)
=0 v=0
k-1
Zt"‘“Z S (k= v = P pe ()
=0 v=0
n—1 k—1 k—2
+Ztmz ) (k_v_l)mpnzlyszpc’i(>
=0 v=0

where in the second and third line, we absorbed the minus sign in front of the sum into
the (—1)™! term. The coefficient of ™ can be read off to be the sum of the terms

k—1 k—1
a =Y (=1 (k=)™ P pei(v)
=0 v=0
k—1 k—2
az = 2 (_1)Z+1 (k — U= 1)mpnzn 2_iPc i ( )
=0 v=0
k—1 k—2
as = Z(_]')ZZ(I{: — U= 1)mPnz 1,n—3— iPc’ i ( )
=0 v=0
k—1 k—2
a4 = Z(_1>’L+1 Z(k — U= 1)m 1Pnzn 2— zpC l( )
i=0 v=0
k—1 k—2
as = Z(_l)l (k’—U 1)m 1Pn2 1,n—3— 'LpC/ ( )
i=0 v=0

Using similar reasoning as in the proof of Theorem 2.2, we have the following interpre-
tation of the values above.

e lfk<n—1orm+1>1,let A; be the set of cycle-ordered, weighted permutations
(o, p,w) of type (n,m + 1, k) where the cycles that do not contain n — 1 or n are
properly (a, c)-weighted. (Note that there are no restrictions on the weight of the
cycles containing n— 1 or n.) Otherwise, k =n—1, m+1 =1 and we let A; be the
set of cycle-ordered, weighted permutations of type (n,1,n —1). Then a; = |A4].
Let Ay be the set of cycle-ordered, weighted permutations (o, p, w) of type (n,m +
1, k) where the cycles that do not contain n — 1 or n are properly (a, c)-weighted,
n — 1 and n are in distinct cycles, and exactly one of the cycles containing n — 1 or
n is improperly (a, c)-weighted.

Let A, be defined in the same way as A, except both of the cycles containing
n — 1 and n are improperly (a, c)-weighted.

Then Ao — —|A2’ — 2’Al2|
Let Az be the set of cycle-ordered, weighted permutations (o, p, w) of type (n,m +
1, k) such that

— the cycles not containing n — 1 or n are properly (a, c)-weighted,

— n—1 and n are in distinct cycles, the cycle containing n— 1 is improperly (a, c)-

weighted and the weight of the cycle ¢ containing n is at least Ziec,i n Ci
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If m+1>1, let A be the set of cycle-ordered, weighted permutations (o, p, w)
of type (n,m + 1, k) such that

— the cycles not containing n — 1 or n are properly (a, c)-weighted,

— n — 1 and n are in the same cycle, which is improperly (a, c)-weighted.
Otherwise, m + 1 =1 and we let A = (). Then ag = |A3| — | A}].

e Let A4 be the set of cycle-ordered, weighted permutations (o, p, w) of type (n, m, k)
such that n —1 and n are in distinct cycles, the cycle containing n — 1 is improperly
(a, c)-weighted, and the cycles not containing n—1 or n are properly (a, c)-weighted.
Then ay = —|Ay|.

e Let A; be the set of cycle-ordered, weighted permutations (o, p, w) of type (n, m, k)
such that

— the cycles not containing n — 1 or n are properly (a, c)-weighted,

— n—1 and n are in distinct cycles, and the cycle containing n — 1 is improperly

(a, c)-weighted,

— the weight of the cycle ¢ containing n is at least Ziecﬂ. 4 Ci-

If m > 1, let AL be the set of cycle-ordered, weighted permutations (o, p,w) of
type (n,m, k) such that

— the cycles not containing n — 1 or n are properly (a, c)-weighted.

— n — 1 and n are in the same cycle, which is improperly (a, c)-weighted.
Otherwise, m = 1 and we let AL = (). Then a5 = |As| — | AL].

We can now see that a; + as + a3 = |S1| + |S2|. To see this, let (o,p,w) be of type
(n,m+ 1,k).

e If (0, p, w) € Sy, then it is contained in A; and contributes +1 to the sum a;+as+as.

o If (0,p,w) € Sy, then it is contained in Ay, As, and Az and contributes 1 —1+1 =1
to the sum. Note in the case that m + 1 = 1 we have that Sy = ().

e If (0,p,w) has some cycle not containing n — 1 or n that is improperly (a,c)-
weighted, then it not contained in any A; or A; and does not contribute to the
sum.

e Assume that n — 1 and n are in distinct cycles and exactly one of these cycles is
improperly (a, ¢)-weighted. Additionally, if n—1 is improperly (a, c)-weighted, then
the cycle ¢ containing n has weight less than ). ¢ in Ci- 1f the remaining cycles
not containing n — 1 or n are properly (a, c)-weighted, then (o, p,w) is contained
in A; and A, and thus contributes 1 — 1 = 0 to the sum.

e If n — 1 and n are in distinct cycles which are both improperly (a, c¢)-weighted and
the cycles not containing n — 1 or n are properly (a, c)-weighted, then (o, p,w) is
contained in Ay, A, and A3 and contributes 1 — 2 + 1 = 0 to the sum.

e If n — 1 and n are in the same cycle which is improperly (a, c)-weighted, and the
remaining cycles are properly (a, c)-weighted, then (o, p,w) is contained in A; and
A% and contributes 1 — 1 = 0 to the sum.

It can be seen, using reasoning similar to the above argument showing a; + as + az =
|Sl| + |SQ|, that a4 + a5 = —|Sg| — |S4|
This completes the proof. 0

Theorem 4.2 shows that the coefficient of t™ can be viewed as a difference of the car-
dinality of a set of certain cycle-ordered, weighted permutations with m + 1 cycles and
cycle-ordered, weighted permutations with m cycles. It is possible that a generalization of
Theorem 4.2 to general panhandle matroids would involve an alternating sum of the car-
dinality of sets of cycle-ordered, weighted permutations with different numbers of cycles.
However, a straightforward generalization of Theorem 4.2 to general panhandle matroids
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seems unwieldy, and a new understanding of the coefficients in Theorem 4.2 would likely
be needed in order to obtain such a generalization.

When c¢ consists of all 1’s, we are able to use Theorem 4.2 to show that the coefficients
are positive. We note that Ay -2 ), is the base polytope of the panhandle matroid
Pany,,,—2 , defined in [HMM™23], where a promising method to prove Ehrhart positivity of
panhandle matroids is outlined. However, the proof we present uses a different approach
than what is suggested there.

Theorem 4.3 Let 1 € Z" be the tuple of all 1’s. Let 0 < m <n—-1if1<k<n-1
and 0 <m < 2 if k =n —1. Then the coefficient of t™ in (n — 1)l ehr(Ay -2 ) 1,t) is
positive.

Proof. Let 51,53, 53,54 be defined as in Theorem 4.2. We will show that there are injections
fl : Sg — Sl U SQ and f2 : 54 — Sl U 52 such that Im(fl) N Im(fz) = @ Then we will
show that there is an element of S; U .S, that is not contained in Im(f;) UIm(f5). This will
complete the proof.

We note that when & = n — 1, Ay -2 )7 is integrally equivalent to the standard
2-dimensional simplex, which is well known to be Ehrhart positive. Therefore, we assume
throughout the proof that 1 < k < n—2; in particular, Ay ;-2 o1 is (n —1)-dimensional.

We first note that if m = 0 or m = 1, then S3, 5S4 = (), so we may assume that m > 2.

Let (o,p,w) € Ss; we define (¢/,p',w') = fi((o,p,w)) as follows. We note that the
condition on the weight of the cycle containing n implies that this cycle contains some

element other than n. First we write the cycle containing n as (iy,...,4,,n), and we break
this cycle into two by (i1, ..., %w((ir,...irm)+1) (Cw((i1,inn))+2, - - - » Iry 7). We obtain o’ and
the ordering of its cycles given by p’ by simply replacing (i1, ..., .,n) with

(i1, - s Gwo((insivs)) 1) (B ((i1i ) £25 - - - 5 by TV)
in the ordering with the following exception: if (i1, ..., %w((,...i,n))+1) contains the element
1, then we place (iy((i,...irn))+2, - - - » Ir, 1) at the beginning in the ordering of the cycles.

For example, if o and the order of its cycles is (2 8)(4 3 5 7)(1 6) where w((4357)) =1,
then ¢’ and the order of its cycles is given by (2 8)(4 3)(5 7)(1 6).

We initially define a weight w* on the cycle ¢ of ¢’ containing n — 1 that will be modified
later. Notice that p’ has either the same or one more descent than p. If p’ has the same
number of descents as p, then we take w*(¢) = w(c), otherwise, we take w*(¢) = w(c) — 1.
The reason why we make this definition is to ensure that the weight function w’ defined
below will make (o, p/,w') of type (n,m + 1, k) rather than (n,m + 1,k + 1).

The weight function w’ is defined in the same way as w on all cycles not containing n — 1
or n.

We define w'((i1, - - -, fu((ir,....irm))+1)) t0 be the integer d where iy, ... 5, n)) is the (d+1)’th
smallest element among 71, ..., %u((@,...in))- For example, if 4y, 4,n)) 1S the smallest
among these values, then d = 0, or if 4., 4, n)) is the largest, then d = w((7y, ..., %, n)).

Let ¢ be the cycle containing n — 1. We define

r

W ((aw((iy,..osir )25 - - - » Gr, 1)) = MinN Z ci;y w((iy, .. 0, n)) —d 4w (c)
F=w((i10mnsir o)) +2

Finally, we define
w'(¢) = w(c) = (W ((Gw((irrivm))t2s - - -+ b)) — (W((01, .. ., 0y, m)) — d)).
The resulting cycle-ordered, weighted permutation (o’,p’,w’) is either properly (a,1)-

weighted, or the cycle containing n — 1 is improperly (a, 1)-weighted, every other cycle
is properly (a, 1)-weighted, and the cycle (y((,,...iyn))+2; - - - » ir, 7) containing n has weight
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> imw((iv,irm)) 42 Cij- Also, we have that either w'(o”) = w(o) and |Des(p')| = |Des(p)|
or w'(o’) = w(o) — 1 and | Des(p’)| = | Des(p)| + 1, so (¢/,p/,w’) is of type (n,m + 1, k).
Therefore, (o, p',w’) is an element of S; U Ss.

To see that f; is injective, we show that the above process in the definition of f; can be
reversed. Let (o/,p/,w’) be in the image of fi. Let (i1,...,7-) be the cycle preceding the
cycle containing n (if the cycle containing n is the first cycle, then we mean (i1, ..., %,) to be
the last cycle), where we have written these elements so that 4,. is the (w'((41, ... ,4))+1)th
smallest element among i1, ..., 4. Then we merge the cycles (iy,...,4)(j1,...,Js,n) into
one cycle: (iy,...,%,71,...,js,n) and we keep the relative ordering of the cycles to obtain
the permutation and ordering o and p. We then define w((iy, ..., %, j1,...,js,n)) =1 —1,
and for the remaining cycles of ¢ not containing n — 1, w is defined in the same way as w’.
For the cycle ¢ containing n — 1, we define w(c) to be

w(c) =w'(c) +w'((iy,... i) + ' ((j1,...,Js,n)) — (r' = 1)
if p has the same number of descents as p’, and
w(e) =w'(¢) +w'((ir, ... i) + W' ((J1,...,js,n)) — (' = 1) +1

if p has one less descent than p'.

For example, if ¢’ and the ordering of its cycles is given by (2 9)(4 6 3 7)(5 10)(1 8)
with weights 2,2, 1, 1 respectively, then we arrange the elements of (4 6 3 7) so that its 3rd
smallest element is written on the right: (374 6). Then we merge the cycles (374 6)(5 10)
into one to obtain the permutation (2 9)(3 74 6 5 10)(1 8) and we give the weights 2, 3,1
respectively.

Thus, f; is injective.

Now we define the injection fy : Sy — S1USs. Let (o,p,w) € Sy, and let (iy,...,4.,n—
1,71,...,Js,n) be the cycle containing n — 1 and n. We define fo((o,p,w)) = (¢/,p',w’) as
follows. The permutation ¢’ and the ordering of its cycles is obtained by simply splitting the
cycle (i1,...,%,n—1,71,...,js,n) into two cycles (iy,...,i.,n—1)(j1,...,Js,n), where in
the case that 1 is an element among i1, . .., 4., then (ji,...,js,n) is placed in the beginning
in the ordering of the cycles. We define

W (- den) = ¢,
=1

and
w'((il, c. ,ir,n — 1)) =

W((i1s ey = 1,1, M) = D00 6y if | Des(p')| = [ Des(p)|
w((ih s 7ir)n - 17j1) s 7jsa n)) —-1- Zf:l Cjz’ lf | Des(p’)| = ’ Des(p)| + L.

An argument similar to the one above by merging the cycles containing n—1 and n shows
that this process can be reversed, and thus f is injective. Also, the cycle containing n—1 is
potentially the only cycle that is improperly (a, 1)-weighted, and since w'((ji, ..., Js, 1)) =
Yo ¢ and (o, p/,w') is of type (n,m + 1,k), (o/,p/,w’) € S; U S,.

Notice that an element in Im(f;) has the property that the cycle preceding the cycle
containing n does not contain the element n — 1, and this is not the case for an element in
Im(f2). This shows that Im( f;)NIm(f2) = 0.

The above arguments implies that the coefficient is nonnegative. Now we prove that it
is in fact positive. To this end, it suffices to show that there is an element in (S; U Ss) \
(Im(f1) UIm(fz)). We can assume that m < n — 1 since we know that the coefficient of
"1 is positive. Let (o,p,w) be a ((17~), (1("=1))-compatible cycle-ordered, weighted
permutation of type (n—1, m+1, k) (recall that the number of such (o, p, w) is the coefficient
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of t™ in ehr(Ay,,,t)). We can modify the permutation o by simply replacing the element
n — 1 with n — 1 n in its cycle decomposition. For example, if o = (1 5 4)(2 3), then we
obtain the permutation (1 5 6 4)(2 3) This results in an (a, 1)-compatible cycle-ordered,
weighted permutation of type (n, m + 1, k) where n — 1 and n are in the same cycle, which
is not an element of (Im(f;) UIm(fz)). This completes the proof. O

Remark 4.4. In the proof of Theorem 4.3, the injection f, can be defined analogously
when c is of the more general form (cq,...,c,_2,1). However, the injection f; does not
appear to carry over in a simple way to this more general case, so the result of Theorem
4.3 may be extended by finding a suitable injection to replace f;.
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