
8204 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

Scalable Multi-Round Multi-Party
Privacy-Preserving Neural

Network Training

Xingyu Lu, Umit Yigit Basaran , and BaËsak Güler , Member, IEEE

AbstractÐ Privacy-preserving machine learning has achieved
breakthrough advances in collaborative training of machine
learning models, under strong information-theoretic privacy
guarantees. Despite the recent advances, communication bottle-
neck still remains as a major challenge against scalability in
neural networks. To address this challenge, this paper presents
the first scalable multi-party neural network training framework
with linear communication complexity, significantly improving
over the quadratic state-of-the-art, under strong end-to-end
information-theoretic privacy guarantees. Our contribution is
an iterative coded computing mechanism with linear commu-
nication complexity, termed Double Lagrange Coding, which
allows iterative scalable multi-party polynomial computations
without degrading the parallelization gain, adversary tolerance,
and dropout resilience throughout the iterations. While providing
strong multi-round information-theoretic privacy guarantees, our
framework achieves equal adversary tolerance, resilience to user
dropouts, and model accuracy to the state-of-the-art, while
reducing the communication overhead from quadratic to linear.
In doing so, our framework addresses a key technical challenge in
collaborative privacy-preserving machine learning, while paving
the way for large-scale privacy-preserving iterative algorithms
for deep learning and beyond.

Index TermsÐ Privacy-preserving machine learning, collabo-
rative training, information-theoretic privacy.

I. INTRODUCTION

PRIVACY-PRESERVING collaborative machine learning

(PPML) is a popular paradigm for joint training of

machine learning (ML) models across multiple data-owners

(users), without compromising the privacy of local data [1],

[2], [3], [4], [5], [6], [7], [8], [9]. Recently, information and

coding theoretic mechanisms has led to promising advances

in the design of PPML frameworks [10], [11], [12]. This

approach, known as privacy-preserving coded computing, first

Manuscript received 29 July 2023; revised 12 April 2024; accepted 5 August
2024. Date of publication 9 August 2024; date of current version 22 October
2024. This work was supported in part by OUSD (R&E)/RT&L under
Agreement W911NF-20-2-0267, in part by NSF CAREER under Award
CCF-2144927, and in part by UCR OASIS Fellowship. An earlier version
of this paper was presented at the 2023 IEEE International Symposium
on Information Theory (ISIT’23) [DOI: 10.1109/ISIT54713.2023.10206617].
(Corresponding author: BaËsak Güler.)

The authors are with the Department of Electrical and Computer Engineer-
ing, University of California at Riverside, Riverside, CA 92521 USA (e-mail:
xlu065@ucr.edu; ubasa001@ucr.edu; bguler@ece.ucr.edu).

Communicated by A. Sarwate, Associate Editor for Security and Privacy.
Color versions of one or more figures in this article are available at

https://doi.org/10.1109/TIT.2024.3441509.
Digital Object Identifier 10.1109/TIT.2024.3441509

encodes the datasets and the model using a Lagrange interpo-

lation polynomial, through Lagrange Coded Computing (LCC)

[10]. The training computations are then performed using the

encoded datasets and model as opposed to the true datasets,

but as if they were performed on the true datasets. In doing

so, the encoding operation injects randomness and computa-

tional redundancy across the local computations performed

by different users, to provide strong information-theoretic

privacy guarantees and resilience to user dropouts. The addi-

tional randomness is reversible; after multiple training rounds,

the final model can be correctly recovered using polyno-

mial interpolation using the computations performed on the

encoded data. Accordingly, coded computing can provide

strong information-theoretic privacy guarantees for the sensi-

tive user data as well as resilience against user drop-outs, while

achieving an order-of-magnitude speed-up in the training time

compared to state-of-the-art cryptographic baselines [11], [12].

The major challenge against the scalability of such

information-theoretic PPML frameworks is their quadratic

communication complexity in the number of users. This is

due to the fact that interpolating a polynomial f of degree

deg(f) requires collecting the computation results from at

least N ≥ deg(f)+1 users. On the other hand, the polynomial

degree grows exponentially with each multiplicative opera-

tion associated with gradient computations, causing a degree

explosion where the total number of users will no longer be

sufficient to recover the final model. To reduce the polynomial

degree without breaching privacy, users then need to carry

out an expensive degree reduction protocol, leading to a

quadratic communication overhead, preventing scalability to

larger networks. As a result, current large-scale PPML applica-

tions (beyond 3-4 users) with end-to-end information-theoretic

privacy guarantees, where users learn no information beyond

the final model, are applied to simpler logistic and linear

regression tasks, as opposed to more complex neural network

training.

To address this challenge, in this work we introduce

a privacy-preserving distributed neural network training

mechanism CLOVER (Collaborative private neural network

training), the first scalable information-theoretic PPML frame-

work with linear communication complexity for neural net-

work training. The key ingredient of CLOVER is a highly

efficient novel degree reduction mechanism for LCC, termed

Double Lagrange Coding (DLC), which reduces the quadratic

0018-9448 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

LU et al.: SCALABLE MULTI-ROUND MULTI-PARTY PRIVACY-PRESERVING NEURAL NETWORK TRAINING 8205

communication overhead of degree reduction to linear, without

compromising privacy. To do so, we separate communication

into online (data-dependent) and offline (data-agnostic) com-

ponents. The former depends on the data, and can only

be carried out after training starts, whereas the latter is

independent from data, such as randomness generation for

coding, which can be carried out in advance when network

load is low, or in parallel with other components of training.

In doing so, we offload the communication-intensive opera-

tions with quadratic overhead to the offline phase, by trading

off the quadratic (point-to-point) communication with linear

(broadcast). Then, in the offline phase, we introduce a novel

randomness generation mechanism for LCC, which reduces

the communication volume via a layered coding mechanism

using MDS (Maximum Distance Separable) matrices.1 The

total number of communicated variables is inversely propor-

tional to the number of users, resulting in a linear (amortized)

communication complexity.

In our theoretical analysis, we demonstrate the formal

information-theoretic privacy guarantees of CLOVER, as well

as the key performance trade-offs in terms of the commu-

nication complexity, robustness against user dropouts, and

adversary resilience. In a network of N users, we show that

CLOVER achieves an O(N) (linear) communication com-

plexity both offline and online for neural network training,

as opposed to the O(N2) (quadratic) online communication

complexity of conventional approaches, which, as a result, are

limited to simpler logistic and linear regression, as opposed

to neural networks, while achieving the same adversary and

dropout resilience. In our experiments, we also implement

CLOVER over a distributed multi-user network for image

classification, and demonstrate its numerical performance in

terms of the communication overhead, model accuracy, and

training time. Our contributions can be summarized as follows:
• We propose CLOVER, the first privacy-preserving

multi-party neural network framework with linear

communication complexity, under strong end-to-end

information-theoretic privacy guarantees.

• We introduce the first scalable degree reduction mecha-

nism for Lagrange Coded Computing (LCC) with linear

communication complexity, allowing scalable iterative

coded computations, which can open up further research

in privacy-preserving applications of iterative algorithms,

beyond machine learning.

• We present the formal information-theoretic privacy guar-

antees of CLOVER for end-to-end multi-round neu-

ral network training, and show that CLOVER cuts the

communication overhead while achieving equal adver-

sary resilience, model accuracy, and robustness to user

dropouts as the state-of-the-art.

II. RELATED WORK

Beyond LCC, notable coded computing mechanisms that

can be applied to decentralized machine learning tasks include

the generalized PolyDot codes [13], to enhance the resilience

1Throughout the manuscript, an MDS matrix refers to the generator matrix
of an MDS code.

of neural network training in the presence of error-prone

and unreliable nodes. Reference [14] extends the generalized

PolyDot codes to secure matrix multiplication, by introducing

secure generalized PolyDot codes for server-worker compu-

tation offloading. In this setting, a trusted server offloads

encoded computations to multiply two sensitive matrices to

a set of honest-but-curious workers. In doing so, a novel

secure coded computing mechanism is proposed to allow

flexible communication loads, while preserving the privacy

of sensitive matrices. Different from the server-worker data

offloading setting, our focus is on the collaborative learning

setting without a trusted party, in which no party can observe

the datasets of other parties, hence the security of the datasets

and intermediate model parameters should also be preserved

during encoding.

Beyond coded computing, there are three complemen-

tary approaches to PPML: 1) Secure Multi-party Computing

(MPC), 2) Differential Privacy, 3) Homomorphic Encryption.

Secure MPC protocols for PPML build on a cryptographic

primitive known as secret sharing [15], where parties inject

randomness to sensitive data before sharing it with others,

and then the training computations are performed on the

secret shared data [2], [3], [4]. The randomness is reversible;

after multiple training rounds, parties can recover the true

model as if it was computed on the original data, by using

the computations performed on secret shared data. In doing

so, secure MPC protocols can preserve model accuracy and

strong information-theoretic privacy [6], [7], [8], [9]. On the

other hand, two challenges hinder scalability to larger net-

works beyond 3 − 4 users: 1) they do not benefit from

parallelization and distributed implementation for the compu-

tation load of training, in particular, the computation load at

each user is as high as centralized training, where the local

datasets of all users are pooled at a single location, 2) they

require extensive interaction and communication between the

users.

As a result, current secure MPC frameworks are primarily

used on a per-round basis during training, as opposed to end-

to-end multi-round training. This is known as secure aggre-

gation in federated and distributed learning, where parties

perform training locally on their local datasets, and then the

local updates (e.g., local gradients) are aggregated using a

secure MPC protocol, coordinated by a central server. In doing

so, parties learn the aggregate (sum) of local gradients/models

after each (global) training round, without observing them in

the clear [16], [17], [18], [19]. On the other hand, secure

aggregation reveals the aggregated gradients and the updated

model after each training round, and privacy degrades as the

number of rounds increase [20]. Moreover, secure aggregation

protocols are vulnerable to multi-round privacy attacks [21],

[22]. In contrast, in this work our focus is on end-to-end

multi-round PPML, in which users can only learn the final

model at the end of training, after multiple (global) training

rounds, and no intermediate model or gradient can be revealed,

even in aggregated form, at any intermediate training round.

In doing so, CLOVER reveals no intermediate model or

gradient during training, preventing such multi-round privacy

degradation throughout the training.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

8206 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

TABLE I

LIST OF NOTATIONS

Differential Privacy (DP) is a noisy release mechanism

which protects the privacy of personally identifiable informa-

tion by injecting irreversible noise during training. Beyond

secure MPC and information-theoretic PPML frameworks,

where the final model is revealed to the users, DP can further

prevent privacy leakage from the final model, such that an

adversary who has access to the final model cannot backtrack

an individual’s sensitive data [23], [24], [25], [26], [27], [28],

[29], [30]. In doing so, DP leads to an inherent accuracy-

privacy trade-off; stronger privacy guarantees require a higher

noise level. In distributed settings, the noise accumulates,

degrading model privacy. As a result, recent DP mechanisms

have been integrated with information-theoretic PPML frame-

works, which is known as distributed DP, to reduce the amount

of noise accumulated in distributed settings, and increase

model accuracy [31], [32], [33]. Though beyond the scope of

our current work, we note that our approach can in principle

also be combined with and benefit DP, which is an interesting

future direction.

Homomorphic Encryption (HE) protocols allow computa-

tions to be performed on encrypted data [34], [35], [36],

[37], [38], [39], [40], [41], [42], [43], [44]. In doing so,

they can tolerate a larger number of adversaries compared

to secure MPC. The corresponding trade-off is that adver-

saries have bounded computational power, as opposed to

information-theoretic frameworks where adversaries can have

unbounded computational power. In addition, privacy guar-

antees are based on computational hardness assumptions,

and stronger privacy guarantees require larger encrypted

data size, increasing the computation load per user. As a

result, HE is primarily utilized for inference tasks in

machine learning, as opposed to computationally-intensive

training.

III. PROBLEM FORMULATION

A. Notation and Preliminaries

We first introduce the notation that will be used throughout

the paper. In the following, x denotes a vector, and X stands

for a matrix. X denotes a set with cardinality |X |, whereas

[N] represents the set {1, . . . , N}. XT denotes the matrix

transpose, whereas tr(X) denotes the trace of X, and X[s]
denotes the sth column of X. ∥X∥F denotes the Frobenius

norm, and ⊙ is the Hadamard product. Fp denotes the finite

field of integers modulo a large prime p.

Finally, [x]i denotes the secret sharing of a secret x by using

Shamir’s T -out-of-N Secret Sharing (SSS) protocol [15]. SSS

embeds a secret x in a degree T polynomial,

f(α) = x+ αr1 + . . .+ αT rT (1)

where each coefficient {rk}k∈[T] is generated independently

and uniformly at random from Fp. Then, user i ∈ [N]
receives a secret share denoted as [x]i ≜ f(αi). SSS provides

information-theoretic privacy for the secret against any set of

T colluding users. The secret x can be reconstructed from any

collection of T + 1 shares using polynomial interpolation, but

no information can be revealed from any group of T or fewer

shares. Table I provides the list of key notations used in the

remainder of our paper. We next introduce our system model.

B. Multi-Party Neural Network Training

We consider a collaborative neural network training task

in a network of N users. Our framework is bound to finite

field operations, where all training operations are carried out

in a finite field Fp of integers modulo a large prime p. Similar

to [1] and [11], the datasets are represented in the finite field as

described in App. A. User i holds a local dataset represented

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

LU et al.: SCALABLE MULTI-ROUND MULTI-PARTY PRIVACY-PRESERVING NEURAL NETWORK TRAINING 8207

by a matrix Xi ∈ F
d×m
p , where the kth column denotes the

feature vector for a single data sample k ∈ [m], m denotes the

number of local data samples held by each user,2 and d denotes

the number of features for each sample. The corresponding

labels are represented by a binary matrix Yi ∈ F
c×m
p for

user i ∈ [N], where the kth column is the binary one-hot

label vector for data sample k ∈ [m], and c is the number

of classes. The dataset and labels across the entire network

are represented by X ≜
[
X1 · · · XN

]
∈ F

d×Nm
p and Y ≜[

Y1 · · · YN

]
∈ F

c×Nm
p .

For the neural network architecture, we consider a polyno-

mial neural network as given in Fig. 1, with L hidden layers,

along with a final classification layer denoted by layer L+ 1,

and quadratic activation functions g(x) = x2 along with mean

squared error loss [45]. The model parameters connecting layer

l − 1 to layer l are denoted by a matrix Wl ∈ F
dl×dl−1

p ,

where dl is the number of neurons at layer l ∈ [L+ 1], with

d0 ≜ d, and dL+1 ≜ c. The input and output of the activation

function at layer l ∈ [L+ 1] is denoted by Zl ∈ F
dl×Nm
p and

Ul ∈ F
dl×Nm
p , respectively, where,

Zl ≜ WlUl−1, (2)

such that U0 ≜ X, and

Ul ≜ g(Zl) ∀l ∈ [L], (3)

where the activation function g(·) is applied element-wise

in (3). The goal is to learn the model parameters that minimize

the empirical loss function,

W
∗
1 , . . . ,W

∗
L+1 =arg min

W1,...,WL+1

1

Nm
L(W1, . . . ,WL+1;X,Y)

(4)

where

L(W1, . . . ,WL+1;X,Y) ≜ ∥ZL+1 −Y∥2F ,

such that ZL+1 ∈ F
c×Nm
p is the output of the neural network

at layer L+ 1. Training is carried out iteratively via gradient

descent. At each training round t, users compute a gradient,

Gl(t) ≜ ∇L(W1, . . . ,WL+1;X,Y)

for layer l ∈ [L + 1] by using the current state of the

model W1(t), . . . ,WL+1(t). After computing the gradient,

the model is updated for the next training round,

Wl(t+ 1) = Wl(t)−
η

Nm
Gl(t) ∀l ∈ [L+ 1] (5)

where Wl(t) denotes the estimated model parameters for

layer l at training round t, and Gl(t) denotes the aggregated

gradient across all Nm data samples for layer l. We consider a

decentralized communication topology without a central server

as illustrated in Fig. 2. At each training round, up to D users

may drop out due to various reasons such as poor wireless

connectivity, low battery, or device unavailability.

2For ease of exposition, we consider an equal number of local data samples
held by each user. Without loss of generality, our techniques can also be
extended to the scenario when the number of samples held by each user is
different.

Fig. 1. Neural network model.

Fig. 2. Multi-party collaborative learning setup. User i ∈ [N] holds a local
dataset Xi, along with the labels Yi.

Remark 1: Polynomial neural networks are primarily moti-

vated by the Stone-Weierstrass polynomial approximation the-

orem [46]. In particular, for any continuous function f(x) on

a closed interval x ∈ [a, b], for any ϵ > 0, there exists a

polynomial f̂(x) such that |f̂(x)− f(x)| ≤ ϵ. The result can

also be extended to multivariate polynomials [47].

C. Threat Model and Information-Theoretic Privacy

We consider an honest-but curious adversary model, where

adversaries follow the protocol but try to obtain further infor-

mation about the local datasets of honest users, using the

messages exchanged throughout the protocol, which is the

most common threat model in PPML [1], [6], [7], [11]. From

N users, up to T users are adversarial, who may collude with

each other. The set of adversarial and honest users are denoted

by T and H, respectively.

Our focus in this work is on end-to-end information-

theoretic privacy, where adversaries learn no information about

the local datasets of honest users, beyond the final model [1],

[10], [11]. This condition can formally be stated as follows,

I({Xi,Yi}[N]\T ;MT |{Xi,Yi}i∈T , {Wl(J)}l∈[L+1]) = 0

(6)

for all T such that |T | ≤ T , where J is the total number

of training rounds, and MT denotes the collection of all

messages received or generated by the adversaries.

D. Main Problem

In this work, our goal is to develop scalable mechanisms

to train the neural network model W1, . . . ,WL+1 from (4)

under the information-theoretic privacy guarantees from (6).

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

8208 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

The conventional approach for model training with end-to-end

information-theoretic privacy is to leverage a combination of

LCC and Shamir’s Secret Sharing (SSS) [11]. LCC enables

reducing the computational load for training, such that each

user performs training on an encoded dataset whose size is

only (1/K)th of the true dataset X, where K quantifies the

degree of parallelization. As the network size N grows, one

can select a larger K for faster training. On the other hand,

SSS enables secure encoding of the datasets and model for

LCC, to prevent users from learning the true model and the

datasets of other parties during encoding.

This approach can be applied to neural network training

through the following steps. Initially, each user i ∈ [N] secret

shares its local dataset Xi ∈ F
d×m
p using SSS, by sending

a share [Xi]j ∈ F
d×m
p to user j ∈ [N]. User j concatenates

and partitions the received shares into K equal-sized shards[
[X1]j · · · [XN]j

]
=

[
[X1]j · · · [XK]j

]
, and sends to

each user i ∈ [N] an encoded matrix,

[X̃i]j =
∑

k∈[K]

[Xk]j
∏

k′∈[K+T]\{k}

αi − βk′

βk − βk′

+
K+T∑

k=K+1

[Vk]j
∏

k′∈[K+T]\{k}

αi − βk′

βk − βk′

where VK+1, . . . ,VK+T ∈ F
d×Nm

K
p are T uniformly random

matrices secret shared by a trusted crypto-service provider.

Upon receiving {[X̃i]j}j∈[N], user i recovers the encoded

dataset X̃i using polynomial interpolation. The encoded

dataset X̃i ∈ F
d×Nm

K
p can be viewed as an interpolation point

of a degree K + T − 1 Lagrange polynomial,

x(α) =
∑

k∈[K]

Xk

∏

k′∈[K+T]\{k}

α− βk′

βk − βk′

+
K+T∑

k=K+1

Vk

∏

k′∈[K+T]\{k}

α− βk′

βk − βk′

(7)

such that X̃i = x(αi) for all i ∈ [N].
Lemma 1 ([10], [11]): The Lagrange interpolation poly-

nomial x(α) from (7) combines K shards X1, . . . ,XK ∈

F
d×Nm

K
p of dataset X ∈ F

d×Nm
p along with T random matrices

VK+1, . . . ,VK+T ∈ F
d×Nm

K
p , and ensures that the encoded

datasets reveal no information about the true datasets of the

honest users even if up to T adversaries collude, which can

be formally stated as,

I({Xi}i∈H; {X̃i}i∈T , {[Xi]j , [X̃i]j}i∈H,
j∈T

, {[Xi]j , [X̃i]j} i∈T ,
j∈[N]

,

{[Vk]j}j∈T ,k∈{K+1,...,K+T}|{Xi,Yi}i∈T , {Wl(J)}l∈[L+1])=0

where {[Xi]j , [X̃i]j}i∈H,j∈T are the secret shares

sent from honest users to the adversaries using SSS,

{[Xi]j , [X̃i]j}i∈T ,j∈[N] denote the secret shares generated by

the adversaries, and {[Vk]j}j∈T ,k∈{K+1,...,K+T} denote the

secret shares of the random matrices VK+1, . . . ,VK+T , sent

from the crypto-service provider to the adversaries.

In addition to the encoded dataset, each user i ∈ [N] also

holds an encoded model,

W̃l,i(t) =
∑

k∈[K]

Wl(t)
∏

k′∈[K+T]\{k}

αi − βk′

βk − βk′

+
K+T∑

k=K+1

Ql,k

∏

k′∈[K+T]\{k}

αi − βk′

βk − βk′

∀l ∈ [L + 1]

where W1(t), . . . ,WL+1(t) denote the current state

of the model parameters at training round t, and

Ql,K+1, . . . ,Ql,K+T ∈ F
dl×dl−1

p are T uniformly random

matrices. The encoded model W̃l,i(t) can be viewed as

an interpolation point of a degree K + T − 1 Lagrange

polynomial,

wl(α) =
∑

k∈[K]

Wl(t)
∏

k′∈[K+T]\{k}

α− βk′

βk − βk′

+
K+T∑

k=K+1

Ql,k

∏

k′∈[K+T]\{k}

α−βk′

βk−βk′

∀l ∈ [L+ 1]

where W̃l,i(t) = wl(αi).
Using the encoded dataset and model, users then compute

the gradient through forward and backward propagation. Dur-

ing forward propagation, each user i ∈ [N] initially computes

the multiplication W̃1,i(t)X̃i from (2) for the first layer

l = 1, which can be viewed as an evaluation point of a degree

2(K + T − 1) polynomial,

f(α) = w1(α)x(α)

=
∑

k∈[K]

W1(t)Xk

∏

k′∈[K+T]\{k}

(α− βk′

βk − βk′

)2

+ · · · (8)

where the local computation of user i is given by,

f(αi) = W̃1,i(t)X̃i ∈ F
d1×

Nm
K

p (9)

and the secret computations for the K shards X1, . . . ,XK of

the dataset X are given by,

f(βk) = W1(t)Xk ∈ F
d1×

Nm
K

p ∀k ∈ [K] (10)

As illustrated in Fig. 3, the polynomial degree has increased

from K + T − 1 to deg(f(α)) = 2(K + T − 1) in (8) due

to the multiplication operation. As a result, after L layers,

the degree of the resulting polynomial at layer L + 1, where

W̃L+1,i(t) × g(W̃L,i(t) × g(. . . g(W̃1,i(t)X̃i))) is the local

computation of user i, will be lower bounded by 2L(K+T−1),
leading to a degree explosion as illustrated in Fig. 4. Poly-

nomial degree will further increase during backpropagation,

and after each training round. After J rounds, the final model

W1(J), . . . ,WL+1(J) is decoded by using polynomial inter-

polation. As interpolating any polynomial f requires collecting

the computation results from deg(f) + 1 users, the final

model cannot be recovered if the total number of users is

N −D < J × 2L(K + T − 1) + 1.

To avoid a degree explosion, conventional approaches

reduce the degree after each multiplication operation by uti-

lizing SSS. To reduce the degree of the polynomial in (8)

from 2(K + T − 1) back to K + T − 1, each user can

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

LU et al.: SCALABLE MULTI-ROUND MULTI-PARTY PRIVACY-PRESERVING NEURAL NETWORK TRAINING 8209

Fig. 3. Dataset encoding and gradient computation at user 1 using SSS.

Initially, each user j ∈ [N] sends a secret share [X̃1]j of an encoded dataset

X̃1 to user 1. Upon receiving {[X̃1]j}j∈[N], user 1 recovers the encoded

dataset X̃1. Using the encoded dataset and model, users compute the gradient.
The polynomial degree increases with each multiplication operation.

send a secret share [W̃1,i(t)X̃i]j of its local computation

W̃1,i(t)X̃i to user j ∈ [N], which has a total communication

overhead of O(N2) across the N users. After receiving the

shares {[W̃1,i(t)X̃i]j}i∈I from any set i ∈ I of |I| =
2(K + T − 1) + 1 users, user j ∈ [N] can decode a secret

share [W1(t)Xk]j of the true computation W1(t)Xk for each

shard k ∈ [K] using polynomial interpolation,

[W1(t)Xk]j =
∑

i∈I

[W̃1,i(t)X̃i]j
∏

k′∈I\{i}

βk − αk′

αi − αk′

(11)

Then, by using the secret shares {[W1(t)Xk]j}k∈[K]

from (11), users can re-encode the true computations

{W1(t)Xk}k∈[K] using a degree K + T − 1 (lower-degree)

Lagrange interpolation polynomial for the next layer. To do

so, each user j ∈ [N] sends an encoded matrix,

[f ′(αi)]j =
∑

k∈[K]

[W1(t)Xk]j
∏

k′∈[K+T]\{k}

αi − βk′

βk − βk′

+
K+T∑

k=K+1

[Ak]j
∏

k′∈[K+T]\{k}

αi − βk′

βk − βk′

(12)

to user i ∈ [N], where AK+1, . . . ,AK+T ∈ F
d1×

Nm
K

p

are uniformly random matrices secret shared by the crypto-

service provider. The total communication overhead of

sending the secret shares from (12) is also quadratic

O(N2) across the N users. After receiving [f ′(αi)]j from

any set j ∈ I ′ of |I ′| = K + T − 1 users, user i can recover

the encoded computation,

f ′(αi) =
∑

k∈[K]

W1(t)Xk

∏

k′∈[K+T]\{k}

αi − βk′

βk − βk′

+
K+T∑

k=K+1

Ak

∏

k′∈[K+T]\{k}

αi − βk′

βk − βk′

(13)

using polynomial interpolation. f ′(αi) can be viewed as an

interpolation point of a degree K + T − 1 (lower-degree)

Lagrange polynomial f ′(α) at α = αi, where the true

computations corresponding to the K shards X1, . . . ,XK of

the dataset X are given by,

f ′(βk) = W1(t)Xk ∀k ∈ [K] (14)

In doing so, the secret computations {W1(t)Xk}k∈[K] are

transferred from a polynomial f(α) of degree deg(f) =
2(K + T − 1) to a Lagrange polynomial f ′(α) of degree

deg(f ′) = K + T − 1. During gradient computation, degree

reduction should be performed after each layer during forward

and backward propagation. A diagram illustrating the gradient

computation using the encoded dataset and model is presented

in Fig. 5. On the other hand, decoding and re-encoding the K
secret computations at each layer l ∈ [L + 1] as in (11)

and (13) has a quadratic O(N2) communication complexity

across the N users. As a result, current applications are

limited to simpler linear and logistic regression tasks [11],

[48], as opposed to neural network training. Our goal is to

address this challenge, where we ask,

• Can one train a neural network to solve (4) with

linear communication complexity, under the information-

theoretic privacy guarantees from (6)?

E. This Work

To address this challenge, in this work we propose

CLOVER, a privacy-preserving neural network training

framework with linear communication complexity. Our key

contribution is a scalable privacy-preserving degree reduction

mechanism to enable successive Lagrange coded computa-

tions, which we term as Double Lagrange Coding (DLC).

Unlike conventional approaches, our degree reduction mech-

anism incurs only a linear communication overhead O(N) in

the number of users, as opposed to quadratic O(N2).
This mechanism takes as input evaluations of a high degree

polynomial f(α) distributed across the N users, where f(αi)
is the coded computation locally evaluated by user i, and

f(βk) for k ∈ [K] denotes the K secret computations, such

as the forward propagation operations f(βk) = W1(t)Xk

from (8) corresponding to the K shards X1,XK of

the true dataset X. Our framework then re-encodes the K
secret computations {f(βk)}k∈[K] by using a lower degree

polynomial, without revealing their true values to any user.

This is done by decoupling communication into online (data-

dependent) and offline (data-agnostic) phases, and offloading

the communication-intensive operations to the offline phase,

by trading-off quadratic (point-to-point) communications with

linear (broadcast). To reduce the degree of the polynomial

f(α) from (8), two Lagrange encoded random masks are

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

8210 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

Fig. 4. Illustration of degree explosion during forward propagation. The dataset and model are initially encoded using a degree K + T − 1 polynomial.

The encoded dataset at user i ∈ [N] is denoted by X̃i, whereas the encoded model parameters connecting layer l − 1 to layer l is denoted by W̃l,i(t) for
l ∈ [L + 1]. The degree grows after each multiplication operation, leading to an exponential growth as the number of layers and training rounds increase.

Fig. 5. Diagram of gradient computation and degree reduction steps during training. Each user i ∈ [N] holds an encoded dataset X̃i, and an encoded model

W̃1,i(t), . . . ,W̃L+1,i(t) at training round t. The gradient is then computed through forward and backward propagation of the encoded dataset and model.
After each layer l ∈ [L + 1], a degree reduction operation is carried out to reduce the polynomial degree back to K + T − 1 to avoid a degree explosion.

generated for each user i ∈ [N] in the offline phase. The

first one is the encoded random matrix R̃i,

R̃i =
∑

k∈[2(K+T−1)+1]

Rk

∏

k′∈[2(K+T−1)+1]\{k}

αi − βk′

βk − βk′

(15)

which can be viewed as an interpolation point of a degree

2(K + T − 1) (higher degree) Lagrange polynomial ϕ(α)

where ϕ(αi) = R̃i, and R1, . . . ,R2(K+T−1)+1 ∈ F
d1×

Nm
K

p

are 2(K+T −1)+1 uniformly random matrices. The second

one is the encoded matrix Ri,

Ri =
∑

k∈[K]

Rk

∏

k′∈[K+T]\{k}

αi − βk′

βk − βk′

+
K+T∑

k=K+1

Ak

∏

k′∈[K+T]\{k}

αi − βk′

βk − βk′

(16)

which can be viewed as an interpolation point of a degree

K + T − 1 (lower degree) Lagrange polynomial ψ(α) where

ψ(αi) = Ri, and AK+1, . . . ,AK+T ∈ F
d1×

Nm
K

p are T
uniformly random matrices. As we demonstrate in the fol-

lowing section, the amortized communication complexity for

generating R̃i and Ri can be made linear O(N) in the

number of users, by reducing the communication volume to

be inversely proportional to the number of users.

In the online phase, the randomness {R̃i}i∈[N] is used

to decode a masked version of the true computations

{W1(t)Xk)}k∈[K]. To do so, each user broadcasts f(αi) −

R̃i, where the local computation f(αi) is masked by the

randomness R̃i. From (15), f(αi) − R̃i can be viewed as

an interpolation point of a degree 2(K + T − 1) polynomial

f(α)−ϕ(α), where f(αi)− R̃i = f(αi)−ϕ(αi). Then, after

receiving f(αi)− R̃i from any set of 2(K+T −1)+1 users,

users can decode f(βk)−Rk using polynomial interpolation,

where the true computation f(βk) = W1(t)Xk is masked

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

LU et al.: SCALABLE MULTI-ROUND MULTI-PARTY PRIVACY-PRESERVING NEURAL NETWORK TRAINING 8211

by the random matrix Rk for each k ∈ [K]. Then, the second

matrix Ri is used to re-encode the true computation W1(t)Xk

using a lower-degree Lagrange polynomial. This is done by

embedding the masked computations W1(t)Xk − Rk in a

degree K+T−1 polynomial, while simultaneously cancelling

the additive randomness Rk as follows,

f ′(αi) =
∑

k∈[K]

(W1(t)Xk −Rk)
∏

k∈[K+T]\{k}

αi − βk′

βk − βk′

+ Ri

(17)

=
∑

k∈[K]

W1(t)Xk

∏

k∈[K+T]\{k}

αi − βk′

βk − βk′

+
∑

k∈{K+1,...,K+T}

Ak

∏

k′∈[K+T]\{k}

αi − βk′

βk − βk′

(18)

Doing so enables Lagrange coded computations for gradient

computations in the subsequent layers, while avoiding a degree

explosion due to the increasing number of layers and training

rounds. Unlike the conventional approach from (13) using

SSS, the communication complexity for re-encoding the true

computations using a lower degree Lagrange polynomial is

now linear O(N). By leveraging DLC, we then propose a

privacy-preserving neural network training framework where

DLC is utilized to prevent the degree explosion during gradient

calculations. In the following, we describe the individual steps

of DLC.

IV. DOUBLE LAGRANGE CODING (DLC)

In this section, we introduce our communication-efficient

degree reduction mechanism, DLC, for privacy-preserving iter-

ative polynomial computations. DLC generates two Lagrange

interpolation polynomials; a higher degree polynomial to

decode a masked version of K secret computations, and a

lower degree Lagrange polynomial to re-encode them. The

K secret computations from the higher degree polynomial

are then transferred to the lower degree polynomial without

revealing their true values, while incurring linear communi-

cation complexity. In doing so, we leverage MDS matrices

for randomness generation, also known as hyperinvertible

matrices [4].

Consider a polynomial f(·) of degree deg(f) = M for some

M ≥ K+T−1, where f(β1), . . . , f(βK) ∈ F
n1×n2
p represent

the K secret computations, e.g., gradient computations for K
data points, for some n1, n2 ∈ Z+, and f(αi) is the local

coded computation performed by user i ∈ [N]. DLC then

generates a new (low degree) Lagrange polynomial f ′(·) of

degree K + T − 1, such that f ′(βk) = f(βk) are the secret

computations for k ∈ [K], and f ′(βk) ∈ F
n1×n2
p are uniformly

random matrices for all k ∈ {K+1, . . . ,K+T}. At the end,

each user i ∈ [N] only learns an evaluation point f ′(αi),
without learning any information about the true computations

{f ′(βk)}k∈[K]. As such, the new (low degree) polynomial

preserves the K desired computation results from the old

(higher degree) polynomial, without revealing any information

about their true values. We next describe the individual steps

of DLC, which is expressed in the sequel as,

f ′(α1), . . . , f
′(αN)← DLC(f(α1), . . . , f(αN),M) (19)

DLC consists of offline (data-agnostic) and online (data-

dependent) phases. The offline phase is independent from the

datasets, hence can be carried out offline when the network

load is low. The online phase depends on the datasets, and is

carried out after training starts.

(Offline) In the offline phase, users first agree on

M −K + 1 distinct public parameters βK+1, . . . , βM+1 ∈ Fp

such that {β1, . . . , βK} ∩ {βK+1, . . . , βM+1} = ∅. Each user

i ∈ [N] then generates M + 1 uniformly random matrices

Ri,1, . . . ,Ri,M+1 of size n1

N−T × n2 from Fp, and forms a

Lagrange interpolation polynomial of degree M ,

ϕi(α) =
∑

k∈[M+1]

Ri,k

∏

k′∈[M+1]\{k}

α− βk′

βk − βk′

(20)

where ϕi(βk) = Ri,k for all k ∈ [M + 1]. Then, user i sends

an encoded matrix,

R̃i,j = ϕi(αj) ∈ F

n1
N−T

×n2

p (21)

to user j ∈ [N]. In addition to (20), user i also creates a second

(lower-degree) Lagrange polynomial with degree K + T − 1,

ψi(α) =
∑

k∈[K]

Ri,k

∏

k′∈[K+T]\{k}

α− βk′

βk − βk′

+
K+T∑

k=K+1

Ai,k

∏

k′∈[K+T]\{k}

α− βk′

βk − βk′

(22)

where Ai,k ∈ F

n1
N−T

×n2

p are generated uniformly random for

k∈{K+1, . . . ,K+T}. Then, user i sends an encoded matrix,

Ri,j = ψi(αj) ∈ F

n1
N−T

×n2

p (23)

to user j ∈ [N]. After receiving {R̃j,i,Rj,i}j∈[N], user

i ∈ [N] combines them to generate two higher-dimensional

encoded matrices R̃i,Ri ∈ F
n1×n2
p ,

R̃i =




∑

j∈[N]

λ
j−1
1 R̃j,i

...∑

j∈[N]

λ
j−1
N−T R̃j,i




=
∑

k∈[M+1]

Rk

∏

k′∈[M+1]\{k}

αi − βk′

βk − βk′

(24)

and

Ri =




∑

j∈[N]

λ
j−1
1 Rj,i

...∑

j∈[N]

λ
j−1
N−T Rj,i




=
∑

k∈[K]

Rk

∏

k′∈[K+T]\{k}

αi − βk′

βk − βk′

+
K+T∑

k=K+1

Ak

∏

k′∈[K+T]\{k}

αi − βk′

βk − βk′

(25)

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

8212 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

where

Rk =




∑
j∈[N] λ

j−1
1 Rj,k

...∑
j∈[N] λ

j−1
N−T Rj,k


 ∀k ∈ [M + 1] (26)

and

Ak =




∑
j∈[N] λ

j−1
1 Aj,k

...∑
j∈[N] λ

j−1
N−T Aj,k


 ∀k ∈ {K + 1, . . . ,K + T}

(27)

In doing so, the goal is to generate high-dimensional shared

coded randomness using the low-dimensional random matrices

generated locally by each user. The dimension of the encoded

random matrices {R̃i,j ,Ri,j}j∈[N] locally generated by each

user i ∈ [N] has size n1

N−T × n2, whereas the size of the

final encoded randomness R̃i,Ri from (24) and (25) have

size n1 × n2.

(Online) In the online phase, each user i ∈ [N] broadcasts

f(αi)−R̃i, which can be viewed as an evaluation of a degree

M polynomial φ(α) = f(α)− ϕ(α) where,

ϕ(α) =
∑

k∈[M+1]

Rk

∏

k′∈[M+1]\{k}

α− βk′

βk − βk′

(28)

such that,

φ(αi) = f(αi)− ϕ(αi) = f(αi)− R̃i ∀i ∈ [N], (29)

corresponds to the local computation of user i masked by R̃i

from (24), and

φ(βk) = f(βk)− ϕ(βk) = f(βk)−Rk ∀k ∈ [K] (30)

corresponds to the secret computation f(βk) masked by the

random additive mask Rk = ϕ(βk) from (26) to hide its true

value. After receiving φ(αj) from any set j ∈ I of at least

|I| ≥ M + 1 users, each user can decode φ(βk) = f(βk) −
ϕ(βk) = f(βk) − Rk for all k ∈ [K] through polynomial

interpolation,

φ(βk) =
∑

j∈I

φ(αj)
∏

k′∈I\{j}

βk − αk′

αj − αk′

∀k ∈ [K] (31)

Finally, each user i ∈ [N] re-encodes {f(βk)}k∈[K] as follows,

f ′(αi) =
∑

k∈[K]

φ(βk)
∏

k∈[K+T]\{k}

αi − βk′

βk − βk′

+ Ri (32)

=
∑

k∈[K]

(f(βk)−Rk)
∏

k∈[K+T]\{k}

αi − βk′

βk − βk′

+ Ri

(33)

=
∑

k∈[K]

f(βk)
∏

k∈[K+T]\{k}

αi − βk′

βk − βk′

+
∑

k∈{K+1,...,K+T}

Ak

∏

k′∈[K+T]\{k}

αi − βk′

βk − βk′

(34)

which simultaneously cancels the additive randomness

{Rk}k∈[K], and embeds the desired computations to a low

degree (degree K + T − 1) Lagrange polynomial, along

with T random matrices {Ak}k∈{K+1,...,K+T}. For neural

network training, which is the main focus of our work, DLC

is utilized to reduce the degree of the polynomials embedding

the true gradient computations, which are computed using the

Lagrange coded datasets. On the other hand, our degree reduc-

tion mechanism can be leveraged for any iterative algorithm

building on polynomial computations, beyond machine learn-

ing. In the following, we demonstrate a motivating example

for DLC.

A. Motivating Example for DLC

We next present a motivating example for DLC. Consider

N = 5 users, with T = 1, D = 0, and the parallelization

degree K = 2. Each user has m = 2 data samples with

d = 2 features. We then consider degree reduction for the

polynomial f(α) from (8) during forward propagation of a

model W1(t) ∈ F
4×2
p with d1 = 4 neurons at layer l = 1,

along with a dataset X ∈ F
2×10
p partitioned into K = 2 equal-

sized shards X1,X2 ∈ F
2×5
p . Each user i ∈ [5] holds an

encoded dataset X̃i ∈ F
2×5
p and model W̃1,i(t) ∈ F

4×2
p .

From (8), the degree of f(α) is M = 2(K+T−1) = 4, where

f(αi) = W̃1,i(t)X̃i ∈ F
4×5
p is the local computation of user

i ∈ [5], and f(β1) = W1(t)X1, f(β2) = W1(t)X2 ∈ F
4×5
p

denote the secret computations for the two shards X1,X2,

respectively. Then, degree reduction f ′(α1), . . . , f
′(α5) =

DLC(f(α1), . . . , f(α5), 5) consists of the following offline

and online phases.

Offline Phase: In the offline phase, each user i ∈ [5]
initially generates M + 1 = 5 uniformly random matrices

Ri,1, . . . ,Ri,5 ∈ F
1×5
p , and sends an encoded matrix,

R̃i,j = Ri,1

∏

k′∈[5]\{1}

αj − βk′

β1 − βk′

+ Ri,2

∏

k′∈[5]\{2}

αj − βk′

β2 − βk′

+ . . . + Ri,5

∏

k′∈[5]\{5}

αj − βk′

β5 − βk′

(35)

to user j ∈ [5]. In addition, user i ∈ [5] generates a uniformly

random matrix Ai,3 ∈ F
1×5
p , and sends an encoded matrix

Ri,j = Ri,1

∏

k′∈[5]\{1}

αj − βk′

β1 − βk′

+ Ri,2

∏

k′∈[5]\{2}

αj − βk′

β2 − βk′

+ Ai,3

∏

k′∈[5]\{3}

αj − βk′

β3 − βk′

(36)

to user j ∈ [5]. Then, each user i ∈ [5] combines the received

matrices R̃1,i, . . . , R̃5,i ∈ F
1×5
p and R1,i, . . . ,R5,i ∈ F

1×5
p

to generate two higher dimensional coded random matrices,

R̃i ∈ F
4×5
p ,

R̃i =




∑
j∈[5] λ

j−1
1 R̃j,i

...∑
j∈[5] λ

j−1
4 R̃j,i


 (37)

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

LU et al.: SCALABLE MULTI-ROUND MULTI-PARTY PRIVACY-PRESERVING NEURAL NETWORK TRAINING 8213

=




∑
j∈[5] λ

j−1
1 Rj,1

...∑
j∈[5] λ

j−1
4 Rj,1




︸ ︷︷ ︸
R1

∏

k′∈[5]\{1}

αi − βk′

β1 − βk′

+ . . .+




∑
j∈[5] λ

j−1
1 Rj,5

...∑
j∈[5] λ

j−1
4 Rj,5




︸ ︷︷ ︸
R5

∏

k′∈[5]\{5}

αi − βk′

β5 − βk′

(38)

= R1

∏

k′∈[5]\{1}

αi − βk′

β1 − βk′

+ R2

∏

k′∈[5]\{2}

αi − βk′

β2 − βk′

+ . . . + R5

∏

k′∈[5]\{5}

αi − βk′

β5 − βk′

(39)

and Ri ∈ F
4×5
p ,

Ri =




∑
j∈[5] λ

j−1
1 Rj,i

...∑
j∈[5] λ

j−1
4 Rj,i


 (40)

=
∑

k∈[2]




∑
j∈[5] λ

j−1
1 Rj,k

...∑
j∈[5] λ

j−1
4 Rj,k




︸ ︷︷ ︸
Rk

∏

k′∈[3]\{k}

αi − βk′

βk − βk′

+




∑
j∈[5] λ

j−1
1 Aj,3

...∑
j∈[5] λ

j−1
4 Aj,3




︸ ︷︷ ︸
A3

∏

k′∈[3]\{3}

αi − βk′

β3 − βk′

(41)

= R1

∏

k′∈[3]\{1}

αi − βk′

β1 − βk′

+ R2

∏

k′∈[3]\{2}

αi − βk′

β2 − βk′

+ A3

∏

k′∈[3]\{3}

αi − βk′

β3 − βk′

(42)

Hence, in the offline phase each user i ∈ [5] sends two

encoded random matrices R̃i,j ,Ri,j of dimension 1× 5. The

first matrix R̃i,j is generated using a degree 2(K+T−1) = 4
(higher-degree) Lagrange interpolation polynomial, whereas

the second matrix Ri,j is generated using a degree K+T−1 =
2 (lower-degree) Lagrange polynomial. Upon receiving the

lower-dimensional coded matrices {R̃j,i,Rj,i}j∈[5], user i

then generates two higher-dimensional coded matrices R̃i,Ri,

each of dimension 4×5, to be used later in the online phase for

degree reduction. Fig. 6 illustrates the offline phase of DLC

and the generation of the encoded randomness for user 1.

Online Phase: In the online phase, each user i ∈ [5] initially

broadcasts W̃1,i(t)X̃i − R̃i, where W̃1,i(t)X̃i ∈ F
4×5
p is the

local computation of user i from (8), which can be viewed as

an interpolation point of the degree 2(K+T −1) = 4 polyno-

mial f(α) from (8) such that f(αi) = W̃1,i(t)X̃i, whereas

Fig. 6. Illustration of Double Lagrange Coding (DLC) offline phase, with
N = 5 and T = 1. Upon receiving two lower-dimensional encoded random

matrices R̃j,1,Rj,1 ∈ F
1×5
p from users j ∈ [5], user 1 generates two

higher-dimensional encoded random matrices R̃1,R1 ∈ F
4×5
p , which will

be used later in the online phase for degree reduction.

f(βk) = W1(t)Xk ∈ F
4×5
p denote the secret computations

for the two shards Xk for k ∈ [2]. Similarly, R̃i is an

interpolation point of the degree 2(K+T−1) = 4 polynomial

ϕ(α) from (28) such that ϕ(αi) = R̃i ∈ F
4×5
p , whereas

ϕ(βk) = Rk ∈ F
4×5
p for k ∈ [2]. Then, after receiving

W̃1,i(t)X̃i − R̃i from 2(K + T − 1) + 1 = 5 users, users

can recover the polynomial f(βk) − ϕ(βk) using polynomial

interpolation,

W1(t)Xk −Rk

=
∑

j∈[5]

W̃1,j(t)X̃j

∏

k′∈[5]\{j}

βk − αk′

αj − αk′

for k ∈ [2]

(43)

where the true computation W1(t)Xk is hidden by the

additive random mask Rk. Finally, user i ∈ [5] re-encodes

the secret computation W1(t)Xk in a Lagrange interpolation

polynomial of degree K + T − 1 = 2 as follows,

f ′(αi)

=
∑

k∈[2]

(W1(t)Xk −Rk)
∏

k′∈[3]\{k}

αi − βk′

βk − βk′

+ Ri (44)

=
∑

k∈[2]

W1(t)Xk

∏

k′∈[3]\{k}

αi − βk′

βk − βk′

−
∑

k∈[2]

Rk

∏

k′∈[3]\{k}

αi − βk′

βk − βk′

(45)

+
∑

k∈[2]

Rk

∏

k′∈[3]\{k}

αi − βk′

βk − βk′

+ A3

∏

k′∈[3]\{3}

αi − βk′

β3 − βk′

(46)

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

8214 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

=
∑

k∈[2]

W1(t)Xk

∏

k′∈[3]\{k}

αi − βk′

βk − βk′

+A3

∏

k′∈[3]\{3}

αi − βk′

β3 − βk′

(47)

where the additive masks R1,R2 cancel out. As a result, each

user i ∈ [5] learns an encoded matrix f ′(αi) where the true

computations W1(t)X1,W1(t)X2 are now embedded in a

lower-degree Lagrange polynomial f ′(α), which is of degree

K + T − 1 = 2. Fig. 7 illustrates the online phase of DLC

and the degree reduction process for user 1. In the following,

we introduce our privacy-preserving neural network training

framework CLOVER, which leverages DLC to avoid degree

explosion during gradient computations at successive layers.

V. PRIVACY-PRESERVING NEURAL NETWORK

TRAINING WITH CLOVER

In this section, we present our privacy-preserving neural

network training framework CLOVER, which utilizes DLC for

degree reduction. CLOVER consists of five key components:

1) Dataset Encoding, 2) Label Encoding, 3) Model Initial-

ization, 4) Gradient Computation, 5) Model Update. Initially,

users encode their datasets and labels using a Lagrange inter-

polation polynomial of degree K+T−1. At the end, each user

i ∈ [N] learns an encoded dataset X̃i and encoded labels Ỹi.

The encoding process has two key features. First, it distributes

the computation load across the N users, such that the compu-

tation load per-user scales with respect to 1/K for the inten-

sive gradient computations during training. Next, it ensures

the information-theoretic privacy of the sensitive datasets and

labels against up to T colluding adversarial users. In an offline

phase prior to training, the model is initialized randomly, but

without revealing its true value to any user, and encoded

using a Lagrange interpolation polynomial. Each user i ∈ [N]

then learns an encoded model W̃1,i(0), . . . ,W̃L+1,i(0), but

without learning the true model. Model encoding ensures the

privacy of the intermediate training computations. At each

training round t ∈ {0, . . . , J − 1}, users leverage DLC to

compute the gradient using the encoded dataset X̃i, labels Ỹi,

and model W̃1,i(t), . . . ,W̃L+1,i(t). At the end, user i learns

an encoded gradient G̃1,i(t), . . . , G̃L+1,i(t), using which the

user updates the model for the next training round.

In the following, we describe the details of the individual

components. For clarity of presentation, we present the offline

and online phases sequentially, to demonstrate how the vari-

ables generated in the offline phase are utilized in the online

phase. We note, however, that in practice all offline phases

can be fully carried out in parallel in advance; the variables

generated in the offline phases are independent and do not

depend on the previous online/offline phases.

A. Dataset Encoding

Initially, users encode their datasets using locally generated

randomness. The goal of dataset encoding is two-fold: 1) hide

the dataset against adversaries, 2) reduce the size of data

processed during training. In particular, after dataset encoding,

each user computes the gradient on an encoded dataset X̃i,

whose size is (1/K)th of the original dataset X. As the

network size N increases, one can select a larger K, thus

reducing the computation load per-user which increases the

parallelization gain and speeds up training.

For dataset encoding, users first agree on N+K+T distinct

public parameters {αj}j∈[N], {βj}j∈[K+T] from Fp. Each user

i ∈ [N] then partitions its local dataset into K equal-sized

shards Xi =
[
Xi,1 · · · Xi,K

]
and sends an encoded matrix,

X̃i,j =
∑

k∈[K]

Xi,k

∏

k′∈[K+T]\{k}

αj − βk′

βk − βk′

+
K+T∑

k=K+1

Vi,k

∏

k′∈[K+T]\{k}

αj − βk′

βk − βk′

(48)

to each user j ∈ [N], where Vi,K+1, . . . ,Vi,K+T ∈ F
d×m

K
p

are generated independently and uniformly at random. By

concatenating the received coded matrices {X̃j,i}j∈[N], each

user i constructs an encoded dataset,

X̃i =
[
X̃1,i · · · X̃N,i

]
∈ F

d×Nm
K

p (49)

which can be viewed as an interpolation point of a degree

K + T − 1 Lagrange polynomial,

x(α) =
∑

k∈[K]

[
X1,k · · · XN,k

] ∏

k′∈[K+T]\{k}

α− βk′

βk − βk′

+
K+T∑

k=K+1

[
V1,k · · · VN,k

] ∏

k′∈[K+T]\{k}

α− βk′

βk − βk′

(50)

=
∑

k∈[K]

Xk

∏

k′∈[K+T]\{k}

α− βk′

βk − βk′

+

K+T∑

k=K+1

Vk

∏

k′∈[K+T]\{k}

α− βk′

βk − βk′

(51)

where X̃i = x(αi), and Xk ≜
[
X1,k · · · XN,k

]
= x(βk) ∈

F
d×Nm

K
p is a matrix whose size is (1/K)th of the true dataset

X. As a result, each user receives an encoded version of

the datasets of other users. The T random matrices Vk ≜[
V1,k · · · VN,k

]
for k ∈ {K+1, . . . ,K+T} hide the true

dataset against up to T adversaries. As the encoding process

depends on the local datasets of the users, dataset encoding is

carried out online during training.

B. Label Encoding

In addition to encoding the datasets, users also encode the

labels using a Lagrange interpolation polynomial. To this end,

each user i ∈ [N] first partitions its local labels into K equal-

sized shards Yi =
[
Yi,1 · · · Yi,K

]
, and sends an encoded

matrix,

Ỹi,j =
∑

k∈[K]

Yi,k

∏

k′∈[K+T]\{k}

αj − βk′

βk − βk′

+
K+T∑

k=K+1

Ni,k

∏

k′∈[K+T]\{k}

αj − βk′

βk − βk′

(52)

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

LU et al.: SCALABLE MULTI-ROUND MULTI-PARTY PRIVACY-PRESERVING NEURAL NETWORK TRAINING 8215

Fig. 7. Illustration of DLC for the online phase. User i ∈ [5] initially holds the coded computation W̃1,iX̃i, which corresponds to an evaluation point

of a degree 4 polynomial. The goal is to reduce the polynomial degree to K + T − 1 = 2, without revealing the secret computations W1X1, W1X2

corresponding to the two shards X1,X2 of the true dataset X. To do so, each user i ∈ [5] initially broadcasts a masked computation W̃1,iX̃i − R̃i to the

other users. Upon receiving {W̃1,iX̃i− R̃i}i∈[5], users can decode W1X1−R1, W1X2−R2, where the secret computations are masked by the additive

random masks R1 and R2, respectively. User i ∈ [5] then re-encodes the secret computations by using Ri, which cancels the additive masks R1,R2 and
generates a lower-degree Lagrange polynomial with degree 2.

to each user j ∈ [N], where Ni,K+1, . . . ,Ni,K+T ∈ F
c×m

K
p

are generated independently and uniformly at random. By con-

catenating the received matrices {Ỹj,i}j∈[N], each user i
obtains the encoded labels,

Ỹi =
[
Ỹ1,i · · · ỸN,i

]
∈ F

c×Nm
K

p (53)

which can be viewed as an interpolation point of a degree

K + T − 1 Lagrange polynomial,

y(α) =
∑

k∈[K]

[
Y1,k · · · YN,k

] ∏

k′∈[K+T]\{k}

α− βk′

βk − βk′

+
K+T∑

k=K+1

[
N1,k · · · NN,k

] ∏

k′∈[K+T]\{k}

α− βk′

βk − βk′

(54)

=
∑

k∈[K]

Yk

∏

k′∈[K+T]\{k}

α− βk′

βk − βk′

+
K+T∑

k=K+1

Nk

∏

k′∈[K+T]\{k}

α− βk′

βk − βk′

(55)

where Ỹi = y(αi), and Yk ≜
[
Y1,k · · · YN,k

]
=

y(βk) ∈ F
d×Nm

K
p is a matrix whose size is (1/K)th of the true

dataset Y. As a result, each user receives an encoded version

of the labels of other users. In doing so, the T random matrices

Nk ≜
[
N1,k · · · NN,k

]
for k ∈ {K + 1, . . . ,K + T} hide

the true labels against up to T adversaries. As the encoding

process depends on the local labels of the users, label encoding

is also carried out online during training.

C. Model Initialization

To preserve the privacy of intermediate training computa-

tions, the model W1(0), . . . ,WL+1(0) at round t = 0 should

be initialized without revealing their true value to the users,

even if up to T users collude. To do so, users first agree on

N−T distinct public parameters λ1, . . . , λN−T from Fp. Then,

for each layer l ∈ [L + 1], user i ∈ [N] generates T +

1 matrices Wl,i(0),Ql,i,K+1, . . . ,Ql,i,K+T ∈ F

dl
N−T

×dl−1

p

independently and uniformly at random, and then sends an

encoded matrix,

W̃l,i,j(0) =
∑

k∈[K]

Wl,i(0)
∏

k′∈[K+T]\{k}

αj − βk′

βk − βk′

+
∑

k∈{K+1,...,K+T}

Ql,i,k

∏

k′∈[K+T]\{k}

αj − βk′

βk − βk′

(56)

to user j ∈ [N]. After receiving {W̃l,j,i(0)}j∈[N], user

i ∈ [N] generates a higher-dimensional encoded model

W̃l,i(0) ∈ F
dl×dl−1

p ,

W̃l,i(0) =




∑
j∈[N]λ

j−1
1 W̃l,j,i(0)

...∑
j∈[N] λ

j−1
N−T W̃l,j,i(0)


 (57)

=
∑

k∈[K]

Wl(0)
∏

k′∈[K+T]\{k}

αi − βk′

βk − βk′

+
∑

k∈{K+1,...,K+T}

Ql,k

∏

k′∈[K+T]\{k}

αi − βk′

βk − βk′

(58)

where the true model initialized at layer l is given by,

Wl(0)=




∑
j∈[N] λ

j−1
1 Wl,j(0)
...∑

j∈[N] λ
j−1
N−T Wl,j(0)


 ∈ F

dl×dl−1

p (59)

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

8216 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

whose true value is masked by the T random matrices,

Ql,k =



∑

j∈[N]

λ
j−1
1 Ql,j,k

...∑

j∈[N]

λ
j−1
N−T Ql,j,k



∈ F

dl×dl−1
p for k ∈ {K + 1, . . . , K + T}

(60)

As such, to generate a random coded matrix of size dl×dl−1,

each user sends a matrix of size dl

N−T×dl−1. The final encoded

matrix is then generated by combining the lower-dimensional

coded matrices. The encoded model W̃l,i(t) can be viewed as

an interpolation point of a degree K + T − 1 polynomial,

wl(α) =
∑

k∈[K]

Wl(t)
∏

k′∈[K+T]\{k}

α− βk′

βk − βk′

+
K+T∑

k=K+1

Ql,k

∏

k′∈[K+T]\{k}

α− βk′

βk − βk′

(61)

where wl(αi) = W̃l,i(0) is the encoded model at user i, and

wl(βk) = Wl(0) for k ∈ [K] corresponds to the true model

initialized at layer l. Model initialization can be carried out

fully offline, as the initialization is random and independent

from the local datasets of the users.

D. Gradient Computation

Using the encoded dataset and labels, users then compute

the gradients. Let Z̃l,i(t) ∈ F
dl×

Nm
K

p and Ũl,i(t) ∈ F
dl×

Nm
K

p

denote the input and output of the activation function g(·) at

layer l ∈ [L + 1], where Ũl,i(t) = g(Z̃l,i(t)). Then, gradient

computation consists of the following forward and backward

propagation steps.

(Forward Propagation): For each layer l ∈ [L + 1], user

i ∈ [N] initially computes,

Z̃l,i(t) = W̃l,i(t)Ũl−1,i(t) ∈ F
dl×

Nm
K

p (62)

where Ũ0,i(t) ≜ X̃i ∈ F
d×Nm

K
p . As the degree of the resulting

polynomial in (62) is greater than K + T − 1, users carry out

a degree reduction operation using DLC from (19),

Z̃l,1(t), . . . , Z̃l,N (t)← DLC(Z̃l,1(t), . . . , Z̃l,N (t),M) (63)

by letting,

M =

{
2(K + T − 1) if l = 1
3(K + T − 1) if l ≥ 2

(64)

and f(αi) = Z̃l,i(t) for all i ∈ [N]. At the end, each user

i ∈ [N] learns an updated coded matrix Z̃l,i(t) ← f ′(αi) ∈

F
dl×

Nm
K

p corresponding to a Lagrange polynomial with degree

K + T − 1. Finally, user i computes the quadratic activation

function,

Ũl,i(t) = g(Z̃l,i(t)) ∈ F
dl×

Nm
K

p (65)

element-wise across the matrix Z̃l,i(t).

(Backward Propagation): After forward propagation, the

final gradients are computed through backpropagation [49].

For each layer l ∈ [L], backpropagation consists of an error

propagation step, where each user locally computes,

Ẽl,i(t) = 2Z̃l,i(t)⊙ (W̃T
l+1,i(t)× Ẽl+1,i(t)) ∈ F

dl×
Nm
K

p (66)

where ẼL+1,i(t) ≜ 2(Z̃L+1,i(t) − Ỹi) ∈ F
c×Nm

K
p .

After (66), users reduce the degree of the resulting polyno-

mial from 3(K + T − 1) back to K + T − 1 using DLC

from (19),

Ẽl,1(t), . . . , Ẽl,N (t)← DLC(Ẽl,1(t), . . . , Ẽl,N (t), 3(K + T − 1))

(67)

at the end of which each user i ∈ [N] receives an updated

coded matrix Ẽl,i(t) corresponding to an interpolation point

of a Lagrange polynomial of degree K + T − 1. Finally, user

i ∈ [N] locally computes the gradient at layer l ∈ [L+ 1] as

follows,

G̃l,i(t) = Ẽl,i(t)× ŨT
l−1,i(t) ∈ F

dl×dl−1

p (68)

E. Model Update

After gradient computation, users update the model for the

next training round. From (49), we observe that the coded

dataset X̃i encodes K shards
{ [

X1,k · · · XN,k

] }
k∈[K]

from the true dataset X, where each shard Xk =[
X1,k · · · XN,k

]
∈ F

d×Nm
K

p consists of Nm/K data sam-

ples. Accordingly, the coded gradient G̃l,i(t) from (68) can

be viewed as an interpolation point of a degree 3(K +T − 1)
polynomial hl(α), where hl(αi) = G̃l,i(t) is the coded

gradient at user i, and hl(βk) = Gl,k(t) is the true gradient

for the kth shard Xk, which denotes the sum of the gradients

across Nm/K data samples. On the other hand, the model

update Wl(t + 1) from (5) requires the aggregated gradient

Gl(t) =
∑

k∈[K] Gl,k(t) across all Nm data samples. In the

following, we propose a privacy-preserving model update

mechanism by aggregating the true gradients across the K
shards without revealing their true content. The gradient

aggregation process consists of the following offline and online

phases.

(Offline) For each layer l ∈ [L + 1], user i ∈
[N] first generates 3(K + T − 1) + 1 random matrices

Bl,i,1(t), . . . ,Bl,i,3(K+T−1)+1(t) ∈ F

dl
N−T

×dl−1

p indepen-

dently and uniformly at random, and sends an encoded

matrix

B̃l,i,j(t) =
∑

k∈[3(K+T−1)+1]

Bl,i,k(t)

∏

k′∈[3(K+T−1)+1]\{k}

αj − βk′

βk − βk′

∀l ∈ [L+ 1]

(69)

to user j ∈ [N]. Next, user i ∈ [N] generates T random matri-

ces Sl,i,K+1(t), . . . ,Sl,i,K+T (t) ∈ F

dl
N−T

×dl−1

p independently

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

LU et al.: SCALABLE MULTI-ROUND MULTI-PARTY PRIVACY-PRESERVING NEURAL NETWORK TRAINING 8217

and uniformly at random, and sends an encoded matrix,

Bl,i,j(t) =
∑

k∈[K]

(∑

k′∈[K]

Bl,i,k′(t)
) ∏

k′∈[K+T]\{k}

αj − βk′

βk − βk′

+
K+T∑

k=K+1

Sl,i,k(t)
∏

k′∈[K+T]\{k}

αj − βk′

βk − βk′

∀l ∈ [L+ 1]

(70)

Upon receiving {B̃l,j,i(t),Bl,i,j(t)}j∈[N], user i ∈ [N] gen-

erates two higher-dimensional encoded matrices,

B̃l,i(t) =




∑
j∈[N]λ

j−1
1 B̃l,j,i(t)
...∑

j∈[N]λ
j−1
N−T B̃l,j,i(t)


 ∈ F

dl×dl−1

p ,

Bl,i(t) =




∑
j∈[N] λ

j−1
1 Bl,j,i(t)
...∑

j∈[N] λ
j−1
N−T Bl,j,i(t)


 ∈ F

dl×dl−1

p (71)

The first matrix B̃l,i(t) can be viewed as an interpolation point

of a degree 3(K + T − 1) (high-degree) polynomial,

rl(α) =
∑

k∈[3(K+T−1)+1]

Bl,k(t)
∏

k′∈[3(K+T−1)+1]\{k}

α− βk′

βk − βk′

(72)

where

Bl,k(t) ≜




∑
j∈[N]λ

j−1
1 Bl,j,k(t)

...∑
j∈[N]λ

j−1
N−T Bl,j,k




= rl(βk) ∀k ∈ [3(K + T − 1) + 1] (73)

and B̃l,i(t) = rl(αi). The second matrix Bl,i(t) can be viewed

as an interpolation point of a degree K + T − 1 (low-degree)

polynomial,

ul(α) =
∑

k∈[K]

Bl(t)
∏

k′∈[K+T]\{k}

α− βk′

βk − βk′

+

K+T∑

k=K+1

Sl,k(t)
∏

k′∈[K+T]\{k}

α− βk′

βk − βk′

(74)

where Bl,i(t) = ul(αi),

Bl(t) ≜
∑

k′∈[K]

Bl,k′(t) (75)

and

Sl,k(t) ≜




∑

j∈[N]

λ
j−1
1 Sl,j,k(t)

...∑

j∈[N]

λ
j−1
N−T Sl,j,k(t)



∀k ∈ {K + 1, . . . , K + T}

(76)

(Online) In the online phase, each user i ∈ [N] initially

broadcasts,

Ĝl,i(t) ≜ G̃l,i(t)− B̃l,i(t) ∀l ∈ [L+ 1], (77)

which can be viewed as an evaluation point of the degree M
polynomial hl(α)− rl(α) where,

Ĝl,i(t) = hl(αi)− rl(αi) ∀l ∈ [L+ 1], (78)

Hence, after receiving (77) from any set of 3(K + T − 1) +
1 users, each user can decode the masked gradients,

hl(βk)− rl(βk) = hl(βk)−Bl,k(t) ∀k ∈ [K], l ∈ [L+ 1]

(79)

Finally, user i ∈ [N] aggregates and re-encodes the masked

gradients by forming a degree K + T − 1 (lower-degree)

Lagrange interpolation polynomial as follows,

G̃l,i(t)

=
∑

k∈[K]

(∑

k′∈[K]

(hl(βk′)−Bl,k′(t)
) ∏

k′∈[K+T]\{k}

αi − βk′

βk − βk′

+ Bl,i(t) (80)

=
∑

k∈[K]

(∑

k′∈[K]

hl(βk′)
) ∏

k′∈[K+T]\{k}

αi − βk′

βk − βk′

+
K+T∑

k=K+1

Sl,k(t)
∏

k′∈[K+T]\{k}

αi − βk′

βk − βk′

(81)

=
∑

k∈[K]

Gl(t)
∏

k′∈[K+T]\{k}

αi − βk′

βk − βk′

+

K+T∑

k=K+1

Sl,k(t)
∏

k′∈[K+T]\{k}

αi − βk′

βk − βk′

(82)

The encoded gradient G̃l,i(t) from (82) encodes the

aggregate Gl(t) =
∑

k∈[K] Gl,k(t) of the true gradi-

ents Gl,1(t), . . . ,Gl,K(t) evaluated across the K shards

{Xk}k∈[K] of the dataset X.

After aggregating the gradients, the model is updated for

the next training round. For the model update rule from (5),

this corresponds to the following computation,

W̃l,i(t+ 1) = W̃l,i(t)−
η

Nm
G̃l,i(t) ∀l ∈ [L+ 1]. (83)

Note that η ≪ 1 in (83), whereas our framework is

bound to finite field polynomial operations, consisting of finite

field addition and multiplications only. To handle this, one

approach is to consider a sufficiently large field size and

convert (83) to an integer domain operation. In our theoretical

analysis, we assume a sufficiently large field size and follow

this approach for tractability, while providing the details in

App. E, In practice, one can also leverage the secure truncation

protocol from [11], [50], to reduce the required field size while

handling the model update in (83), albeit with a slight loss

in model accuracy due to quantization. In our experiments,

we utilize the latter, and provide the implementation details in

Section VIII.

(Final Model Recovery) At the end of J training rounds,

parties can decode the final model {Wl(J)}l∈[L+1] by col-

lecting the coded models {W̃l,i(J)}l∈[L+1] from any set of

K + T users, and using polynomial interpolation.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

8218 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

The algorithm steps of CLOVER are provided in App. 1.

In the following, we present a motivating example to demon-

strate the training process.

VI. MOTIVATING EXAMPLE

In this section, we present an illustrative example for

CLOVER. We consider a scenario where the total number of

users is N = 11, parallelization degree is K = 2, number of

adversaries is T = 2, and number of dropout users is D = 1.

For simplicity, we consider m = 2 data samples per user,

d = 10 features per sample, and c = 4 classes. The neural

network has L = 1 hidden layer, with d1 = 5 neurons at layer

l = 1. As shown in (51), each user i ∈ [11] initially holds an

encoded dataset X̃i ∈ F
10×11
p ,

X̃i =
∑

k∈[2]

Xk

∏

k′∈[4]\{k}

αi − βk′

βk − βk′

+
4∑

k=3

Vk

∏

k′∈[4]\{k}

αi − βk′

βk − βk′

∈ F
d×Nm

2
p (84)

which corresponds to an interpolation point of a degree K +
T − 1 = 3 polynomial x(α) such that X̃i = x(αi), whereas

x(βk) = Xk ∈ F
10×11
p denotes the kth shard of the true

dataset X =
[
X1 X2

]
. Similarly, each user i ∈ [11] holds

the encoded labels Ỹi ∈ F
4×11
p ,

Ỹi =
∑

k∈[2]

Yk

∏

k′∈[4]\{k}

αi − βk′

βk − βk′

+

4∑

k=3

Nk

∏

k′∈[4]\{k}

αi − βk′

βk − βk′

(85)

which corresponds to an interpolation point of a degree K +
T − 1 = 3 polynomial y(α) such that Ỹi = y(αi), whereas

y(βk) = Yk ∈ F
4×11
p denotes the kth shard of the true labels

Y =
[
Y1 Y2

]
as shown in (55). In addition to the encoded

dataset and labels, each user i ∈ [11] holds the encoded model

W̃1,i(0) ∈ F
5×10
p for the first layer, and W̃2,i(0) ∈ F

4×5
p for

the second layer, where

W̃l,i(0) =
∑

k∈[2]

Wl(0)
∏

k′∈[4]\{k}

αi − βk′

βk − βk′

+
4∑

k=3

Ql,k

∏

k′∈[4]\{k}

αi − βk′

βk − βk′

∀l ∈ [2], (86)

which corresponds to an interpolation point of a degree K +
T − 1 = 3 polynomial wl(α) such that W̃l,i(0) = wl(αi)
for layer l ∈ [2], whereas w1(βk) = W1(0) ∈ F

5×10
p and

w2(βk) = W2(0) ∈ F
4×5
p denote the randomly initialized

secret model parameters as shown in (61). Using the encoded

dataset X̃i, labels Ỹi, and initial model W̃1,i(0),W̃2,i(0),
users i ∈ [11] then perform training, which consists of

gradient computations and model update. In the following,

we demonstrate the gradient computations for the first round

t = 0, which consists of the following forward propagation

and backpropagation steps, respectively.

(Forward propagation) For forward propagation, each user

i ∈ [11] initially computes Z̃1,i(0) = W̃1,i(0)X̃i ∈ F
5×11
p for

the first layer l = 1 as shown in (62). The local computation

Z̃1,i(0) can be viewed as an interpolation point of the degree

2(K + T − 1) = 6 polynomial f(α) = w1(α)x(α), where

w1(αi)x(αi) = Z̃1,i(0), and w1(βk)x(βk) = W1(0)Xk ∈
F

5×11
p for k ∈ [2] refers to the secret computation correspond-

ing to the kth shard Xk of the true dataset X.

If users continue forward propagation using the encoded

computations w1(αi)x(αi), the polynomial degree will double

after the activation function g(·) from (65), and the local

computation Ũ1,i(0) = g(Z̃1,i(0)) will correspond to an

interpolation point of a degree 2(2(K+T −1)) = 12 polyno-

mial g(w1(α)x(α)). As interpolating a polynomial of degree

12 requires at least 12 + 1 = 13 interpolation points, the total

number of users N = 11 < 13 will not be sufficient to decode

the final model. To avoid this, the degree of the polynomial

f(α) = w1(α)x(α) is reduced from 2(K + T − 1) = 6 back

to K + T − 1 = 3 by using DLC from (19),

Z̃1,1(0), . . . , Z̃1,11(0) = DLC(Z̃1,1(0), . . . , Z̃1,11(0), 6) (87)

at the end of which user i ∈ [11] receives an encoded

computation Z̃1,i(0), which corresponds to an evaluation of

a degree K + T − 1 = 3 polynomial f ′(α) where f ′(αi) =
Z̃1,i(0), and

f ′(βk) = w1(β1)x(βk) = W1(0)Xk k ∈ [2] (88)

denotes the secret computations corresponding to the K =
2 shards X1,X2 of the true dataset X. After degree reduction,

each user i ∈ [11] locally computes the activation function

Ũ1,i(0) = g(Z̃1,i(0)) ∈ F
5×11
p , which increases the polyno-

mial degree to 2(K + T − 1) = 6.

For the second layer l = 2, each user i ∈ [11] computes

Z̃2,i(0) = W̃2,i(0)Ũ1,i(0) from (62), using the encoded out-

put Ũ1,i(0) of the first layer, and the encoded model W̃2,i(0)
for the second layer. Due to the multiplication operation, each

local computation Z̃2,i(0) is now an evaluation of a degree

3(K + T − 1) = 9 polynomial w2(α)g(f ′(α)) such that

Z̃2,i(0) = w2(αi)g(f
′(αi)), whereas the secret computations

for the two shards X1, and X2 are given by,

w2(βk)g(f ′(βk)) = w2(βk)g(w1(βk)x(βk))

= W2(0)g(W1(0)Xk) k ∈ [2] (89)

To reduce the degree of the polynomial w2(α)g(f ′(α)) from

3(K+T−1) = 9 back to K+T−1 = 3, users again leverage

DLC from (19),

Z̃2,1(0), . . . , Z̃2,11(0) = DLC(Z̃2,1(0), . . . , Z̃2,11(0), 9) (90)

at the end of which each user i ∈ [11] receives an encoded

computation Z̃2,i(0) that can be viewed as an interpolation

point of a degree K+T −1 = 3 polynomial f ′′(α), such that

f ′′(αi) = Z̃2,i(0), and true computations for the two shards

X1, X2 of the true dataset X are,

f ′′(βk) = w2(βk)g(f ′(βk)) = w2(βk)g(w1(βk)x(βk))

= W2(0)g(W1(0)Xk) k ∈ [2] (91)

which concludes the forward propagation step. Fig. 8 illus-

trates the forward propagation steps for user 1. After forward

propagation, users carry out the backpropagation operations as

follows.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

LU et al.: SCALABLE MULTI-ROUND MULTI-PARTY PRIVACY-PRESERVING NEURAL NETWORK TRAINING 8219

Fig. 8. Motivating example with N = 11 users for training a neural network
with L = 1 hidden layer, and illustration of the forward propagation steps
for user 1.

(Backpropagation) Each user i ∈ [11] initially computes the

error for the last layer l = 2,

Ẽ2,i(0) = 2(Z̃2,i(0)− Ỹi) (92)

The local computation Ẽ2,i(0) corresponds to an evaluation

point of a degree K+T −1 = 3 polynomial 2(f ′′(α)−y(α))
at α = αi, such that Ẽ2,i(0) = 2(f ′′(αi) − y(αi)), whereas

the secret computations for the two shards X1, Y1 and X2,

Y2 of the true dataset X and labels Y are,

2
(
f ′′(βk)−y(βk)

)
=2

(
W2(0)g

(
W1(0)Xk

)
−Yk

)
k ∈ [2]

(93)

where f ′′(βk) is as given in (91). Since the polynomial degree

is still K+T −1 = 3, no degree reduction is required for this

layer. Next, for the first layer l = 1, user i ∈ [11] computes,

Ẽ1,i(0) = 2Z̃1,i(0)⊙ (W̃T
2,i(0)× Ẽ2,i(0)) (94)

The local computation Ẽ1,i(0) corresponds to an interpolation

point of a degree 3(K + T − 1) = 9 polynomial 2f ′(α) ⊙(
wT

2(α)× 2
(
f ′′(α)− y(α)

))
at α = αi,

Ẽ1,i(0) = 2f ′(αi)⊙
(
wT

2(αi)× 2
(
f ′′(αi)− y(αi)

))
, (95)

whereas the secret computations corresponding to the two

shards X1, Y1 and X2, Y2 are,

2f ′(βk)⊙ (wT
2(βk)× 2(f ′′(βk)− y(βk)))

= 2(W1(0)Xk)⊙
(
W

T
2(0)× 2

(
W2(0)g(W1(0)Xk)−Yk

))

(96)

for k ∈ [2], where f ′(βk) and f ′′(βk) are given in (88)

and (91), respectively. To reduce the polynomial degree back

to K + T − 1 = 3, users again leverage DLC from (19),

Ẽ1,1(0), . . . , Ẽ1,11(0) = DLC(Ẽ1,1(0), . . . , Ẽ1,11(0), 9) (97)

at the end of which user i ∈ [11] receives an encoded

computation Ẽ1,i(0), which can be viewed as an interpolation

point of a degree K + T − 1 = 3 polynomial f
′′′

(α), such

that Ẽ1,i(0) = f
′′′

(αi), whereas the secret computations for

the two shards X1, Y1 and X2, Y2 are,

f
′′′

(βk) = 2(W1(0)Xk)⊙
(
WT

2(0)

× 2
(
W2(0)g(W1(0)Xk)−Yk

))
k ∈ [2]

(98)

Fig. 9. Illustration of the backpropagation and gradient computation steps
for user 1.

from (96). Finally, user i ∈ [11] locally computes the gradient

for the first layer l = 1,

G̃1,i(0) = Ẽ1,i(0)ŨT
0,i(0) = Ẽ1,i(0)X̃T

i (99)

and for the second layer l = 2,

G̃2,i(0) = Ẽ2,i(0)ŨT
1,i(0) (100)

The encoded gradient G̃1,i(0) ∈ F
5×10
p for layer l = 1

from (99) corresponds to an interpolation point of a degree

3(K + T − 1) = 9 polynomial h1(α) such that G̃1,i(0) =
h1(αi), and

G1,k(0) ≜ h1(βk)

=
(
2(W1(0)Xk)⊙

(
WT

2(0)

× 2(W2(0)g(W1(0)Xk)−Yk)
))

X
T

k ∈ F
5×10
p

(101)

denotes the true gradient at layer l = 1 for the kth shard Xk,

Yk for k ∈ [2]. Similarly, the encoded gradient G̃2,i(0) for

layer l = 2 corresponds to an interpolation point of a degree

3(K + T − 1) = 9 polynomial h2(α) such that G̃2,i(0) =
h2(αi), and

G2,k(0) = h2(βk)

= 2
(
W2(0)g

(
W1(0)Xk

)

−Yk

)(
g(W1(0)Xk)

)T

∈ F
4×5
p

(102)

denotes the true gradient at layer l = 2 corresponding to

the kth shard Xk, Yk for k ∈ [2]. Fig. 9 illustrates the

backpropagation and gradient computation steps for user 1.

After computing the gradients, users then update the model.

As observed in (101) and (102), the true gradients evaluated

for the two shards X1,Y1 and X2,Y2 are embedded at two

different interpolation points β1 and β2, where hl(βk) =
Gl,k(0) is the gradient evaluated with respect to Xk,Yk

for k ∈ [2] and l ∈ [2]. On the other hand, the model

update from (5) requires the aggregated gradients Gl(0) =∑
k∈[2] Gl,k(0) for l ∈ [2]. This is achieved by the gradient

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

8220 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

aggregation stage from (82), at the end of which each user

i ∈ [11] obtains an encoded gradient,

G̃l,i(0) =
∑

k∈[2]

(Gl,1(0) + Gl,2(0))
∏

k′∈[4]\{k}

αi − βk′

βk − βk′

+
4∑

k=3

Sl,k(0)
∏

k′∈[4]\{k}

αi − βk′

βk − βk′

(103)

=
∑

k∈[2]

Gl(0)
∏

k′∈[4]\{k}

αi − βk′

βk − βk′

+
4∑

k=3

Sl,k(0)
∏

k′∈[4]\{k}

αi − βk′

βk − βk′

(104)

which encodes the true aggregated gradient Gl(0) = Gl,1(0)+
Gl,2(0) for each layer l ∈ [2]. After aggregating the gradients,

users update the model as in (83) for the next training round.

After J training rounds, the final model can be decoded by

collecting the encoded models from any set of up to K +
T − 1 = 3 users and using polynomial interpolation. During

training, which consists of the online phases of gradient

computation and model update, up to D = 1 users may drop

out at any round. Since the total number of surviving users

is N −D = 10 ≥ 3(K + T − 1) + 1, and the degree of the

intermediate polynomials never exceeds 3(K + T − 1) = 9,

the evaluations from the surviving users is sufficient to recover

the final model.

VII. THEORETICAL ANALYSIS

We now present the information-theoretic privacy guaran-

tees for CLOVER.

Theorem 1 (Information-Theoretic Privacy): In a network

of N users, CLOVER provides information theoretic privacy

against any collusions between up to T adversarial users:

I({Xi,Yi}i∈H;MT |{Xi,Yi}i∈T , {Wl(J)}l∈[L+1]) = 0

(105)

where MT represents the collection of all messages received

or generated by the adversaries throughout the model training.

Proof: (Sketch) The proof follows by decomposing

the set of all messages received/generated by the adver-

saries into five stages MT = M1 ∪ M2 ∪ M3 ∪
(∪J−1

t=0M4,t) ∪ (∪J−1
t=0M5,t), where M1 denotes the set of

messages received/generated during dataset encoding, M2 is

the set of messages for label encoding, and M3 is the set

of messages for model initialization. M4,t denotes the set of

messages received/generated during gradient computation at

training round t, whereasM5,t denotes the set of messages for

model update at round t. Then, one can analyze the conditional

mutual information at each stage separately, conditioned on all

past stages.

(Dataset and label encoding) Without loss of generality, let

T = {N−T +1, . . . , N} denote the indices of the adversarial

users. For the first two stages dataset and label encoding, the

result follows from the invertibility of the T ×T MDS matrix,

Γ ≜



ρN−T+1,K+1 · · · ρN,K+1

...
. . .

...

ρN−T+1,K+T · · · ρN,K+T




where ρj,k ≜
∏

k′∈[K+T]\{k}
αj−βk′

βk−βk′

for j ∈

{N − T + 1, . . . , N} and k ∈ {K + 1, . . . ,K + T}
refers to the coefficients of the Lagrange polynomial

from (48) and (52), respectively, which are used to encode the

dataset and labels. Γ ensures that there is a bijective mapping

from each distinct realization of {Vi,k}k∈{K+1,...,K+T}

and {Ni,k}k∈{K+1,...,K+T} to a distinct set of

masks {
∑K+T

k=K+1 Vi,k

∏
k′∈[K+T]\{k}

αj−βk′

βk−βk′

}j∈T and

{
∑K+T

k=K+1 Ni,k

∏
k′∈[K+T]\{k}

αj−βk′

βk−βk′

}j∈T hiding the true

dataset and labels belonging to an honest user i ∈ H. Since

{Vi,k,Ni,k}k∈{K+1,...,K+T} are generated independently

and uniformly at random, the corresponding masks are also

uniformly random, resulting in a uniform distribution for the

dataset and labels as observed by any set of T colluding

adversaries, where every realization is equally likely.

(Model initialization, gradient computing, and model

update) The result for the remaining three stages, model

initialization, gradient computing, and model update, follow

from the invertibility of two MDS matrices. The first one is

the T ×T matrix Γ used during the initial Lagrange encoding

of the randomness generated locally by the users, as shown

in (20), (56), and (69). The second one is the (N−T)×(N−T)
MDS matrix,

M =




1 · · · 1
λ1 · · · λN−T

...
. . .

...

λ
N−T−1
1 · · · λ

N−T−1
N−T




where {λi}i∈[N−T] corresponds to the coefficients used while

combining the Lagrange coded random matrices received from

other users as in (24), (25), (57), and (71). This matrix

is used to combine the low-dimensional Lagrange coded

random matrices to generate high-dimensional Lagrange coded

random masks, while ensuring a linear amortized communi-

cation overhead during randomness generation. The gener-

ated high-dimensional randomness is then used to mask the

local computations during gradient computation and degree

reduction.

During degree reduction, each user i ∈ [N] sends two

coded low-dimensional random matrices, R̃i,j and Ri,j to

users j ∈ [N] as shown in (21) and (23), respectively, where

R̃i,j is generated using the high degree (degree 3(K+T −1))
Lagrange polynomial ϕ(·) from (20) and Ri,j is generated

using the low degree (degree K+T−1) Lagrange polynomial

ψ(·) from (22). After receiving {R̃i,j}j∈[N] and {Ri,j}j∈[N],

user i ∈ [N] combines them to generate two high-dimensional

coded matrices R̃i and Ri as in (24) and (25). The generated

randomness is then used to decode the local gradient compu-

tations and re-encode them using a low degree polynomial.

During gradient decoding, the first matrix R̃i hides the true

gradient f(βk) with a uniformly random additive mask Rk

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

LU et al.: SCALABLE MULTI-ROUND MULTI-PARTY PRIVACY-PRESERVING NEURAL NETWORK TRAINING 8221

for each k ∈ [K], at the end of which users only learn

a masked gradient f(βk) − Rk for k ∈ [K]. Then, the

second mask Ri ensures the cancellation of the additive masks

{Rk}k∈[K] from the masked gradients, while simultaneously

re-encoding the gradients {f(βk)}k∈[K] using a lower-degree

Lagrange polynomial to continue training. The T additional

random matrices {Ak}k∈{K+1,...,K+T} from (27), which are

embedded in the encoded matrices Ri ensure that the resulting

low degree polynomial preserves the privacy of the true

gradients against any set of T colluding adversaries. Then, the

final result follows from the chain rule of mutual information.

The details of our proof are provided in App. C. □

Remark 2: Our framework can also be extended to the

setting in which multiple subgroups of adversaries collude

separately, as long as the total number of adversaries in each

subgroup does not exceed T , and there is no overlap or

collusions across different subgroups.

Next, we present the communication and computation com-

plexity of CLOVER.

Theorem 2 (Communication Complexity): The per-user

communication complexity of CLOVER is O
(

N(d+c)m
K +

J
∑

l∈[L+1] dl

(
dl−1 + Nm

K

))
in the online phase, and

O
(
J

∑
l∈[L+1]

Ndl

N−T

(
Nm
K + dl−1

))
in the offline phase,

respectively. With T = Θ(N) and K = Θ(N),
the total communication complexity across all N
users, including both online and online phases,

is O
(
N(d + c)m + NJ

∑
l∈[L+1] dl(dl−1 + m)

)
, hence

is linear in the number of users.

Proof: (Online) The per-user online communication

overhead consists of: O
(

Ndm
K

)
for dataset encoding (Stage 1);

O
(

Ncm
K

)
for label encoding (Stage 2); O

(∑
l∈[L+1]

Nmdl

K

)

(broadcast) for forward and backward propagation, respec-

tively, for gradient computing per training round (Stage 4);

and O
(∑

l∈[L+1] dldl−1

)
per round for model update (Stage

5). Note that during gradient computation, the only commu-

nication is due to the degree reduction operation.

(Offline) The per-user offline communication overhead con-

sists of: O
(∑

l∈[L+1]
Ndldl−1

N−T

)
for model initialization (Stage

3); O
(∑

l∈[L+1]
N2mdl

K(N−T)

)
for forward and backward propa-

gation, respectively, for gradient computing per training round

(Stage 4); and O
(∑

l∈[L+1]
Ndldl−1

N−T

)
per round for model

update (Stage 5). □

Theorem 3 (Computation Complexity): The per-user com-

putation complexity of CLOVER is,

O

(
(d+ c)

Nm

K
log2(K + T) log log(K + T) (106)

+ J

(∑

l∈[L+1]

Nm

K
dl(dl−1 +N) +

∑

l∈[L+1]

dl

(
dl−1 +

Nm

K

)

(N

N − T
+K + T

)
log2(K + T) log log(K + T)

))

(107)

Proof: (Sketch) The per-user computational complexity

of interpolating a degree κ polynomial, and evaluating it at

κ points is O(κ log2 κ log log κ) [51]. Then, dataset and label

encoding requires evaluating a degree K + T − 1 polyno-

mial at N points, which has a per-user computation cost of

O(N(d+c)m
K log2(K+T) log log(K+T)). Model initialization

has a computation cost of O(
∑

l∈[L+1]
Ndldl−1

N−T log2(K +
T) log log(K + T) +

∑
l∈[L+1]Ndldl−1) per user. Then,

at each training round t ∈ {0, . . . , J −1}, gradient computing

has a cost of O
(

Nm
K

(∑
l∈[L+1] dldl−1+

∑
l∈[L+1] dl(

N
N−T +

K + T) log2(K + T) log log(K + T) +
∑

l∈[L+1]Ndl

))
for

forward and backward propagation. Finally, model update

has a computation cost of O
(∑

l∈[L+1] dldl−1

(
N

N−T +K +

T
)

log2(K+T) log log(K+T)+
∑

l∈[L+1]dldl−1N
)

per user

at each training round. The result then follows by aggregating

the per-round computation cost over the total number of

training rounds. The details of our proof are presented in

App. D. □

The recovery threshold is defined as the minimum number

of users required to correctly decode the final model. As the

offline phases can take place in advance prior to training, in the

following we consider the user dropouts that occur during

training, i.e., during the online phases.

Theorem 4 (Recovery Threshold): In a network of N users

where up to T users are adversarial (who may collude with

one another), and up to D users may drop out in each training

round, the recovery threshold of CLOVER is N ≥ D + 3
(K + T − 1) + 1.

Proof: The minimum number of users required for

correct model recovery is equal to the minimum number

of local computations required for polynomial interpolation,

which is given by N − D ≥ 3(K + T − 1) + 1 from

Section V. □

VIII. EXPERIMENTS

Experimental Setup: In our experiments, we consider multi-

class classification on the MNIST [52] and CIFAR-10 [53]

datasets. The MNIST dataset has 60000 data samples in total,

with d = 784 features per sample. The CIFAR-10 dataset

has 50000 data samples in total, with d = 1024 features

per sample. The datasets are distributed uniformly across the

N users. For the CIFAR-10 experiments, the original images

are preprocessed using a pre-trained VGG model for feature

extraction, after which 25088 features are extracted for each

image, which are the input for the neural network. For the deep

learning model, we consider a two-layer polynomial neural

network with the input layer of dimension d, which is equal

to the number of features for the training samples, one hidden

layer with d1 = 128 neurons, and an output layer of dimension

c = 10, which is the total number of classes, as both datasets

have 10 classes.

Baseline: For the baseline, we first adapt the COPML

framework from [11] to neural network training as described

in Section III-D, while noting that COPML was originally pro-

posed for logistic regression. We optimize (speed-up) COPML

by using the grouping strategy suggested in [11], which

partitions users into groups of size T + 1, and communicates

the secret shares only between clients within the same group

to minimize the communication overhead for decoding. For

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

8222 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

both frameworks COPML and CLOVER, we use the secure

truncation operation from [50] to handle the model update

in (83), specifically, the multiplication with η
m , to avoid an

overflow in the finite field as suggested by [11]. The truncation

protocol enables a secure stochastic quantization operation,

where the inputs are the secret shares {[x]i}i∈[N] of a secret

x, such that client i holds a share [x]i, along with two

public integer parameters κ1 and κ2 where 0 < κ1 < κ2,

and x ∈ F2κ2 . Then, the protocol returns the secret shares

{[s]i}i∈[N] of a variable s such that s = ⌈ x
2κ1
⌉+ b where b is

a Bernoulli random variable with probability P [b = 1] = (x
mod 2κ1)/2κ1 . As a result, the secret x is quantized by

rounding x/(2κ1) to the nearest integer with probability 1−σ,

where σ is the distance between the two. The quantization is

unbiased, which ensures the convergence of the trained model.

For all datasets we use (κ1, κ2) = (21, 24). The learning rate

η is also subsumed under the truncation operation.

Hyperparameters: The size of the finite field is

p = 226 − 5. For the local datasets, the data samples

from each class is distributed uniformly across the N users.

Each user then normalizes the real-valued dataset by using

the empirical mean and variance of the local data samples.

Specifically, user i ∈ [N] normalizes each feature x as

x ← (x − mX)/σX , where mX and σX are the empirical

mean and standard deviation evaluated across the data samples

in the local dataset Xi. Then, user i converts each sample and

label to the finite field Fp as described in App. A, with the

quantization parameter γ = 8. For both datasets, a randomly

sampled batch of 256/K coded data samples are processed

at each round, where sampling is uniformly at random with

replacement, corresponding to 256 true data samples in

total, as each coded sample encodes K true samples. For

CIFAR-10, the VGG feature extractor is publicly available

and pre-trained on the ImageNet dataset [54]. Each CIFAR-10

sample is first passed through the feature extractor locally by

the user, which outputs 25088 features for each data sample.

The resulting features are then utilized as the input to the

polynomial neural network. The bandwidth is 40Mbps.
Performance Evaluation: From Theorem 4, for correct

recovery of the model, the total number of clients need to

satisfy the recovery threshold N − D ≥ 3(K + T − 1) + 1.

Note that as long as the recovery threshold is satisfied, our

framework ensures the correctness of the decoded gradients

at each training round even if up to D users drop out from

the system. In particular, after dataset encoding, each user

processes a coded version of each data point in the dataset,

hence, as long as there are N −D surviving users, the local

evaluations of the dropout users do not effect the accuracy

of the final model. This is unlike conventional uncoded dis-

tributed learning schemes such as federated learning, where

dropout users can significantly deteriorate model accuracy.

As such, in the following we consider the worst-case scenario

for communication overhead and privacy, where D = 0 and

all messages are communicated across the clients. We then let

N = 3(K + T − 1) + 1 with K = N
16 and T = N

8 .

Communication Overhead: We first evaluate the total com-

munication overhead of CLOVER across all components of

training. In Fig. 10, we present the total communication

Fig. 10. Comparison of the total communication volume for the MNIST and
CIFAR-10 datasets.

volume comparing both the overall (offline+online) and online

phases of CLOVER, as well as the online phases of COPML.

We observe that CLOVER reduces the communication over-

head by 28× and 26× for the MNIST and CIFAR-10 datasets,

respectively.

Wall-Clock Training Time: We next compare the wall-clock

training time, including all of the communication and compu-

tation time for training, including dataset and label encoding,

model initialization, gradient computation, gradient aggrega-

tion and model update. We present our results in Fig. 11,

where we observe that CLOVER speeds up training by 6× on

the MNIST dataset, and by 4.8× on CIFAR-10, respectively.

As such, the wall-clock time is also greatly reduced for both

datasets, even with the additional offline operations.

Model Accuracy: In Fig. 12, we demonstrate the model

performance for CLOVER by measuring the test accuracy for

the two datasets, with N = 64 clients. We then compare the

model accuracy with that of a conventional feedforward neural

network without privacy constraints using the ReLU activation

function and cross-entropy loss with the same number of lay-

ers. We first demonstrate the performance for the conventional

neural network with batch gradient descent, termed as Batch

GD in Fig. 12, using the same batch of 256 true data samples

that are used at each round of CLOVER, as each coded data

point encodes K true data samples. This represents the per-

formance comparison between the finite field and real domain

for the batch stochastic gradient descent variant considered in

our experiments. Additionally, we also demonstrate the model

accuracy for the conventional neural network with full gradient

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

LU et al.: SCALABLE MULTI-ROUND MULTI-PARTY PRIVACY-PRESERVING NEURAL NETWORK TRAINING 8223

Fig. 11. Comparison of the wall-clock training time for the MNIST and
CIFAR-10 datasets.

descent, termed as Full GD. We also note the accuracy reported

for CLOVER in Fig. 12 is equal to the accuracy achieved by

COPML, in particular, the computations carried out by the

two frameworks correspond to the same real domain training

updates per round.

Impact of Parallelism Degree (K): Finally, we evaluate the

impact of the degree of parallelism K, by setting the number

of clients to N = 48, and varying the parallelism degree

as K = [1, 4, 8, 12, 16], with the corresponding privacy level

T = [15, 11, 8, 4, 0], which is selected as the highest adversary

tolerance level allowed by the recovery threshold N ≥ 3(K+
T−1)+1. In Fig. 13, we present the online wall-clock training

time on the MNIST and CIFAR-10 datasets, respectively, over

varying K. Our results indicate a trade-off between parallelism

and adversary tolerance; increasing the degree of parallelism

reduces the wall-clock training time, thus speeding up training,

while decreasing the adversary tolerance.

IX. DISCUSSION

In this work, we consider feedforward polynomial neural

networks with quadratic activations [45], to demonstrate the

trainability of a neural network beyond the former appli-

cations limited to logistic or linear regression due to the

communication complexity. Our results can further serve as a

building block for more complex polynomial architectures as

an interesting future direction [55], [56], [57], [58], [59], [60],

which can enhance model accuracy. Another direction is to

leverage conventional training architectures by approximating

the nonlinear functions with polynomials. The finite field size

Fig. 12. Test accuracy of the trained model for CLOVER, for the MNIST
and CIFAR-10 datasets, respectively, with respect to the baseline conventional
neural network using ReLU activation and cross-entropy loss, for both batch
gradient descent, termed as Batch GD, and full gradient descent, termed as
Full GD.

in our experiments are constrained by the bit-width of the

computational devices. Using a larger number of layers may

require larger field sizes to avoid overflow errors. As such,

developing software platforms to accommodate the training

operations in larger fields is a promising future direction [61],

[62]. Extending our mechanisms to more complex architec-

tures may also require additional architecture and hyperpa-

rameter tuning.

Our focus in this work is on the honest-but-curious (passive)

adversary model, which serves as a first step towards active

and Byzantine adversaries, who can manipulate the encoding

strategy as well as the messages exchanged during the pro-

tocol. A promising direction for future research is extending

our frameworks for the latter, by leveraging Byzantine-resilient

and verifiable secure multi-party computing mechanisms [63].

In doing so, verifiable secret sharing can be leveraged to

guarantee the integrity of the encoded messages generated

by the users [64]. Simultaneously, the correctness of the

polynomial computations exchanged between the users can be

ensured through Reed-Solomon decoding, which can identify

the errors in the polynomial evaluations exchanged between

the users. To facilitate correct decoding in a network with

up to A active adversaries, Reed-Solomon decoding necessi-

tates two messages per error, thereby requiring 2A additional

evaluations from the remaining users for correct recovery

of the trained model. Beyond the malicious modifications to

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

8224 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

Fig. 13. Wall-clock training time over varying degree of parallelism on the
MNIST and CIFAR-10 datasets.

the encoding and decoding mechanism, adversaries may also

target the trained model, by poisoning their local datasets to

manipulate the model. Defending against such attacks further

necessitates secure outlier detection mechanisms [65].

In our work, all training operations are carried out in a

finite field, which leads to a trade-off between the quantization

error, due to the need for converting the datasets from the

real domain to the finite field, and the overflow errors during

gradient computations in the finite field. One approach to

extend our frameworks is to leverage privacy notions defined

over the real domain, such as differential privacy. Extend-

ing our mechanisms to real-valued polynomials also requires

quantifying the privacy-accuracy trade-offs, and ensuring the

stability of the coded computations for training, which may

require new code constructions [66].

X. CONCLUSION AND FUTURE DIRECTIONS

This work proposes CLOVER, a collaborative privacy-

preserving neural network training framework with linear

communication complexity, under strong information-theoretic

privacy guarantees. CLOVER builds on a novel coded com-

puting and degree reduction mechanism, DLC, which enables

efficient degree reduction for iterative applications while

preserving the information-theoretic privacy of the sensitive

local datasets. In doing so, CLOVER significantly improves

the quadratic communication overhead of the state-of-the-art,

while achieving the same adversary-resilience, robustness to

user dropouts, and model accuracy.

Future directions include applications to different polyno-

mial neural network architectures, and iterative multi-party

algorithms beyond machine learning. An interesting direction

is to leverage neural architecture search and hyperparameter

optimization to find the best polynomial neural network to

maximize the training performance. Another interesting future

direction is to extend our framework to partial user dropouts,

such as scenarios in which a user drops out after sending a

portion of the local computations. Our mechanisms can also

be extended to asynchronous learning in distributed settings,

where coded samples can be processed asynchronously due to

delayed or straggler users. Another direction is extending our

framework to active adversaries by leveraging verifiable secret

sharing and secure outlier detection mechanisms.

APPENDIX A

FINITE FIELD REPRESENTATION

To represent the local datasets in the finite field Fp, user

i ∈ [N] locally quantizes each feature x ∈ R in their

local dataset by employing a scalar quantization function

∆ (round(2γ · x)) where,

round(x) =

{
⌊x⌋ if x− ⌊x⌋ < 0.5
⌊x⌋+ 1 otherwise

(108)

is a rounding operation, and γ is an integer parameter that

controls the quantization loss. ⌊x⌋ denotes the largest integer

less than or equal to x, and function ∆ : Z→ Fp, represents

the negative integers in the second half of the finite field,

∆(x) =

{
x if x ≥ 0
p+ x if x < 0

(109)

which maps the positive (negative) numbers to the first (sec-

ond) half of the finite field, respectively, known as two’s

complement representation. Then, users represent the labels

in the finite field similarly. All training computations are then

performed as finite field operations in Fp. Parameter p is

chosen to be sufficiently large to avoid wrap-around in finite

field computations. At the end of training, the final model

{Wl(J)}l∈[L+1] is mapped back from Fp to the real domain

as Wl(J)← ∆−1(Wl(J)). The quantization operation maps

each feature x ∈ R in the local dataset to an integer value

between (−2γ |x| − 1, 2γ |x| + 1), where γ quantifies the

trade-off between the quantization loss and overflow errors.

A larger γ reduces the loss due to quantization, but may also

increase the overflow errors. A necessary condition for the

finite field size to avoid overflow errors is p ≥ 2(γ+1) max |x|,
where max |x| ∈ R denotes the maximum value for any

feature in the real-valued datasets.

APPENDIX B

ALGORITHMS FOR CLOVER

The individual steps of CLOVER are presented in

Algorithm 1.

APPENDIX C

INFORMATION-THEORETIC PRIVACY

Proof: Consider an arbitrary set of adversaries T ⊆ N .

For ease of exposition, we focus on the worst case scenario

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

LU et al.: SCALABLE MULTI-ROUND MULTI-PARTY PRIVACY-PRESERVING NEURAL NETWORK TRAINING 8225

Algorithm 1 CLOVER

Input: Number of users N , number of features d, number of data samples m per user, number of classes c, local dataset Xi ∈ F
d×m
p and labels Yi ∈ F

c×m
p

for user i ∈ [N], degree of parallelism K, privacy T , distinct public parameters α1, . . . , αN , β1, . . . βK , λ1, . . . , λN−T ∈ Fp, number of hidden layers
L, number of neurons dl for layer l ∈ [L + 1].

Output: Final model W1(J), . . . ,WL+1(J) after J training rounds.

1) Dataset Encoding

1: for user i = 1, . . . , N

2: Partition the dataset Xi ∈ F
d×m
p into K equal-sized shards Xi,1, . . . ,Xi,K ∈ F

d× m
K

p .
3: for user j = 1, . . . , N

4: Send the encoded matrix X̃i,j ∈ F
d× m

K
p from (48) to user j.

5: for user i = 1, . . . , N

6: Generate the encoded dataset X̃i =
[
X̃1,i · · · X̃N,i

]
∈ F

d× Nm
K

p from (49) by concatenating {Xj,i}j∈[N].

2) Label Encoding

7: for user i = 1, . . . , N

8: Partition the labels Yi ∈ F
c×m
p into K equal-sized shards Yi,1, . . . ,Yi,K ∈ F

c× m
K

p .
9: for user j = 1, . . . , N

10: Send the encoded matrix Ỹi,j ∈ F
c× m

K
p from (52) to user j.

11: for user i = 1, . . . , N

12: Generate the encoded labels Ỹi =
[
Ỹ1,i · · · ỸN,i

]
∈ F

c× Nm
K

p from (53) by concatenating {Yj,i}j∈[N].

3) Model Initialization (offline)

13: for user i = 1, . . . , N
14: for layer l = 1, . . . , L + 1

15: Generate T + 1 matrices Wl,i(0),Ql, i, K + 1, . . . ,Ql, i, K + 1 ∈ F

dl
N−T

×dl−1

p uniformly at random.
16: for user j = 1, . . . , N

17: Send the encoded matrix W̃l,i,j(0) ∈ F

dl
N−T

×dl−1

p from (52) to user j.
18: for user i = 1, . . . , N
19: for layer l = 1, . . . , L + 1

20: Construct the encoded model W̃l,i(0) ∈ F
dl×dl−1
p from (57), using {W̃l,j,i(0)}j∈[N].

21: for iteration t = 0, . . . , J − 1

4) Gradient Computation

22: for user i = 1, . . . , N

23: Set Ũ0,i(t) ≜ X̃i ∈ F
d× Nm

K
p .

24: for layer l = 1, . . . , L + 1 //Forward Propagation
25: for user i = 1, . . . , N

26: Compute Z̃l,i(t) = W̃l,i(t)Ũl−1,i(t) ∈ F
dl×

Nm
K

p from (62).
27: Using DLC, reduce the degree from M to K + T − 1 as shown in (63),

Z̃l,1(t), . . . , Z̃l,N (t)← DLC(Z̃l,1(t), . . . , Z̃l,N (t), M) where M is as defined in (64)

28: for user i = 1, . . . , N

29: Set Ũl,i(t) = g(Z̃l,i(t)) ∈ F
dl×

Nm
K

p from (65).

30: for user i = 1, . . . , N

31: Set ẼL+1,i(t) ≜ 2(Z̃L+1,i(t)− Ỹi) ∈ F
c× Nm

K
p .

32: for layer l = L, . . . , 1

by setting |T | = T , while noting that the same analysis holds

for all |T | < T . Let M1 and M2, denote the collection

of all messages received/generated by the adversaries during

the dataset encoding (Stage 1), and label encoding (Stage 2)

stages, respectively. Similarly, let M3 denote the collection

of all messages received/generated by the adversaries during

the model initialization stage (Stage 3). Finally, let M4(t)
denote the collection of all messages received/generated by

the adversaries in the gradient computation stage (Stage 4)

at training round t ∈ {0, . . . , J − 1}, and M5(t) denote the

collection of all messages received/generated by the adver-

saries in the model update stage (Stage 5) at training round

t ∈ {0, . . . , J − 1}, respectively. Then, from the chain rule of

mutual information, one can rewrite (105) as follows,

I({Xi,Yi}i∈H;MT |{Xi,Yi}i∈T , {Wl(J)}l∈[L+1]) (110)

= I({Xi,Yi}i∈H;M1,M2,M3,∪
J−1
t=0M4(t),∪

J−1
t=0M5(t)

|{Xi,Yi}i∈T , {Wl(J)}l∈[L+1]) (111)

= I({Xi,Yi}i∈H;M1|{Xi,Yi}i∈T , {Wl(J)}l∈[L+1])

+I({Xi,Yi}i∈H;M2|M1, {Xi,Yi}i∈T , {Wl(J)}l∈[L+1])

+I({Xi,Yi}i∈H;M3|M1,M2, {Xi,Yi}i∈T , {Wl(J)}l∈[L+1])

+
J−1∑

t=0

I({Xi,Yi}i∈H;M4(t)|M1,M2,M3,∪
t−1
t′=0M4(t

′),

∪t−1
t′=0M5(t

′), {Xi,Yi}i∈T , {Wl(J)}l∈[L+1])

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

8226 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

33: for user i = 1, . . . , N

34: Compute Ẽl,i(t) = 2Z̃l,i(t)⊙ (W̃T
l+1,i

(t)× Ẽl+1,i(t)) ∈ F
dl×

Nm
K

p from (66). //Backpropagation

35: Using DLC, reduce the degree from 3(K + T − 1) to K + T − 1 as shown in (67),

Ẽl,1(t), . . . , Ẽl,N (t)← DLC(Ẽl,1(t), . . . , Ẽl,N (t), 3(K + T − 1))

36: for user i = 1, . . . , N

37: Compute the gradient G̃l,i(t) = Ẽl,i(t)× ŨT
l−1,i

(t) ∈ F
dl×dl−1
p from (68).

5) Model Update

Offline

38: for layer l = 1, . . . , L + 1
39: for user i = 1, . . . , N

40: Generate Bl,i,1(t), . . . ,Bl,i,3(K+T−1)+1(t),Sl,i,K+1(t), . . . ,Sl,i,K+T (t) ∈ F

dl
N−T

×dl−1

p uniformly random.
41: for user j = 1, . . . , N

42: Send the encoded matrices B̃l,i,j(t) from (69) and Bl,i,j(t) from (70) to user j.
43: for user i = 1, . . . , N

44: Generate the higher-dimensional encoded matrices B̃l,i(t),Bl,i(t) ∈ F
dl×dl−1
p as in (71).

Online

45: for layer l = 1, . . . , L + 1
46: for user i = 1, . . . , N

47: Broadcast the masked coded gradient Ĝl,i(t) = G̃l,i(t)− B̃l,i(t) from (76).
48: for user i = 1, . . . , N
49: Decode the masked gradients hl(βk)−Bl,k(t) for k ∈ [K] using polynomial interpolation.

50: Construct the aggregated gradient G̃l,i(t) using a degree K + T − 1 Lagrange polynomial as in (80).

51: Using the gradient G̃l,i(t), update the model W̃l,i(t + 1) as described in (83).

Final Model Recovery

52: Collect W̃1,i(J), . . . ,W̃L+1,i(J) from any set of K + T users, and decode the final model W1(J), . . . ,WL+1(J).

+
J−1∑

t=0

I({Xi,Yi}i∈H;M5(t)|M1,M2,M3,∪
t
t′=0M4(t

′),

∪t−1
t′=0M5(t

′), {Xi,Yi}i∈T , {Wl(J)}l∈[L+1]) (112)

We next investigate each term in the summation (112).

A. Stage 1: Dataset Encoding

We first consider the first term in (112), which corresponds

to the dataset encoding stage, which can be rewritten as,

I({Xi,Yi}i∈H;M1|{Xi,Yi}i∈T , {Wl(J)}l∈[L+1]) (113)

= I({Xi,Yi}i∈H; {X̃i,j}i∈H,j∈T , {Vi,k}i∈T ,k∈{K+1,...,K+T}|

{Xi,Yi}i∈T , {Wl(J)}l∈[L+1])

= H({X̃i,j}i∈H,j∈T , {Vi,k}i∈T ,k∈{K+1,...,K+T}|

{Xi,Yi}i∈T , {Wl(J)}l∈[L+1])

−H({X̃i,j}i∈H,j∈T , {Vi,k}i∈T ,k∈{K+1,...,K+T}|

{Xi,Yi}i∈[N], {Wl(J)}l∈[L+1]) (114)

We next bound the first term in (114) as follows:

H({X̃i,j}i∈H,j∈T , {Vi,k}i∈T ,k∈{K+1,...,K+T}|

{Xi,Yi}i∈T , {Wl(J)}l∈[L+1])

≤ H({X̃i,j}i∈H,j∈T , {Vi,k}i∈T ,k∈{K+1,...,K+T}) (115)

≤
(∑

i∈H

Tdm

K
+

∑

i∈T

Tdm

K

)
log p (116)

where (115) holds since conditioning cannot increase entropy;

(116) follows from the fact that uniform distribution max-

imizes entropy, and that the entropy of a uniform random

variable distributed over an alphabet S is equal to log |S|.

For the second term in (114), we observe that:

H({X̃i,j}i∈H,j∈T , {Vi,k}i∈T ,k∈{K+1,...,K+T}|

{Xi,Yi}i∈[N], {Wl(J)}l∈[L+1])

= H({
K+T∑

k=K+1

Vi,k

∏

k′∈[K+T]\{k}

αj − βk′

βk − βk′

}i∈H,j∈T)

+H({Vi,k}i∈T ,k∈{K+1,...,K+T}) (117)

=
∑

i∈H

H({Vi,j}j∈T) +
Td

K
(
∑

i∈T

m) log p (118)

where (117) holds since given {Xi,Yi}i∈[N], there is no

uncertainty remaining in {Xik}i∈[N],k∈[K], and that the ran-

domness is generated independently from the datasets; (118)

follows from the entropy of uniform random variables, along

with,

Vi,j ≜

K+T∑

k=K+1

Vi,k

∏

k′∈[K+T]\{k}

αj−βk′

βk − βk′

∀i ∈ H, j ∈ T .

(119)

For notational simplicity, in the following we let H = [N−
T] and T = {N −T +1, . . . , N}, and note that same analysis

holds for any set of adversarial users T of size T . We then

represent the Lagrange polynomial coefficients as:

ρj,k ≜
∏

k′∈[K+T]\{k}

αj − βk′

βk − βk′

(120)

for all j ∈ [N] and k ∈ [K + T]. Then, one can write,
[
Vi,N−T+1[s] · · · Vi,N [s]

]

=
[
Vi,K+1[s] · · · Vi,K+T [s]

]
Γ (121)

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

LU et al.: SCALABLE MULTI-ROUND MULTI-PARTY PRIVACY-PRESERVING NEURAL NETWORK TRAINING 8227

where Vi,k[s] and Vi,k[s] denote the sth column of Vi,k and

Vi,k, respectively for s ∈ [m
K], and

Γ ≜



ρN−T+1,K+1 · · · ρN,K+1

...
. . .

...

ρN−T+1,K+T · · · ρN,K+T


 (122)

is a T ×T MDS matrix (hence is invertible), due to the MDS

property of Lagrange coefficients as shown in [10]. Then,

H({Vi,j}j∈T) = H({Vi,N−T+1[s], . . . ,Vi,N [s]}s∈[m/K])

(123)

= H({Vi,K+1[s], . . . ,Vi,K+T [s]}s∈[m/K])

(124)

=
Tdm

K
log p (125)

where (124) follows from (202) and that Γ is an MDS matrix,

and (125) follows from the fact that each element of Vi,k

is distributed uniformly at random over the finite field Fp.

By combining (125) with (118), we have that,

∑

i∈H

H({Vi,j}j∈T) +
Td

K
(
∑

i∈T

m) log p

=
Td

K

(∑

i∈H

m
)

log p+
Td

K

(∑

i∈T

m
)

log p

(126)

Finally, by combining (116) and (126) with (114), we find

that,

0 ≤ I({Xi,Yi}i∈H;M1|{Xi,Yi}i∈T , {Wl(J)}l∈[L+1]) ≤ 0

(127)

where the first inequality follows from the non-negativity of

mutual information. Therefore, the first term in (112) satisfies:

I({Xi,Yi}i∈H;M1|{Xi,Yi}i∈T , {Wl(J)}l∈[L+1]) = 0

(128)

B. Stage 2: Label Encoding

We next consider the second term in (112), which corre-

sponds to the label encoding stage,

I({Xi,Yi}i∈H;M2|M1, {Xi,Yi}i∈T , {Wl(J)}l∈[L+1])

= I({Xi,Yi}i∈H; {Ỹi,j}i∈H,j∈T , {Ni,k}i∈T ,k∈{K+1,...,K+T}|

M1, {Xi,Yi}i∈T , {Wl(J)}l∈[L+1])

= H({Ỹi,j}i∈H,j∈T , {Ni,k}i∈T ,k∈{K+1,...,K+T}|

M1, {Xi,Yi}i∈T , {Wl(J)}l∈[L+1])

−H({Ỹi,j}i∈H,j∈T , {Ni,k}i∈T ,k∈{K+1,...,K+T}|

M1, {Xi,Yi}i∈[N], {Wl(J)}l∈[L+1]) (129)

The first term in (129) can be bounded as:

H({Ỹi,j}i∈H,j∈T , {Ni,k}i∈T ,k∈{K+1,...,K+T}|

M1, {Xi,Yi}i∈T , {Wl(J)}l∈[L+1])

≤ H({Ỹi,j}i∈H,j∈T , {Ni,k}i∈T ,k∈{K+1,...,K+T}) (130)

≤
(∑

i∈H

Tcm

K
+

∑

i∈T

Tcm

K

)
log p (131)

where (130) holds since conditioning cannot increase entropy;

(131) follows from the fact that uniform distribution maxi-

mizes entropy. For the second term in (129), we observe that:

H({Ỹi,j}i∈H,j∈T , {Ni,k}i∈T ,k∈{K+1,...,K+T}|

M1, {Xi,Yi}i∈[N], {Wl(J)}l∈[L+1])

= H
({ K+T∑

k=K+1

Ni,k

∏

k′∈[K+T]\{k}

αj − βk′

βk − βk′

}
i∈H,j∈T

)

+H({Ni,k}i∈T ,k∈{K+1,...,K+T}) (132)

=
∑

i∈H

H({Ni,j}j∈T) +
Tc

K

(∑

i∈T

m
)

log p (133)

where (132) holds since given {Xi,Yi}i∈[N], there is no

uncertainty remaining in {Yi,k}i∈[N],k∈[K], and that the ran-

domness is generated independently from the datasets; (133)

follows from the entropy of uniform random variables, and

Ni,j ≜

K+T∑

k=K+1

Ni,k

∏

k′∈[K+T]\{k}

αj − βk′

βk − βk′

∀i ∈ H, j ∈ T .

(134)

Then, we can write,

[
Ni,N−T+1[s] · · · Ni,N [s]

]

=
[
Ni,K+1[s] · · · Ni,K+T [s]

]
Γ (135)

where Ni,k[s] and Ni,k[s] is the sth column of Ni,k and Ni,k,

respectively for s ∈ [m
K], and Γ is a T×T MDS matrix (hence

is invertible) as defined in (122). Then,

H({Ni,j}j∈T) = H({Ni,N−T+1[s], . . . ,Ni,N [s]}s∈[m/K])

(136)

= H({Ni,K+1[s], . . . ,Ni,K+T [s]}s∈[m/K])

(137)

=
Tcm

K
log p (138)

where (137) follows from (135) and that Γ is an MDS matrix,

and (138) holds since each element of Ni,k is distributed

uniformly at random over Fp. By combining (138) with (133),

we have,

∑

i∈H

H({Ni,j}j∈T) +
Tc

K

(∑

i∈T

m
)

log p

=
Tc

K

(∑

i∈H

m
)

log p+
Tc

K

(∑

i∈T

m
)

log p

(139)

Finally, by combining (131) and (139) with (129), we have,

0 ≤ I({Xi,Yi}i∈H;M2|M1, {Xi,Yi}i∈T , {Wl(J)}l∈[L+1])≤0

hence the second term in (112) is also equal to 0.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

8228 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

C. Stage 3: Model Initialization

We next consider the third term in (112), which corresponds

to the model initialization stage. From (112), we find that,

I({Xi,Yi}i∈H;M3|M1,M2, {Xi,Yi}i∈T , {Wl(J)}l∈[L+1])

= I({Xi,Yi}i∈H; {Wl,i(0),Ql,i,k} i∈T ,l∈[L+1],
k∈{K+1,...,K+T}

,

{W̃l,i,j(0)}i∈H,j∈T
l∈[L+1]

, |M1,M2, {Xi,Yi}i∈T , {Wl(J)}l∈[L+1])

(140)

= H({Wl,i(0),Ql,i,k} i∈T ,l∈[L+1],
k∈{K+1,...,K+T}

, {W̃l,i,j(0)}i∈H,j∈T
l∈[L+1]

|

M1,M2, {Xi,Yi}i∈T , {Wl(J)}l∈[L+1])

−H({Wl,i(0),Ql,i,k} i∈T ,l∈[L+1],
k∈{K+1,...,K+T}

, {W̃l,i,j(0)}i∈H,j∈T
l∈[L+1]

|

M1,M2, {Xi,Yi}i∈[N], {Wl(J)}l∈[L+1]) (141)

≤
∑

l∈[L+1]

(
Tdldl−1 +

Tdldl−1

N − T
+
T 2dldl−1

N − T

)
log p

−H({W̃l,i,j(0)}i∈H,j∈T
l∈[L+1]

|{Wl,i(0),Ql,i,k} i∈T ,l∈[L+1],
k∈{K+1,...,K+T}

,

M1,M2, {Xi,Yi}i∈[N], {Wl(J)}l∈[L+1])

−H({Wl,i(0),Ql,i,k} i∈T ,l∈[L+1],
k∈{K+1,...,K+T}

|M1,M2, {Xi,Yi}i∈[N],

{Wl(J)}l∈[L+1]) (142)

where the last inequality holds since conditioning cannot

increase entropy, and that uniform distribution maximizes

entropy. We next bound the last two terms in (142). First,

observe that,

H({W̃l,i,j(0)}i∈H,j∈T
l∈[L+1]

|{Wl,i(0),Ql,i,k} i∈T ,l∈[L+1],
k∈{K+1,...,K+T}

,

M1,M2, {Xi,Yi}i∈[N], {Wl(J)}l∈[L+1])

≥ H({W̃l,i,j(0)}i∈H,j∈T
l∈[L+1]

|{Wl,i(0),Ql,i,k} i∈T ,l∈[L+1],
k∈{K+1,...,K+T}

,

M1,M2, {Xi,Yi}i∈[N], {Wl(J)}l∈[L+1],

{Wl,i(0)}i∈H,l∈[L+1])

= H({(Ql,i,K+1[j], . . . ,Ql,i,K+T [j])Γ}j∈[dl−1],l∈[L+1],i∈H)

= H({(Ql,i,K+1[j], . . . ,Ql,i,K+T [j])}j∈[dl−1],l∈[L+1],i∈H)

(143)

=
∑

l∈[L+1]

Tdldl−1 log p (144)

where (143) holds since Γ is an MDS matrix (hence is invert-

ible) as shown in (122), and (144) follows from the entropy of

uniform distribution. Next, for the last term in (142), we have,

H({Wl,i(0),Ql,i,k} i∈T ,l∈[L+1],
k∈{K+1,...,K+T}

|M1,M2,

{Xi,Yi}i∈[N], {Wl(J)}l∈[L+1])

≥ H({Wl,i(0),Ql,i,k} i∈T ,l∈[L+1],
k∈{K+1,...,K+T}

|M1,M2,

{Xi,Yi}i∈[N], {Wl(J)}l∈[L+1], {Wl(0)}l∈[L+1])

= H({Wl,i(0),Ql,i,k} i∈T ,l∈[L+1],
k∈{K+1,...,K+T}

|{Wl(0)}l∈[L+1])

(145)

= H({Wl,i(0),Ql,i,k} i∈T ,l∈[L+1],
k∈{K+1,...,K+T}

) (146)

=
∑

l∈[L+1]

(Tdldl−1

N − T
+
T 2dldl−1

N − T

)
log p (147)

where (145) is from the Markov chain {Wl,i(0),
Ql,i,k}i∈T ,l∈[L+1],k∈{K+1,...,K+T} − {Wl(0)}l∈[L+1] −
M1,M2, {Xi,Yi}i∈[N], {Wl(J)}l∈[L+1] and (147) follows

from the entropy of uniform distribution. Finally, (146)

follows from the fact that,

0 ≤ I({Wl,i(0),Ql,i,k} i∈T ,l∈[L+1],
k∈{K+1,...,K+T}

;W(0)) ≤ 0 (148)

since uniform distribution maximizes entropy,

H(W(0)) ≤
∑

l∈[L+1]

dldl−1 log p (149)

and

H(W(0)|{Wl,i(0),Ql,i,k}i∈T ,l∈[L+1],k∈{K+1,...,K+T})

= H
({ ∑

i∈[N]

λ
i−1
1 Wl,i(0), . . . ,

∑

i∈[N]

λ
i−1
N−T Wl,i(0)

}
l∈[L+1]

∣∣∣

{Wl,i(0),Ql,i,k}i∈T ,l∈[L+1],k∈{K+1,...,K+T}

)
(150)

= H
({ ∑

i∈[N−T]

λ
i−1
1 Wl,i(0), . . . ,

∑

i∈[N−T]

λ
i−1
N−T Wl,i(0)}l∈[L+1]

∣∣∣{Wl,i(0),

Ql,i,k}i∈T ,l∈[L+1],k∈{K+1,...,K+T}

)
(151)

= H({(Wl,1[j], . . . ,Wl,N−T [j])M}j∈[dl−1],l∈[L+1]) (152)

= H({Wl,1[j], . . . ,Wl,N−T [j]}j∈[dl−1],l∈[L+1]) (153)

=
∑

l∈[L+1]

dldl−1 log p (154)

where (151) follows from the independence of the randomness

generated by the honest users from the adversaries. In (152),

we let Wl,i[j] denote the jth column of Wl,i(0), and define,

M =




1 · · · 1
λ1 · · · λN−T

...
. . .

...

λ
N−T−1
1 · · · λ

N−T−1
N−T


 (155)

which is an (N −T)× (N −T) MDS matrix (hence is invert-

ible), from which (153) follows. Finally, (154) follows from

the entropy of the uniform distribution. By combining (147)

and (144) with (142), we have,

0 ≤ I({Xi,Yi}i∈H;M3|M1,M2,

{Xi,Yi}i∈T , {Wl(J)}l∈[L+1])

≤ 0

hence the third term in (112) is also equal to 0.

D. Stage 4: Gradient Computation

We next study the fourth term in (112), which corresponds

to the gradient computation stage. During this stage, the only

communication between the users occurs during the degree

reduction phase. Therefore, without loss of generality, one can

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

LU et al.: SCALABLE MULTI-ROUND MULTI-PARTY PRIVACY-PRESERVING NEURAL NETWORK TRAINING 8229

denote the set of all messages received or generated during this

stage as follows,

M4(t) =M4,1(t) ∪ · · · ∪M4,2L+1(t) (156)

where M4,j(t) denotes the messages received or generated

by the adversaries during the jth degree reduction operation

for j ∈ [2L + 1], and 2L + 1 is the total number of degree

reduction operations, as L+1 degree reduction operations are

performed during forward pass and L operations are performed

during backpropagation, respectively. Then, from (21), (23),

and (29), one can rewrite the fourth term in (112) as follows,

I({Xi,Yi}i∈H;M4(t)|M1,M2,M3,∪
t−1
t′=0M4(t

′),

∪t−1
t′=0M5(t

′), {Xi,Yi}i∈T , {Wl(J)}l∈[L+1])

= I({Xi,Yi}i∈H;M4,1(t) ∪ · · · ∪M4,2L+1(t)|M1,M2,M3,

∪t−1
t′=0M4(t

′),∪t−1
t′=0M5(t

′), {Xi,Yi}i∈T , {Wl(J)}l∈[L+1])

(157)

=
∑

l′∈[2L+1]

I({Xi,Yi}i∈H;M4,l′(t)|M4,l′−1(t) ∪ · · · ∪M4,1(t),

M1,M2,M3,∪
t−1
t′=0M4(t

′),∪t−1
t′=0M5(t

′),

{Xi,Yi}i∈T , {Wl(J)}l∈[L+1]) (158)

In the following, we show that the degree reduction operation

with DLC from Section IV preserves information-theoretic

privacy while reducing the degree of an arbitrary polynomial

function f(·) ∈ F
n1×n2
p of degree M , where f(βk) for

k ∈ [K] represent the desired (secret) computations, and f(αi)
represents the local (coded) computation evaluated by user

i ∈ [N], respectively. Without loss of generality, let

Ml′ ≜ (M4,l′−1(t), · · · ,M4,1(t),M1,M2,M3,

∪t−1
t′=0M4(t

′),∪t−1
t′=0M5(t

′))

(159)

denote the set of all messages received or generated by the

adversaries prior to the degree reduction operation l′ ∈ [2L+1]
at round t. Then, one can rewrite each term in (158) as follows,

I({Xi,Yi}i∈H;M4,l′(t)|M4,l′−1(t) ∪ · · · ∪M4,1(t),M1,M2,

M3,∪
t−1
t′=0M4(t

′),∪t−1
t′=0M5(t

′), {Xi,Yi}i∈T , {Wl(J)}l∈[L+1])

= I({Xi,Yi}i∈H;M4,l′(t)|Ml′ , {Xi,Yi}i∈T , {Wl(J)}l∈[L+1])

(160)

= I({Xi,Yi}i∈H; {R̃i,j ,Ri,j}i∈H,j∈T , {f(αi)− R̃i}i∈[N],

{Ri,k}i∈T ,k∈[M+1], {Ai,k}i∈T ,k∈{K+1,...,K+T}|Ml′ ,

{Xi,Yi}i∈T , {Wl(J)}l∈[L+1]) (161)

= I({Xi,Yi}i∈H; {R̃i,j ,Ri,j}i∈H,
j∈T

, {f(βk)−Rk}k∈[M+1],

{Ri,k}i∈T ,k∈[M+1], {Ai,k}i∈T ,k∈{K+1,...,K+T}|

Ml′ , {Xi,Yi}i∈T , {Wl(J)}l∈[L+1]) (162)

= H({R̃i,j ,Ri,j}i∈H,
j∈T

, {f(βk)−Rk}k∈[M+1], {Ri,k} i∈T ,
k∈[M+1]

,

{Ai,k}i∈T ,k∈{K+1,...,K+T}|Ml′ , {Xi,Yi}i∈T , {Wl(J)}l∈[L+1])

−H({R̃i,j ,Ri,j}i∈H,
j∈T

, {f(βk)−Rk}k∈[M+1], {Ri,k} i∈T ,
k∈[M+1]

,

{Ai,k}i∈T ,k∈{K+1,...,K+T}|Ml′ , {Xi,Yi}i∈[N], {Wl(J)}l∈[L+1])

(163)

where (162) follows from the fact that there is a bijective map-

ping from any M+1 evaluation points {f(βk)−Rk}k∈[M+1]

to a valid (feasible) set of local computations {f(αi) −
R̃i}i∈[N], since the local computations in (29) correspond

to evaluations of a degree M monomial φ(α) = f(α)−ϕ(α),
which can be uniquely reconstructed from any set of at least

M + 1 evaluation points. For the first term in (163), we find

that,

H({R̃i,j ,Ri,j}i∈H,j∈T , {f(βk)−Rk}k∈[M+1], {Ri,k} i∈T ,
k∈[M+1]

,

{Ai,k}i∈T ,k∈{K+1,...,K+T}|Ml′ , {Xi,Yi}i∈T , {Wl(J)}l∈[L+1])

= H({R̃i,j ,Ri,j}i∈H,j∈T , {Ri,k} i∈T ,
k∈[M+1]

,

{
f(βk)−

(∑

i∈[N]

λ
i−1
1 RT

i,k, . . . ,
∑

i∈[N]

λ
i−1
N−T RT

i,k

)T}
k∈[M+1]

,

{Ai,k}i∈T ,k∈{K+1,...,K+T}|Ml′ , {Xi,Yi}i∈T , {Wl(J)}l∈[L+1])

(164)

= H({Ri,j}i∈H,j∈T , {Ri,k} i∈T ,
k∈[M+1]

,
{
f(βk)−

(∑

i∈[N−T]

λ
i−1
1 RT

i,k, . . . ,
∑

i∈[N−T]

λ
i−1
N−T RT

i,k

)T}
k∈[M+1]

,

{Ai,k}i∈T ,k∈{K+1,...,K+T}|Ml′ , {Xi,Yi}i∈T , {Wl(J)}l∈[L+1])

(165)

≤ (T +M + 1)n1n2

(
1 +

T

N − T

)
log p (166)

where (164) follows from (26), and (165) holds since,
[∑

i∈[N−T] λ
i−1
1 R̃T

i,j · · ·
∑

i∈[N−T] λ
i−1
N−T R̃T

i,j

]

= f(αj)−
∑

k∈[M+1]

(
f(βk)

−
[∑

i∈[N−T] λ
i−1
1 RT

i,k · · ·
∑

i∈[N−T] λ
i−1
N−T RT

ik

]T
)

∏

k′∈[M+1]\{k}

αj − βk′

βk − βk′

(167)

where the local computations {f(αj)}j∈T are already known

by the adversaries prior to degree reduction i.e., {f(αj)}j∈T ∈
Ml′ , and that
[
R̃1,j [s] · · · R̃N−T,j [s]

]
=

[∑
i∈[N−T] λ

i−1
1 R̃i,j [s] · · ·

∑
i∈[N−T] λ

i−1
N−T R̃i,j [s]

]
M−1,

(168)

for all s ∈ [n2], where R̃i,j [s] denotes the sth column of R̃i,j ,

and M is the (N−T)×(N−T) MDS matrix (hence invertible)

as defined in (155). Finally, (166) holds since conditioning

cannot increase entropy, and that entropy is maximized by the

uniform distribution. For the second term in (163), we find

that,

H({R̃i,j ,Ri,j}i∈H,j∈T , {f(βk)−Rk}k∈[M+1], {Ri,k} i∈T ,
k∈[M+1]

,

{Ai,k}i∈T ,k∈{K+1,...,K+T}|Ml′ ,

{Xi,Yi}i∈[N], {Wl(J)}l∈[L+1])

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

8230 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

≥ H({R̃i,j ,Ri,j}i∈H,j∈T , {f(βk)−Rk}k∈[M+1],

{Ri,k}i∈T ,k∈[M+1], {Ai,k}i∈T ,k∈{K+1,...,K+T}|

Ml′ , {Xi,Yi}i∈[N], {Wl(J)}l∈[L+1], {f(βk)}k∈[M+1])

(169)

= H({R̃i,j ,Ri,j}i∈H,j∈T , {Rk}k∈[M+1], {Ri,k} i∈T ,
k∈[M+1]

,

{Ai,k}i∈T ,k∈{K+1,...,K+T}) (170)

= H

(
{R̃i,j ,Ri,j}i∈H,

j∈T
, {Ri,k} i∈T ,

k∈[M+1]

, {Ai,k} i∈T ,
k∈{K+1,...,K+T}

,

{ [∑
i∈[N] λ

i−1
1 RT

i,k · · ·
∑

i∈[N] λ
i−1
N−T RT

i,k

]T }
k∈[M+1]

)

(171)

= H

(
{R̃i,j ,Ri,j}i∈H,

j∈T
, {Ri,k} i∈T ,

k∈[M+1]

, {Ai,k} i∈T ,
k∈{K+1,...,K+T}

,

{[∑

i∈[N−T]

λ
i−1
1 R

T
i,k · · ·

∑

i∈[N−T]

λ
i−1
N−T R

T
i,k

]T }
k∈[M+1]

)

= H

(
{R̃i,j ,Ri,j}i∈H,

j∈T
, {Ri,k} i∈T ,

k∈[M+1]

, {Ai,k} i∈T ,
k∈{K+1,...,K+T}

,

{ [
R1,k[s] · · · RN−T,k[s]

]
M

}
k∈[M+1],s∈[n2]

)

(172)

= H

(
{R̃i,j ,Ri,j}i∈H,

j∈T
, {Ri,k} i∈T ,

k∈[M+1]

, {Ai,k} i∈T ,
k∈{K+1,...,K+T}

,

{ [
R1,k[s] · · · RN−T,k[s]

] }
k∈[M+1],s∈[n2]

)

(173)

= H

(
{Ri,j}i∈H,

j∈T
, {Ri,k} i∈T ,

k∈[M+1]

, {Ai,k} i∈T ,
k∈{K+1,...,K+T}

,

{ [
R1,k · · · RN−T,k

] }
k∈[M+1]

)
(174)

= H
(
{Ri,j}i∈H,

j∈T
|{Ri,k}i∈[N−T],k∈[M+1]

)

+H({Ri,k}i∈[N−T],k∈[M+1])

+H
(
{Ri,k} i∈T ,

k∈[M+1]

, {Ai,k} i∈T ,
k∈{K+1,...,K+T}

)

(175)

= (M + T + 1)n1n2

(
1 +

T

N − T

)
log p (176)

where (169) holds since conditioning cannot increase

entropy; (170) follows from the independence of random-

ness generated; (171) follows from (26); (172) follows

from (155); (173) holds since M is a (N−T)×(N−T) MDS

matrix (hence is invertible); (174) holds since {R̃i,j}j∈T can

be perfectly reconstructed from {Ri,k}k∈[M+1] using (20) for

all i ∈ H; (175) follows from the independence of the ran-

domness generated by the honest and adversarial users; (176)

follows from the entropy of uniform random variables, along

with,

H({Ri,j}i∈H,
j∈T
|{Ri,k}i∈[N−T],k∈[M+1])

=
∑

i∈H

H

({ K+T∑

k=K+1

Ai,kρj,k

}
j∈T

)
(177)

=
∑

i∈H

H
({ [

Ai,K+1[s] · · · Ai,K+T [s]
]
Γ

}
s∈[n2]

)

(178)

=
∑

i∈H

H(Ai,K+1, . . . ,Ai,K+T) (179)

where ρj,k is the Lagrange coefficient defined in (120), and Γ

is a T×T MDS matrix as defined in (122) (hence is invertible).

Finally, by combining (176) and (166) with (163), we find

for (161) that,

0 ≤I({Xi,Yi}i∈H; {R̃i,j ,Ri,j}i∈H,j∈T , {f(αi)− R̃i}i∈[N],

{Ri,k}i∈T ,k∈[M+1], {Ai,k}i∈T ,k∈{K+1,...,K+T}|

Ml′ , {Xi,Yi}i∈T , {Wl(J)}l∈[L+1]) ≤ 0 (180)

The steps for consecutive degree reduction operations l ∈
[2L+ 1] follow the same steps, from which we find for (158)

and accordingly, the fourth term in (112) that,
∑

l′∈[2L+1]

I({Xi,Yi}i∈H;M4,l′(t)|M4,l′−1(t) ∪ · · · ∪M4,1(t),

M1,M2,M3,∪
t−1
t′=0M4(t

′),∪t−1
t′=0M5(t

′),

{Xi,Yi}i∈T , {Wl(J)}l∈[L+1])

= I({Xi,Yi}i∈H;M4(t)|M1,M2,M3,∪
t−1
t′=0M4(t

′),

∪t−1
t′=0M5(t

′), {Xi,Yi}i∈T , {Wl(J)}l∈[L+1])

= 0 (181)

E. Stage 5: Model Update

We finally consider the last term in (112), corresponding

to the model update stage. In the following, we let M =
3(K + T − 1). Then, for the last term in (112), one can write

that,

I({Xi,Yi}i∈H;M5(t)|M1,M2,M3,∪
t
t′=0M4(t

′),

∪t−1
t′=0M5(t

′), {Xi,Yi}i∈T , {Wl(J)}l∈[L+1])

= I({Xi,Yi}i∈H; {B̃l,i,j(t),Bl,i,j(t)}i∈H,j∈T ,l∈[L+1],

{G̃l,i(t)− B̃l,i(t)}i∈[N],l∈[L+1], {Bl,i,k(t)}i∈T ,k∈[M+1],
l∈[L+1]

,

{Sl,i,k(t)}i∈T ,k∈{K+1,...,K+T},l∈[L+1]|M1,M2,M3,

∪t
t′=0M4(t

′),∪t−1
t′=0M5(t

′), {Xi,Yi}i∈T , {Wl(J)}l∈[L+1])

(182)

=
∑

l∈[L+1]

I({Xi,Yi}i∈H; {B̃l,i,j(t),Bl,i,j(t)}i∈H,j∈T ,

{G̃l,i(t)− B̃l,i(t)}i∈[N], {Bl,i,k(t)}i∈T ,k∈[M+1],

{Sl,i,k(t)} i∈T ,
k∈{K+1,...,K+T}

|{B̃l′,i,j(t),Bl′,i,j(t)}i∈H,j∈T ,
l′∈[l−1]

,

{G̃l′,i(t)− B̃l′,i(t)} i∈[N],
l′∈[l−1]

, {Bl′,i,k(t)} i∈T ,
k∈[M+1],
l′∈[l−1]

,

{Sl′,i,k(t)} i∈T ,
k∈{K+1,...,K+T},

l′∈[l−1]

,M1,M2,M3,∪
t
t′=0M4(t

′),

∪t−1
t′=0M5,t′ , {Xi,Yi}i∈T , {Wl(J)}l∈[L+1]) (183)

=
∑

l∈[L+1]

I({Xi,Yi}i∈H; {B̃l,i,j(t),Bl,i,j(t)}i∈H,j∈T ,

{G̃l,i(t)− B̃l,i(t)}i∈[N], {Bl,i,k(t)}i∈T ,k∈[M+1],

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

LU et al.: SCALABLE MULTI-ROUND MULTI-PARTY PRIVACY-PRESERVING NEURAL NETWORK TRAINING 8231

{Sl,i,k(t)} i∈T ,
k∈{K+1,...,K+T}

|Ml, {Xi,Yi}i∈T , {Wl(J)}l∈[L+1])

(184)

where in (184) we let,

Ml =({B̃l′,i,j(t),Bl′,i,j(t)} i∈H,
j∈T ,

l′∈[l−1]

, {G̃l′,i(t)− B̃l′,i(t)} i∈[N],

l′∈[l−1]

,

{Bl′,i,k(t)} i∈T ,
k∈[M+1],
l′∈[l−1]

, {Sl′,i,k(t)} i∈T ,
k∈{K+1,...,K+T},

l′∈[l−1]

,

M1,M2,M3,∪
t
t′=0M4(t

′),∪t−1
t′=0M5,t′) (185)

to denote the set of all messages received or generated by the

adversaries prior to gradient aggregation at layer l. We next

provide the analysis for a single layer l ∈ [L + 1] in (184),

while noting that the same analysis holds for all layers, which

can then be combined by using the chain rule in (183). For

any given layer l ∈ [L+1], one can rewrite the corresponding

mutual information term from (184) as follows,

I({Xi,Yi}i∈H; {B̃l,i,j(t),Bl,i,j(t)}i∈H,
j∈T

,

{G̃l,i(t)− B̃l,i(t)}i∈[N], {Bl,i,k(t)} i∈T ,
k∈[M+1]

,

{Sl,i,k(t)} i∈T ,
k∈{K+1,...,K+T}

|Ml, {Xi,Yi}i∈T , {Wl(J)}l∈[L+1])

(186)

= I({Xi,Yi}i∈H; {B̃l,i,j(t),Bl,i,j(t)}i∈H,
j∈T

,

{hl(αi)− rl(αi)}i∈[N], {Bl,i,k(t)} i∈T ,
k∈[M+1]

,

{Sl,i,k(t)} i∈T ,
k∈{K+1,...,K+T}

|Ml, {Xi,Yi}i∈T , {Wl(J)}l∈[L+1])

(187)

= I({Xi,Yi}i∈H; {B̃l,i,j(t),Bl,i,j(t)}i∈H,j∈T ,

{hl(βk)− rl(βk)}k∈[M+1], {Bl,i,k(t)}i∈T ,k∈[M+1],

{Sl,i,k(t)} i∈T ,
k∈{K+1,...,K+T}

|Ml, {Xi,Yi}i∈T , {Wl(J)}l∈[L+1])

(188)

= H({B̃l,i,j(t),Bl,i,j(t)}i∈H,j∈T , {hl(βk)− rl(βk)}k∈[M+1],

{Bl,i,k(t)}i∈T ,k∈[M+1], {Sl,i,k(t)}i∈T ,k∈{K+1,...,K+T}|

Ml, {Xi,Yi}i∈T , {Wl(J)}l∈[L+1])

−H({B̃l,i,j(t),Bl,i,j(t)}i∈H,j∈T , {hl(βk)−rl(βk)}k∈[M+1],

{Bl,i,k(t)}i∈T ,k∈[M+1], {Sl,i,k(t)}i∈T ,k∈{K+1,...,K+T}|

Ml, {Xi,Yi}i∈[N], {Wl(J)}l∈[L+1]) (189)

where (188) follows from the fact that there is a bijec-

tive mapping from any M + 1 evaluation points {hl(βk) −
rl(βk)}k∈[M+1] to a valid (feasible) set of local computations

{hl(αi) − rl(αi)}i∈[N]. For the first term in (189), we find

that,

H({B̃l,i,j(t),Bl,i,j(t)}i∈H,j∈T , {hl(βk)− rl(βk)}k∈[M+1],

{Bl,i,k(t)}i∈T ,k∈[M+1], {Sl,i,k(t)}i∈T ,k∈{K+1,...,K+T}|

Ml, {Xi,Yi}i∈T , {Wl(J)}l∈[L+1])

= H
(
{B̃l,i,j(t),Bl,i,j(t)}i∈H,j∈T ,

{
hl(βk)−

[∑

j∈[N]

λ
j−1
1 B

T
l,j,k(t) · · ·

∑

j∈[N]

λ
j−1
N−T B

T
l,j,k(t)

]T }
k∈[M+1]

,

{Bl,i,k(t)}i∈T ,k∈[M+1], {Sl,i,k(t)}i∈T ,k∈{K+1,...,K+T}|

Ml, {Xi,Yi}i∈T , {Wl(J)}l∈[L+1]

)
(190)

= H
(
{B̃l,i,j(t),Bl,i,j(t)}i∈H,j∈T ,

{
hl(βk)−

[∑

i∈[N−T]

λ
i−1
1 B

T
l,i,k(t) · · ·

∑

i∈[N−T]

λ
i−1
N−T B

T
l,i,k(t)

]T}
k∈[M+1]

,

{Bl,i,k(t)}i∈T ,k∈[M+1], {Sl,i,k(t)}i∈T ,k∈{K+1,...,K+T}|

Ml, {Xi,Yi}i∈T , {Wl(J)}l∈[L+1]

)
(191)

= H
(
{Bl,i,j(t)}i∈H,

j∈T
,
{
hl(βk)−

[∑

i∈[N−T]

λ
i−1
1 B

T
l,i,k(t) · · ·

∑

i∈[N−T]

λ
i−1
N−T B

T
l,i,k(t)

]T}
k∈[M+1]

,

{Bl,i,k(t)}i∈T ,k∈[M+1], {Sl,i,k(t)}i∈T ,k∈{K+1,...,K+T}|

Ml, {Xi,Yi}i∈T , {Wl(J)}l∈[L+1]

)
(192)

≤
(
T + (M + 1)

Nm

K

)(
1 +

T

N − T

)
dldl−1 log p (193)

where the last inequality follows from the fact that uniform

distribution maximizes entropy, and (192) follows from,

[∑
i∈[N−T] λ

i−1
1 B̃T

l,i,j(t) · · ·
∑

i∈[N−T] λ
i−1
N−T B̃T

l,i,j(t)
]T

= hl(αj)−
∑

k∈[M+1]

(
hl(βk)

−

[∑

i∈[N−T]

λ
i−1
1 B

T
l,i,k(t) · · ·

∑

i∈[N−T]

λ
i−1
N−T B

T
l,i,k(t)

]T)

∏

k′∈[M+1]\{k}

αj − βk′

βk − βk′

(194)

where hl(αj) corresponds to the local computation performed

by user j ∈ T , and that,
[
B̃l,1,j [s] · · · B̃l,N−T,j [s]

]
=

[∑
i∈[N−T] λ

i−1
1 B̃1,j [s] · · ·

∑
i∈[N−T] λ

i−1
N−T B̃l,N−T,j [s]

]

M−1 (195)

for all j ∈ [N], and s ∈ [dl−1], where B̃i,j [s] denotes the sth

column of B̃i,j(t), and M is the (N − T) × (N − T) MDS

matrix defined in (155) (hence invertible).

For the second term in (189), we find that,

H({B̃l,i,j(t),Bl,i,j(t)}i∈H,j∈T , {hl(βk)− rl(βk)}k∈[M+1],

{Bl,i,k(t)}i∈T ,k∈[M+1], {Sl,i,k(t)}i∈T ,k∈{K+1,...,K+T}|

Ml, {Xi,Yi}i∈[N], {Wl(J)}l∈[L+1])

≥ H({B̃l,i,j(t),Bl,i,j(t)}i∈H,j∈T , {hl(βk)− rl(βk)}k∈[M+1],

{Bl,i,k(t)}i∈T ,k∈[M+1], {Sl,i,k(t)}i∈T ,k∈{K+1,...,K+T}|

Ml, {Xi,Yi}i∈[N], {Wl(J)}l∈[L+1], {hl(βk)}k∈[M+1])

(196)

= H({B̃l,i,j(t),Bl,i,j(t)}i∈H,j∈T , {rl(βk)}k∈[M+1],

{Bl,i,k(t)}i∈T ,k∈[M+1], {Sl,i,k(t)}i∈T ,k∈{K+1,...,K+T}|

Ml, {Xi,Yi}i∈[N], {Wl(J)}l∈[L+1], {hl(βk)}k∈[M+1])

(197)

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

8232 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

= H({B̃l,i,j(t),Bl,i,j(t)}i∈H,j∈T ,{Bl,k(t)}k∈[M+1],

{Bl,i,k(t)}i∈T ,k∈[M+1], {Sl,i,k(t)}i∈T ,k∈{K+1,...,K+T}|

Ml, {Xi,Yi}i∈[N], {Wl(J)}l∈[L+1], {hl(βk)}k∈[M+1])

(198)

= H({B̃l,i,j(t),Bl,i,j(t)}i∈H,j∈T , {Bl,k(t)}k∈[M+1],

{Bl,i,k(t)}i∈T ,k∈[M+1], {Sl,i,k(t)}i∈T ,k∈{K+1,...,K+T})

(199)

= H

(
{B̃l,i,j(t),Bl,i,j(t)}i∈H,j∈T ,

{Bl,i,k(t)}i∈T ,k∈[M+1], {Sl,i,k(t)}i∈T ,k∈{K+1,...,K+T},
{[∑

j∈[N]λ
j−1
1 BT

l,j,k(t) · · ·
∑

j∈[N]λ
j−1
N−T BT

l,j,k(t)
] }

k∈[M+1]

)

(200)

= H

(
{B̃l,i,j(t),Bl,i,j(t)}i∈H,j∈T ,

{Bl,i,k(t)}i∈T ,k∈[M+1], {Sl,i,k(t)}i∈T ,k∈{K+1,...,K+T},
{[∑N−T

j=1 λ
j−1
1 BT

l,j,k(t) · · ·
∑N−T

j=1 λ
j−1
N−T BT

l,j,k(t)
] }

k∈[M+1]

)

(201)

= H

(
{B̃l,i,j(t),Bl,i,j(t)}i∈H,j∈T , {Bl,i,k(t)}i∈T ,k∈[M+1],

{Sl,i,k(t)}i∈T ,k∈{K+1,...,K+T},
{ [

Bl,1,k[s] · · · Bl,N−T,k[s]
]
M

}
k∈[M+1],s∈[dl−1]

)

(202)

= H

(
{B̃l,i,j(t),Bl,i,j(t)}i∈H,j∈T ,

{Bl,i,k(t)}i∈T ,k∈[M+1], {Sl,i,k(t)}i∈T ,k∈{K+1,...,K+T},
{ [

Bl,1,k[s] · · · Bl,N−T,k[s]
] }

k∈[M+1],s∈[dl−1]

)

(203)

= H
(
{Bl,i,j(t)}i∈H,j∈T ,

{Bl,i,k(t)}i∈T ,k∈[M+1], {Sl,i,k(t)}i∈T ,k∈{K+1,...,K+T},
{ [

Bl,1,k(t) · · · Bl,N−T,k(t)
] }

k∈[M+1]

)

(204)

= H({Bl,i,j(t)}i∈H,j∈T |{Bl,i,k(t)}i∈H,k∈[M+1])

+H({Bl,i,k(t)} i∈H,

k∈[M+1]

) +H({Sl,i,k(t)} i∈T ,

k∈{K+1,...,K+T}

)

+H({Bl,i,k(t)}i∈T ,k∈[M+1]) (205)

=
(
1 +

T

N − T

)(
T + (M + 1)

Nm

K

)
dldl−1 log p (206)

where the first inequality holds since conditioning cannot

increase entropy; (202) holds since the (N − T) × (N − T)
MDS matrix M defined in (155) is invertible, by letting

Bl,i,k[s] denote the sth column of Bl,i,k(t) for all i ∈
[N−T]; (203) holds since MDS matrices are invertible; (204)

holds since each element of the random masks are generated

independently; (206) follows from the fact that,

H({Bl,i,j(t)}i∈H,j∈T |{Bl,i,k(t)}i∈H,k∈[M+1])

=
∑

i∈H

H
({ ∑

k∈{K+1,...,K+T}

Sik(t)ρj,k

}
j∈T

)

=
∑

i∈H

H
({ [

Si,K+1[s] · · · Si,K+T [s]
]
Γ

}
s∈[dl−1]

)

(207)

=
∑

i∈H

H({Si,K+1[s], . . . ,Si,K+T [s]}s∈[dl−1]) (208)

where ρj,k is the Lagrange coefficient defined in (120), Sik[s]
denotes the sth column of Sik(t) for k ∈ {K+1, . . . ,K+T},
and Γ is the T × T MDS matrix as defined in (122) (hence

invertible). Finally, (206) follows from the entropy of uniform

random variables.

By combining (206) and (193) with (186) and (184),

we find for the last term in (112) that,

0 ≤ I({Xi,Yi}i∈H;M5(t)|M1,M2,M3,∪
t
t′=0M4(t

′),

∪t−1
t′=0M5,t′ , {Xi,Yi}i∈T , {Wl(J)}l∈[L+1])

=
∑

l∈[L+1]

I({Xi,Yi}i∈H; {B̃l,i,j(t),Bl,i,j(t)}i∈H,j∈T ,

Ml, {Xi,Yi}i∈T , {Wl(J)}l∈[L+1])

= 0 (209)

which completes the proof. □

APPENDIX D

COMPUTATION COMPLEXITY

Throughout the rest of our analysis, we use the fact

that interpolating a polynomial of degree κ (and evalu-

ating it at κ points) has a computational complexity of

O(κ log2 κ log log κ) [51]. We next present the per-user

computation complexity of CLOVER for the individual

components.

(Stage 1: Dataset Encoding) Generation of {X̃i,j}j∈[N]

requires evaluating a Lagrange polynomial of degree

K + T − 1 at N points, which has a complexity of

O(Ndm
K log2(K + T) log log(K + T)) per user.

(Stage 2: Label Encoding) Generation of {Ỹi,j}j∈[N]

requires evaluating a Lagrange polynomial of degree

K + T − 1 at N points, which has a complexity of

O(Ncm
K log2(K + T) log log(K + T)) per user.

(Stage 3: Model Initialization) Generation of

{W̃l,i,j(0)}j∈[N] requires evaluating a Lagrange polynomial

of degree K + T − 1 at N points, which has a per-user

computation complexity of O(
∑

l∈[L+1]
Ndldl−1

N−T log2(K +

T) log log(K + T)). Next, evaluating W̃l,i(0) has a

complexity of O(
∑

l∈[L+1]N(N − T)dldl−1

N−T) per user.

Overall, the total computation complexity of this stage

is O(
∑

l∈[L+1]
Ndldl−1

N−T log2(K + T) log log(K + T) +∑
l∈[L+1]Ndldl−1) per user.

(Stage 4: Gradient Computation) First, we analyze the

per-user computation complexity of the degree reduction oper-

ation with DLC from Section IV, for reducing the degree

of a polynomial f(·) of some degree M > K + T − 1,

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

LU et al.: SCALABLE MULTI-ROUND MULTI-PARTY PRIVACY-PRESERVING NEURAL NETWORK TRAINING 8233

where f(β1), . . . f(βK) ∈ F
n1×n2
p embed the K desired

computations as described in Section IV.

(Offline): The offline per-user computation cost con-

sists of: 1) O(n1n2
N

N−T log2M log logM) to compute the

encoded random matrices R̃i,j in (21) for users j ∈ [N];
2) O(n1n2

N
N−T log2(K + T) log log(K + T)) for computing

the encoded matrices Ri,j from (23) for users j ∈ [N];

3) O(N(N − T) n1n2

N−T) for evaluating R̃i from (24); 4)

O(N(N − T) n1n2

N−T) to evaluate Ri from (25). Overall, the

offline overhead is O(N
N−T n1n2 log2(K+T) log log(K+T)+

Nn1n2) per user.

(Online): The online per-user computation cost consists

of: 1) O(n1n2) for computing f(αi) − R̃i from (29);

2) O(n1n2M log2M log logM) for interpolating the degree

M polynomial φ(α) from (30); O(n1n2K) for the re-encoding

operation from (32). Overall, the online computation overhead

is O(n1n2M log2M log logM) per user.

As a result, the total per-user computation overhead of

degree reduction with DLC, including both online and online

phases, is given by,

O

(
n1n2

N

N − T
log2M log logM+

n1n2M log2M log logM + n1n2N

)
(210)

We next use (210) to analyze the computation overhead for

gradient computation. At each training round t ∈ {0, . . . , J −
1}, the per-user computation overhead for gradient computa-

tion consists of the following components.

Forward Propagation: The per-user computation

overhead of forward propagation consists of:

1) O(Nm
K

∑
l∈[L+1] dldl−1) to compute Z̃l,i(t) from (62);

2) O

(∑
l∈[L+1] dl

Nm
K (N

N−T + K + T) log2(K +

T) log log(K + T) +
∑

l∈[L+1] dl
Nm
K N

)
for the degree

reduction operation from (63), by letting M = 3(K +T − 1),
n1 = dl, and n2 = Nm

K in (210); 3) O(Nm
K

∑
l∈[L+1] dl)

for computing Ũl,i(t) from (65). Hence, the overall per-user

computation overhead for forward propagation is given as,

O

(
Nm

K

(∑

l∈[L+1]

dldl−1 +
∑

l∈[L+1]

dl(
N

N − T
+K + T)

log2(K + T) log log(K + T) +
∑

l∈[L+1]

Ndl

))
(211)

Backpropagation: The per-user computation overhead of

the backpropagation operation consists of the following:

1) O
(

Nm
K

(
c +

∑
l∈[L] dldl+1

))
to compute the error term

Ẽl,i(t) from (66); 2) O
(

Nmdl

K

(
N

N−T + K + T
)
log2(K +

T) log log(K+T)+
∑

l∈[L+1]
N2mdl

K

)
for the degree reduction

operation from (67), by letting M = 3(K + T − 1), n1 = dl,

and n2 = Nm
K in (210); 3) O(Nm

K

∑
l∈[L+1] dldl−1) for

computing the gradient from (68). Then, the overall per-user

computation overhead for backpropagation is,

O

(
Nm

K

(∑

l∈[L+1]

dldl−1 +
∑

l∈[L+1]

dl(
N

N − T
+K + T)

log2(K + T) log log(K + T) +
∑

l∈[L+1]

Ndl

))
(212)

Finally, the total per-user computation overhead for gradient

computation, including both forward propagation and back-

propagation is,

O

(
Nm

K

(∑

l∈[L+1]

dldl−1 +
∑

l∈[L+1]

dl(
N

N − T
+K + T)

log2(K + T) log log(K + T) +
∑

l∈[L+1]

Ndl

))
(213)

(Stage 5: Gradient Aggregation and Model Update) At each

training round t ∈ {0, . . . , J − 1}, the per-user computa-

tion overhead for model updating consists of the following

components.

(Offline): The offline per-user computation cost consists of:

1) O(
∑

l∈[L+1]
dldl−1

N−T N log2(K+T) log log(K+T)) for eval-

uating B̃l,i,j for all j ∈ [N]; 2) O(
∑

l∈[L+1](N−T)N dldl−1

N−T)

to compute B̃l,i(t) in (71); 3) O
(∑

l∈[L+1]
dldl−1

N−T N log2(K+

T) log log(K+T)+
∑

l∈[L+1]
dldl−1

N−T K
)

for evaluating Bi,j(t)
for all j ∈ [N], where the last term is due to evaluating the

sum
∑

k′∈[K] Bl,i,k′(t) in (70); 4) O(
∑

l∈[L+1]Ndldl−1) for

computing Bl,i(t).
(Online): The online per-user computation cost consists

of: 1) O(
∑

l∈[L+1] dldl−1) for evaluating Ĝl,i(t) from (77);

2) O(
∑

l∈[L+1] dldl−1(K + T) log2(K + T) log log(K + T))
for interpolating the degree 3(K+T −1) polynomial hl(α)−
rl(α) and evaluating the masked gradients hl(βk) − rl(βk)
from (79) for all k ∈ [K]; 3) O(

∑
l∈[L+1]Kdldl−1) for

evaluating the aggregated gradient G̃l,i(t) from (80); 4)

O(
∑

l∈[L+1] dldl−1) for the model update.

As a result, the total per-user computation overhead for

model updating, including both online and online phases,

is given as,

O

(∑

l∈[L+1]

dldl−1

N − T
log2(K + T) log log(K + T)

+
∑

l∈[L+1]

Ndldl−1 +
∑

l∈[L+1]

dldl−1(K + T) log2(K + T)

log log(K + T) +
∑

l∈[L+1]

Kdldl−1

)
(214)

= O

(∑

l∈[L+1]

dldl−1

(N

N − T
+K + T

)
log2(K + T)

log log(K + T) +
∑

l∈[L+1]

dldl−1N

)
(215)

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

8234 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

Finally, by combining all five stages, for J training rounds,

the total per-user computation complexity is,

O

(
(d+ c)

Nm

K
log2(K + T) log log(K + T)

+ J

(∑

l∈[L]

Nm

K
dldl−1 +

∑

l∈[L+1]

N2m

K
dl +

∑

l∈[L+1]

dl

(
dl−1

(216)

+
Nm

K

)(
N

N − T
+ K + T

)
log2(K + T) log log(K + T)

))

(217)

APPENDIX E

DETAILS OF THE MODEL UPDATING PROCESS

For tractability of the theoretical analysis, in our privacy

analysis from Section VII we consider a sufficiently large field

size and treat all training operations as finite field polynomial

operations. In our experiments, we instead leverage the secure

truncation mechanism described in Section VIII for the model

update in (83), to reduce the required field size in practice,

albeit with a slight loss in accuracy. In this section, we provide

the details on how one can represent all training computa-

tions using finite field polynomial operations only, consisting

of finite field addition and multiplications, where the main

challenge is the fact that that η
Nm ≪ 1 in (5). To do so, one

can select a learning rate η such that δ ≜ Nm
η ∈ Z+, which

is then mapped to the finite field Fp as described in App. E.

Then, the intended model update from (5) is given as,

Wl(t+ 1) = Wl(t)−
η

Nm
Gl(t)

= Wl(t)−
1

δ
Gl(t) ∀l ∈ [L+ 1] (218)

In the following, we show that the intended model

{Wl(t + 1)}l∈[L+1] from (218) can be obtained using

finite field polynomial operations only, at any training round

t ∈ {1, . . . , J − 1}.
Proposition 1: The model W1(t + 1), . . . ,WL+1(t + 1)

from (218) can be obtained using finite field polynomial

operations only, by defining a new error propagation rule that

replaces (66) as,

Ẽl,i(t) =

{
2(Z̃L+1,i(t)− δ

2L+1−1
t Ỹi(t)) if l = L + 1

2Z̃l,i(t)⊙ (W̃T
l+1,i(t)× Ẽl+1,i(t)) if l ≤ L

(219)

and a model update rule that replaces (83) as,

W̃l,i(t+ 1) = δ × δ3×2L+1−3
t W̃l,i(t)− δ

2L+1+1
t G̃l,i(t)

(220)

where

δt ≜

{
1 if t = 0

δ × δ3×2L+1−2
t−1 if t > 0

(221)

At any training round t ∈ {0, . . . , J − 1}, users can recover

the intended model from (218) via polynomial interpolation,

by collecting the local computations W̃l,i(t+1) in (220) from

any set of at least (K + T − 1) + 1 users, and then re-scaling

the decoded model as,

Wl(t+ 1)←
Wl(t+ 1)

δt+1
(222)

Proof: We next show that using the model update rule

from (220), one can recover the intended model from (218)

at any round t ∈ {0, . . . , J − 1}. We first define a virtual

variable,

Wl(t + 1)=δ × δ
3×2L+1−3
t Wl(t)− δ

2L+1+1
t Gl(t) ∀l ∈ [L + 1]

(223)

where Wl(0) ≜ Wl(0), Gl(0) ≜ Gl(0), and Wl(t + 1)
corresponds to the model obtained if the encoded model

W̃l,i(t + 1) from (220) is decoded at the end of round

t, by collecting W̃l,i(t + 1) from at any set of at least

(K + T − 1) + 1 users and using polynomial interpolation.

Accordingly, Gl(t) corresponds to the aggregated gradient

obtained if the encoded gradient G̃l,i(t) from (220) is decoded

using polynomial interpolation at round t, by collecting G̃l,i(t)
from any set of at least (K + T − 1) + 1 users, and then

aggregating the resulting gradients. We next show that,

Wl(t+ 1) =
Wl(t+ 1)

δt+1
∀t ∈ {0, . . . , J − 1}, (224)

hence the model update operation from (220) can perfectly

recover the intended model Wl(t+1) from (218). The proof

then follows by induction, where we provide the details next.

1. Base case (t = 0). For the base case, we observe

from (220) and (221) that,

Wl(1) = δWl(0)−Gl(0) ∀l ∈ [L+ 1], (225)

hence (224) holds for the base case t = 0,

Wl(1)

δ1
=

Wl(1)

δ
= Wl(0)−

1

δ
Gl(0) ∀l ∈ [L+ 1] (226)

2. Induction step (t > 0). Next, we assume that (224) holds

for an arbitrary round t − 1, and show that it also holds for

round t. We first note that,

Wl(t) = δtWl(t) ∀l ∈ [L+ 1], (227)

since (224) holds by assumption at round t−1, and then evalu-

ate the aggregated gradient {Gl(t)}l∈[L+1] at round t from the

forward and backpropagation of {Wl(t)}l∈[L+1]. For forward

propagation, let Zl(t) and Ul(t) denote the signal at layer

l ∈ [L + 1] before and after the activation function g(·), cor-

responding to the forward pass of the model {Wl(t)}l∈[L+1],

hence Ul(t) = g(Zl(t)) and Zl(t) = Wl(t)Ul−1(t). Let

Zl(t) and Ul(t) correspond to the forward pass of the true

model {Wl(t)}l∈[L+1] before and after the activation function

g(·) at layer l ∈ [L + 1], hence Ul(t) = g(Zl(t)) and

Zl(t) = Wl(t)Ul−1(t). From (227), we observe that,

Zl(t) = δ

∑l
l′=1

2l′−1

t Zl(t) = δ
2l−1
t Zl(t) ∀l ∈ [L + 1] (228)

and

Ul(t) = δ

∑l
l′=1

2l′

t Ul(t) = δ
2(2l−1)
t Ul(t) ∀l ∈ [L + 1] (229)

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

LU et al.: SCALABLE MULTI-ROUND MULTI-PARTY PRIVACY-PRESERVING NEURAL NETWORK TRAINING 8235

Next, for backpropagation, let El(t) denote the error at layer l
obtained from the error propagation operation from (219) for

the virtual model {Wl(t)}l∈[L+1],

El(t) =

{
2(ZL+1(t)− δ

2L+1−1
t Y(t)) if l = L+ 1

2Zl(t)⊙ (W
T

l+1(t)×El+1(t)) if l ≤ L

(230)

and El(t) denote the error propagation operation from (66)

for the true model {Wl(t)}l∈[L+1],

El(t)=

{
2(ZL+1(t)−Y(t)) if l = L+ 1

2Zl(t)⊙ (WT
l+1(t)×El+1(t)) if l ≤ L

(231)

From (227), (230), and (231), one can observe that,

El(t)=δ
(
∑L+1

l′=l
2l′)−1

t El(t) = δ2
L+2−2l−1

t El(t) ∀l ∈ [L+ 1]

(232)

Then, from (229) and (232), we observe the following

relationship between the gradient Gl(t) = El(t) × U
T

l−1(t)
corresponding to the virtual model Wl(t), and the gradient

Gl(t) = El(t)×UT
l−1(t) corresponding to the original model

Wl(t),

Gl(t) = δ2
L+2−3

t Gl(t) ∀l ∈ [L+ 1] (233)

from which we find that,

Wl(t+ 1)

δt+1
=
δ × δ3×2L+1−3

t Wl(t)− δ
2L+1+1
t Gl(t)

δ × δ3×2L+1−2
t

(234)

= Wl(t)−
1

δ
Gl(t) (235)

= Wl(t+ 1) (236)

where (235) follows from (227) and (233), respectively,

which completes the proof. □

REFERENCES

[1] P. Mohassel and Y. Zhang, ªSecureML: A system for scalable privacy-
preserving machine learning,º in Proc. IEEE Symp. Security Privacy

(SP), Jul. 2017, pp. 19±38.

[2] M. Ben-Or and A. Wigderson, ªCompleteness theorems for non-
cryptographic fault-tolerant distributed computation,º in Proc. 20th

Annu. ACM Symp. Theory Comput. (STOC), 1988, pp. 1±10.

[3] I. Damgård and J. B. Nielsen, ªScalable and unconditionally secure
multiparty computation,º in Proc. Annu. Int. Cryptol. Conf., 2007,
pp. 572±590.

[4] Z. Beerliová-Trubìniová and M. Hirt, ªPerfectly-secure MPC with linear
communication complexity,º in Proc. Theory Cryptogr. Conf., 2008,
pp. 213±230.

[5] M. Al-Rubaie and J. M. Chang, ªPrivacy-preserving machine learning:
Threats and solutions,º IEEE Secur. Privacy, vol. 17, no. 2, pp. 49±58,
Mar. 2019.

[6] V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye, D. Boneh, and
N. Taft, ªPrivacy-preserving ridge regression on hundreds of millions of
records,º in Proc. IEEE Symp. Secur. Privacy, May 2013, pp. 334±348.

[7] A. Gascón et al., ªPrivacy-preserving distributed linear regression on
high-dimensional data,º Proc. Privacy Enhancing Technol., vol. 2017,
no. 4, pp. 345±364, Oct. 2017.

[8] P. Mohassel and P. Rindal, ªABY 3: A mixed protocol framework for
machine learning,º in Proc. ACM SIGSAC Conf. Comput. Commun.

Secur., Oct. 2018, pp. 35±52.

[9] S. Wagh, D. Gupta, and N. Chandran, ªSecureNN: Efficient and private
neural network training,º IACR Cryptol. ePrint Arch., vol. 442, 2018.
[Online]. Available: https://eprint.iacr.org/2018/442

[10] Q. Yu, S. Li, N. Raviv, S. M. M. Kalan, M. Soltanolkotabi, and
S. A. Avestimehr, ªLagrange coded computing: Optimal design for
resiliency, security, and privacy,º in Proc. 22nd Int. Conf. Artif. Intell.

Statist., 2019, pp. 1215±1225.

[11] J. So, B. Güler, and S. Avestimehr, ªA scalable approach for privacy-
preserving collaborative machine learning,º in Proc. Adv. Neural Inf.

Process. Syst., Dec. 2020, pp. 1±24.

[12] J. So, B. Güler, and A. S. Avestimehr, ªCodedPrivateML: A fast and
privacy-preserving framework for distributed machine learning,º IEEE

J. Sel. Areas Inf. Theory, vol. 2, no. 1, pp. 441±451, Mar. 2021.

[13] S. Dutta, Z. Bai, H. Jeong, T. Meng Low, and P. Grover, ªA unified coded
deep neural network training strategy based on generalized PolyDot
codes for matrix multiplication,º 2018, arXiv:1811.10751.

[14] M. Aliasgari, O. Simeone, and J. Kliewer, ªPrivate and secure distributed
matrix multiplication with flexible communication load,º IEEE Trans.

Inf. Forensics Security, vol. 15, pp. 2722±2734, 2020.

[15] A. Shamir, ªHow to share a secret,º Commun. ACM, vol. 22, no. 11,
pp. 612±613, Nov. 1979.

[16] K. Bonawitz et al., ªPractical secure aggregation for privacy-preserving
machine learning,º in Proc. ACM SIGSAC Conf. Comput. Commun.

Secur., Oct. 2017, pp. 1±24.

[17] J. H. Bell, K. A. Bonawitz, A. Gascón, T. Lepoint, and M. Raykova,
ªSecure single-server aggregation with (poly) logarithmic overhead,º
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2020,
pp. 1253±1269.

[18] J. So et al., ªLightsecagg: A lightweight and versatile design for secure
aggregation in federated learning,º Proc. Mach. Learn. Syst., vol. 4,
pp. 694±720, May 2022.

[19] Y. Zhao and H. Sun, ªInformation theoretic secure aggregation with
user dropouts,º in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jul. 2021,
pp. 1124±1129.

[20] A. R. Elkordy, J. Zhang, Y. H. Ezzeldin, K. Psounis, and S. Avestimehr,
ªHow much privacy does federated learning with secure aggrega-
tion guarantee?º Proc. Privacy Enhancing Technol., vol. 2023, no. 1,
pp. 510±526, Jan. 2023.

[21] J. So, R. E. Ali, B. Guler, J. Jiao, and S. Avestimehr, ªSecuring
secure aggregation: Mitigating multi-round privacy leakage in federated
learning,º in Proc. AAAI Conf. Artif. Intell., 2023, pp. 1±24.

[22] M. Lam, G.-Y. Wei, D. Brooks, V. Reddi, and M. Mitzenmacher, ªGra-
dient disaggregation: Breaking privacy in federated learning by recon-
structing the user participant matrix,º in Proc. Int. Conf. Mach. Learn.,
2021, pp. 1±22.

[23] C. Dwork, F. McSherry, K. Nissim, and A. Smith, ªCalibrating noise
to sensitivity in private data analysis,º in Proc. Theory Cryptogr. Conf.,
2006, pp. 265±284.

[24] S. Samet, ªPrivacy-preserving logistic regression,º J. Adv. Inf. Technol.,
vol. 1, no. 1, pp. 88±95, May 2015.

[25] R. Shokri and V. Shmatikov, ªPrivacy-preserving deep learning,º in Proc.

ACM SIGSAC Conf. Comput. Commun. Security, 2015, pp. 1310±1321.

[26] M. Abadi et al., ªDeep learning with differential privacy,º in Proc. ACM

SIGSAC Conf. Comput. Commun. Security, 2016, pp. 308±318.

[27] M. Pathak, S. Rane, and B. Raj, ªMultiparty differential privacy via
aggregation of locally trained classifiers,º in Proc. Adv. Neural Inf.

Process. Syst. (NIPS), 2010, pp. 1876±1884.

[28] H. B. McMahan, D. Ramage, K. Talwar, and L. Zhang, ªLearning
differentially private recurrent language models,º in Proc. Int. Conf.

Learn. Represent., 2018, pp. 1±24.

[29] A. Rajkumar and S. Agarwal, ªA differentially private stochastic gradient
descent algorithm for multiparty classification,º in Proc. 15th Int. Conf.

Artif. Intell. Statist., 2012, pp. 933±941.

[30] B. Jayaraman, L. Wang, D. Evans, and Q. Gu, ªDistributed learning
without distress: Privacy-preserving empirical risk minimization,º in
Proc. Adv. in Neural Inf. Process. Syst., 2018, pp. 6346±6357.

[31] W.-N. Chen, A. Ozgur, and P. Kairouz, ªThe Poisson binomial mecha-
nism for unbiased federated learning with secure aggregation,º in Proc.

Int. Conf. Mach. Learn., 2022, pp. 3490±3506.

[32] W.-N. Chen, C. A. C. Choo, P. Kairouz, and A. T. Suresh, ªThe fun-
damental price of secure aggregation in differentially private federated
learning,º in Proc. Int. Conf. Mach. Learn., 2022, pp. 3056±3089.

[33] P. Kairouz, Z. Liu, and T. Steinke, ªThe distributed discrete Gaussian
mechanism for federated learning with secure aggregation,º in Proc. Int.

Conf. Mach. Learn., 2021, pp. 5201±5212.

[34] C. Gentry and D. Boneh, A Fully Homomorphic Encryption Scheme,
vol. 20. Stanford, CA, USA: Stanford Univ. Press, 2009.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

8236 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

[35] C. Gentry, ªFully homomorphic encryption using ideal lattices,º in Proc.

41st Annu. ACM Symp. Theory Comput. (STOC), 2009, pp. 168±178.

[36] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and
J. Wernsing, ªCryptoNets: Applying neural networks to encrypted data
with high throughput and accuracy,º in Proc. Int. Conf. Mach. Learn.,
2016, pp. 201±210.

[37] E. Hesamifard, H. Takabi, and M. Ghasemi, ªCryptoDL: Deep neural
networks over encrypted data,º 2017, arXiv:1711.05189.

[38] T. Graepel, K. Lauter, and M. Naehrig, ªML confidential: Machine
learning on encrypted data,º in Proc. Int. Conf. Inf. Secur. Cryptol.,
2012, pp. 1±21.

[39] J. Yuan and S. Yu, ªPrivacy preserving back-propagation neural network
learning made practical with cloud computing,º IEEE Trans. Parallel

Distrib. Syst., vol. 25, no. 1, pp. 212±221, Jan. 2014.

[40] H. Chabanne, A. de Wargny, J. Milgram, C. Morel, and E. Prouff,
ªPrivacy-preserving classification on deep neural network,º IACR Cryp-

tol. ePrint Arch., vol. 1, p. 35, Jul. 2017.

[41] P. Li, J. Li, Z. Huang, C.-Z. Gao, W.-B. Chen, and K. Chen, ªPrivacy-
preserving outsourced classification in cloud computing,º Cluster Com-

put., vol. 21, no. 1, pp. 277±286, Mar. 2018.

[42] A. Kim, Y. Song, M. Kim, K. Lee, and J. H. Cheon, ªLogistic regression
model training based on the approximate homomorphic encryption,º
BMC Med. Genomics, vol. 11, no. S4, p. 83, Oct. 2018.

[43] Q. Wang et al., ªPrivacy-preserving collaborative model learning: The
case of word vector training,º IEEE Trans. Knowl. Data Eng., vol. 30,
no. 12, pp. 2381±2393, Dec. 2018.

[44] K. Han, S. Hong, J. H. Cheon, and D. Park, ªLogistic regression on
homomorphic encrypted data at scale,º in Proc. Annual Conf. Innov.

App. Artif. Intell. (IAAI), 2019, pp. 1±27.

[45] R. Livni, S. Shalev-Shwartz, and O. Shamir, ªOn the computational
efficiency of training neural networks,º in Proc. Adv. Neural Inf. Process.

Syst., vol. 27, 2014, pp. 1±27.

[46] E. W. Cheney and W. A. Light, A Course in Approximation Theory,
vol. 101. Washington, DC, USA: American Mathematical Soc., 2009.

[47] M. H. Stone, ªThe generalized weierstrass approximation theorem,º
Math. Mag., vol. 21, no. 4, p. 167, Mar. 1948.

[48] X. Lu, H. U. Sami, and B. Güler, ªPrivacy-preserving collaborative
learning with linear communication complexity,º IEEE Trans. Inf. The-

ory, vol. 70, no. 8, pp. 5857±5887, Aug. 2024.

[49] J. Shao, Y. Sun, S. Li, and J. Zhang, ªDres-FL: Dropout-resilient secure
federated learning for non-iid clients via secret data sharing,º in Proc.

Adv. Neural Inf. Process. Syst., 2022, pp. 1±11.

[50] O. Catrina and A. Saxena, ªSecure computation with fixed-point num-
bers,º in Proc. Int. Conf. Financial Cryptogr. Data Secur. (FC), Tenerife,
Spain, Jan. 2010, pp. 35±50.

[51] K. S. Kedlaya and C. Umans, ªFast polynomial factorization and
modular composition,º SIAM Journal on Computing, vol. 40, no. 6,
pp. 1767±1802, 2011.

[52] Y. LeCun, C. Cortes, and C. Burges. (2010). MNIST Handwritten Digit

Database. [Online]. Available: http://yann.lecun.com/exdb/mnist

[53] A. Krizhevsky and G. Hinton, ªLearning multiple layers of features from
tiny images,º M.S. thesis, Citeseer, Dept. Comput. Sci., Univ. Toronto,
2009.

[54] O. Russakovsky et al., ªImageNet large scale visual recognition chal-
lenge,º Int. J. Comput. Vis., vol. 115, no. 3, pp. 211±252, Dec. 2015.

[55] G. G. Chrysos, S. Moschoglou, G. Bouritsas, J. Deng, Y. Panagakis, and
S. Zafeiriou, ªDeep polynomial neural networks,º IEEE Trans. Pattern

Anal. Mach. Intell., vol. 44, no. 8, pp. 4021±4034, Aug. 2022.

[56] G. G. Chrysos, S. Moschoglou, G. Bouritsas, Y. Panagakis, J. Deng,
and S. Zafeiriou, ªP±nets: Deep polynomial neural networks,º in Proc.

IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 7325±7335.

[57] G. G. Chrysos, M. Georgopoulos, J. Deng, J. Kossaifi, Y. Panagakis, and
A. Anandkumar, ªAugmenting deep classifiers with polynomial neural
networks,º in Proc. Eur. Conf. Comput. Vis., 2022, pp. 692±716.

[58] A. Dubey, F. Radenovic, and D. Mahajan, ªScalable interpretability via
polynomials,º in Proc. Adv. Neural Inf. Process. Syst., vol. 35, 2022,
pp. 36748±36761.

[59] E. A. Rocamora, M. F. Sahin, F. Liu, G. Chrysos, and V. Cevher, ªSound
and complete verification of polynomial networks,º in Proc. Adv. Neural

Inf. Process. Syst., vol. 35, 2022, pp. 3517±3529.

[60] Y. Cheng, G. G. Chrysos, M. Georgopoulos, and V. Cevher, ªMulti-
linear operator networks,º in Proc. Int. Conf. Learn. Represent., 2024,
pp. 1±24.

[61] J.-K. Zinzindohoué, K. Bhargavan, J. Protzenko, and B. Beurdouche,
ªHACL: A verified modern cryptographic library,º in Proc. ACM

SIGSAC Conf. Comput. Commun. Secur., Oct. 2017, pp. 1789±1806.

[62] T. Granlund. (2004). GNU MP: The GNU Multiple Precision Arithmetic

Library. [Online]. Available: http://gmplib.org/

[63] J. So, B. Güler, and A. S. Avestimehr, ªByzantine-resilient secure
federated learning,º IEEE J. Sel. Areas Commun., vol. 39, no. 7,
pp. 2168±2181, Jul. 2021.

[64] P. Feldman, ªA practical scheme for non-interactive verifiable secret
sharing,º in Proc. 28th Annu. Symp. Found. Comput. Sci. (SFCS), 1987,
pp. 427±438.

[65] P. Blanchard, E. M. E. Mhamdi, R. Guerraoui, and J. Stainer, ªMachine
learning with adversaries: Byzantine tolerant gradient descent,º in Proc.

Annu. Conf. Neural Inf. Process. Syst., 2017, pp. 119±129.

[66] M. Fahim and V. R. Cadambe, ªNumerically stable polynomially coded
computing,º IEEE Trans. Inf. Theory, vol. 67, no. 5, pp. 2758±2785,
May 2021.

Xingyu Lu received the Bachelor of Engineering degree from the Com-
puter Science and Information Technology Department, Zhejiang Gongshang
University, China, in 2019, and the Master of Science degree in robotics
(computer science) from the Khoury College of Computer Science and the
College of Engineering, Northeastern University, Boston, MA, USA, in 2021.
He is currently pursuing the Ph.D. degree with the Electrical and Computer
Engineering Department, University of California at Riverside, Riverside. His
research interests include private machine learning, distributed learning, and
federated learning.

Umit Yigit Basaran received the B.Sc. degree in computer science from
Ihsan Dogramaci Bilkent University, Ankara, Türkiye, in 2022. He is currently
pursuing the Ph.D. degree with the Department of Electrical and Computer
Engineering, University of California at Riverside, Riverside. His research
interests include federated and distributed machine learning, secure and private
computing, machine unlearning, and information theory.

BaËsak Güler (Member, IEEE) received the B.Sc. degree in electrical and
electronics engineering from Middle East Technical University (METU),
Ankara, Türkiye, and the Ph.D. degree from the Wireless Communications
and Networking Laboratory, The Pennsylvania State University, in 2017.
From 2018 to 2020, she was a Post-Doctoral Scholar with the University
of Southern California. She is currently an Assistant Professor with the
Department of Electrical and Computer Engineering, University of California
at Riverside, Riverside. Her research interests include information theory,
distributed computing, machine learning, and wireless networks. She received
the NSF CAREER Award in 2022 and serves as an Associate Editor for IEEE
TRANSACTIONS ON WIRELESS COMMUNICATIONS, in the area of artificial
intelligence and machine learning, and IEEE TRANSACTIONS ON GREEN

COMMUNICATIONS AND NETWORKING, in the area of green computing and
artificial intelligence.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

