8204

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

Scalable Multi-Round Multi-Party
Privacy-Preserving Neural
Network Training

Xingyu Lu, Umit Yigit Basaran™, and Basak Giiler™, Member, IEEE

Abstract— Privacy-preserving machine learning has achieved
breakthrough advances in collaborative training of machine
learning models, under strong information-theoretic privacy
guarantees. Despite the recent advances, communication bottle-
neck still remains as a major challenge against scalability in
neural networks. To address this challenge, this paper presents
the first scalable multi-party neural network training framework
with linear communication complexity, significantly improving
over the quadratic state-of-the-art, under strong end-to-end
information-theoretic privacy guarantees. Our contribution is
an iterative coded computing mechanism with linear commu-
nication complexity, termed Double Lagrange Coding, which
allows iterative scalable multi-party polynomial computations
without degrading the parallelization gain, adversary tolerance,
and dropout resilience throughout the iterations. While providing
strong multi-round information-theoretic privacy guarantees, our
framework achieves equal adversary tolerance, resilience to user
dropouts, and model accuracy to the state-of-the-art, while
reducing the communication overhead from quadratic to linear.
In doing so, our framework addresses a key technical challenge in
collaborative privacy-preserving machine learning, while paving
the way for large-scale privacy-preserving iterative algorithms
for deep learning and beyond.

Index Terms— Privacy-preserving machine learning, collabo-
rative training, information-theoretic privacy.

I. INTRODUCTION

RIVACY-PRESERVING collaborative machine learning
P(PPML) is a popular paradigm for joint training of
machine learning (ML) models across multiple data-owners
(users), without compromising the privacy of local data [1],
[2], [3], [4], [5], [6], [7], [8], [9]. Recently, information and
coding theoretic mechanisms has led to promising advances
in the design of PPML frameworks [10], [11], [12]. This
approach, known as privacy-preserving coded computing, first

Manuscript received 29 July 2023; revised 12 April 2024; accepted 5 August
2024. Date of publication 9 August 2024; date of current version 22 October
2024. This work was supported in part by OUSD (R&E)/RT&L under
Agreement WI911NF-20-2-0267, in part by NSF CAREER under Award
CCF-2144927, and in part by UCR OASIS Fellowship. An earlier version
of this paper was presented at the 2023 IEEE International Symposium
on Information Theory (ISIT’23) [DOI: 10.1109/ISIT54713.2023.10206617].
(Corresponding author: Bagsak Giiler.)

The authors are with the Department of Electrical and Computer Engineer-
ing, University of California at Riverside, Riverside, CA 92521 USA (e-mail:
x1u065 @ucr.edu; ubasa001 @ucr.edu; bguler@ece.ucr.edu).

Communicated by A. Sarwate, Associate Editor for Security and Privacy.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TIT.2024.34415009.

Digital Object Identifier 10.1109/TIT.2024.3441509

encodes the datasets and the model using a Lagrange interpo-
lation polynomial, through Lagrange Coded Computing (LCC)
[10]. The training computations are then performed using the
encoded datasets and model as opposed to the true datasets,
but as if they were performed on the true datasets. In doing
so, the encoding operation injects randomness and computa-
tional redundancy across the local computations performed
by different users, to provide strong information-theoretic
privacy guarantees and resilience to user dropouts. The addi-
tional randomness is reversible; after multiple training rounds,
the final model can be correctly recovered using polyno-
mial interpolation using the computations performed on the
encoded data. Accordingly, coded computing can provide
strong information-theoretic privacy guarantees for the sensi-
tive user data as well as resilience against user drop-outs, while
achieving an order-of-magnitude speed-up in the training time
compared to state-of-the-art cryptographic baselines [11], [12].

The major challenge against the scalability of such
information-theoretic PPML frameworks is their quadratic
communication complexity in the number of users. This is
due to the fact that interpolating a polynomial f of degree
deg(f) requires collecting the computation results from at
least N > deg(f)+1 users. On the other hand, the polynomial
degree grows exponentially with each multiplicative opera-
tion associated with gradient computations, causing a degree
explosion where the total number of users will no longer be
sufficient to recover the final model. To reduce the polynomial
degree without breaching privacy, users then need to carry
out an expensive degree reduction protocol, leading to a
quadratic communication overhead, preventing scalability to
larger networks. As a result, current large-scale PPML applica-
tions (beyond 3-4 users) with end-to-end information-theoretic
privacy guarantees, where users learn no information beyond
the final model, are applied to simpler logistic and linear
regression tasks, as opposed to more complex neural network
training.

To address this challenge, in this work we introduce
a privacy-preserving distributed neural network training
mechanism CLOVER (Collaborative private neural network
training), the first scalable information-theoretic PPML frame-
work with linear communication complexity for neural net-
work training. The key ingredient of CLOVER is a highly
efficient novel degree reduction mechanism for LCC, termed
Double Lagrange Coding (DLC), which reduces the quadratic

0018-9448 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

LU et al.: SCALABLE MULTI-ROUND MULTI-PARTY PRIVACY-PRESERVING NEURAL NETWORK TRAINING

communication overhead of degree reduction to linear, without
compromising privacy. To do so, we separate communication
into online (data-dependent) and offline (data-agnostic) com-
ponents. The former depends on the data, and can only
be carried out after training starts, whereas the latter is
independent from data, such as randomness generation for
coding, which can be carried out in advance when network
load is low, or in parallel with other components of training.
In doing so, we offload the communication-intensive opera-
tions with quadratic overhead to the offline phase, by trading
off the quadratic (point-to-point) communication with linear
(broadcast). Then, in the offline phase, we introduce a novel
randomness generation mechanism for LCC, which reduces
the communication volume via a layered coding mechanism
using MDS (Maximum Distance Separable) matrices.! The
total number of communicated variables is inversely propor-
tional to the number of users, resulting in a linear (amortized)
communication complexity.

In our theoretical analysis, we demonstrate the formal
information-theoretic privacy guarantees of CLOVER, as well
as the key performance trade-offs in terms of the commu-
nication complexity, robustness against user dropouts, and
adversary resilience. In a network of N users, we show that
CLOVER achieves an O(N) (linear) communication com-
plexity both offline and online for neural network training,
as opposed to the O(N?) (quadratic) online communication
complexity of conventional approaches, which, as a result, are
limited to simpler logistic and linear regression, as opposed
to neural networks, while achieving the same adversary and
dropout resilience. In our experiments, we also implement
CLOVER over a distributed multi-user network for image
classification, and demonstrate its numerical performance in
terms of the communication overhead, model accuracy, and
training time. Our contributions can be summarized as follows:

e We propose CLOVER, the first privacy-preserving
multi-party neural network framework with linear
communication complexity, under strong end-to-end
information-theoretic privacy guarantees.

« We introduce the first scalable degree reduction mecha-
nism for Lagrange Coded Computing (LCC) with linear
communication complexity, allowing scalable iterative
coded computations, which can open up further research
in privacy-preserving applications of iterative algorithms,
beyond machine learning.

« We present the formal information-theoretic privacy guar-
antees of CLOVER for end-to-end multi-round neu-
ral network training, and show that CLOVER cuts the
communication overhead while achieving equal adver-
sary resilience, model accuracy, and robustness to user
dropouts as the state-of-the-art.

II. RELATED WORK

Beyond LCC, notable coded computing mechanisms that
can be applied to decentralized machine learning tasks include
the generalized PolyDot codes [13], to enhance the resilience

Throughout the manuscript, an MDS matrix refers to the generator matrix
of an MDS code.

8205

of neural network training in the presence of error-prone
and unreliable nodes. Reference [14] extends the generalized
PolyDot codes to secure matrix multiplication, by introducing
secure generalized PolyDot codes for server-worker compu-
tation offloading. In this setting, a trusted server offloads
encoded computations to multiply two sensitive matrices to
a set of honest-but-curious workers. In doing so, a novel
secure coded computing mechanism is proposed to allow
flexible communication loads, while preserving the privacy
of sensitive matrices. Different from the server-worker data
offloading setting, our focus is on the collaborative learning
setting without a trusted party, in which no party can observe
the datasets of other parties, hence the security of the datasets
and intermediate model parameters should also be preserved
during encoding.

Beyond coded computing, there are three complemen-
tary approaches to PPML: 1) Secure Multi-party Computing
(MPC), 2) Differential Privacy, 3) Homomorphic Encryption.
Secure MPC protocols for PPML build on a cryptographic
primitive known as secret sharing [15], where parties inject
randomness to sensitive data before sharing it with others,
and then the training computations are performed on the
secret shared data [2], [3], [4]. The randomness is reversible;
after multiple training rounds, parties can recover the true
model as if it was computed on the original data, by using
the computations performed on secret shared data. In doing
so, secure MPC protocols can preserve model accuracy and
strong information-theoretic privacy [6], [7], [8], [9]. On the
other hand, two challenges hinder scalability to larger net-
works beyond 3 — 4 users: 1) they do not benefit from
parallelization and distributed implementation for the compu-
tation load of training, in particular, the computation load at
each user is as high as centralized training, where the local
datasets of all users are pooled at a single location, 2) they
require extensive interaction and communication between the
users.

As a result, current secure MPC frameworks are primarily
used on a per-round basis during training, as opposed to end-
to-end multi-round training. This is known as secure aggre-
gation in federated and distributed learning, where parties
perform training locally on their local datasets, and then the
local updates (e.g., local gradients) are aggregated using a
secure MPC protocol, coordinated by a central server. In doing
so, parties learn the aggregate (sum) of local gradients/models
after each (global) training round, without observing them in
the clear [16], [17], [18], [19]. On the other hand, secure
aggregation reveals the aggregated gradients and the updated
model after each training round, and privacy degrades as the
number of rounds increase [20]. Moreover, secure aggregation
protocols are vulnerable to multi-round privacy attacks [21],
[22]. In contrast, in this work our focus is on end-to-end
multi-round PPML, in which users can only learn the final
model at the end of training, after multiple (global) training
rounds, and no intermediate model or gradient can be revealed,
even in aggregated form, at any intermediate training round.
In doing so, CLOVER reveals no intermediate model or
gradient during training, preventing such multi-round privacy
degradation throughout the training.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

8206

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

TABLE I
LI1ST OF NOTATIONS

Total number of users.
The set of honest users.

NH

h
IoagNZRZ

The set of adversarial users.

Maximum number of adversaries.

Maximum number of user dropouts at any given training round.
Number of features for a given data sample.

Number of classes for each data sample.

Number of local data samples held by each user i € [N].

X; d x m matrix denoting the local dataset (features) of user i € [N].
Y; ¢ X m matrix denoting the local labels of user i € [N].
X=|X; - XN d X N'm matrix denoting the local datasets (features) from all N users.
Y=|Yy - Yn ¢ X Nm matrix denoting the collection of the local labels from all N users.
K Parallelization degree.
L Number of hidden layers in the neural network.
d; Number of neurons at layer [€ [L + 1], with dy =d and dp 41 = c.
Wi (1) True model parameters for layer / € [L + 1] at training round ¢.
G (1) True gradient parameters for layer / € [L + 1] at training round ¢.
X; Encoded dataset (features) for user i € [N].
Y; Encoded labels for user i € [N].
Wl,i(t) Encoded model at user i € [N] for layer / € [L + 1] at round z.
Gy,i (1) Encoded gradient at user i € [N] for layer [€ [L + 1] at round z.
Fp Finite field of integers modulo a large prime p.
n Learning rate.
J Total number of training rounds.

Differential Privacy (DP) is a noisy release mechanism
which protects the privacy of personally identifiable informa-
tion by injecting irreversible noise during training. Beyond
secure MPC and information-theoretic PPML frameworks,
where the final model is revealed to the users, DP can further
prevent privacy leakage from the final model, such that an
adversary who has access to the final model cannot backtrack
an individual’s sensitive data [23], [24], [25], [26], [27], [28],
[29], [30]. In doing so, DP leads to an inherent accuracy-
privacy trade-off; stronger privacy guarantees require a higher
noise level. In distributed settings, the noise accumulates,
degrading model privacy. As a result, recent DP mechanisms
have been integrated with information-theoretic PPML frame-
works, which is known as distributed DP, to reduce the amount
of noise accumulated in distributed settings, and increase
model accuracy [31], [32], [33]. Though beyond the scope of
our current work, we note that our approach can in principle
also be combined with and benefit DP, which is an interesting
future direction.

Homomorphic Encryption (HE) protocols allow computa-
tions to be performed on encrypted data [34], [35], [36],
[37], [38], [39], [40], [41], [42], [43], [44]. In doing so,
they can tolerate a larger number of adversaries compared
to secure MPC. The corresponding trade-off is that adver-
saries have bounded computational power, as opposed to
information-theoretic frameworks where adversaries can have
unbounded computational power. In addition, privacy guar-
antees are based on computational hardness assumptions,
and stronger privacy guarantees require larger encrypted
data size, increasing the computation load per user. As a
result, HE is primarily utilized for inference tasks in
machine learning, as opposed to computationally-intensive
training.

III. PROBLEM FORMULATION
A. Notation and Preliminaries

We first introduce the notation that will be used throughout
the paper. In the following, x denotes a vector, and X stands
for a matrix. X denotes a set with cardinality |X|, whereas
[N] represents the set {1,...,N}. XT denotes the matrix
transpose, whereas tr(X) denotes the trace of X, and X[s]
denotes the s*" column of X. ||X|r denotes the Frobenius
norm, and © is the Hadamard product. IF, denotes the finite
field of integers modulo a large prime p.

Finally, [z]; denotes the secret sharing of a secret « by using
Shamir’s T-out-of-N Secret Sharing (SSS) protocol [15]. SSS
embeds a secret z in a degree T' polynomial,

flay=z+ar +...+a’rp (1)

where each coefficient {ry},c[r] is generated independently
and uniformly at random from F,. Then, user i € [N]
receives a secret share denoted as [z]; = f(a;). SSS provides
information-theoretic privacy for the secret against any set of
T colluding users. The secret x can be reconstructed from any
collection of T'+ 1 shares using polynomial interpolation, but
no information can be revealed from any group of 7" or fewer
shares. Table I provides the list of key notations used in the

remainder of our paper. We next introduce our system model.

B. Multi-Party Neural Network Training

We consider a collaborative neural network training task
in a network of N users. Our framework is bound to finite
field operations, where all training operations are carried out
in a finite field IF), of integers modulo a large prime p. Similar
to [1] and [11], the datasets are represented in the finite field as
described in App. A. User ¢ holds a local dataset represented

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

LU et al.: SCALABLE MULTI-ROUND MULTI-PARTY PRIVACY-PRESERVING NEURAL NETWORK TRAINING

by a matrix X; € ngm, where the k" column denotes the
feature vector for a single data sample &k € [m], m denotes the
number of local data samples held by each user,” and d denotes
the number of features for each sample. The corresponding
labels are represented by a binary matrix Y; € F;*™ for
user i € [N], where the k" column is the binary one-hot
label vector for data sample k& € [m], and ¢ is the number
of classes. The dataset and labels across the entire network
are represented by X £ [Xl XN] €]FgXNm and Y £
[Y1 YN] EFgXNm.

For the neural network architecture, we consider a polyno-
mial neural network as given in Fig. 1, with L hidden layers,
along with a final classification layer denoted by layer L + 1,
and quadratic activation functions g(z) = x? along with mean
squared error loss [45]. The model parameters connecting layer
I — 1 to layer | are denoted by a matrix W; €]Fg’X R
where d; is the number of neurons at layer [€ [L + 1], with
do £ d, and d,1 = c. The input and output of the activation
function at layer [€ [L + 1] is denoted by Z; € FngN ™ and
U, € leXN ™ respectively, where,

Z, 2 W,U,_,, 2
such that Uy £ X, and
U, £g(Z) VielL], 3)

where the activation function g(-) is applied element-wise
in (3). The goal is to learn the model parameters that minimize
the empirical loss function,

min LAC(VVh...,VVLJA;}LY)

Wi,..., Wi, =
b P YL argwl,.‘.,wLH Nm
“4)

where

L:(Wla v 7WL+1;X7Y) £ HZL+1 _YH%V

such that Z 4, €]F;XN ™ is the output of the neural network
at layer L + 1. Training is carried out iteratively via gradient
descent. At each training round ¢, users compute a gradient,

Gi(t) 2 VL(Wy,...,Wr1;X,Y)

for layer [€ [L + 1] by using the current state of the
model Wy(t),..., Wr1(t). After computing the gradient,
the model is updated for the next training round,
Wﬁ+n:wmf§%Qm
where W (t) denotes the estimated model parameters for
layer [at training round ¢, and G(¢) denotes the aggregated
gradient across all Nm data samples for layer [. We consider a
decentralized communication topology without a central server
as illustrated in Fig. 2. At each training round, up to D users
may drop out due to various reasons such as poor wireless
connectivity, low battery, or device unavailability.

Vie[L+1] ()

2For ease of exposition, we consider an equal number of local data samples
held by each user. Without loss of generality, our techniques can also be
extended to the scenario when the number of samples held by each user is
different.

8207
layer 2 layer L
layer 1 layer L + 1
W, e]Fi”d‘ W, e]Fzr,xdr.,.
W, e]F;f‘x‘l Wi €]F;Xdﬂ
7 N N5 >

X X% ’

S O AN

. NSRBI KRS
N\

7\ N\

dataset X eFg*N™

Z, =W, X Z,=W,U; Z, =W Up
Uy =g(Z1) Uz=g(Z2) UL=9(ZL)
Fig. 1. Neural network model.
local dataset X User 1 User 2 X,
local labels Yy = v,

D dropout users

User V
Xy

LS

T colluding adversarial users

Fig. 2. Multi-party collaborative learning setup. User ¢ € [IN] holds a local
dataset X;, along with the labels Y;.

Remark 1: Polynomial neural networks are primarily moti-
vated by the Stone-Weierstrass polynomial approximation the-
orem [46]. In particular, for any continuous function f(x) on
a closed interval = € [a,b], for any € > 0, there exists a
polynomial f(z) such that |f(z) — f(z)| < e. The result can
also be extended to multivariate polynomials [47].

C. Threat Model and Information-Theoretic Privacy

We consider an honest-but curious adversary model, where
adversaries follow the protocol but try to obtain further infor-
mation about the local datasets of honest users, using the
messages exchanged throughout the protocol, which is the
most common threat model in PPML [1], [6], [7], [11]. From
N users, up to 1" users are adversarial, who may collude with
each other. The set of adversarial and honest users are denoted
by 7 and H, respectively.

Our focus in this work is on end-to-end information-
theoretic privacy, where adversaries learn no information about
the local datasets of honest users, beyond the final model [1],
[10], [11]. This condition can formally be stated as follows,

I{X, Y aps M X, Yitier, {Wi(J) hiej41)) =0
(6)
for all 7 such that |7| < T, where J is the total number

of training rounds, and M7 denotes the collection of all
messages received or generated by the adversaries.

D. Main Problem

In this work, our goal is to develop scalable mechanisms
to train the neural network model Wy, ..., W, from (4)
under the information-theoretic privacy guarantees from (6).

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

8208

The conventional approach for model training with end-to-end
information-theoretic privacy is to leverage a combination of
LCC and Shamir’s Secret Sharing (SSS) [11]. LCC enables
reducing the computational load for training, such that each
user performs training on an encoded dataset whose size is
only (1/K)* of the true dataset X, where K quantifies the
degree of parallelization. As the network size N grows, one
can select a larger K for faster training. On the other hand,
SSS enables secure encoding of the datasets and model for
LCC, to prevent users from learning the true model and the
datasets of other parties during encoding.

This approach can be applied to neural network training
through the following steps. Initially, each user i € [IN] secret
shares its local dataset X; € IE‘ZX"’ using SSS, by sending
a share [X;]; € F&*™ to user j € [N]. User j concatenates
and partitions the received shares into K equal-sized shards

[[X4]; Xnl;] = [Xil; [Xk];]. and sends to
each user ¢ € [N] an encoded matrix,
< < o — By
[Xil; = Z Xkl H m
ke[K] ke[K+T\{k} "k~ Ik
K+T 5
— B
+ > Vi II ﬁ e
k=K+1 ke[K+T\{k} F ¥

dx Nm .
where Vgy1,...,Vgyr € IE",,X % are T uniformly random
matrices secret shared by a trusted crypto-service provider.
Upon receiving {[X;];};e[n]. user i recovers the encoded
dataset X; using polynomial interpolation. The encoded

o dx &m

dataset X; € F,, can be viewed as an interpolation point
of a degree K + T — 1 Lagrange polynomial,

_ a — DOy
-y I 5%
ke[K] k'e[K+TN\{k}
K+T a—p
+ Z Vi H ﬁﬂk,)
k=K+1 k' e[K+T)\{k} g g

such that X; = z(q;) for all i € [N].
Lemma 1 ([10], [11]): The Lagrange interpolation poly-

nomial z(«) from (7) combines K shards Xi,...,Xg €
Nm
sz % of dataset X € FZXN ™ along with 7" random matrices

Nm

Vii1,.-s VkyT €]FZXT, and ensures that the encoded
datasets reveal no information about the true datasets of the
honest users even if up to 7' adversaries collude, which can
be formally stated as,

I({Xiiers (X Yier, (Xl (Xl boere,, {Xily, (Xl } i€T,
JET JEIN]

{IVili}ier keqrs1,...kemi{Xi, Yitier, {Wi(J) hicip417) =0

where {[X,];, [Xi];}ienjer are the secret shares
sent from honest users to the adversaries using SSS,
{[Xilj, [Xi];}ieT jein denote the secret shares generated by
the adversaries, and {[V];}je7 ke{x+1,....k+1} denote the
secret shares of the random matrices Vg 1,..., Vg1, sent
from the crypto-service provider to the adversaries.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

In addition to the encoded dataset, each user ¢ € [N] also
holds an encoded model,

Wit =) Wit 11 o1 = b
ke[K] k' €[K+T\{k} Br = P
K+T)
+ > Qe I 0= Oy e (4]
R e O
where Wi(t),...,Wp;1(t) denote the current state
of the model parameters at training round ¢, and
Qur+1,-- - Quisr € Fp dixdi-1 are T uniformly random

matrices. The encoded model WM() can be viewed as
an interpolation point of a degree K + T — 1 Lagrange
polynomial,

- Y wi] o= B
ke[K] lde[K—&-T]\{k} B = B
K+T Ny
+ > Qlk 11 g ﬁ’“ vie[L+1]
k=K+1 e[K+T\{k} k!

where W ;(t) = wy (o).

Using the encoded dataset and model, users then compute
the gradient through forward and backward propagation. Dur-
ing forward propagation, each user i € [N] initially computes
the multiplication Wy ;(¢)X; from (2) for the first layer
I =1, which can be viewed as an evaluation point of a degree
2(K +T — 1) polynomial,

fla@) = wi(a)z()

o — ’
=Y WX] (6 7%’“) 4o (8)
KelK] elk+T\ry F TR
where the local computation of user ¢ is given by,

Flow) = Wyi(H)X; € Fo % ©)
and the secret computations for the K shards X, ..., X of
the dataset X are given by,

d
F(B) = Wi (DX, € F2F vk e [K) (10)

As illustrated in Fig. 3, the polynomial degree has increased
from K + 7T — 1 to deg(f(e)) = 2(K +T — 1) in (8) due
to the multiplication operation. As a result, after L layers,
the degree of the resulting polynomial at layer L + 1, where
WL+1 () X g Wi i(t) x g(...g(Wq,(t)X;))) is the local
computation of user ¢, will be lower bounded by 2L (K+T-1),
leading to a degree explosion as illustrated in Fig. 4. Poly-
nomial degree will further increase during backpropagation,
and after each training round. After J rounds, the final model
Wi(J),...,Wry1(J) is decoded by using polynomial inter-
polation. As interpolating any polynomial f requires collecting
the computation results from deg(f) + 1 users, the final
model cannot be recovered if the total number of users is
N-D<Jx28K+T—1)+1.

To avoid a degree explosion, conventional approaches
reduce the degree after each multiplication operation by uti-
lizing SSS. To reduce the degree of the polynomial in (8)
from 2(K + T — 1) back to K + T — 1, each user can

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

LU et al.:

dx Nm o

XlelF
=]\, degree K +T — 1

Xy
User N E [f(l]d % User 2
User 4 § User 3
(a) Dataset encoding.
= f(on) = Wi ()X

User 1 (=
e degree 2(K +7 —1)

User 2
b f(02) = Wia(D)Xo

User 3

User N E

User 4 @ %
W)Xy flaz) = Wls(t)ii

(b) Gradient computation.

flag) =

Fig. 3. Dataset encoding and gradient computation at user 1 using SSS.
Initially, each user j € [IV] sends a secret share [X1]; of an encoded dataset
X to user 1. Upon receiving {[X1];};¢[n], user 1 recovers the encoded

dataset)~(1. Using the encoded dataset and model, users compute the gradient.
The polynomial degree increases with each multiplication operation.

send a secret share [Wl,i(t)ii]j of its local computation
Wu(t)f(l to user j € [IN], which has a total communication
overhead of O(NE) across the [N users. After receiving the
shares {{W1 ;(t)X;];}icz from any set ¢ € 7 of |Z|
2(K+T — 1)+ 1 users, user j € [N] can decode a secret
share (W ()X]; of the true computation W (¢)X, for each
shard k € [K] using polynomial interpolation,

< Bk — o
WiXel; = > (WX, [] o, D
ieT k’eI\{}
Then, by using the secret shares {[W1(¢)Xp];}re(x

from (11), users can re-encode the true computations
{W1 ()X} rer) using a degree K + T — 1 (lower-degree)
Lagrange interpolation polynomial for the next layer. To do
so, each user j € [N] sends an encoded matrix,

Fed= S WXl [5
KelK] welK+T\{k) R T K
K+T 475]?
2l I 5= @
k=K+1 k'e[K+T)\{k}
leNm

to user ¢ € [N], where Agyi1,...,Axir € TFp
are uniformly random matrices secret shared by the crypto-
service provider. The total communication overhead of
sending the secret shares from (12) is also quadratic
O(N?) across the N users. After receiving [f’(a;)]; from
any set j € 7' of |[Z'| = K + T — 1 users, user 4 can recover

SCALABLE MULTI-ROUND MULTI-PARTY PRIVACY-PRESERVING NEURAL NETWORK TRAINING

8209
the encoded computation,
oy — ’
Z Walt H Br — g];/
ke[K] k’e[K+T]\{k}
K+T 0 — B
+ > A]I 751 — gk, (13)
k=K+1 Ke[K+TI\{k} F 7k

using polynomial interpolation. f’(c;) can be viewed as an
interpolation point of a degree K + T — 1 (lower-degree)
Lagrange polynomial f’(«) at o = «;, where the true

computations corresponding to the K shards X;,...,Xx of
the dataset X are given by,
F'(Br) = W)X Vk € [K] (14)

In doing so, the secret computations {W1(¢)Xj}re(x) are
transferred from a polynomial f(«) of degree deg(f) =
2(K +T — 1) to a Lagrange polynomial f’(a) of degree
deg(f') = K + T — 1. During gradient computation, degree
reduction should be performed after each layer during forward
and backward propagation. A diagram illustrating the gradient
computation using the encoded dataset and model is presented
in Fig. 5. On the other hand, decoding and re-encoding the K
secret computations at each layer | € [L + 1] as in (11)
and (13) has a quadratic O(N?) communication complexity
across the NN users. As a result, current applications are
limited to simpler linear and logistic regression tasks [11],
[48], as opposed to neural network training. Our goal is to
address this challenge, where we ask,
e Can one train a neural network to solve (4) with
linear communication complexity, under the information-
theoretic privacy guarantees from (6)?

E. This Work

To address this challenge, in this work we propose
CLOVER, a privacy-preserving neural network training
framework with linear communication complexity. Our key
contribution is a scalable privacy-preserving degree reduction
mechanism to enable successive Lagrange coded computa-
tions, which we term as Double Lagrange Coding (DLC).
Unlike conventional approaches, our degree reduction mech-
anism incurs only a linear communication overhead O(N) in
the number of users, as opposed to quadratic O(N?).

This mechanism takes as input evaluations of a high degree
polynomial f(«) distributed across the N users, where f(«;)
is the coded computation locally evaluated by user i, and
f(Bk) for k € [K] denotes the K secret computations, such
as the forward propagation operations f(3) = Wi (t)X
from (8) corresponding to the K shards Xi,.... X of
the true dataset X. Our framework then re-encodes the K
secret computations {f(5x)}re[x) by using a lower degree
polynomial, without revealing their true values to any user.
This is done by decoupling communication into online (data-
dependent) and offline (data-agnostic) phases, and offloading
the communication-intensive operations to the offline phase,
by trading-off quadratic (point-to-point) communications with
linear (broadcast). To reduce the degree of the polynomial
f(a) from (8), two Lagrange encoded random masks are

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

8210 IEEE

layer 2
Woi(t)

TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

layer L
layer L+ 1

encoded model

g

S\
N
0

X
5

N
)

<

>

273

I

<0
/p

/]
()

% Q{
LRI

/

|
S 9
e

K

5

N
IS
Soy

?"

%

encoded dataset -
Z

polynomial degree K +T7 -1 >2(K+T-1)

Fig. 4. Tllustration of degree explosion during forward propagation. The d

>22(K+T—1)

5 cex Nm
ZL+1 G]Fp K

Zr; — UL,

>ol(k+1T-1)

2 — Uy

ataset and model are initially encoded using a degree K 4+ 7" — 1 polynomial.

The encoded dataset at user ¢ € [N] is denoted by ii, whereas the encoded model parameters connecting layer [— 1 to layer [is denoted by Vvlyi(t) for
I € [L + 1]. The degree grows after each multiplication operation, leading to an exponential growth as the number of layers and training rounds increase.

Encoded model Wl,z‘(t) VA\/’gyi(t) WL+1,i(t)
Forward propagation
= Encoded
2 dataset \ \/
e S
g ~ degree d de =
8 - egree .. gree g
é X; layer 1 reduction ™ layer 2 reduction| * layer L+1 reduction 5
g Ef
- =]
ke £
5 +~
) I::I degree degree d s
® egree)
@) layer L+1 reduction _> reduction —>layer 1 reduction 8
-
@
Backpropagation
Model update VVL_,_M(L‘ +1) VVL_,i(t +1) Wl,i(t +1)

Fig. 5. Diagram of gradient computation and degree reduction steps during training. Each user i € [N] holds an encoded dataset X;, and an encoded model
Wi i(t),..., Wri1,(t) at training round ¢. The gradient is then computed through forward and backward propagation of the encoded dataset and model.
After each layer | € [L + 1], a degree reduction operation is carried out to reduce the polynomial degree back to K + T — 1 to avoid a degree explosion.

generated for each user i € [N] in the offline phase. The
first one is the encoded random matrix R,

>

kE[2(K+T—1)+1]

a; — B

Br — B
(15)

R; = Ry

K €[2(K+T—1)+1]\{k}

which can be viewed as an interpolation point of a degree
2(K + T — 1) (higher degree) Lagrange polynomial ¢(«)
where ¢(a;) = Ry, and Ry, ..., Rogir—1)41 € lex K
are 2(K +T —1) + 1 uniformly random matrices. The second
one is the encoded matrix R;,

_ o; — ’
R-Y R [5
ke[K] ke[K+TN\{k} F Tk

K+T A o — Bk’ 6

+ Z k H B — B (16)
k=K+1 ke[K+T)\{k} "

which can be viewed as an interpolation point of a degree
K + T — 1 (lower degree) Lagrange polynomial ¢)(«) where
Y(a;) = Ry, and A q,..., A7 € FngNTm are T
uniformly random matrices. As we demonstrate in the fol-
lowing section, the amortized communication complexity for
generating R; and R; can be made linear O(N) in the
number of users, by reducing the communication volume to
be inversely proportional to the number of users.

In the online phase, the randomness {R;};c(n) is used
to decode a masked version of the true computations
{W1(t)Xy)}re[x). To do so, each user broadcasts f(a;) —
R,;, where the local computation f(c;) is masked by the
randomness R;. From (15), f(a;) — R; can be viewed as
an interpolation point of a degree 2(K + T — 1) polynomial
f(a) = é(a), where f(a;) —R; = f(a;) — ¢(a;). Then, after
receiving f(a;) — R, from any set of 2(K +7T — 1)+ 1 users,
users can decode f(0))— Ry using polynomial interpolation,
where the true computation f(3y) = W ()X}, is masked

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

LU et al.: SCALABLE MULTI-ROUND MULTI-PARTY PRIVACY-PRESERVING NEURAL NETWORK TRAINING

by the random matrix Ry, for each k € [K]. Then, the second
matrix R; is used to re-encode the true computation W (t)Xk
using a lower-degree Lagrange polynomial. This is done by
embedding the masked computations W1 ()X, — Ry, in a
degree K +T —1 polynomial, while simultaneously cancelling
the additive randomness R as follows,

J— o — / _
flog)= Y WiXe—Rix)] ﬁgk, +R,
ke[K] ke[K+T)\(k} 7K 7k
(17)
- Y WX] @i — B
. Br — Brr
€[K] ke[K+T\{k}
+ Z Ay H ﬂ gk
ke{K+1,..,K+T} Ke[K+T\{k} M
(18)

Doing so enables Lagrange coded computations for gradient
computations in the subsequent layers, while avoiding a degree
explosion due to the increasing number of layers and training
rounds. Unlike the conventional approach from (13) using
SSS, the communication complexity for re-encoding the true
computations using a lower degree Lagrange polynomial is
now linear O(N). By leveraging DLC, we then propose a
privacy-preserving neural network training framework where
DLC is utilized to prevent the degree explosion during gradient
calculations. In the following, we describe the individual steps
of DLC.

IV. DOUBLE LAGRANGE CODING (DLC)

In this section, we introduce our communication-efficient
degree reduction mechanism, DLC, for privacy-preserving iter-
ative polynomial computations. DLC generates two Lagrange
interpolation polynomials; a higher degree polynomial to
decode a masked version of K secret computations, and a
lower degree Lagrange polynomial to re-encode them. The
K secret computations from the higher degree polynomial
are then transferred to the lower degree polynomial without
revealing their true values, while incurring linear communi-
cation complexity. In doing so, we leverage MDS matrices
for randomness generation, also known as hyperinvertible
matrices [4].

Consider a polynomial f(-) of degree deg(f) = M for some
M > K+T—1, where f(f1),..., f(Bx) € F**"* represent
the K secret computations, e.g., gradient computations for K
data points, for some ny,ne € Z;, and f(«;) is the local
coded computation performed by user ¢ € [N]. DLC then
generates a new (low degree) Lagrange polynomial f'(-) of
degree K + T — 1, such that f'(8;) = f(Bk) are the secret
computations for k € [K], and f'(0) € F**"2 are uniformly
random matrices for all k € {K +1,..., K +T}. At the end,
each user i € [N] only learns an evaluation point f’(c;),
without learning any information about the true computations
{f'(Bx)}keix)- As such, the new (low degree) polynomial
preserves the K desired computation results from the old
(higher degree) polynomial, without revealing any information
about their true values. We next describe the individual steps

8211

of DLC, which is expressed in the sequel as,

flar),..., f'(any) — DLC(f(a1),..., flan), M)

DLC consists of offline (data-agnostic) and online (data-
dependent) phases. The offline phase is independent from the
datasets, hence can be carried out offline when the network
load is low. The online phase depends on the datasets, and is
carried out after training starts.
(Offline) In the offline phase,
M — K +1 distinct public parameters Sk 1, ..., Su+1 € Fp
such that {831, ..., Bk} N {Bri1,---,Bm+1} = 0. Each user
i € [N] then generates M + 1 uniformly random matrices

19)

users first agree on

Ri1,...,Ripmy1 of size N”_lT x ng from), and forms a
Lagrange interpolation polynomial of degree M,
a— By

o R] ﬁ — 5 (20)
ke[M+1] keML1\{k} & T K

where ¢;(3;) = R, for all k € [M + 1]. Then, user 7 sends
an encoded matrix,
R, = gila;) € By " 21)

to user j € [N]. In addition to (20), user ¢ also creates a second
(lower-degree) Lagrange polynomial with degree K + 71 — 1,

o — ’
-Yre I 5
ke[K] K Ee[K+TN\{k} "F Pk
K+T ﬁk
+ZAM 11 575 (22)
k=K+1 e[K+T\{k} “F ¥

I EV)
where A, , € Fy7 7 are generated uniformly random for

ke{K+1,...,K+T}. Then, user i sends an encoded matrix,
_ M
R =vi(a;) e By " (23)
to user j € [N]. After receiving {ﬁj,i,ﬁj,i}je[N]’ user

i € [N] combines them to generate two higher-dimensional
encoded matrices R;,R; € IF;“X”Z,

> MR,

JE[N]

R=| ¢ =X m I o=l

Z" R,.| kD KM+ kY
JE[N]
(24)
and
Y ORTEE
JE[N]
R=| : |[-Ywm [§=2
JEIN]
K+T o ﬁ
B
+ > A 11 7ﬁl_ﬁ, (25)
k=K+1 ke[K+T\{k} &~ Pk

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

8212

where
e M Rk
Ry = : Vk e [M + 1] (26)
Zje[N] ljjvi—lTRjyk
and
Zje[N] /lij_lAj,k
Ay = : VEe{K+1,...,K+T}
j—1
Zje[N])“Jj\ffTAj,k
(27

In doing so, the goal is to generate high-dimensional shared
coded randomness using the low-dimensional random matrices
generated locally by each user. The dimension of the encoded
random matrices {R; ;, R, }jeqn locally generated by each
user i € [N] has size w5 X na, whereas the size of the
final encoded randomness f{i,ﬁi from (24) and (25) have
size ny X na.

(Online) In the online phase, each user 7 € [N] broadcasts
f(a;) —R;, which can be viewed as an evaluation of a degree
M polynomial p(a) = f(a) — ¢(a) where,

— Br
Z Ry H 2D (28)
ke[M+1] k'e[M+1\{k} Br — B
such that,
o(a;) = fleg) — d(ew) = f(aw) —Ri Vi€ [N], (29)

corresponds to the local computation of user 7 masked by f{i
from (24), and

©(Br) = f(Br) — ¢(Br) = f(Br) — Ry

corresponds to the secret computation f(5)) masked by the
random additive mask Ry = ¢(0) from (26) to hide its true
value. After receiving ¢(cy;) from any set j € Z of at least
|Z| > M + 1 users, each user can decode ¢(8x) = f(0Bk) —
o(Bx) = f(Bk) — Ry for all k € [K] through polynomial
interpolation,

w(B) =D _vley) I 5’“__0[’; vk € [K]

JjET K eT\{j} @

Vk € [K] (30)

€29

Finally, each user i € [N] re-encodes { f (k) }re[x] as follows,

f’(Oéi) = Z @(ﬂk) H Zz:igk,/ Jrﬁi (32)
ke (K] kelK+T\fRy F TR
— By | =
=Y uBy-ry [FCC+R
kE[K] kE[K+T)\{k} B = B
(33)
=S s I S5
ke(K] ke[K+TI\{RY P P
— B
+ > Ay @i = Pk
ke{K+1,...K+T} k' €[K+T)\{k} ﬂk — By
(34)

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

which simultaneously cancels the additive randomness
{Rk }re[k], and embeds the desired computations to a low
degree (degree K + T — 1) Lagrange polynomial, along
with 7' random matrices {A}re{k+1,.. k+7}- For neural
network training, which is the main focus of our work, DLC
is utilized to reduce the degree of the polynomials embedding
the true gradient computations, which are computed using the
Lagrange coded datasets. On the other hand, our degree reduc-
tion mechanism can be leveraged for any iterative algorithm
building on polynomial computations, beyond machine learn-
ing. In the following, we demonstrate a motivating example
for DLC.

A. Motivating Example for DLC

We next present a motivating example for DLC. Consider
N = 5 users, with 7" = 1, D = 0, and the parallelization
degree K = 2. Each user has m = 2 data samples with
d = 2 features. We then consider degree reduction for the
polynomial f(«) from (8) during forward propagation of a
model W (t) € F}*? with d; = 4 neurons at layer [= 1,
along with a dataset X € F2*'? partitioned into K = 2 equal-
sized shards X;,X, € F;*°. Bach user i € [5] holds an
encoded dataset X; € F2>5 and model Wl’i(t) e F2*2.
From (8), the degree of f(a)is M = 2(K+T—1) = 4, where
fla;) = Wi, (H)X; € IE‘;*,X5 is the local computation of user
i €[5, and f(B1) = W1 (6K, f(B2) = Wi (D)X € FL0
denote the secret computations for the two shards Xl,Xg,
respectively. Then, degree reduction f'(ay),..., [(as5) =
DLC(f(ea),..., f(as),5) consists of the following offline
and online phases.

Offline Phase: In the offline phase, each user ¢ € [5]
initially generates M 4 1 = 5 uniformly random matrices

Rii,...,Ri5 €]F},XE’ and sends an encoded matrix,

~ ﬁ ,
Ri;=Ria H ﬁ 5k
\{1} LR

ﬁk — B!

+ R»L 2 H .+ R’L ,5 H
K B\ (2} 52 B 51\{5} ﬁs P
(35)

to user j € [5]. In addition, user i € [5] generates a uniformly
random matrix A; 3 € IFlXS and sends an encoded matrix

= a; — B
Rij=Rix H 51 Bt
kelsI\{1}
Oé a /
+ Rz 2 H ﬁ gk + Az 3 H 6 gk
welsi\f2y 72 O wels\sy 2 PV

(36)

to user j € [5]. Then, each user 7 € [5] combines the received
matrices Ry ,. .. RSZ € F,*® and Ry,...,Rs,; € F)°°
to generate two higher dlmenswnal coded random matrlces
R; € Féxs,

e M Ry

R, = ; (37)

e
Zje[5] M R

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

LU et al.: SCALABLE MULTI-ROUND MULTI-PARTY PRIVACY-PRESERVING NEURAL NETWORK TRAINING

i1
Yiem M Ria

_ : & — By
Zje[5] z:i;le,l k'e[5]\{1} ﬂl - ﬂk/
R,
Yiem M Rys s
} %
ot . r{{a}ﬁo i
Yiem M Rys| "
Rs
(38)
— B
:Rl H ﬂl B
€[B\{1}
+ R ﬁ_gkl—k ..+Rs ﬂ:gk,
wephfzy 2 P PG
(39)
and R; €]Fﬁ”,
Zje[5])Llj_lﬁj,i
R; = : (40)
E:jew]zi_lf%ﬂ
—1
Y M Rk s
_) %
_Z o ,H ﬂk B
RS e A Ry) MEEINME
Ry
Zje[s] l1j71A 3 By
. k'
* : H 53 B)
e M Ays | MEBENE
Aj
a; — P
:iRl II
B\ (1) 51 B
+ Ry H 5 gk’-&-As H 3 7?«
wephfzy 2 K weph\gsy 0 K
42)

Hence, in the offline phase each user i € [5] sends two
encoded random matrices R, ;,R; ; of dimension 1 x 5. The
first matrix R; ; is generated using a degree 2(K +7—1) =4
(higher-degree) Lagrange interpolation polynomial, whereas
the second matrix R, ; is generated using a degree K+7—1 =
2 (lower-degree) Lagrange polynomial. Upon receiving the
lower-dimensional coded matrices {R;;, R ;};e5). user i
then generates two higher-dimensional coded matrices f{i, R,,
each of dimension 4 x 5, to be used later in the online phase for
degree reduction. Fig. 6 illustrates the offline phase of DLC
and the generation of the encoded randomness for user 1.
Online Phase: In the online phase, each user i € [5] initially
broadcasts W it)X; — R;, where W, At)X, € F375 is the
local computation of user ¢ from (8), which can be V1ewed as
an interpolation point of the degree 2(/K +7'—1) = 4 polyno-
mial f(«) from (8) such that f(a;) = W1 At)Xz, whereas

8213
User 5 = IN{5,1 E]FIIJXS
User 4 _ User 1 pe
=] Ru E]F;,XS = B Zje[s] MR
= E>R1: : |eme
R 1x5 = 1=
t Hareh Ry, €FL%® de X Rja
) P
E = ﬁzl e]F;,XS degree 4 polynomial
User 3 = = User 2
(a) Generation of the high degree polynomial.
% o 1x5
User 5 RSJEF!)X
User 4 User 1 1
= R, R0 = Ziel M R
N R, = ST

Ciem N Ria

E&l EF;XI%

degree 2 polynomial
User 3 =
(b) Generation of the low degree polynomial.

Fig. 6. Illustration of Double Lagrange Coding (DLC) offline phase, with
N =5and T'= 1. Upon recelvmg two lower-dimensional encoded random
matrices R] 1, Rj1 €]F %5 from users j € [5], user 1 generates two
higher-dimensional encoded random matrices fh, R, € IF4><5, which will
be used later in the online phase for degree reduction.

f(Br) = Wi(t)X € F,*5 denote the secret computations
for the two shards X, for k € [2]. Similarly, ﬁ, is an
interpolation point of the degree 2(K +7 —1) = 4 polynomial
¢() from (28) such that ¢(a;) = R; € Fp*°, whereas
¢(Br) = Rip € Fp*® for k € [2]. Then, after receiving
Wi,(t At)X; — R; from 2(K 4+ T —1)+ 1 = 5 users, users
can recover the polynomial f((3x) — ¢(8x) using polynomial

interpolation,
Wl(t)ik — Rk
=Y wWi,0X;] ﬂk_zk for k € [2]
i€l ey T W

(43)

where the true computation W (¢)Xj is hidden by the
additive random mask Ry. Finally, user ¢ € [5] re-encodes
the secret computation W1 (¢)X}, in a Lagrange interpolation
polynomial of degree K + T — 1 = 2 as follows,

f(ai)

:k%;](wl(t)xk _Rk)k/e[l;{{k} 5= ZZ +R;, (44
_ — B
:k;mW1(t> ' H\{k} B = ﬂ]’j
_k;z] o % r{{k} ﬁ_g: "
Brr i — B
+k%;1Rk H\{k} 5k_5];’ +A3k/€[13_][\{3} 3‘3 ﬁ:
(46)

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

8214

H ﬂk/ H @ — P
ke[z} k'e[a \{k}ﬂ’“ B we[s}\{a}ﬂ?’ B

47)

where the additive masks R, Ry cancel out. As a result, each
user ¢ € [5] learns an encoded matrix f'(«;) where the true
computations W1 ()X, W1 (t)Xy are now embedded in a
lower-degree Lagrange polynomial f’(«), which is of degree
K +T — 1 = 2. Fig. 7 illustrates the online phase of DLC
and the degree reduction process for user 1. In the following,
we introduce our privacy-preserving neural network training
framework CLOVER, which leverages DLC to avoid degree
explosion during gradient computations at successive layers.

V. PRIVACY-PRESERVING NEURAL NETWORK
TRAINING WITH CLOVER

In this section, we present our privacy-preserving neural
network training framework CLOVER, which utilizes DLC for
degree reduction. CLOVER consists of five key components:
1) Dataset Encoding, 2) Label Encoding, 3) Model Initial-
ization, 4) Gradient Computation, 5) Model Update. Initially,
users encode their datasets and labels using a Lagrange inter-
polation polynomial of degree K +7 —1. At the end, each user
i € [N] learns an encoded dataset X; and encoded labels Y.
The encoding process has two key features. First, it distributes
the computation load across the N users, such that the compu-
tation load per-user scales with respect to 1/K for the inten-
sive gradient computations during training. Next, it ensures
the information-theoretic privacy of the sensitive datasets and
labels against up to 7" colluding adversarial users. In an offline
phase prior to training, the model is initialized randomly, but
without revealing its true value to any user, and encoded
using a Lagrange interpolation polynomial. Each user i € [N]
then learns an encoded model W1 ;(0),..., W41 ,(0), but
without learning the true model. Model encoding ensures the
privacy of the intermediate training computations. At each
training round ¢ € {0,...,J — 1}, users leverage DLC to
compute the gradient using the encoded dataset X;, labels Y,
and model Wy ;(t),..., Wri1,(t) At the end, user ¢ learns
an encoded gradient Gl,l(), - GLHﬂ(t), using which the
user updates the model for the next training round.

In the following, we describe the details of the individual
components. For clarity of presentation, we present the offline
and online phases sequentially, to demonstrate how the vari-
ables generated in the offline phase are utilized in the online
phase. We note, however, that in practice all offline phases
can be fully carried out in parallel in advance; the variables
generated in the offline phases are independent and do not
depend on the previous online/offline phases.

A. Dataset Encoding

Initially, users encode their datasets using locally generated
randomness. The goal of dataset encoding is two-fold: 1) hide
the dataset against adversaries, 2) reduce the size of data
processed during training. In particular, after dataset encoding,
each user computes the gradient on an encoded dataset X,
whose size is (1/K)™ of the original dataset X. As the

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

network size N increases, one can select a larger K, thus
reducing the computation load per-user which increases the
parallelization gain and speeds up training.

For dataset encoding, users first agree on N 4+ K +T distinct
public parameters {c; } je(n]. {5} je[x+1) from [F,. Each user
i € [N] then partitions its local dataset into K equal-sized
shards X; = [Xz‘,l X, K] and sends an encoded matrix,

- RN
kE[K] k' E[K+TI\{k}
K+T
+ i V. H @ — P (48)
o Bre — B
k=K 41 ke [K+TI\{k}

to each user j € [N], where V; g11,..., Vikir €]F;lx?
are generated independently and uniformly at random. By
concatenating the received coded matrices {X;;};c[n]. €ach
user ¢ constructs an encoded dataset,

X; = [Xu

which can be viewed as an interpolation point of a degree
K + T — 1 Lagrange polynomial,

)NcN} e F (49)

o — /
:E(a) = Z [Xlk XN,k] ﬁﬂﬁk/
k€[K] WElK+TI\{k} " i
K+T o B
+ Z [Vl k VN,k] H m
k=K+1 k' e[K+T]\{k}
(50)
o — ’
Z Xe H Bk —ﬂﬁkk’
ke[K] ke[K+T\{k}
K+T -
X ve Il =5 (51)
k=K+1 kelK+T\{k} " © K

where X; = z(ay), and X, £ [lek XNyk] =xz(0Bk) €
dx Nm

F,” % is a matrix whose size is (1/K)*" of the true dataset
X. As a result, each user receives an encoded version of
the datasets of other users. The 7' random matrices V) £
[VLk VN,k] fork € {K+1,..., K+T} hide the true
dataset against up to 7' adversaries. As the encoding process
depends on the local datasets of the users, dataset encoding is
carried out online during training.

B. Label Encoding

In addition to encoding the datasets, users also encode the
labels using a Lagrange interpolation polynomial. To this end,
each user ¢ € [N] first partitions its local labels into K equal-

sized shards Y; = [Y; 1 Y k], and sends an encoded
matrix,
-y ve I g
ke[K] clK+T\{k} " F — ¥
K+T B
+ 3 N I ﬁ_ﬁ" (52)
k=K +1 ke[K+T\{k} P K

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

LU et al.: SCALABLE MULTI-ROUND MULTI-PARTY PRIVACY-PRESERVING NEURAL NETWORK TRAINING 8215

User 5
% degree reduction
t N \\'//N _ decoding additive masks cancel
User 4 Wi5(t)X5—Rs User 1 X ?
= — Wi (H)X:1—Ry
E '))) (. g —] — Bk’ —
N 7 broadcast N('f:> W, ()X, —Ro E:> Z(W1(t)xk —Rk) H) B — Br +R;
W174(t)X4*R4 lel(t)Xl_Rl ¢ ¢ | N{k}
N o N o secret random @
Wis(t)X3—Rs Wia(t)X2—Ry mask B a1 — B P
= = wat)xk H 55, T A H 3 E—
— - ke B\{k} F T 37 Pk
User 3 User 2 degree 2 polynomial

Fig. 7. Tllustration of DLC for the online phase. User ¢ € [5] initially holds the coded computation \A?/Vl zi which corresponds to an evaluation point
of a degree 4 polynomial. The goal is to reduce the polynomial degree to K + 7 — 1 = 2, without revealmg the secret computations W1X1, Wi1Xo
corresponding to the two shards Xl, X of the true dataset X. To do so, each user 4 € [5] initially broadcasts a masked computation Wy ZX R; to the
other users. Upon receiving {W1 ZX RZ}ZE , users can decode W1X; — R, W;X5 — Ro, where the secret computations are masked by the additive

random masks R and R, respectively. User ¢ E [5] then re-encodes the secret computations by using R;, which cancels the additive masks R1, Ro and
generates a lower-degree Lagrange polynomial with degree 2.

cX B

to each user j € [N], where N;g+1,---,Nigyr € Fp even if up to T users collude. To do so, users first agree on
are generated independently and uniformly at random. By con- N —T distinct public parameters A, . .., Ax_ from IF;,. Then,
catenating the received matrices {Y};};c[n), each user i for each layer I € [L + 1], user i € [N] generates T+

obtains the encoded labels, 1 matrices lei(o),QM’KH’”le’Z’K{_T e FY- N Xdia

Y, = [?11' o Yy l} c F;X% (53) independently and uniformly at random, and then sends an
encoded matrix,

which can be viewed as an interpolation point of a degree

K + T — 1 Lagrange polynomial, Wn gl Z Wi H — /Bk/
(@)=Y Y+ Yoal o 22" b
yla) = 1.8 " YNk T 3. aj — B
relK] welr+T) k) F O + > Qe]I m
KT o B ke{K+1,...K+T} k' €[K+TN\{k}
k=K+1 k' e[K+T\{k} b ¥ o
(54) to user j € [N]. After receiving {W,;i(0)};e(n), user
o a— B i € [N] generates a higher-dimensional encoded model
=> v I 5= Wi(0) €
kE[K] WElK+TI\{k} " F
K+T

i~
a — B 2ieM Wi,5,i(0)
* Z N H B — B (55) Wl,i(()) = : (57)

k=K+1 k' €[K+T\{k} =
Zje[N] A —rWi;i(0)

where Y; = y(a;), and Yy, 2 [Yip -+ Ynu] =
N . B Wi a; — P
y(Bk) €]F % is a matrix whose size is (1/K)'" of the true Z i H Br — B
dataset Y. As a result, each user receives an encoded version kelK] k'E[K +TN\{k}
of the labels of other users. In doing so, the T random matrices a; — B
¢ . Y Q[
N £ [Nip -+ Nyg] forke{K+1,...,K+T} hide Br — B
' . ’ . . kE{K+1,. K+T} k' e[K+T]\{k}
the true labels against up to 7' adversaries. As the encoding (58)

process depends on the local labels of the users, label encoding

is also carried out online during training. o L
£ £ where the true model initialized at layer [is given by,

C. Model Initialization ZjE[N] ﬂvlj_lwl,j(o)

To preserve the privacy of intermediate training computa- W, (0)= : c]Fglxdlfl (59)
tions, the model W1 (0),..., Wr1(0) at round ¢ = 0 should 5), W (0)
be initialized without revealing their true value to the users, JEIN] L

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

8216

whose true value is masked by the 7' random matrices,

Qix =
> A TQuk
i

€[N]
EF " forke {K+1,...,K+T}
Z A'N TQle
JE[N]
(60)

As such, to generate a random coded matrix of size d; X d;_1,
each user sends a matrix of size NdjT X dj_1. The final encoded
matrix is then generated by combining the lower-dimensional
coded matrices. The encoded model W ;(¢) can be viewed as
an interpolation point of a degree K + 7' — 1 polynomial,

o — ’
Z Wit H Bk —ﬁﬂkk/
kE[K] k' €[K+T\{k}
K+T . ﬁ
2 Qe I 3 _ﬁ’“ (61)
k=K+1 kelK+T\{k} "k K

where w;(a;) = Wl,i(o) is the encoded model at user 7, and
wi(Br) = W;(0) for k € [K] corresponds to the true model
initialized at layer [. Model initialization can be carried out
fully offline, as the initialization is random and independent
from the local datasets of the users.

D. Gradient Computation

Using the encoded dataset and labels, users then compute
the gradients. Let Z;;(t) € Fle " and Ui(t) € Fle S
denote the input and output of the activation function g() at
layer | € [L + 1], where Uy ;(t) = ¢g(Z;;(t)). Then, gradient
computation consists of the following forward and backward
propagation steps.

(Forward Propagation):
i € [N] initially computes,

Zyi(t)

where Ug;(t) £ X, €]FdX K As the degree of the resulting
polynomial in (62) is greater than K + 7" — 1, users carry out
a degree reduction operation using DLC from (19),

Zis(t),...,ZyN(t) — DLC(Zys (1), ..., Zon(t),

by letting,

For each layer [€ [L + 1], user

= W)U 1i(t) € F2R (62)

M) (63)

AK+T—1) if 1=1

M:{3(K+T—1) it 1>2 64)

and f(a;) = Z,i(t) for all i € [N]. At the end, each user
i € [N] learns an updated coded matrix Z; ;(t) — f'(a;) €
Nm
IE‘Z’ XK corresponding to a Lagrange polynomial with degree
K + T — 1. Finally, user ¢ computes the quadratic activation
function,
ULi(t) = g(Zu (1)) € Fa % (65)

element-wise across the matrix Zlﬂ-(t).

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

(Backward Propagation): After forward propagation, the
final gradients are computed through backpropagation [49].
For each layer | € [L], backpropagation consists of an error
propagation step, where each user locally computes,

Eui(t) = 2Z04(8) © (W y (1) x B (1) € Fa % (66)

where Epi1,(t) 2 2Zpau(t) — Yi) e FOF
After (66), users reduce the degree of the resulting polyno-
mial from 3(K + T — 1) back to K + T — 1 using DLC

from (19),

Ein(t),3(K +T —1))
(67)

Eia(t),...,E n(t) — DLC(Ei1(t),. ..,

at the end of which each user i € [N] receives an updated
coded matrix E; ;(¢) corresponding to an interpolation point
of a Lagrange polynomial of degree K + 1" — 1. Finally, user
i € [N] locally computes the gradient at layer [€ [L + 1] as
follows,

Gy i(t)

=Ey;(t) x U, ;(t) € Fdxdi-a (68)

E. Model Update

After gradient computation, users update the model for the
next training round. From (49), we observe that the coded

dataset)~(1 encodes K shards { [XL/@ XN);C} }

ke[K
from the true dataset X; where each shard X, [:]
[Xl,k XMk] S IF‘gXTn consists of Nm/K data sam-
ples. Accordingly, the coded gradient él,i(t) from (68) can
be viewed as an interpolation point of a degree 3(K +7 —1)
polynomial h;(«), where hi(cy;) = Gy,(t) is the coded
gradient at user 4, and h;(0) = Gy i(t) is the true gradient
for the k" shard X}, which denotes the sum of the gradients
across Nm/K data samples. On the other hand, the model
update W (¢t + 1) from (5) requires the aggregated gradient
G(t) = >okepr) Gre(t) across all Nm dgta samples. In the
following, we propose a privacy-preserving model update
mechanism by aggregating the true gradients across the K
shards without revealing their true content. The gradient
aggregation process consists of the following offline and online
phases.

(Offline) For each layer | € [L + 1], user i €
[N] first generates 3(K + T — 1) + 1 random matrices

A wd, A
Bl,i,l(t)a~~~7Bl,i,3(K+T—1)+1(t) e Fy " o mdepen-
dently and uniformly at random, and sends an encoded

matrix
Byi;(t) = >
ke[3(K+T—1)+1]
H Q5 — /Bk/
Br — Br

k'€[3(K+T—-1)+1]\{k}

By k(1)

Vi€ [L+1]

(69)

to user j € [IN]. Next, user ¢ € [N] generates T' random matri-
i xd;_
Siirer(t) eFp T

ces S;ik+1(t),. .. independently

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

LU et al.: SCALABLE MULTI-ROUND MULTI-PARTY PRIVACY-PRESERVING NEURAL NETWORK TRAINING

and uniformly at random, and sends an encoded matrix,

Bui;(t) Z (Z Buiw(t H ﬁ:gk
S welsThry F T
K+T
a; — ’
+ > Sua)] ijg’“, viell+]
ey welk TRy 7F T

(70)

Upon receiving {]~357j7i(t),El,w(t)}jem, user ¢ € [N] gen-
erates two higher-dimensional encoded matrices,

[jemM " Buyalt)
Bl,z’(t) = I c]Fg;,xdl_17
2 je N]A’N LBya(t)
2 jeln] M Byt
B.i(t) = : eFhxd (71
e M Bt

The first matrix ﬁl,i (t) can be viewed as an interpolation point
of a degree 3(K + T — 1) (high-degree) polynomial,

Tl(Oé) = Z B“C(t) H ; —_ﬂﬁk,//
kE[B(K+T—1)+1] K EBK+T—1)+1\{k} "¢~ ¥
(72)
where
Z]G[N])“ IBZ,J k()
Bl7k(t) £ .
Z]E[N])LN TBlak
=r(Br) VEEBE+T-1)+1] (73)

and By ;(t) = r;(c;). The second matrix By ;(t) can be viewed
as an interpolation point of a degree K + 71 — 1 (low-degree)

polynomial,
o — /
-yeo T 5=
kE[K] k’e[K+T]\{k}
K+T o0
+ 3 s 1 ﬁ (74)
k=K +1 kelK+T\{k} "8~ K
where B, ;(t) = ul(ozi)
£) Bl (75)
k'€[K]
and
> AT sk
JE[N]
Sik(t) £ : Vke{K+1,...,K+T}
> M Sk (t)
JEN]
(76)

(Online) In the online phase, each user ¢ € [N] initially
broadcasts,

(A}u(t) 2 Gy(t) — Bui(t) Vie[L+1], (77)

8217
which can be viewed as an evaluation point of the degree M
polynomial A;(«) — r;(«) where,

Gri() = hu(a) = rie)

Hence, after receiving (77) from any set of 3(K + 17 — 1) +
1 users, each user can decode the masked gradients,

hi(Br) — 1(Br) = hu(Br) — Bui(t)

Vi e [L+1], (78)

Vk € [K],l € [L+1]
(79)
Finally, user ¢ € [N] aggregates and re-encodes the masked

gradients by forming a degree K + T — 1 (lower-degree)
Lagrange interpolation polynomial as follows,

Gui(t)
Q; — ’
= (> (u(Bi) Blyk/(t)) 11 #
ke[K] kEK] WelK+T\(k) " Tk
+ Byi(t) (80)
oy — ’
=3 (X meo) 11 ﬁ
kE[K] k'E[K] KelK+T)\{k} F Pk
K+T ,8
Sosw®] 5 —6k (81)
k=K+1 ke [K+T \(k} TR T
ke[K] k' elK+T)\{k} F K
K+T —ﬁ
+ > Sl,k(II 3 _ﬂk (82)
k=K +1 elK+T\{k} "k T ¥

The encoded gradient él’i(t) from (82) encodes the
aggregate Gy(t) = > ycx) Guk(t) of the true gradi-
ents Gy1(t),..., Gy k(t) evaluated across the K shards
{Xk}rer) of the dataset X.

After aggregating the gradients, the model is updated for
the next training round. For the model update rule from (5),
this corresponds to the following computation,

Wit +1) = Wia(t) — ——Gai(t) Vie[L+1]. (83)

El Nm El

Note that » < 1 in (83), whereas our framework is
bound to finite field polynomial operations, consisting of finite
field addition and multiplications only. To handle this, one
approach is to consider a sufficiently large field size and
convert (83) to an integer domain operation. In our theoretical
analysis, we assume a sufficiently large field size and follow
this approach for tractability, while providing the details in
App. E, In practice, one can also leverage the secure truncation
protocol from [11], [50], to reduce the required field size while
handling the model update in (83), albeit with a slight loss
in model accuracy due to quantization. In our experiments,
we utilize the latter, and provide the implementation details in
Section VIII.

(Final Model Recovery) At the end of J training rounds,
parties can decode the final model {W;(J)};e(z+1) by col-

lecting the coded models {Wl,i(J)}le[LH] from any set of
K + T users, and using polynomial interpolation.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

8218

The algorithm steps of CLOVER are provided in App. 1.
In the following, we present a motivating example to demon-
strate the training process.

VI. MOTIVATING EXAMPLE

In this section, we present an illustrative example for
CLOVER. We consider a scenario where the total number of
users is [N = 11, parallelization degree is K = 2, number of
adversaries is T' = 2, and number of dropout users is D = 1.
For simplicity, we consider m = 2 data samples per user,
d = 10 features per sample, and ¢ = 4 classes. The neural
network has L = 1 hidden layer, with d; = 5 neurons at layer
I = 1. As shown in (51), each user i € [11] initially holds an
encoded dataset X; € IF‘;OX“,

@ — B
Xi= ZXk H ﬁk—ﬁk'

kel2] kel\{k}
& = By _ dxNm
+ka 11 ﬁk—ﬁk/ e, 2 (84)
k=3 ke[d\{k}

which corresponds to an interpolation point of a degree K +
T — 1 = 3 polynomial z(a) such that X; = z(«;), whereas
2(Br) = Xp €]le,oXll denotes the k'™ shard of the true
dataset X = [X; X,]. Similarly, each user i € [11] holds
the encoded labels Y, € Fpo <,

ﬁl
Y _ZYk H ﬁk*ﬂi'

ke[2] k' e[4]\{k}

— B
Z H ﬂk Br

k=3 k' e[4]\{k}
(85)

which corresponds to an interpolation point of a degree K +
T — 1 = 3 polynomial y(«) such that Y; = y(«;), whereas
y(Br) = Y, € Fy** denotes the k' shard of the true labels
Y = [Y: Y] as shown in (55). In addition to the encoded
dataset and labels, each user i € [11] holds the encoded model
W1,;(0) € F3*10 for the first layer, and W ;(0) € F3*5 for
the second layer, where

Wl,i(o) = Z W,(0) H ﬁk — g]z’

K e\ (k)
+Zsz I1 6 gi Vi€ [2], (86)
F=3 Weld\(k}

which corresponds to an interpolation point of a degree K +
T — 1 = 3 polynomial w;(«) such that W;;(0) = w;(c)
for layer [€ [2], whereas wi(8x) = W1(0) € F5*'° and
wy(Br) = W(0) € Fp*5 denote the randomly initialized
secret model parameters as shown in (61). Using the encoded
dataset X;, labels Y, and initial model W1 ;(0), W2 _;(0),
users ¢ € [11] then perform training, which consists of
gradient computations and model update. In the following,
we demonstrate the gradient computations for the first round
t = 0, which consists of the following forward propagation
and backpropagation steps, respectively.

(Forward propagation) For forward propagation, each user
i € [11] initially computes Z1 ;(0) = W1 ;(0)X; € F>*!! for
the first layer [= 1 as shown in (62). The local computation

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

Zl,i(O) can be viewed as an interpolation point of the degree
2(K +T — 1) = 6 polynomial f(a) = w;(a)z(a), where
wl(ai)x(ai) = Zl,i(o)’ and wl(ﬁk)x(ﬂk) = Wl(O)Xk €
]ngn for k € [2] refers to the secret computation correspond-
ing to the k*" shard X, of the true dataset X.

If users continue forward propagation using the encoded
computations w1 (a;)z (), the polynomial degree will double
after the activation function g(-) from (65), and the local
computation Uy ;(0) = g¢(Z;,(0)) will correspond to an
interpolation point of a degree 2(2(K +7 —1)) = 12 polyno-
mial g(w;(a)z(a)). As interpolating a polynomial of degree
12 requires at least 12 + 1 = 13 interpolation points, the total
number of users N = 11 < 13 will not be sufficient to decode
the final model. To avoid this, the degree of the polynomial
f(a) = wi(a)z(a) is reduced from 2(K + T — 1) = 6 back
to K + 7T — 1 = 3 by using DLC from (19),

Z11(0),...,Z111(0) = DLC(Z1 1(0), ..., Z1.11(0),6) (87)

at the end of which user i € [11] receives an encoded
computation Z; ;(0), which corresponds to an evaluation of
a degree K + T — 1 = 3 polynomial f’(ca) where f'(c;) =
Zl,i(O), and

F(Bk) = wi(B1)z(Br) = W1(0)Xi

denotes the secret computations corresponding to the K =
2 shards X, X, of the true dataset X. After degree reduction,
each user ¢ € [11] locally computes the activation function
U,(0) = g(Z1.4(0)) € € F>*!!, which increases the polyno-
mial degree to 2(K + T — 1) = 6.

__ For the second layer [= 2, each user i € [11] computes
Z5,i(0) = W3;(0)Uy;(0) from (62), using the encoded out-
put 611(0) of the first layer, and the encoded model W ;(0)
for the second layer. Due to the multiplication operation, each
local computation Zs ;(0) is now an evaluation of a degree
3(K +T — 1) = 9 polynomial ws(a)g(f'(cr)) such that
Z5.;(0) = wa(a;)g(f'(ay)), whereas the secret computations
for the two shards X, and X are given by,

w2 (Br)g(f' (Br)) = wa(Br)g(w1(Be)z(Br))

kel2 (88)

(89)

To reduce the degree of the polynomial ws()g(f'(«)) from
3(K+T—1)=9back to K+T—1 = 3, users again leverage
DLC from (19),

Z2,1(0),~~~,Z2,11(0) = Z2 .11(0),9) (90)

at the end of which each user i € [11] receives an encoded
computation Z, ;(0) that can be viewed as an interpolation
point of a degree K 47 —1 = 3 polynomial f”(c), such that
f"(e;) = Z2,;(0), and true computations for the two shards
X, X, of the true dataset X are,

F"(Br) = wa(Br)g(f' (Br)) = wa(Br)g(w
=W (0)g(W1(0)X)) ke 2]

DLC(Z4(0), ..

1(Br)z(B))
on

which concludes the forward propagation step. Fig. 8 illus-
trates the forward propagation steps for user 1. After forward
propagation, users carry out the backpropagation operations as
follows.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

LU et al.: SCALABLE MULTI-ROUND MULTI-PARTY PRIVACY-PRESERVING NEURAL NETWORK TRAINING

Forward Propagation Layer 1 Layer 2

: TR VAT B

] I H

User 1| B " _ E

— X, Z1,1(0) Uy1(0)}1 Z>.1(0)!

= | — : pLc —»(() RN :
=

= ! i

[~ ~ 1! —~ H

E Wi1.1(0) T EZI,‘Z(O)' . 'EZLH(O)EE Wai(0) |

:\ User 2 User 11 ,::\ E

Fig. 8. Motivating example with N = 11 users for training a neural network
with L = 1 hidden layer, and illustration of the forward propagation steps
for user 1.

(Backpropagation) Each user ¢ € [11] initially computes the
error for the last layer [= 2,

Es(0) = 2(Z2,4(0) — Y5) 92)

The local computation 1732,2-(0) corresponds to an evaluation
point of a degree K +7'—1 = 3 polynomial 2(f" (a) —y())
at & = «y, such that Eo;(0) = 2(f"(a;) — y(;)), whereas
the secret computations for the two shards X;, Y; and X,
Y of the true dataset X and labels Y are,

2(f"(B)~y(B80) =2(W2(0)g (W1(0K) = Y) ke [2]
93)
where f”(B) is as given in (91). Since the polynomial degree

is still K +7 —1 = 3, no degree reduction is required for this
layer. Next, for the first layer [= 1, user ¢ € [11] computes,

E1(0) = 2Z1,:(0) © (W} ;(0) x Ey;(0)) (94)

The local computation]:31’1-(0) corresponds to an interpolation
point of a degree 3(K + T — 1) = 9 polynomial 2f'(a) ®
(wg(a) x 2(f"(a) — y(a))) at a = ay,

E1i(0) = 2f/(as) © (wh(a:) x 2(f"(as) = y(a))), ©9)
whereas the secret computations corresponding to the two
shards X, Y; and X5, Y, are,

2f'(Br) © (w3 (Br) x 2(f"(Br) — y(Br)))

= 2(W1(0)Xx) © (W3(0) x 2(W2(0)g(W1(0)Xx) — Y4))

(96)
for k € [2], where f'(Bx) and f”(8k) are given in (88)

and (91), respectively. To reduce the polynomial degree back
to K +7T — 1 = 3, users again leverage DLC from (19),

E11(0),...,E111(0) = DLC(E11(0),...,E111(0),9) (97)

at the end of which user 7 € [11] receives an encoded
computation E4 ;(0), which can be viewed as an interpolation
point of a degree K + T — 1 = 3 polynomial f (), such

that E4 ;(0) = i/ (i), whereas the secret computations for
the two shards X, Y1 and X5, Y, are,
1" (B) = 2W1(0)X) © (W3 (0)
x 2(W2(0)g(W1 (0)Xx) = V)) k€ [2]

(98)

8219
Layer 2 Layer 1
Backpropagation
User 1 = ™~
— Y E, 1(0) E11(0)
= — O RQ—0) DLC ,
Z,(0) TW;,(O)TZU(O) Tg E12(0) - -BEin(0)
User 2 User 11
U11(0) X!
g G2.1(0) Gradient Computation g G11(0)

Fig. 9. Illustration of the backpropagation and gradient computation steps
for user 1.

from (96). Finally, user ¢ € [11] locally computes the gradient
for the first layer [= 1,

G1,i(0) = E1,,(0)U} ,(0) = Eq4(0)X] (99)
and for the second layer | = 2,
G2,i(0) = Eo;(0)UT,(0) (100)

The encoded gradient G, ,(0) € F5%10 for layer | = 1
from (99) corresponds to an interpolation point of a degree
3(K+ T —1) = 9 polynomial h;(a) such that G ;(0) =
hi(a;), and
G1,k(0) £ b1 ()
= (2W1(0Xx) © (W3 (0)
X AW, (0)g(W1(0)Xy) — ¥))) X € F10
(101)

denotes the true gradient at layer [= 1 for the k:thNShard Xy,
Y, for k € [2]. Similarly, the encoded gradient G ;(0) for
layer [= 2 corresponds to an interpolation point of a degree

3(K +T — 1) = 9 polynomial hy(a) such that Gy ;(0) =
hQ(Oéi), and

G2.1(0) = ha(Bk)

= 2(W,(0)g(W1(0)X,.)
_ __ T
=Y (9(Wh (0)Xs)) € TS
(102)
denotes the true gradient at layer [= 2 corresponding to

the k" shard X, Y for k& € [2]. Fig. 9 illustrates the
backpropagation and gradient computation steps for user 1.
After computing the gradients, users then update the model.
As observed in (101) and (102), the true gradients evaluated
for the two shards X;,Y; and Xs, Y are embedded at two
different interpolation points 3; and (2, where h;(8;) =
Gy.1(0) is the gradient evaluated with respect to Xy, Y
for k € [2] and [€ [2]. On the other hand, the model
update from (5) requires the aggregated gradients G;(0) =

>_repz) Guk(0) for I € [2]. This is achieved by the gradient

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

8220

aggregation stage from (82), at the end of which each user
i € [11] obtains an encoded gradient,

Gui0) = 3 (Gu)+Gia0)] 53¢ :g’f’,
rep2) wefa\ry
. — B
yoswo) I 5=5 a0y
k=3 kea\{ky kT PF
=2 Gl(o) H ﬁk g];/
kel2] 4N\{k}
- @ = B
+> 800 I ﬂ —5, (o
k=3 e\ fk} kT PR
which encodes the true aggregated gradient G;(0) = Gy 1(0)+

G 2(0) for each layer [€ [2]. After aggregating the gradients,
users update the model as in (83) for the next training round.
After J training rounds, the final model can be decoded by
collecting the encoded models from any set of up to K +
T — 1 = 3 users and using polynomial interpolation. During
training, which consists of the online phases of gradient
computation and model update, up to D = 1 users may drop
out at any round. Since the total number of surviving users
is N—D=10>3(K+T—1)+ 1, and the degree of the
intermediate polynomials never exceeds 3(K +7 — 1) = 9,
the evaluations from the surviving users is sufficient to recover
the final model.

VII. THEORETICAL ANALYSIS

We now present the information-theoretic privacy guaran-
tees for CLOVER.

Theorem 1 (Information-Theoretic Privacy): In a network
of N users, CLOVER provides information theoretic privacy
against any collusions between up to 71" adversarial users:

T({Xs, Y ien; MTH{Xs, Yitier, AWi(J) }iez417) = 0
(105)

where M7 represents the collection of all messages received
or generated by the adversaries throughout the model training.
Proof: (Sketch) The proof follows by decomposing
the set of all messages received/generated by the adver-
saries into five stages Mr = M; UMy U M3z U
(UZg Myt) U (UZ) M51), where M; denotes the set of
messages received/generated during dataset encoding, Mo is
the set of messages for label encoding, and M3 is the set
of messages for model initialization. M, ; denotes the set of
messages received/generated during gradient computation at
training round ¢, whereas M ; denotes the set of messages for
model update at round ¢. Then, one can analyze the conditional
mutual information at each stage separately, conditioned on all
past stages.
(Dataset and label encoding) Without loss of generality, let
T ={N-T+1,...,N} denote the indices of the adversarial
users. For the first two stages dataset and label encoding, the

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

result follows from the invertibility of the T' x T MDS matrix,

PN—-T+1,K+1 PN,K+1
PN—-T+1,K+T PN,K+T
=B .
where pj = ey 53, for j €
{N—T+17...,N} and k € {K+1...,K+T}

refers to the coefficients of the Lagrange polynomial
from (48) and (52), respectively, which are used to encode the
dataset and labels. I ensures that there is a bijective mapping

from each distinct realization of {Vi}reiri1,. k1)

and {Nir}lper+1,..k+7y to a distinct set of
K+T ;=B
masks {3,k iq Vi Hk’G[KJrT]\{k} 5i=p. Jier and
K+T
{Zk=K+1 N« Hk/e[K+T}\{k} o }geT hiding the true

dataset and labels belonging to an honest user ¢ € H. Since
{Vir;Nir}retrt1,....k+1y are generated independently
and uniformly at random, the corresponding masks are also
uniformly random, resulting in a uniform distribution for the
dataset and labels as observed by any set of 7T colluding
adversaries, where every realization is equally likely.

(Model initialization, gradient computing, and model
update) The result for the remaining three stages, model
initialization, gradient computing, and model update, follow
from the invertibility of two MDS matrices. The first one is
the 7" x T' matrix I" used during the initial Lagrange encoding
of the randomness generated locally by the users, as shown
in (20), (56), and (69). The second one is the (N—T)x (N—T)
MDS matrix,

1 1
2{1 ANfT
M = . .

A 1N —.T—l)LN —.T—l

where {A; };c[n—7] corresponds to the coefficients used while
combining the Lagrange coded random matrices received from
other users as in (24), (25), (57), and (71). This matrix
is used to combine the low-dimensional Lagrange coded
random matrices to generate high-dimensional Lagrange coded
random masks, while ensuring a linear amortized communi-
cation overhead during randomness generation. The gener-
ated high-dimensional randomness is then used to mask the
local computations during gradient computation and degree
reduction.

During degree reduction, each user i € [N] sends two
coded low-dimensional random matrices, R;; and R, ; to
users j € [N] as shown in (21) and (23), respectively, where
R, ; is generated using the high degree (degree 3(K +1 —1))
Lagrange polynomial ¢(-) from (20) and R, ; is generated
using the low degree (degree K +71 —1) Lagrange polynomial
¥(-) from (22). After receiving {R; ;};e(n) and {Ry;}je(ngs
user i € [N] combines them to generate two high-dimensional
coded matrices R; and R; as in (24) and (25). The generated
randomness is then used to decode the local gradient compu-
tations and re-encode them using a low degree polynomial.
During gradient decoding, the first matrix R,; hides the true
gradient f(0)) with a uniformly random additive mask Ry

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

LU et al.: SCALABLE MULTI-ROUND MULTI-PARTY PRIVACY-PRESERVING NEURAL NETWORK TRAINING

for each k € [K], at the end of which users only learn
a masked gradient f(8;) — Ry for k € [K]. Then, the
second mask R; ensures the cancellation of the additive masks
{Ri }re[k) from the masked gradients, while simultaneously
re-encoding the gradients {f(Bx)}re[x) using a lower-degree
Lagrange polynomial to continue training. The 7" additional
random matrices {A}re{x+1,....k+7} from (27), which are
embedded in the encoded matrices R; ensure that the resulting
low degree polynomial preserves the privacy of the true
gradients against any set of 7" colluding adversaries. Then, the
final result follows from the chain rule of mutual information.
The details of our proof are provided in App. C.]

Remark 2: Our framework can also be extended to the
setting in which multiple subgroups of adversaries collude
separately, as long as the total number of adversaries in each
subgroup does not exceed 7', and there is no overlap or
collusions across different subgroups.

Next, we present the communication and computation com-
plexity of CLOVER.

Theorem 2 (Communication Complexity): The per-user

communication complexity of CLOVER is O(N(di;gc)m +
I e 41] di(di-1 + %)) in the online phase, and

O(T Sicprn) 7% (52 + dia)) in the offline phase,

respectively. With 77 = O(N) and K = O(N),
the total communication complexity across all N
users, including both online and online phases,
is O(N(d + ¢)m + NJ Y cipyydi(di1 + m)), hence

is linear in the number of users.

Proof: (Online) The per-user online communication
overhead consists of: O(N dm) for dataset encoding (Stage 1);
O(N;(m) for label encoding (Stage 2); O(Zle[L-i—l] Nmd,)
(broadcast) for forward and backward propagation, respec-
tively, for gradient computing per training round (Stage 4);
and O(3¢z 41 didi—1) per round for model update (Stage
5). Note that during gradient computation, the only commu-
nication is due to the degree reduction operation.

(Offline) The per-user offline communication overhead con-

sists of: O (¢, 4] Nhdi_1) for model initialization (Stage
N-m

3); O(Xierna m) for forward and backward propa-
gation, respectively, for gradient computing per training round
(Stage 4); and O(Xcir iy Nddiz1) per round for model
update (Stage 5).]

Theorem 3 (Computation Complexity): The per-user com-
putation complexity of CLOVER is,

o) <(d + c)% log?(K + T)loglog(K + T) (106)

Nm
+J< 3 —dl(dl AN+ Y dl<
le[L+1] le[L+1]
F K+ T) log?(K + T) log log(K + T)))

(107)

di— 1+M)

(77

Proof: (Sketch) The per-user computational complexity
of interpolating a degree x« polynomial, and evaluating it at
r points is O(klog? kloglog k) [51]. Then, dataset and label

8221

encoding requires evaluating a degree K + 7' — 1 polyno-
mial at N points, which has a per-user computation cost of
O(W log?(K +T) log log(K 4T)). Model initialization
has a computation cost of O(3 (141 N]C\l,’fllT’l log?(K +
T)loglog(K + T) + > j¢ip41) Ndidi—1) per user. Then,

at each training round ¢ € {0,...,J — 1}, gradient computing
has a cost of O(NTT” (ZIE[L-H] did;_ +Zle[L+1] dl(% +

K +T)log?(K + T) loglog(K +T) + ¥y 111y Ndi)) for
forward and backward propagation. Finally, model update
has a computation cost of O(ZZG[LH] did;—1 (% + K +

T) log?(K+T) log 10g(K+T)+ZZG[L+1]dldl_1N> per user
at each training round. The result then follows by aggregating
the per-round computation cost over the total number of
training rounds. The details of our proof are presented in
App. D.]

The recovery threshold is defined as the minimum number
of users required to correctly decode the final model. As the
offline phases can take place in advance prior to training, in the
following we consider the user dropouts that occur during
training, i.e., during the online phases.

Theorem 4 (Recovery Threshold): In a network of N users
where up to T users are adversarial (who may collude with
one another), and up to D users may drop out in each training
round, the recovery threshold of CLOVER is N > D + 3
(K+T-1)+1.

Proof: The minimum number of users required for
correct model recovery is equal to the minimum number
of local computations required for polynomial interpolation,
which is given by N — D > 3(K + T — 1) + 1 from
Section V. |

VIII. EXPERIMENTS

Experimental Setup: In our experiments, we consider multi-
class classification on the MNIST [52] and CIFAR-10 [53]
datasets. The MNIST dataset has 60000 data samples in total,
with d = 784 features per sample. The CIFAR-10 dataset
has 50000 data samples in total, with d = 1024 features
per sample. The datasets are distributed uniformly across the
N users. For the CIFAR-10 experiments, the original images
are preprocessed using a pre-trained VGG model for feature
extraction, after which 25088 features are extracted for each
image, which are the input for the neural network. For the deep
learning model, we consider a two-layer polynomial neural
network with the input layer of dimension d, which is equal
to the number of features for the training samples, one hidden
layer with d; = 128 neurons, and an output layer of dimension
¢ = 10, which is the total number of classes, as both datasets
have 10 classes.

Baseline: For the baseline, we first adapt the COPML
framework from [11] to neural network training as described
in Section III-D, while noting that COPML was originally pro-
posed for logistic regression. We optimize (speed-up) COPML
by using the grouping strategy suggested in [11], which
partitions users into groups of size 7'+ 1, and communicates
the secret shares only between clients within the same group
to minimize the communication overhead for decoding. For

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

8222

both frameworks COPML and CLOVER, we use the secure
truncation operation from [50] to handle the model update
in (83), specifically, the multiplication with %, to avoid an
overflow in the finite field as suggested by [11]. The truncation
protocol enables a secure stochastic quantization operation,
where the inputs are the secret shares {[z];};c;n) of a secret
x, such that client ¢ holds a share [z];, along with two
public integer parameters «; and ko where 0 < K1 < Kag,
and x € Faxs. Then, the protocol returns the secret shares
{[s]i}icn) of a variable s such that s = [5% | 4 b where b is
a Bernoulli random variable with probability P[b = 1] = (x
mod 271)/2%1. As a result, the secret z is quantized by
rounding x/(2") to the nearest integer with probability 1 — o,
where o is the distance between the two. The quantization is
unbiased, which ensures the convergence of the trained model.
For all datasets we use (K1, ko) = (21,24). The learning rate
7 is also subsumed under the truncation operation.
Hyperparameters: The size of the finite field is
p = 226 _ 5. For the local datasets, the data samples
from each class is distributed uniformly across the N users.
Each user then normalizes the real-valued dataset by using
the empirical mean and variance of the local data samples.
Specifically, user ¢ € [N] normalizes each feature x as
x «— (z — mx)/ox, where mx and ox are the empirical
mean and standard deviation evaluated across the data samples
in the local dataset X;. Then, user 7 converts each sample and
label to the finite field IF,, as described in App. A, with the
quantization parameter v = 8. For both datasets, a randomly
sampled batch of 256/K coded data samples are processed
at each round, where sampling is uniformly at random with
replacement, corresponding to 256 true data samples in
total, as each coded sample encodes K true samples. For
CIFAR-10, the VGG feature extractor is publicly available
and pre-trained on the ImageNet dataset [54]. Each CIFAR-10
sample is first passed through the feature extractor locally by
the user, which outputs 25088 features for each data sample.
The resulting features are then utilized as the input to the
polynomial neural network. The bandwidth is 40Mbps.
Performance Evaluation: From Theorem 4, for correct
recovery of the model, the total number of clients need to
satisfy the recovery threshold N — D > 3(K + T — 1) + 1.
Note that as long as the recovery threshold is satisfied, our
framework ensures the correctness of the decoded gradients
at each training round even if up to D users drop out from
the system. In particular, after dataset encoding, each user
processes a coded version of each data point in the dataset,
hence, as long as there are N — D surviving users, the local
evaluations of the dropout users do not effect the accuracy
of the final model. This is unlike conventional uncoded dis-
tributed learning schemes such as federated learning, where
dropout users can significantly deteriorate model accuracy.
As such, in the following we consider the worst-case scenario
for communication overhead and privacy, where D = 0 and
all messages are communicated across the clients. We then let
N=3K+T—-1)+1with K= and T = §.
Communication Overhead: We first evaluate the total com-
munication overhead of CLOVER across all components of
training. In Fig. 10, we present the total communication

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

le6
~W~ CLOVER(Offline+Online)
-3¢ CLOVER(Online)

—%k— COPML(Online)

vl

S

volume (in Megabit)
N w

=

o

16 32 48 64
N (number of clients)
(a) MNIST
le8
1.4 ¥ CLOVER(Offline+Online)

-3~ CLOVER(Online)
—%— COPML(Online)

-
N

[
o

o
o

volume (in Megabit)
o o
ES ©

©
N

e
=]

16 32 48 64
N (number of clients)

(b) CIFAR-10

Fig. 10. Comparison of the total communication volume for the MNIST and
CIFAR-10 datasets.

volume comparing both the overall (offline4-online) and online
phases of CLOVER, as well as the online phases of COPML.
We observe that CLOVER reduces the communication over-
head by 28 and 26 x for the MNIST and CIFAR-10 datasets,
respectively.

Wall-Clock Training Time: We next compare the wall-clock
training time, including all of the communication and compu-
tation time for training, including dataset and label encoding,
model initialization, gradient computation, gradient aggrega-
tion and model update. We present our results in Fig. 11,
where we observe that CLOVER speeds up training by 6x on
the MNIST dataset, and by 4.8x on CIFAR-10, respectively.
As such, the wall-clock time is also greatly reduced for both
datasets, even with the additional offline operations.

Model Accuracy: In Fig. 12, we demonstrate the model
performance for CLOVER by measuring the test accuracy for
the two datasets, with N = 64 clients. We then compare the
model accuracy with that of a conventional feedforward neural
network without privacy constraints using the ReLU activation
function and cross-entropy loss with the same number of lay-
ers. We first demonstrate the performance for the conventional
neural network with batch gradient descent, termed as Batch
GD in Fig. 12, using the same batch of 256 true data samples
that are used at each round of CLOVER, as each coded data
point encodes K true data samples. This represents the per-
formance comparison between the finite field and real domain
for the batch stochastic gradient descent variant considered in
our experiments. Additionally, we also demonstrate the model
accuracy for the conventional neural network with full gradient

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

LU et al.: SCALABLE MULTI-ROUND MULTI-PARTY PRIVACY-PRESERVING NEURAL NETWORK TRAINING

=) le5
g -W~ CLOVER(Offline+Online)
O 1.21 —x cLOVER(Online)
3 —A— COPML(Online)
c 1.0
208
i 0.6
5 0.4
o
Qo.2
®
20055 32 48 64
N (number of clients)
(a) MNIST
1le6

-~ CLOVER(Offline+Online)
—%— CLOVER(Online)
—A— COPML(Online)

w

Wall-Clock Time (in second)
N

16 32 48 64
N (number of clients)

(b) CIFAR-10

Fig. 11. Comparison of the wall-clock training time for the MNIST and
CIFAR-10 datasets.

descent, termed as Full GD. We also note the accuracy reported
for CLOVER in Fig. 12 is equal to the accuracy achieved by
COPML, in particular, the computations carried out by the
two frameworks correspond to the same real domain training
updates per round.

Impact of Parallelism Degree (K): Finally, we evaluate the
impact of the degree of parallelism K, by setting the number
of clients to N = 48, and varying the parallelism degree
as K = [1,4,8,12,16], with the corresponding privacy level
T = [15,11, 8,4, 0], which is selected as the highest adversary
tolerance level allowed by the recovery threshold N > 3(K +
T—1)+1. In Fig. 13, we present the online wall-clock training
time on the MNIST and CIFAR-10 datasets, respectively, over
varying K. Our results indicate a trade-off between parallelism
and adversary tolerance; increasing the degree of parallelism
reduces the wall-clock training time, thus speeding up training,
while decreasing the adversary tolerance.

IX. DISCUSSION

In this work, we consider feedforward polynomial neural
networks with quadratic activations [45], to demonstrate the
trainability of a neural network beyond the former appli-
cations limited to logistic or linear regression due to the
communication complexity. Our results can further serve as a
building block for more complex polynomial architectures as
an interesting future direction [55], [56], [57], [58], [59], [60],
which can enhance model accuracy. Another direction is to
leverage conventional training architectures by approximating
the nonlinear functions with polynomials. The finite field size

8223

1.0
0.8
>
(%)
Co6
=
v
Y]
<04
—&— CLOVER
—%— Conventional Neural Network (Batch GD)
0.2 —»— Conventional Neural Network (Full GD)
0 100 200 300
Iterations
(a) MNIST
0.7
0.6
o
2 0.5
-
0.4
<
0.3
—— CLOVER
0.2 —#— Conventional Neural Network (Batch GD)
—»— Conventional Neural Network (Full GD)
0 100 200 300

Iterations
(b) CIFAR-10
Fig. 12. Test accuracy of the trained model for CLOVER, for the MNIST
and CIFAR-10 datasets, respectively, with respect to the baseline conventional
neural network using ReLU activation and cross-entropy loss, for both batch

gradient descent, termed as Batch GD, and full gradient descent, termed as
Full GD.

in our experiments are constrained by the bit-width of the
computational devices. Using a larger number of layers may
require larger field sizes to avoid overflow errors. As such,
developing software platforms to accommodate the training
operations in larger fields is a promising future direction [61],
[62]. Extending our mechanisms to more complex architec-
tures may also require additional architecture and hyperpa-
rameter tuning.

Our focus in this work is on the honest-but-curious (passive)
adversary model, which serves as a first step towards active
and Byzantine adversaries, who can manipulate the encoding
strategy as well as the messages exchanged during the pro-
tocol. A promising direction for future research is extending
our frameworks for the latter, by leveraging Byzantine-resilient
and verifiable secure multi-party computing mechanisms [63].
In doing so, verifiable secret sharing can be leveraged to
guarantee the integrity of the encoded messages generated
by the users [64]. Simultaneously, the correctness of the
polynomial computations exchanged between the users can be
ensured through Reed-Solomon decoding, which can identify
the errors in the polynomial evaluations exchanged between
the users. To facilitate correct decoding in a network with
up to A active adversaries, Reed-Solomon decoding necessi-
tates two messages per error, thereby requiring 2A additional
evaluations from the remaining users for correct recovery
of the trained model. Beyond the malicious modifications to

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

8224
led

~2.6
% —¥— CLOVER
c
924
@
"
£22
]
E
2.0
X
v
2
018
©
s 1.6

1 4 8 12 16

Parallelism Degree K
(a) MNIST
le5

w52 —¥— CLOVER
c
$5.0
@
»
£438
]
Eae6
=
g
g 44
Q
% 4.2
s

1 8 12 16

Parallelism Degree K
(b) CIFAR-10
Fig. 13. Wall-clock training time over varying degree of parallelism on the

MNIST and CIFAR-10 datasets.

the encoding and decoding mechanism, adversaries may also
target the trained model, by poisoning their local datasets to
manipulate the model. Defending against such attacks further
necessitates secure outlier detection mechanisms [65].

In our work, all training operations are carried out in a
finite field, which leads to a trade-off between the quantization
error, due to the need for converting the datasets from the
real domain to the finite field, and the overflow errors during
gradient computations in the finite field. One approach to
extend our frameworks is to leverage privacy notions defined
over the real domain, such as differential privacy. Extend-
ing our mechanisms to real-valued polynomials also requires
quantifying the privacy-accuracy trade-offs, and ensuring the
stability of the coded computations for training, which may
require new code constructions [66].

X. CONCLUSION AND FUTURE DIRECTIONS

This work proposes CLOVER, a collaborative privacy-
preserving neural network training framework with linear
communication complexity, under strong information-theoretic
privacy guarantees. CLOVER builds on a novel coded com-
puting and degree reduction mechanism, DLC, which enables
efficient degree reduction for iterative applications while
preserving the information-theoretic privacy of the sensitive
local datasets. In doing so, CLOVER significantly improves
the quadratic communication overhead of the state-of-the-art,
while achieving the same adversary-resilience, robustness to
user dropouts, and model accuracy.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

Future directions include applications to different polyno-
mial neural network architectures, and iterative multi-party
algorithms beyond machine learning. An interesting direction
is to leverage neural architecture search and hyperparameter
optimization to find the best polynomial neural network to
maximize the training performance. Another interesting future
direction is to extend our framework to partial user dropouts,
such as scenarios in which a user drops out after sending a
portion of the local computations. Our mechanisms can also
be extended to asynchronous learning in distributed settings,
where coded samples can be processed asynchronously due to
delayed or straggler users. Another direction is extending our
framework to active adversaries by leveraging verifiable secret
sharing and secure outlier detection mechanisms.

APPENDIX A
FINITE FIELD REPRESENTATION

To represent the local datasets in the finite field F,, user
i € [N] locally quantizes each feature x € R in their
local dataset by employing a scalar quantization function
A (round(27 - x)) where,

round(x) = {] if x-—|z] <05

|| +1 otherwise (108)

is a rounding operation, and ~ is an integer parameter that
controls the quantization loss. |z | denotes the largest integer
less than or equal to z, and function A : Z — I, represents
the negative integers in the second half of the finite field,

A(m):{x ifz>0

pt+a ifz<0 (109)

which maps the positive (negative) numbers to the first (sec-
ond) half of the finite field, respectively, known as two’s
complement representation. Then, users represent the labels
in the finite field similarly. All training computations are then
performed as finite field operations in [F,,. Parameter p is
chosen to be sufficiently large to avoid wrap-around in finite
field computations. At the end of training, the final model
{Wi(J)}1g[z+1) is mapped back from I, to the real domain
as W;(J) < A~Y(W,(J)). The quantization operation maps
each feature z € R in the local dataset to an integer value
between (—27|z| — 1,27|z| + 1), where ~ quantifies the
trade-off between the quantization loss and overflow errors.
A larger v reduces the loss due to quantization, but may also
increase the overflow errors. A necessary condition for the
finite field size to avoid overflow errors is p > 2(v*1) max |,
where max |z| € R denotes the maximum value for any
feature in the real-valued datasets.

APPENDIX B
ALGORITHMS FOR CLOVER

The individual steps of CLOVER are presented in

Algorithm 1.

APPENDIX C
INFORMATION-THEORETIC PRIVACY

Proof: Consider an arbitrary set of adversaries 7 C N.
For ease of exposition, we focus on the worst case scenario

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

LU et al.: SCALABLE MULTI-ROUND MULTI-PARTY PRIVACY-PRESERVING NEURAL NETWORK TRAINING

8225

Algorithm 1 CLOVER

Input: Number of users N, number of features d, number of data samples m per user, number of classes c, local dataset X; €]FZX’" and labels Y,; €]Ff,xm

for user ¢ € [N], degree of parallelism K, privacy 7', distinct public parameters s, . .

L, number of neurons d; for layer I € [L + 1].
Output: Final model W1 (J),..., Wr1(J) after J training rounds.

1) Dataset Encoding
:foruseri=1,...,N

foruserj=1,...,N

— dx ™ .
Send the encoded matrix X; ; € IFPX K from (48) to user j.
:foruseri=1,...,N

AN ol e

Generate the encoded dataset)~(i = [5{11

2) Label Encoding
7: foruseri=1,...,N

8: Partition the labels Y; € Fp*™ into K equal-sized shards Y 1,. ..
9: foruserj=1,...,N m

10: Send the encoded matrix {(Z—J S]Ff,>< K from (52) to user j.
11: foruseri=1,..., N

12: Generate the encoded labels ?i = [?“

3) Model Initialization (offline)

13: foruseri=1,..., N
14: for layer [=1,...,L+1

Partition the dataset X; €]ngm into K equal-sized shards X; 1,...

Y, gk €F,

Br,M,...,AN_1 € Fp, number of hidden layers

S anN, B,

dx
\Xix €Fp,- K.

~ dx Nm
Xni] € pr K from (49) by concatenating {X; :};c(n]-

L M
CX I

~ Nm
Ynil € IF;X K from (53) by concatenating {Y;};e[n]-

Lxd _
15: Generate T + 1 matrices W; ;(0),Q,4, K +1,...,Q,i, K +1 € FéV_T =t uniformly at random.
16: foruserj=1,...,N J
—~ ok X dy
17: Send the encoded matrix Wy ; ;(0) €]F;“T T from (52) to user j.

18: foruseri =1,..., N
19: for layer [=1,...,L+1

20: Construct the encoded model VVM(O) € Fﬁl “H=1 from (57), using {\TVI,]-,Z-(O)}J-G[N].

21: for iterationt =0,...,J — 1

4) Gradient Computation
22: foruseri=1,..., N

~ ~ Nm
23: Set Ugi(t) 2 X; € By K
24: for layer [=1,...,L+1 /[Forward Propagation
25: foruseri=1,...,N N
26: Compute zm(t) = Wlﬂi(t)fll_u(t) €]Fil>< K from (62).
27: Using DLC, reduce the degree from M to K + T — 1 as shown in (63),
Zi1(t),. ., Zyn(t) — DLC(Zya(t), ..., Zy N (t), M) where M is as defined in (64)
28: foruseri=1,...,N N
29: Set Uyi(t) = g(Zyi(t) € Fa " % from (65).
30: foruseri=1,...,N N
31 Set Bpy1i(t) 2 2(Zpy1.4(t) — Yi) €Fy - &

32: for layer [=L,...,1

by setting |7| = T, while noting that the same analysis holds
for all |[7| < T. Let M; and My, denote the collection
of all messages received/generated by the adversaries during
the dataset encoding (Stage 1), and label encoding (Stage 2)
stages, respectively. Similarly, let M3 denote the collection
of all messages received/generated by the adversaries during
the model initialization stage (Stage 3). Finally, let My(¢)
denote the collection of all messages received/generated by
the adversaries in the gradient computation stage (Stage 4)
at training round ¢ € {0,...,J — 1}, and M;(t) denote the
collection of all messages received/generated by the adver-
saries in the model update stage (Stage 5) at training round
t € {0,...,J — 1}, respectively. Then, from the chain rule of

mutual information, one can rewrite (105) as follows,

T({X5, Y bier; MTH{Xs, Yitier , AWi(J) hiep+1y) (110)
= I({X;, Yi}ier; Ma, Mo, Mz, U3 My (t), U2 M (t)
HXi, Yitier, AWi(J) hiern+1) (111)
= I({Xs, Yitier; Mil{Xs, Yitier AWi(J) hiejp+1))
HI({Xi, Yitier; Mol M1, {Xi, Yitier, {Wi(J) biei+1))

FI({X:, Yibier; Ma|Ma, Mo, {X;, Yitier, {Wi(J) hien+1))
J—1

+) T{Xi, Yitier; Ma(t)| My, Mo, Ms, U Ma(t),
t=0
U Ms (), {Xs, Yitier, iWi(J) hiejz+1))

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

8226

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

33: foruseri=1,...,N N
34: Compute Ez,i(t) = 221,1'(15) o} (WLI (1) x El+1,¢(t)) € le “"K" from (66). //Backpropagation
35: Using DLC, reduce the degree from 3(K + T — 1) to K + T — 1 as shown in (67),
E 1(t), ..., By n(t) « DLC(Ey1(t),..., By n(1),3(K + T — 1))

36: foruseri=1,...,N dxd
37: Compute the gradient Gy ;(t) = Ey;(t) x UT_; ,(t) €]FIDL>< =1 from (68).

5) Model Update

Offline
38: forlayerl=1,...,L+1
39: foruseri=1,...,N .,

N wd,

40: Generate By ;1(t), .-, By i 3(x+7—1)+1(1), S1,i,x+1(t), - -, St k7 (t) € Fy =" S uniformly random.
41: foruser j=1,...,N B .
42: Send the encoded matrices B; ; ;(t) from (69) and By ; ;(t) from (70) to user j.
43: foruseri=1,...,N
44: Generate the higher-dimensional encoded matrices Bl,i(t),ﬁl,i(t) S Fgl *AU-1 o5 in (71).

Online
45: forlayer i=1,...,L+1
46: foruseri=1,...,N R _ 5
47: Broadcast the masked coded gradient G, ;(t) = Gy ;(t) — By ;(t) from (76).
48: foruseri=1,...,N
49: Decode the masked gradients hy(8)) — By, (¢) for k € [K] using polynomial interpolation.
50: Construct the aggregated gradient G ;(t) using a degree K + T — 1 Lagrange polynomial as in (80).
51: Using the gradient Gy ;(t), update the model W, ;(t + 1) as described in (83).

Final Model Recovery

52: Collect VVM(J), . ,VVL+1,Z~(J) from any set of K + T users, and decode the final model W1 (J),..., Wr41(J).

J—1

+ Z T({Xs, Yitier; Ms(t)| M1, Mz, Ms, Ui/:()./\/la‘(t')7

t=0
t—1

Up—o Ms(t'),{Xs, Yitier, {Wi(J) hierr11])

We next investigate each term in the summation (112).

(112)

A. Stage 1: Dataset Encoding

We first consider the first term in (112), which corresponds
to the dataset encoding stage, which can be rewritten as,

T({Xs, Yitier; Mil{Xi, Yitier, {Wi(J) hieip+1y) (113)
= I({Xs, Yi}ier; {Xijbienger, {VikbieT ke (K +1,...k+T}
{Xi, Yitier, AWi(J) bie(z11))
= H({X; ;Viernjer {ViktieT hefk 11, k+1)]
{Xi, Yitier, AWi(J) bie(z11))
- H({Xi,j}ieﬁ,je% {Virtier ketr+1,....k+11
{Xe, Yitien) AWU(JI) hierp+1)

We next bound the first term in (114) as follows:

(114)

H({XiViertjer: {VirtieT hetiin, ity
{Xi, Yitier AWW(J) hierz+1))
< H({Xi;}ienjer A ViktieT ke{ik+1,...k+1}) (115)

< (T3 T togy (116)

i€H K i€T

where (115) holds since conditioning cannot increase entropy;
(116) follows from the fact that uniform distribution max-
imizes entropy, and that the entropy of a uniform random
variable distributed over an alphabet S is equal to log |S].

For the second term in (114), we observe that:

H({XijVierjer- {ViktieT hetiin, ity
{X, Yitien) AWi(J) hierz+1)

& o — B
=H({ Z Vik H ﬁ}ieH,jeT)
k=K+1 kelK+T\(k} &~ 7k
+ H({Vir}tieT ke{k+1,...K+T}) (117)
— Td
=Y H{Vij}jer) + ?(Zm) log p (118)

i€H icT

where (117) holds since given {X;, Y;};c(n}, there is no
uncertainty remaining in {Xx }ie[ny,ke[k]> and that the ran-
domness is generated independently from the datasets; (118)
follows from the entropy of uniform random variables, along

with,

K+T
Vit §+ Vi] YGBY ien et
w4 - Br — B
k=K+1 kK [K+T\{k}
(119)

For notational simplicity, in the following we let H = [N —
T]and T = {N—-T+1,..., N}, and note that same analysis
holds for any set of adversarial users 7 of size 7. We then
represent the Lagrange polynomial coefficients as:

o5 — ’
N | g’“/ (120)
welK+TI\{k} 8 K
for all j € [N] and k € [K + T]. Then, one can write,
[vi,NquLl [s] Vz‘,N[SH
= [Vik41ls] Vigir[sl]] T (121)

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

LU et al.: SCALABLE MULTI-ROUND MULTI-PARTY PRIVACY-PRESERVING NEURAL NETWORK TRAINING

where V; i.[s] and V; ;.[s] denote the s column of V; and
Vi i, respectively for s € [2], and

PN—-T+1,K+1 PN,K+1

r (122)
PN—-T+1,K+T

is a T x T MDS matrix (hence is invertible), due to the MDS
property of Lagrange coefficients as shown in [10]. Then,

H({va.j}je’[) = H({Vi,N—T-i-l[SL e

PN,K+T

aVi,N[S]}se[m/K])

(123)
=H({Viklsl, -, Viksr[sltseim/x)
(124)

Tdm
= % log p (125)

where (124) follows from (202) and that I" is an MDS matrix,
and (125) follows from the fact that each element of V,
is distributed uniformly at random over the finite field F,.
By combining (125) with (118), we have that,

Z H({Vi;}jer) + de(z m)logp

ieH ieT
Td Td
= ?(Zm) logp + ?<Zm) log p
€M €T

(126)

Finally, by combining (116) and (126) with (114), we find

that,

0 < IT({Xi, Yitien; Mil{Xi, Yitier, {Wi(J) hicin41)) <0
(127)

where the first inequality follows from the non-negativity of
mutual information. Therefore, the first term in (112) satisfies:

T({Xi, Yitier; Mi{Xi, Yitier, AWi(J) higin+1)) =0
(128)

B. Stage 2: Label Encoding

We next consider the second term in (112), which corre-
sponds to the label encoding stage,

T({Xs, Yibiern; Mo My AXe, Y bier , AWi(J) bierz+1))
:]({XiaYi}ieH;{?i,j}ieﬁ,je%{Ni,k}ieff,ke{xﬂ ,,,,, K+1}]
M AXe, Yitier, AWi(J) biefr11))
= H({?i,j}ieH,jeT» {Nir}ieT ke{r+1,.... K+T}]
My AX Y Yier AWI(T) hiern+1))
- H({?i,j}ieH,jeTa {Ni,k}ieT,ke{K+1,...,K+T}|
M AKX Yitien AW igip41y) (129)
The first term in (129) can be bounded as:
H({?i,j}ieﬁ,je’h {Nik}ieT ke{k+1,...k+T}]
M X, Yitier AWi(I) hierz 1)
< H({Yi;}ienjer, {Niktier ketr+1,...k+13) (130)

8227

Tem
+Z I%)logp
ieT

< (Z Tlc(m

ieH

(131)

where (130) holds since conditioning cannot increase entropy;
(131) follows from the fact that uniform distribution maxi-
mizes entropy. For the second term in (129), we observe that:

H({Yi Y ierjer {Ni g YieT ke k1, K17} |
M AX Yitieiny AW(I) hiein+1)

= a; — B
=H N, oL
({ k;—&-l ’ k’G[KE“]\{k} 5]@ - ﬂk’ }'LEH,JGT)
+ H({Nir}ier kefg+1,...k+73y) (132)
= 3 H{N)yer) + o (S m) togp (133)

= ieT

where (132) holds since given {X;, Y;};c(n}, there is no
uncertainty remaining in {Y }ie[n],ke[x]. and that the ran-
domness is generated independently from the datasets; (133)
follows from the entropy of uniform random variables, and

K
N, 2 iFN‘ 11 G =B ey jeT
i,j — i,k ﬁk _ﬂk’ yJ .
k=K +1 K €[K+T\{k}
(134)
Then, we can write,
[Nin-741(s] N n[s]]
= [Niges1ls] Nixsr[s]] T (135)

where N; 1[s] and N, [s] is the s column of N; ;, and N ,

respectively for s € [], and T" is a 7'x T MDS matrix (hence
is invertible) as defined in (122). Then,

H({Ni }jer) = H{Nin—711[s], - -, Ni n[s]}sepm/x))

(136)
= H({Ni x1[s],-- -, Ni xk17[s]}seim/x])
(137)

Tcem
= % log p (138)

where (137) follows from (135) and that I" is an MDS matrix,
and (138) holds since each element of N;; is distributed
uniformly at random over F,,. By combining (138) with (133),
we have,

S H(Nher) + 7o (Sm) logp

i€EH €T

Tec Tc
= ?(Zm) logp + ?(Zm) logp
i€H €T
(139)
Finally, by combining (131) and (139) with (129), we have,
0 < I({Xs, Yibier; Mo M1, {Xi, Yitier, {Wi(J) bigz+1)) <0

hence the second term in (112) is also equal to O.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

8228

C. Stage 3: Model Initialization

We next consider the third term in (112), which corresponds
to the model initialization stage. From (112), we find that,

IT({Xs, Yitiern; MMy, Mo, {Xe, Yitier, AWi(J) hern+1))

=I({Xi, Yi}icr: AW1i(0), Quik} ieTic[r+1), >

ke{K+1,...K+T}
{Wz,i,j(o)}ilev[fijel]% My, Mo, {Xi, Yitier, {Wi(J) hierz+1)
€[L+
(140)

= H({W1,:(0),Quix} icTicim+1), »{Wii5(0)}icr jer]
ke{K+1,.... K+T} le[L+1]

My, Mo X, Yitier, AWI(J) hier+1))
—H{Wi(0), Quik}t ieriemrn, {Wiii(0)}icr jer]
ke{K+1,...,K+T} le[L+1]
My, Mo X, Yitiein) AW(J) higin+1y) (141)
ledl—l T2dldl_1) logp
N-T N-T

5>

le[L+1]
—H({Wu,i,;(0)}iern,jer {W4i(0), Quik} ieTacin+1],
le[L+1) ke{K+1,..., K+T}

Mo, Mo X, Yitie v AW hien+1))
—H({W.:(0),Quir} icTyiciLt1, M1, M2, {Xi, Yiticn,
ke{K+1,... . K+T}

Wi herz+1)

where the last inequality holds since conditioning cannot
increase entropy, and that uniform distribution maximizes
entropy. We next bound the last two terms in (142). First,
observe that,

H({Wl,i,j(O)}iEH,jET|{Wl,i(O)7Ql,i,k} ieT Ie[L+1], >
le[L+1] ke{K+1,....K+T}
M, Mo, X, Yitie vy iAW) henay)

> H({Wi,i,;(0)}ierojer {W1i(0), Qi)
le[L+1]

My, Mo AXG, Yitiein) AWU() hiern+s
{W1i(0) Yierier+1)

(Tdidi—s +

(142)

€T ,le[L+1], >
ke{K+1,...,.K+T}

= H({(Quik+1l7],- - Qui.x+7[1))T}jela,_11ae(nt1),icn)

= H{(Qui,x+1[7],-- - Qui,x+rlI]) Y jed 1) ie[i41],iem)
(143)

= Z ledl—l 1ogp (144)

le[L+1]

where (143) holds since I' is an MDS matrix (hence is invert-

ible) as shown in (122), and (144) follows from the entropy of

uniform distribution. Next, for the last term in (142), we have,
€T ,le[L+1],

H({W;;(0),Quxr} My, Ma,
ke{K+1,....K+T}
X, Yitiein) AWi(JI) hierz+1)
> H({W1i(0),Quir} ieTic[r+1],
ke{K+1,...,.K+T}

{Xe, Yitien) AWi(J) hiep+1y, AW1(0) bien+1))
= H({W:(0), Quix} H{Wi(0) hept1))

(145)
(146)

|M17M27

i€T,l€[L+1],
kE{K+1,.. . K+T}

=H{W:(0),Quir} ieTiciL+,)

ke{K+1,....K+T}

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

Tdidi—, T%*dyd;_,
= 1 14
DD R) oep (147)
le[L+1]
where (145) is from the Markov chain {W,;(0),

QuikYieT l€[Lr1) ke {K+1,....K+T} {Wi1(0) biern4y
My, Mo, {X5, Yitieny, AWi(J) }ie[z+1) and (147) follows
from the entropy of uniform distribution. Finally, (146)
follows from the fact that,

0 < I({Wi(0), Qix} ;W(0)) <0 (148)

1€T ,le[L+1],
ke{K+1,....K+T}

since uniform distribution maximizes entropy,

H(W(0)) < Z did;—1 logp
I€[L+1]

(149)

and

H(W(0)[{Wi(0), Qi x}ieT ic[Lr1] ke {K+1,...K+T})
= H({ D ATWL(0), > A Wia(0))
i€[N]

ZE[L+1]’

i€[N]
{W,:(0), Ql,i,k}ie’]’,le[L+1],ke{K+1,...,K+T}> (150)
:H({ 3 ATWL(0),
1€[N-T]
> A W) hieg o [{Wei(0),
i€[N=T]
Ql,i,k}ieT,le[L+1],ke{K+1,...,K+T}) (151)

= H{(Wi1ljl,. -, Win-7[l)M}jc(a,_111e(241) (152)
=H{Wi1lj], - . Win_rlil}jeid_111e[n+1) (153)

= Z dyd;—1 log p (154)
le[L+1]

where (151) follows from the independence of the randomness
generated by the honest users from the adversaries. In (152),
we let W ;[j] denote the j* column of W ;(0), and define,

1 1
A coo ANt

M = (155)

AN;Tfl)VN;Tfl

1 N-T
which is an (N —T) x (N —T) MDS matrix (hence is invert-
ible), from which (153) follows. Finally, (154) follows from
the entropy of the uniform distribution. By combining (147)
and (144) with (142), we have,

0 < I({Xi, Y }iew; Ma| My, Mo,

{Xi, Yitier, AWi(J) }iejz+1))
<0

hence the third term in (112) is also equal to O.

D. Stage 4: Gradient Computation

We next study the fourth term in (112), which corresponds
to the gradient computation stage. During this stage, the only
communication between the users occurs during the degree
reduction phase. Therefore, without loss of generality, one can

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

LU et al.: SCALABLE MULTI-ROUND MULTI-PARTY PRIVACY-PRESERVING NEURAL NETWORK TRAINING

denote the set of all messages received or generated during this
stage as follows,

./\/l4(t) = M4)1(t) U---u M472L+1(t) (156)

where My ;(t) denotes the messages received or generated
by the adversaries during the ;" degree reduction operation
for j € [2L + 1], and 2L + 1 is the total number of degree
reduction operations, as L + 1 degree reduction operations are
performed during forward pass and L operations are performed
during backpropagation, respectively. Then, from (21), (23),
and (29), one can rewrite the fourth term in (112) as follows,

T({X3, YiYier; Ma(t)| My, Mo, M3, U2 Ma(t'),

Up—o Ms(t),{Xs, Yitier AWi(D) hefzs1)
=I({Xi, Yitien; Ma1(t) U--- UMaara(t) Mr, M2, Ms,
Ultt'_:lo M4(t’), U§7:10M5(t'), {Xia Yi}ieTa {WI(J)}ZE[L+1])

(157)
= > I({Xi, Yitier; May (B May_1(t) U+ UMaa(t),
I’e[2L+1]
M, Mo, M, U 2o Ma(t'), U 2o Ms (t),
X, Yitier AWW(J) hiep+11) (158)

In the following, we show that the degree reduction operation
with DLC from Section IV preserves information-theoretic
privacy while reducing the degree of an arbitrary polynomial
function f(-) € Fpr*"2 of degree M, where f(By) for
k € [K] represent the desired (secret) computations, and f(c;)
represents the local (coded) computation evaluated by user
i € [N], respectively. Without loss of generality, let

My & (Myp_1(t),- -+, My (t), M1, Ma, M3,
Ui/_:lo M4(tl)a Ui/_zloME)(t/))
(159)
denote the set of all messages received or generated by the
adversaries prior to the degree reduction operation !’ € [2L+1]
at round ¢. Then, one can rewrite each term in (158) as follows,
IT{Xs, Yitiern; Moy () May_1(t) U--- UMy 1(t), M1, Ma,
M, U g Ma ('), U ZoMis (), {Xs, Yitier, {Wi()) hierz 1)
=I({Xs, Yitier; May () IMy X, Yitier, {Wi(J) hierp+1))
(160)
= I({Xi, Yi}ier; {Rij, RijYienjer, {f(ai) — ﬁi}ie[N]v
{Rikbier kems1]s 1Ak FieT ke{K+1,....k+1} M,
X, Yitier AWW(J) hierp+11) (161)
=I({X;, Yi}iens {ﬁimﬁi,j}ﬁ?;,, {f(Br) — Ri}repnrs)s

{RikbieT keim41]s {Aik bieT ke{K+1,....K+T}]
My AX, Yitier , AWI(J) biein+1)) (162)

= H({Ri;, Ri e, {f(Br) — Ribreprsn), {Rin} ier,
JET ke[M41]

{Airtier keqr+1,...k+7H M, {Xe, Yitier , {Wi(J) }iern+1y)

—H({ﬁi,j7ﬁi,j}i§7{,7 {f(Br) — Ri}reips), {Rik} ieT,
JET ke[M+1]

{Airtier kex+1,...k+1H M, {Xa, Yitieing, {AWi1(J) biern+1y)
(163)

8229

where (162) follows from the fact that there is a bijective map-
ping from any M +1 evaluation points {f(8r) — R }xe[ar+1]
to a valid (feasible) set of local computations {f(c;) —
RZ-},;G[N], since the local computations in (29) correspond
to evaluations of a degree M monomial p(a) = f(a) —d(a),
which can be uniquely reconstructed from any set of at least
M + 1 evaluation points. For the first term in (163), we find
that,

H({Rij,Ri;Yierjet, {f(Br) — Ritrepasa), {Rik} ier,
kE[M+1]

{Airbier veqr, xrry M X, Yitier , AWi(J) hez+1))
= H({Rij, Ri j}Yien jer, {Rik} ieT,
ke[M+1]
T
_ AIIRT, L A pRY) }
{f(ﬁk) (Z 1 ik ’_Z N=TTk) [eirgn)’
i€[N] i€[N]
{Aiktiet ke i,y M {Xe, Yitier, {Wi(J) hier+1))
(164)

= H({R, ienjer. {Rix} ieT, 7{f(5k)—
ke[M+1]

T
AT'RY, . MR)
(, Z 1 i,k " Z N—-T"Vi,k ke[M+1]7
€[N =T i€[N-T]

{Airtier keqis,... . k7 My X, Yitier, {Wi(J) hieiz+1))
(165)

T
N_T)logp (166)

where (164) follows from (26), and (165) holds since,

[ZiE[N—T] Ali_leT,j ZiE[N—T] l]i\/_—lTR’}:j}

<(T+M+ 1)n1n2<1 +

~flan- > (60
ke[M+1]
. . T
- |:Zie[N7T] AR, D ie(N-T])*;\rilTRsz})
@ = B 167
H Br — B (167)

K e[M+1\{k}

where the local computations {f(c;)};e7 are already known
by the adversaries prior to degree reduction i.e., { f (o) }je7 €
M., and that

[Rujls] -+ Rvorls]

[Eie[NfT] Ali_lﬁi,j [s] ’ Zie[NfT] Azi/_—lTﬁi,j [s] M,

(168)

for all s € [ng], where ﬁi’j [s] denotes the s column of R;. s
and M is the (N—T) x (N —T) MDS matrix (hence invertible)
as defined in (155). Finally, (166) holds since conditioning
cannot increase entropy, and that entropy is maximized by the
uniform distribution. For the second term in (163), we find
that,

H({ﬁi,j,ﬁi,j}ieﬁ,jem{f(ﬁk)*Rk}ke[MH],{Ri,k} €T,
ke [M41]
{Air}ieT ke{r+1,.... k+Ty MU,
{Xi, Yitiein): AWi(D) heipay)

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

8230

> H({Ri;, R, bienjer, {F(Br) —
{Rz k}zeT ke[M+1]» {Az k:}zGT ke{K+1,..., K+T}|
My X, Yitien) AW herz 1) 1 (Br) beeipr 1))

Ry brenri)s

(169)

= H({R;;,Ri tier,jer {Rihepsa), {Rik} ieT,
ke[M+1]
{AirtieT ke{k+1,....K+T}) (170)

€T,)
k€{K+1,... K+T}

> ie[N] ’lzi\r_—lTRzT,k} ! }

:H({ﬁi,j,ﬁi,j}ieﬁ,,{Ri,k} ieT, {Aik}
jeT ke[MA1]
i—1
{[Ziem 4RI,

ke[M+1]>
(171)

= H({Rl j7Rz j}zEH »{Rz k:} 167’ €T, s

ke[M+1] ke{K+1 ,,,,, K+T}
{ Z MR, -
iE€E[N—-T]

Z 2'Jz\f 1TR7, k }
kE[M+1]
= H({R, i R J}ZGH {R;, k} zET {Az k)

Ak}

1€E[N-T]

€T, ’
ke{K+1,. K+T}

{[Rusls) - Ra-rals]] M})
ke[M+1],s€[n2]
(172)
= H({ﬁi,j,ﬁi,j}igﬁ,, {Rix} ier, {Air} i€T,)
JET kE[MA1] ke{K+1,...,K+T}
{[Racls] - Rurals]]))
ke[M+1],s€[n2]
(173)
({RZ Sows Rus} ier A} er
kE[M 1] ke{K+1,..,K+T}
{ [Rie - Ra-rul | > (174)
ke[M+1]
= H({ﬁi,j}igH,|{Ri,k}i€[N7T],k€[M+1])
JET
+ H({Rik bie(N—1).ke[m41])
+ H({Ri,k} ieT, {Aix} ieT,)
ke[M+1] ke{K+1,.,K+T}
(175)
- (M+T+1)n1n2(1+ N_T>10gp (176)

where (169) holds since conditioning cannot increase
entropy; (170) follows from the independence of random-
ness generated; (171) follows from (26); (172) follows
from (155); (173) holds since M is a (N —T) x (N —T) MDS
matrix (hence is invertible); (174) holds since {R; ;};c7 can
be perfectly reconstructed from {Rl-,k}ke[M+1) using (20) for
all ¢« € H; (175) follows from the independence of the ran-
domness generated by the honest and adversarial users; (176)
follows from the entropy of uniform random variables, along
with,

H({ﬁm}: HRikbiev -1 ke(pr+1))
JET
K+T
:ZH({ Z Azkﬂ]k} eT) (a77)
ieH k=K+1

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

Z H({ [Ai k41(s]

Ai,K+T[S]] F}se[nz])

1€H
(178)
=> H(Aik1,- Aixyr) (179)
1€EH

where p; ;. is the Lagrange coefficient defined in (120), and T’
is a T'xT' MDS matrix as defined in (122) (hence is invertible).

Finally, by combining (176) and (166) with (163), we find
for (161) that,

0 <I({Xs, Yi}ier; {Rij, Rij Yierjer, {fau) — ﬁ«i}ie[N]v
{Rirtier kems1]s {Aik bieT ke (K +1,... . K+T}]
My AX, Yitier, AWi(J) hieip+1) <0 (180)
The steps for consecutive degree reduction operations [€

[2L + 1] follow the same steps, from which we find for (158)
and accordingly, the fourth term in (112) that,
Z T({Xs, Yitier; Map (£)[Ma—1(t) U
l'E[2L+1]
My, Mo, M, UL My (), UL M (),
{Xi, Yitier, AWi(J) hie(z11))

= I({Xi, Y }ier; Ma(t)| My, Mo, M5, UL Ma(t),

Ul Ms (), {X5, Yitier, AWL()) hie(r+1))
(181)

S UMaa(d),

=0

E. Stage 5: Model Update

We finally consider the last term in (112), corresponding
to the model update stage. In the following, we let M =
3(K +T —1). Then, for the last term in (112), one can write
that,

T({X4, Yi}ier; Ms(t)| My, Mo, M, Upi_o Ma(t'),
Ul Ms(t),{X3, Yibier, AW () bierr+1))

=T({X;, Y} ien; {ﬁl,i,j (t),Bui; () Yicr,jeT 1e(L+1]>
{ém(t) - El,i(t)}z‘e[N],le[L+1]7 {Buik(t) bieT ke[pr+1],s
le[L+1]

{S1ik(t) Yier kefr+1,.... k+T} 1e[L+1] M1, Ma, M3,
Upr—g Ma(t'), U oM (t), X, Yitier, AWi(J) ez +1))

(182)
= >

T({Xi, Yi}ier; {Brij(t), Bri; (1) Yierjer
le[L+1]

{Gui(t) — Bui(t) ey {Buik () YieT keinrs1s
{S1,ik(t)} H{Bu,i,j(t), By i ;(t) Yien,jeT,,

Uefi—1]
{Gyi(t)

i€T,
ke{K+1,..,K+T}

—Byi(t)} iev], s ABrak(t)} ieT,
I'efl—1] ke[M+1],
U'ell—1]

€T, 7M17M27M37U§’:0M4(t/)7
ke{K+1,....K+T},
U'eli-1]

Ul Ms o A%, Y bier, AW hierns1))

= > I({Xi, Yitien; {Burij(t), Brij(t) ienjer,
le[L+1]

{Gua(t)

{Su,ik ()}

(183)

— Bui(t) ienys {Brik(t) YieT einr1):

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

LU et al.: SCALABLE MULTI-ROUND MULTI-PARTY PRIVACY-PRESERVING NEURAL NETWORK TRAINING

{Suik()} M, {Xi, Yitier, {Wi(J) hiern+1)

(184)

ieT,
ke{K+1,..., K+T}

where in (184) we let,

Mi=({Bui;(t),Bri;(t)} e,
eli—1]

A4Sk (t)}

By i(t)} iev,
Uell-1]

AGra(t) -
{Brix(t)}

ieT,
ke[M+1],

Uell—1]
My, May, M3, Ui/:OM4(t,), Ut

€T,)
ke{K+1,....K+T},
Uell-1]

—oMs.1r)

to denote the set of all messages received or generated by the
adversaries prior to gradient aggregation at layer /. We next
provide the analysis for a single layer I € [L + 1] in (184),
while noting that the same analysis holds for all layers, which
can then be combined by using the chain rule in (183). For
any given layer | € [L 4 1], one can rewrite the corresponding
mutual information term from (184) as follows,

I({Xi, Yi}ien; {Brij(t), B, (t)}i_ev%y

(185)

JE
{Gri(t) = Bri(t) Yicv), {Brik(t)} ieT,
ke[M+1]
{Suik(t)} ieT, M, {Xs, Yitier, {Wi(J) hep41))
kE{K+1,...K+T}
(186)
= I({Xi, Yi}ien; {Bu,i, (t)7§z,i,j(t)}ig7%,,
JjE
{hi(ei) = ri(aq) bieing ABrak (D)} ieT,
ke[M+1]
{Suik(t)} ieT, |Mi, {Xi, Yitier, {Wi(J) hiern 1))
kE{K+1,...K+T}
(187)

= T({X4,Yi}icn; {ﬁl,i,j (t),Bui; () Yier jer,
{Pu(Br) — ri(Br) breprr1)s {Burik (t) e ke 1),
{Stik(t)} |Mi, {Xi, Yitier, AWi(I) hieiz+1))
(188)
= H({Bui,;(t), Buiy(t) bierger, {h(Br) — m1(Be) beeppr iy,
{Burix(t) YieT kep+1), {S1ik () YieT ke (K +1,.... k+T}
MiAXe, Yitier AWI(J) hierr+1)

—H({By,;,j(t), Bui,; () Yier,jer {7l (Br) —r1(Bk) Yoeiaria,
{Brix(®) et k1) {S1i k() YieT ke {x11,... k413 |
Mo AXG, Yitien), AWi(D) hiepng) (189)

where (188) follows from the fact that there is a bijec-

tive mapping from any M + 1 evaluation points {h;(0;) —
71(Br) tre[p+1) to a valid (feasible) set of local computations

{hi(e;) — (i) bien. For the first term in (189), we find

that,

H({Bu;;(t),Buri;(t)Vierjer, (ha(Br) = mi(Be) beepyr,

{Burik() et ke {S1ik (D) Ve ke fx 41, k11|
MiAXe, Yitier AW hierr+1)

= H({]A_);l%j(t) El @j(f)}ie?—{ JET, {hl(ﬂk)f
{Z E 71Bl]k Z MV ITBZM] }kE[M+1]7

JE[N] JEIN]

ieT,
ke{K+1,... ,K+T}

M AX:, Yitien

8231

{Burix(t) YieT ke+1), 180k (D) YieT ke K +1,.... K +T} |
ﬂla{XiaYi}ieTa{Wl('])}le[L-i-l]) (190)

= H({El,i,j(t) Buij(t)}ien,jeT {hl(ﬁk)—
|: Z llz 1Blzk: Z A’Z 1TBllk: :| }
ke[M+1)

i€[N-T] 1€E[N-T]
{Bii,x () Yier wem+1), {816, (0) YieT ke {41, Kk +T}]

ﬂz,{Xz—,Yi}ieT,{WI(J)}le[LH]) (191)
= H({Bi, (¢ >}z;en,,{m (Bh) -

Z Z1Bl7,lc Z A’N TBlzk

ce[N— i€[N—-T]

T
} }ke[M+1]’

{Bl,z,k(t)}ieT,ke[M+1]7{Sl,i,k(t)}ieT,ke{KJrl x+7}|
M AX;, Yibier, {WI(J)}ZG[L+1]>

(T+ (M + 1)];)(1 + _T)dldl,llogp

where the last inequality follows from the fact that uniform
distribution maximizes entropy, and (192) follows from,

Lom—

(193)

T
Siev-n MTBLL 0 Siepon A B, 0)]
= hl(aj) - Z (hl(ﬁk)
ke[M+1]
[ST OATBL®) > AeBlis(t)})
1€[N-T] 1€[N-T]

H = By (194)
y Br — Brr

e[M+1]\{k}
where h;(c;) corresponds to the local computation performed
by user j € 7, and that,

Bl - Buworls] =

[Zie[N—T] lliilél,j [s] Zie[N—T])*JivilT]?’l,NfT,j [3]}
M! (195)

for all j € [N], and s € [d;—1], where B, [s] denotes the s
column of B; ;(t), and M is the (N —T) x (N —T) MDS
matrix defined in (155) (hence invertible).

For the second term in (189), we find that,

H({Byi,;(t),Brij(t) Vierger, {hi(Br) — 11(Br) breprss
{Burik(t) bier keprr1)s {Suik(t) Vet ke (x 11, K41}
M AXG, Yitien), AWi(D) bernta)
> H({B1;(t), Bui;(t) Yierjers {hi(Br) — 11(Br) breparsn)s
{Burik(t) YieT kem+1), {S1ik () YieT khe{k+1,.... K+T}
M X, Yitien)s AW() hepng)s {(Br) breinr+1))
(196)
= H({Byi;(t),Bri;(t) Yien et {r(Br) Yeeiar41)s
{Buik(t) Yicr kepr+1), {81k () YieT ke (K 41,... .k +T}]
AW ey {(Br) Y e 1))
(197)

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

8232

= H({Bu,i,;(t), Bui,j (1) Vier.jer-{Buw(t) e,

{Burik(t) YieT kepp+1], {S1ik () YieT ke { k41, K +T}

M AKX, Yitie vy AW() hepa s 1 (Be) Yeepr 1))
(198)

= H({El,i,j(t);ﬁl,i,j () Yienjer ABLE() breimy)

{Burix(t) YieT kepr1)> S0k (B) YieT ke{K +1,.... K+T})
(199)

_ H<{1§M,j (). Bus () iereser

{Burix(t) VieT keprt1)> 180k (t) VieT ke (K +1,.... KT}

{FJG[N]Aij_lBlT,j,k(t) o 'Zje[N])“J{filTBlijv’“(t)} }kE[M—H])
(200)
= H({ﬁl,i,j (t), By () Yicr,jer,
{Buik(t) et kepr1), {Suik(t) YieT ke 11....,
{|:Z;V 1TAJ lB’l]"Jk() ZN TAJ 1 BT;J,]C():| }kG[IVI+1>
(201)
= H({]ﬁ?;l%j (t),ﬁl,i7j(t)}ie7-t,je7’v {Bl,i,k(t)}ieT,kE[MJrl]’

{S1in(t) YieT kefk+1,...K+TY>

K+T}s

B B N7k M
{[l’Lk[S] LN T,k[S]] }kE[M+1]7S€[dll]>
(202)
= H<{]§l” (t), By () Yien,jer,
{Buik(t) YieT kepm+1), {Stik (D) YieT ke (K41, K+T} >
B B, nv_
{ Buasls wenbl) b)
(203)
= H({El,i,j(t)}ieH,jeTa
{Bl,i,k(t)}ieT,ke[M—s-l]» {Sl,i,k(t)}ieT,ke{K-s-l,.“,K-s-T}7
B t B, n_ t
{ [By1.x(t) LN—Tk(t)] }ke[M—H])
(204)
= H({Bu, j(t) }yier,jer {Buik(t) bicr repri)
H({Bpix(t)} ien,)+ H{Sixr(t)} ieT,)
ke[M+1] ke{K+1,...K+T}
+ H({Bu,ix(t) }ieT kepr+1]) (205)
T Nm
= (1 + T) (T + (M + 1)7)dldl,1 logp (206)

where the first inequality holds since conditioning cannot
increase entropy; (202) holds since the (N —T') x (N —T)
MDS matrix M deﬁned in (155) is invertible, by letting
By k[s] denote the st column of B x(t) for all ¢ €
[N —T; (203) holds since MDS matrices are invertible; (204)
holds since each element of the random masks are generated

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

independently; (206) follows from the fact that,
H({Bu,;(t) }ier,jer {Buin(t) bierpeimr1))

=S H({ X Sanu)

JET

i€H ke{K+1,...,.K+T}
= ZH({ i Kk+1[8] Si.k+1[s]] F} .)
=y s€ldi—1]
(207)
=Y H({Six1lsl, . Sikrrs]}seia_.) (208)
ieH

where p; i, is the Lagrange coefficient defined in (120), S;x[s]
denotes the s*" column of S;(t) fork € {K+1,..., K+T},
and T is the T x T' MDS matrix as defined in (122) (hence
invertible). Finally, (206) follows from the entropy of uniform
random variables.

By combining (206) and (193) with (186) and (184),
we find for the last term in (112) that,

0 < I({Xy, Yitier; Ms ()| My, Mo, M3, Uy o Ma(t'),
Ui Moo AXs, Yitier, AWi(J) hiefz41)
= > I({Xi, Yitien; {Brij(t), Brij(t) ienjer,

le[L+1]
M AKX, Yibier AW hiepr 1))
=0 (209)
which completes the proof. |
APPENDIX D

COMPUTATION COMPLEXITY

Throughout the rest of our analysis, we use the fact
that interpolating a polynomial of degree x (and evalu-
ating it at s points) has a computational complexity of
O(rlog® kloglog k) [51]. We next present the per-user
computation complexity of CLOVER for the individual
components. _

(Stage 1: Dataset Encoding) Generation of {X; ;}jc(n
requires evaluating a Lagrange polynomial of degree
K + T — 1 at N points, which has a complexity of
O(Hdm log?(K + T)loglog(K + T)) per user.

(Stage 2: Label Encoding) Generation of {Y”}Je (V]
requires evaluating a Lagrange polynomial of degree
K + T — 1 at N points, which has a complexity of
O(¥em 1og? (K + T) loglog(K + T))) per user.

(Stage 3: Model Initialization) Generation of
{W,,j(0)};e[n requires evaluating a Lagrange polynomial
of degree K + T — 1 at N points, which has a per user
computation complexity of O(Zle[LH] Nj’f/lell og? (K +
T)loglog(K + T)). Next, evaluating Wl’l(O) has a
complexity of O(} ;cip41) NV — T)d;\,di‘Tl) per user.
Overall, the total computation complexity of this stage
is O “ntet log’(K + T)loglog(K + T) +
> te(r+1) NVdidi—1) per user.

(Stage 4: Gradient Computation) First, we analyze the
per-user computation complexity of the degree reduction oper-
ation with DLC from Section IV, for reducing the degree
of a polynomial f(-) of some degree M > K + T — 1,

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

LU et al.: SCALABLE MULTI-ROUND MULTI-PARTY PRIVACY-PRESERVING NEURAL NETWORK TRAINING

where f(51),...f(Bx) € Fp1*"? embed the K desired
computations as described in Section IV.

(Offline): The offline per-user computation cost con-
sists of: 1) O(nmg%logQMlog log M) to compute the
encoded random matrices 13;” in (21) for users j € [N];
2) O(nina 57 log® (K + T) loglog(K + T')) for computing
the encoded matrices R, ; from (23) for users j € [N];
3) O(N(N — T)x*=%) for evaluating R; from (24); 4)
O(N(N — T)#%2) to evaluate R; from (25). Overall, the
offline overhead is O(527n1n2 log? (K +T) loglog(K+T)+
Nnyng) per user.

(Online): The online per-user computation cost consists
of: 1) O(ninz) for computing f(a;) — R; from (29);
2) O(ninoM log® M loglog M) for interpolating the degree
M polynomial ¢(a) from (30); O(ninoK) for the re-encoding
operation from (32). Overall, the online computation overhead
is O(nynaM log® M loglog M) per user.

As a result, the total per-user computation overhead of
degree reduction with DLC, including both online and online
phases, is given by,

N
O(nanN —7 log® M loglog M+

nina M log® M loglog M + nanN) (210)

We next use (210) to analyze the computation overhead for
gradient computation. At each training round ¢ € {0,...,J —
1}, the per-user computation overhead for gradient computa-
tion consists of the following components.

Forward Propagation: The per-user computation
overhead of forward propagation consists of:
H oz > ie(r+1) didi—1) to compute Zy;(t) from (62);

2) O(Zle[L+1] 4 " (5

T)loglog(K + T) + > icir4] NN
reduction operation from (63), by letting M = 3(K +7 — 1),
ni = d;, and ny = N2 in (210); 3) O(&2 Yieip i)
for computing INJl,i(t) from (65). Hence, the overall per-user
computation overhead for forward propagation is given as,

+ K 4+ T)log*(K +

for the degree

Nm N
O(K(Z did;—1 + Z dl(N,T_'_K_‘_T)
1€[L+1] le[L+1]
log?(K + T)loglog(K +T) + 3 Ndl>> @11)

le[L+1]

Backpropagation: The per-user computation overhead of
the backpropagation operation consists of the following:

1) O(N (c + Zle[L] dzdl+1)) to compute the error term
Ei(t) from (66); 2) o(+ K + T)log(K +

T)loglog(K+T)+3 ic(r+1) N7 Nomd) for the degree reduction
operation from (67), by letting M = 3(K +T — 1), n; = d,
and ny = P in (210); 3) O(F2 Y0, 4y didi—1) for
computing the gradient from (68). Then, the overall per-user

Nmd, (L

8233

computation overhead for backpropagation is,

Nm
O(K(Z didi—1 + Z dl(NfT +K~+T)
le[L+1] le[L+1]
log®(K + T)loglog(K +T) + > Ndl)> (212)
le[L+1]

Finally, the total per-user computation overhead for gradient
computation, including both forward propagation and back-
propagation is,

Nm N
O(K(Zdldl—1+ Zdl(N_T+K+T)
l€[L+1] le[L+1]
log?(K + T)loglog(K +T) + > Ndl)> 213)
le[L+1]

(Stage 5: Gradient Aggregation and Model Update) At each

training round ¢t € {0,...,J — 1}, the per-user computa-
tion overhead for model updating consists of the following
components.

(Offline): The offline per-user computation cost consists of:

D O(Xieqpin) g N log? (K +T) log log(K +1)) for eval-

uating By ., for all j € [V 2) O(Xeip o (N -TIN577)

to compute By ;(£) in (71); 3) O(ZZG[L+1] dld’ TN log? (K +

T)loglog(K+T)+3 cr41] djifd’ N K) for evaluatmg B, ,(t)
for all j € [N], where the last term is due to evaluating the
sum 3y e Briw () in (70); 4) O3 ¢p4q) Nidi—1) for
computing Bl,l().

(Online): The online per-user computation cost consists
of: 1) O(X:le L41] did;—1) for evaluating Gl ,i(t) from (77);
2) O(X:le[m_1 didi_1(K+T) log (K+T)loglog(K +1T))
for interpolating the degree 3(K + 7T — 1) polynomial h;(a) —
ri(a) and evaluating the masked gradients h;(08x) — 71(Bk)
from (79) for all k € [K]; 3) O3 ¢pq1) Kdidi—1) for
evaluating the aggregated gradient élyi(t) from (80); 4)
O(Xie(r.+1) didi—1) for the model update.

As a result, the total per-user computation overhead for
model updating, including both online and online phases,
is given as,

didi—1 ; o
log?(K + T)loglog(K + T
O(Y. w7 log”(K +T)loglog(K +T)
le[L+1]
+ Y Ndidiy+ Y didi 1 (K +T)log(K +1T)
1€[L+1] le[L+1]
loglog(K +T)+ Y Kdd; 1> (214)
le[L+1]

- O(> dldH(NJXT

le[L+1]

+K +T) log?(K + T)

Z dyd;— 1N) (215)

le[L+1]

loglog(K +T)

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

8234

Finally, by combining all five stages, for J training rounds,
the total per-user computation complexity is,

Nm

O((d+c) 7
+J(> %dldl,l + 0y

le[L] le[L+1]

log? (K + T)loglog(K + T)

N2m
76 d + Z dl<dl71
le[L+1]

(216)

) (S T Dttt)

(217)

APPENDIX E
DETAILS OF THE MODEL UPDATING PROCESS

For tractability of the theoretical analysis, in our privacy
analysis from Section VII we consider a sufficiently large field
size and treat all training operations as finite field polynomial
operations. In our experiments, we instead leverage the secure
truncation mechanism described in Section VIII for the model
update in (83), to reduce the required field size in practice,
albeit with a slight loss in accuracy. In this section, we provide
the details on how one can represent all training computa-
tions using finite field polynomial operations only, consisting
of finite field addition and multiplications, where the main
challenge is the fact that that ﬁ < 1 in (5). To do so, one
can select a learning rate 1) such that § £ Y™ ¢ Z which
is then mapped to the finite field IF,, as described in App. E.
Then, the intended model update from (5) is given as,

Wit +1) = Wi(t) — NLmGz(t)

—WL(t) - %Gl(t) VielL+1] (18
In the following, we show that the intended model
{Wi(t + 1)}igp41) from (218) can be obtained using
finite field polynomial operations only, at any training round
te{l,...,J—1}

Proposition 1: The model W (¢t + 1),... ., Wryi(t + 1)
from (218) can be obtained using finite field polynomial
operations only, by defining a new error propagation rule that
replaces (66) as,

By =4 2l - 7Y i 1=L+1
. 2Z1:(t) © (Wi1,:(t) x Bipri(t)) if I<L
(219)

and a model update rule that replaces (83) as,

Wit +1) =6 x 632 3W (1) — 627 G(t)
(220)

where
t=20

221
t>0 @21

N 1 if

R P

At any training round ¢ € {0,...,J — 1}, users can recover
the intended model from (218) via polynomial interpolation,
by collecting the local computations W, ;(t+1) in (220) from

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

any set of at least (K +7T — 1) 4+ 1 users, and then re-scaling
the decoded model as,

Wi(t+1)

222
S (222)

Wi(t+1) «

Proof: We next show that using the model update rule

from (220), one can recover the intended model from (218)

at any round ¢ € {0,...,J — 1}. We first define a virtual
variable,

3x 2L+t

Wit +1)=6 x & SBWi(t) — 62 THGI(t) Ve [L+1]

(223)

where W;(0) 2 W;(0), G;(0) £ G;(0), and W(t + 1)
corresponds to the model obtained if the encoded model
Wi ;(t + 1) from (220) is decoded at the end of round
t, by collecting W, ;(t + 1) from at any set of at least
(K+T —1)+ 1 users and using polynomial interpolation.
Accordingly, Gy(t) corresponds to the aggregated gradient
obtained if the encoded gradient G ;(¢) from (220) is decoded
using polynomial interpolation at round ¢, by collecting él,i (t)
from any set of at least (K + 7 — 1) 4+ 1 users, and then
aggregating the resulting gradients. We next show that,

. Wz(t+ 1)

W (t+1) = vte{0,...,J—1}, (224)

Ot+1
hence the model update operation from (220) can perfectly
recover the intended model W (t+ 1) from (218). The proof
then follows by induction, where we provide the details next.

1. Base case (t = 0). For the base case, we observe
from (220) and (221) that,

W, (1) = 6W,;(0) — G;(0) VI e[L+1], (225)

hence (224) holds for the base case t = 0,
W) W) & 1—

= =W;(0) — =G4(0

== 1(0) = 5Gi(0)

2. Induction step (t > 0). Next, we assume that (224) holds

for an arbitrary round ¢ — 1, and show that it also holds for
round ¢. We first note that,

W, (t) = 6;Wy(t) Vie|[L+1],

Vi € [L + 1] (226)

(227)

since (224) holds by assumption at round ¢—1, and then evalu-
ate the aggregated gradient {Gy(f)}e[141] at round ¢ from the
forward and backpropagation of {W(t)};c|f+1). For forward
propagation, let Z;(¢) and U;(¢) denote the signal at layer
[€ [L + 1] before and after the activation function g(-), cor-
responding to the forward pass of the model {W(¢)}1e(r+1),
hence U;(t) = g(Z;(t)) and Z;(t) = W;(t)U;_1(t). Let
Z,(t) and U;(t) correspond to the forward pass of the true
model {W;(t)};¢[z+1) before and after the activation function
g(-) at layer | € [L + 1], hence U;(t) = ¢g(Z;(t)) and
Z,(t) = W (t)U;_1(t). From (227), we observe that,

_ 1 -

Zi(t) = 6-"=1" ' Zi(t) =62 ' Zy(t) Vle[L+1] (228)
and

5 _ Z§/:12ll _2(2h-1)

T == Ui) = 8 DUL(t) VielL+1] (229)

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

LU et al.: SCALABLE MULTI-ROUND MULTI-PARTY PRIVACY-PRESERVING NEURAL NETWORK TRAINING

Next, for backpropagation, let E;(¢) denote the error at layer
obtained from the error propagation operation from (219) for
the virtual model {W;(t)}1e[z41),

2L+1

Bi(t) = 20Zp 1 (t) =02 'Y () if I=L+1
: 0Z)(t) © (Wiy, () x Biya () i 1<L
(230)

and E;(¢) denote the error propagation operation from (66)
for the true model {W;(t) }1e[z41],

B 2(Zp(t) = Y (1)) if
El(t){QZl(t) © (LJVITH(LL) x B (1)) if

From (227), (230), and (231), one can observe that,

’
(=i 21
t

l=L+1
<L (231)

Ei(t) =622 1E(t) Vie[lL+1]
(232)

Ei(t)=4

Then, from (229) and (232), we observe the following
relationship between the gradient Gy(t) = Ey(t) x U,_, ()
corresponding to the virtual model W(t), and the gradient
Gi(t) = E;(t) x U]_,(t) corresponding to the original model
Wi (1),

Gi(t) = 8277 3Gy(t) Ve[l +1] (233)
from which we find that,

v 3x 2Lt 3o oty

Wl(t + 1) . 4 X (St Wl(t) — 51& Gl(t) (234)
Orp1 8 x ox2T =2
1
=W,(t) — gGl(t) (235)
— Wit +1) (236)
where (235) follows from (227) and (233), respectively,
which completes the proof. (]
REFERENCES

[1] P. Mohassel and Y. Zhang, “SecureML: A system for scalable privacy-
preserving machine learning,” in Proc. IEEE Symp. Security Privacy
(SP), Jul. 2017, pp. 19-38.

[2] M. Ben-Or and A. Wigderson, “Completeness theorems for non-

cryptographic fault-tolerant distributed computation,” in Proc. 20th

Annu. ACM Symp. Theory Comput. (STOC), 1988, pp. 1-10.

I. Damgard and J. B. Nielsen, “Scalable and unconditionally secure

multiparty computation,” in Proc. Annu. Int. Cryptol. Conf., 2007,

pp. 572-590.

[4] Z. Beerliova-Trubiniovad and M. Hirt, “Perfectly-secure MPC with linear
communication complexity,” in Proc. Theory Cryptogr. Conf., 2008,
pp- 213-230.

[5] M. Al-Rubaie and J. M. Chang, “Privacy-preserving machine learning:

Threats and solutions,” IEEE Secur. Privacy, vol. 17, no. 2, pp. 49-58,

Mar. 2019.

V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye, D. Boneh, and

N. Taft, “Privacy-preserving ridge regression on hundreds of millions of

records,” in Proc. IEEE Symp. Secur. Privacy, May 2013, pp. 334-348.

[71 A. Gascon et al., “Privacy-preserving distributed linear regression on
high-dimensional data,” Proc. Privacy Enhancing Technol., vol. 2017,
no. 4, pp. 345-364, Oct. 2017.

[8] P. Mohassel and P. Rindal, “ABY 3: A mixed protocol framework for
machine learning,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., Oct. 2018, pp. 35-52.

[9] S. Wagh, D. Gupta, and N. Chandran, “SecureNN: Efficient and private
neural network training,” JACR Cryptol. ePrint Arch., vol. 442, 2018.
[Online]. Available: https://eprint.iacr.org/2018/442

[3

=

[6

=

8235

[10] Q. Yu, S. Li, N. Raviv, S. M. M. Kalan, M. Soltanolkotabi, and
S. A. Avestimehr, “Lagrange coded computing: Optimal design for
resiliency, security, and privacy,” in Proc. 22nd Int. Conf. Artif. Intell.
Statist., 2019, pp. 1215-1225.

[11] J. So, B. Giiler, and S. Avestimehr, “A scalable approach for privacy-
preserving collaborative machine learning,” in Proc. Adv. Neural Inf.
Process. Syst., Dec. 2020, pp. 1-24.

[12] J. So, B. Giiler, and A. S. Avestimehr, “CodedPrivateML: A fast and
privacy-preserving framework for distributed machine learning,” IEEE
J. Sel. Areas Inf. Theory, vol. 2, no. 1, pp. 441-451, Mar. 2021.

[13] S.Dutta, Z. Bai, H. Jeong, T. Meng Low, and P. Grover, “A unified coded
deep neural network training strategy based on generalized PolyDot
codes for matrix multiplication,” 2018, arXiv:1811.10751.

[14] M. Aliasgari, O. Simeone, and J. Kliewer, “Private and secure distributed
matrix multiplication with flexible communication load,” IEEE Trans.
Inf. Forensics Security, vol. 15, pp. 2722-2734, 2020.

[15] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11,
pp. 612-613, Nov. 1979.

[16] K. Bonawitz et al., “Practical secure aggregation for privacy-preserving
machine learning,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., Oct. 2017, pp. 1-24.

[17] J. H. Bell, K. A. Bonawitz, A. Gascén, T. Lepoint, and M. Raykova,
“Secure single-server aggregation with (poly) logarithmic overhead,”
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2020,
pp. 1253-1269.

[18] J. So et al., “Lightsecagg: A lightweight and versatile design for secure
aggregation in federated learning,” Proc. Mach. Learn. Syst., vol. 4,
pp. 694-720, May 2022.

[19] Y. Zhao and H. Sun, “Information theoretic secure aggregation with
user dropouts,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jul. 2021,
pp. 1124-1129.

[20] A.R. Elkordy, J. Zhang, Y. H. Ezzeldin, K. Psounis, and S. Avestimehr,
“How much privacy does federated learning with secure aggrega-
tion guarantee?” Proc. Privacy Enhancing Technol., vol. 2023, no. 1,
pp. 510-526, Jan. 2023.

[21] J. So, R. E. Ali, B. Guler, J. Jiao, and S. Avestimehr, “Securing
secure aggregation: Mitigating multi-round privacy leakage in federated
learning,” in Proc. AAAI Conf. Artif. Intell., 2023, pp. 1-24.

[22] M. Lam, G.-Y. Wei, D. Brooks, V. Reddi, and M. Mitzenmacher, “Gra-
dient disaggregation: Breaking privacy in federated learning by recon-
structing the user participant matrix,” in Proc. Int. Conf. Mach. Learn.,
2021, pp. 1-22.

[23] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise
to sensitivity in private data analysis,” in Proc. Theory Cryptogr. Conf.,
2006, pp. 265-284.

[24] S. Samet, “Privacy-preserving logistic regression,” J. Adv. Inf. Technol.,
vol. 1, no. 1, pp. 88-95, May 2015.

[25] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in Proc.
ACM SIGSAC Conf. Comput. Commun. Security, 2015, pp. 1310-1321.

[26] M. Abadi et al., “Deep learning with differential privacy,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Security, 2016, pp. 308-318.

[27] M. Pathak, S. Rane, and B. Raj, “Multiparty differential privacy via
aggregation of locally trained classifiers,” in Proc. Adv. Neural Inf.
Process. Syst. (NIPS), 2010, pp. 1876-1884.

[28] H. B. McMahan, D. Ramage, K. Talwar, and L. Zhang, “Learning
differentially private recurrent language models,” in Proc. Int. Conf.
Learn. Represent., 2018, pp. 1-24.

[29] A. Rajkumar and S. Agarwal, “A differentially private stochastic gradient
descent algorithm for multiparty classification,” in Proc. 15th Int. Conf.
Artif. Intell. Statist., 2012, pp. 933-941.

[30] B. Jayaraman, L. Wang, D. Evans, and Q. Gu, “Distributed learning
without distress: Privacy-preserving empirical risk minimization,” in
Proc. Adv. in Neural Inf. Process. Syst., 2018, pp. 6346—6357.

[31] W.-N. Chen, A. Ozgur, and P. Kairouz, “The Poisson binomial mecha-
nism for unbiased federated learning with secure aggregation,” in Proc.
Int. Conf. Mach. Learn., 2022, pp. 3490-3506.

[32] W.-N. Chen, C. A. C. Choo, P. Kairouz, and A. T. Suresh, “The fun-
damental price of secure aggregation in differentially private federated
learning,” in Proc. Int. Conf. Mach. Learn., 2022, pp. 3056-3089.

[33] P. Kairouz, Z. Liu, and T. Steinke, “The distributed discrete Gaussian
mechanism for federated learning with secure aggregation,” in Proc. Int.
Conf. Mach. Learn., 2021, pp. 5201-5212.

[34] C. Gentry and D. Boneh, A Fully Homomorphic Encryption Scheme,
vol. 20. Stanford, CA, USA: Stanford Univ. Press, 2009.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

8236

[35]

[36]

(37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]
[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proc.
41st Annu. ACM Symp. Theory Comput. (STOC), 2009, pp. 168-178.
R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and
J. Wernsing, “CryptoNets: Applying neural networks to encrypted data
with high throughput and accuracy,” in Proc. Int. Conf. Mach. Learn.,
2016, pp. 201-210.

E. Hesamifard, H. Takabi, and M. Ghasemi, “CryptoDL: Deep neural
networks over encrypted data,” 2017, arXiv:1711.05189.

T. Graepel, K. Lauter, and M. Naehrig, “ML confidential: Machine
learning on encrypted data,” in Proc. Int. Conf. Inf. Secur. Cryptol.,
2012, pp. 1-21.

J. Yuan and S. Yu, “Privacy preserving back-propagation neural network
learning made practical with cloud computing,” IEEE Trans. Parallel
Distrib. Syst., vol. 25, no. 1, pp. 212-221, Jan. 2014.

H. Chabanne, A. de Wargny, J. Milgram, C. Morel, and E. Prouff,
“Privacy-preserving classification on deep neural network,” JACR Cryp-
tol. ePrint Arch., vol. 1, p. 35, Jul. 2017.

P. Li, J. Li, Z. Huang, C.-Z. Gao, W.-B. Chen, and K. Chen, “Privacy-
preserving outsourced classification in cloud computing,” Cluster Com-
put., vol. 21, no. 1, pp. 277-286, Mar. 2018.

A. Kim, Y. Song, M. Kim, K. Lee, and J. H. Cheon, “Logistic regression
model training based on the approximate homomorphic encryption,”
BMC Med. Genomics, vol. 11, no. S4, p. 83, Oct. 2018.

Q. Wang et al., “Privacy-preserving collaborative model learning: The
case of word vector training,” IEEE Trans. Knowl. Data Eng., vol. 30,
no. 12, pp. 2381-2393, Dec. 2018.

K. Han, S. Hong, J. H. Cheon, and D. Park, “Logistic regression on
homomorphic encrypted data at scale,” in Proc. Annual Conf. Innov.
App. Artif. Intell. (IAAI), 2019, pp. 1-27.

R. Livni, S. Shalev-Shwartz, and O. Shamir, “On the computational
efficiency of training neural networks,” in Proc. Adv. Neural Inf. Process.
Syst., vol. 27, 2014, pp. 1-27.

E. W. Cheney and W. A. Light, A Course in Approximation Theory,
vol. 101. Washington, DC, USA: American Mathematical Soc., 2009.
M. H. Stone, “The generalized weierstrass approximation theorem,”
Math. Mag., vol. 21, no. 4, p. 167, Mar. 1948.

X. Lu, H. U. Sami, and B. Giiler, “Privacy-preserving collaborative
learning with linear communication complexity,” IEEE Trans. Inf. The-
ory, vol. 70, no. 8, pp. 5857-5887, Aug. 2024.

J. Shao, Y. Sun, S. Li, and J. Zhang, “Dres-FL: Dropout-resilient secure
federated learning for non-iid clients via secret data sharing,” in Proc.
Adv. Neural Inf. Process. Syst., 2022, pp. 1-11.

O. Catrina and A. Saxena, “Secure computation with fixed-point num-
bers,” in Proc. Int. Conf. Financial Cryptogr. Data Secur. (FC), Tenerife,
Spain, Jan. 2010, pp. 35-50.

K. S. Kedlaya and C. Umans, “Fast polynomial factorization and
modular composition,” SIAM Journal on Computing, vol. 40, no. 6,
pp. 1767-1802, 2011.

Y. LeCun, C. Cortes, and C. Burges. (2010). MNIST Handwritten Digit
Database. [Online]. Available: http://yann.lecun.com/exdb/mnist

A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” M.S. thesis, Citeseer, Dept. Comput. Sci., Univ. Toronto,
2009.

O. Russakovsky et al., “ImageNet large scale visual recognition chal-
lenge,” Int. J. Comput. Vis., vol. 115, no. 3, pp. 211-252, Dec. 2015.
G. G. Chrysos, S. Moschoglou, G. Bouritsas, J. Deng, Y. Panagakis, and
S. Zafeiriou, “Deep polynomial neural networks,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 44, no. 8, pp. 40214034, Aug. 2022.

G. G. Chrysos, S. Moschoglou, G. Bouritsas, Y. Panagakis, J. Deng,
and S. Zafeiriou, “P-nets: Deep polynomial neural networks,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 7325-7335.

G. G. Chrysos, M. Georgopoulos, J. Deng, J. Kossaifi, Y. Panagakis, and
A. Anandkumar, “Augmenting deep classifiers with polynomial neural
networks,” in Proc. Eur. Conf. Comput. Vis., 2022, pp. 692-716.

A. Dubey, F. Radenovic, and D. Mahajan, “Scalable interpretability via
polynomials,” in Proc. Adv. Neural Inf. Process. Syst., vol. 35, 2022,
pp. 36748-36761.

[59] E. A. Rocamora, M. F. Sahin, F. Liu, G. Chrysos, and V. Cevher, “Sound
and complete verification of polynomial networks,” in Proc. Adv. Neural
Inf. Process. Syst., vol. 35, 2022, pp. 3517-3529.

Y. Cheng, G. G. Chrysos, M. Georgopoulos, and V. Cevher, “Multi-
linear operator networks,” in Proc. Int. Conf. Learn. Represent., 2024,
pp. 1-24.

J.-K. Zinzindohoué, K. Bhargavan, J. Protzenko, and B. Beurdouche,
“HACL: A verified modern cryptographic library,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., Oct. 2017, pp. 1789-1806.
T. Granlund. (2004). GNU MP: The GNU Multiple Precision Arithmetic
Library. [Online]. Available: http://gmplib.org/

J. So, B. Giiler, and A. S. Avestimehr, “Byzantine-resilient secure
federated learning,” IEEE J. Sel. Areas Commun., vol. 39, no. 7,
pp. 2168-2181, Jul. 2021.

P. Feldman, “A practical scheme for non-interactive verifiable secret
sharing,” in Proc. 28th Annu. Symp. Found. Comput. Sci. (SFCS), 1987,
pp. 427-438.

P. Blanchard, E. M. E. Mhamdi, R. Guerraoui, and J. Stainer, “Machine
learning with adversaries: Byzantine tolerant gradient descent,” in Proc.
Annu. Conf. Neural Inf. Process. Syst., 2017, pp. 119-129.

M. Fahim and V. R. Cadambe, “Numerically stable polynomially coded
computing,” IEEE Trans. Inf. Theory, vol. 67, no. 5, pp. 2758-2785,
May 2021.

[60]

[61]

[62]

[63]

[64]

[65]

[66]

Xingyu Lu received the Bachelor of Engineering degree from the Com-
puter Science and Information Technology Department, Zhejiang Gongshang
University, China, in 2019, and the Master of Science degree in robotics
(computer science) from the Khoury College of Computer Science and the
College of Engineering, Northeastern University, Boston, MA, USA, in 2021.
He is currently pursuing the Ph.D. degree with the Electrical and Computer
Engineering Department, University of California at Riverside, Riverside. His
research interests include private machine learning, distributed learning, and
federated learning.

Umit Yigit Basaran received the B.Sc. degree in computer science from
Thsan Dogramaci Bilkent University, Ankara, Tiirkiye, in 2022. He is currently
pursuing the Ph.D. degree with the Department of Electrical and Computer
Engineering, University of California at Riverside, Riverside. His research
interests include federated and distributed machine learning, secure and private
computing, machine unlearning, and information theory.

Basak Giiler (Member, IEEE) received the B.Sc. degree in electrical and
electronics engineering from Middle East Technical University (METU),
Ankara, Tiirkiye, and the Ph.D. degree from the Wireless Communications
and Networking Laboratory, The Pennsylvania State University, in 2017.
From 2018 to 2020, she was a Post-Doctoral Scholar with the University
of Southern California. She is currently an Assistant Professor with the
Department of Electrical and Computer Engineering, University of California
at Riverside, Riverside. Her research interests include information theory,
distributed computing, machine learning, and wireless networks. She received
the NSF CAREER Award in 2022 and serves as an Associate Editor for IEEE
TRANSACTIONS ON WIRELESS COMMUNICATIONS, in the area of artificial
intelligence and machine learning, and IEEE TRANSACTIONS ON GREEN
COMMUNICATIONS AND NETWORKING, in the area of green computing and
artificial intelligence.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 08,2025 at 16:53:52 UTC from IEEE Xplore. Restrictions apply.

