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AbstractÐSecure aggregation (SA) is a privacy-enhancing
framework for federated learning, to aggregate the local gradient
updates from the users without revealing them in the clear.
Conventional SA frameworks are built under the assumption of
homogeneous computational resources across the users, where
users are bound to train a local model whose dimensions
are as large as the global model, preventing resource-limited
users from participating in training. In this work, we propose
a novel secure submodel training framework to address this
challenge, where users train and communicate partial submodels
through an adaptable secure aggregation mechanism during
training. Our framework enables the participation of all users
with varying computation and communication resources, while
ensuring formal information-theoretic privacy guarantees for the
individual local updates.

I. INTRODUCTION

Federated learning (FL) is a collaborative training architec-

ture where multiple data-owners (users) jointly train a shared

global model without sharing their private data [1]. Instead,

users perform training locally on their private datasets, after

which the local updates (e.g., gradients) are aggregated by a

server to update the global model. By eliminating the need for

sharing sensitive data, FL has found applications in a variety

of privacy-sensitive fields, such as healthcare. On the other

hand, recent works have shown that even the local updates may

reveal extensive information about sensitive datasets, through

what is known as gradient inversion attacks [2]±[4]. Secure

aggregation (SA) protocols aim to mitigate such information

leakage, by allowing the server to aggregate the local updates

without observing them in the clear [5]±[10].

Existing SA protocols consider a homogeneous setting

where all users have equal computational resources, and the

size of the local model trained by all users is as large as the

global model. This imposes a major challenge in real-world

applications, where user devices have different computation

capabilities, further exacerbated by the fact that model sizes

continue to grow in practice, preventing resource-limited de-

vices from participating in training. In this work, our goal is

to address this challenge, by developing an SA framework for

networks with heterogeneous compute capabilities.

Several recent works have considered FL (without SA)

under heterogeneous compute resources [11]±[15]. References

[11], [12] leverage bidirectional knowledge distillation where
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users train a smaller model than the server. References [13]±

[16] train partial submodels extracted from the original global

model, where the size of the submodels are adapted to the on-

device computation capabilities of the users. These existing

works consider training without SA, where the server has

access to individual local model updates.

In contrast, our goal is to enable submodel training for

SA, where the server can only learn the aggregate of the

submodels, without learning any further information about

the selected submodels. To that end, we first demonstrate

the vulnerabilities of existing SA frameworks for submodel

aggregation, and the necessity to hide not only the submodel

parameters, but also the submodels selected by each user.

We then propose a novel SA framework, SESA (Secure

Submodel Aggregation), to enable secure gradient aggregation

in networks with heterogeneous compute resources. SESA

enables each user to train a smaller model extracted from the

global model according to their resource availability, while

hiding both the selected submodels by each user, and the

individual parameters for the selected submodels, under formal

information-theoretic privacy guarantees. In doing so, our

framework enables adaptability for resource-limited users to

train and communicate smaller partial models, reducing both

the computation and communication overhead simultaneously.

Recent works [17]±[19] consider the privacy of submodel

indices in the context of Private Information Retrieval (PIR).

Different from our work, the PIR task builds on a multi-server

setting, where the servers do not collude with the users. In

contrast, our work is built on a single-server FL setup, where

the goal is to ensure privacy against any collusions across up

to T users and the server.

Our contributions are summarized as follows:

• We demonstrate the vulnerabilities of conventional SA

protocols for submodel training, due to the heterogeneity

between the submodels selected by different users.

• We propose the first SA framework that simultaneously

tackles heterogeneous computation and communication

resource limitations of the users.

• We demonstrate the formal information-theoretic privacy

guarantees for hiding both the individual local model

updates and the selected submodels by each user.

• Our theoretical analysis demonstrates the adaptability of

SESA to resource heterogeneity across the users, in terms

of both the computation and communication load.

• Our experiments demonstrate that our SA framework
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achieves comparable performance to state-of-the-art sub-

model training benchmarks (without SA).

II. PROBLEM FORMULATION

We consider a network of N users, where user i ∈ [N ]
holds a local dataset Di. In conventional FL, users have equal

compute and computational resources, and the goal is to train

a global model w ∈ R
d to minimize a (global) loss function,

F (w) ≜

N
∑

i=1

ωiFi(w) (1)

where ωi ≜
|Di|∑
N
i=1

|Di|
, and

Fi(w) ≜
1

|Di|

∑

ξ∈Di

f(ξ,w) (2)

denotes the local loss function of user i where f(ξ,w) is the

loss computed on the data sample ξ.

Submodel training. Unlike conventional FL, in real-world

settings users may have heterogeneous computational re-

sources. Submodel training is a recent framework to address

this challenge, where users can train models with varying

sizes, adapted to their resource availability [14], [15]. To do

so, each user i ∈ [N ] extracts a partial model wi from the

global model w. Then, the local loss function of user i is

defined as,

Fi(wi) ≜
1

|Di|

∑

ξ∈Di

f(ξ,wi), (3)

The partial model wi is determined by the resource availability

of user i, quantified by a parameter Bi denoting the fraction of

nodes extracted from each fully connected layer in the global

model w [15]. For convolutional layers, this represents the

fraction of the total number of kernels selected within each

layer of the global model w. In doing so, users with high

computational resources can train larger models by extracting

a larger partial model, whereas resource-limited users can train

smaller models by choosing a smaller partial model.

At each training round t ∈ [J ], the server then sends the

current state wt of the global model w to the N users.

After receiving the global model, user i ∈ [N ] extracts a

partial model wt
i , consisting of the extracted parameters across

different layers, according to its resource constraint Bi. Next,

user i updates the partial model through local training,

wt
i ← wt

i − η∇Fi(w
t
i) (4)

where η is the learning rate and ∇Fi(w
t
i) denotes the gradient

computed with respect to the partial model wt
i . Let Iti denote

the ordered set of the indices of the extracted parameters by

user i at round t. After E rounds of local training, user i
computes the model difference for the extracted parameters,

gt
i(k) ≜ wt

i(k)−wt(k) (5)

for all k ∈ Iti , where v(k) denotes the kth parameter of a

vector v. Then, user i sends gt
i(k) for all k ∈ Iti to the server.

In doing so, some users may drop out from the network due

to various reasons, including poor channel conditions, limited

battery, or device unavailability. After receiving the parameter

updates in (5) from the surviving users i ∈ U t ⊆ [N ], the

server updates the global model for the next training round,

wt(k) = wt(k)−
1

N

∑

i∈St
k
∩Ut

gt
i(k) (6)

for all k ∈ [d], where Stk ≜ {i ∈ [N ] : k ∈ Iti} denotes the

set of users who update the kth parameter at round t.

Threat model. We consider an honest-but-curious adversary

model along the line of conventional SA protocols, where

adversaries follow the training protocol truthfully, but try to

extract confidential information about honest users’ local data

through the messages exchanged [5]±[8]. We consider up to

T adversarial users, who may collude with one another and/or

the server. The set of adversarial and honest users are denoted

as T and H ≜ [N ]\T , respectively.

Secure aggregation. SA aims to aggregate the local updates

gt
i , without revealing any information beyond their sum,

gt
agg ≜

∑

i∈Ut

gt
i (7)

Formally, this condition is expressed as,

I({gt
i}i∈H;Mt

T |g
t
agg, {g

t
i}i∈T ,R

t
T ) = 0 (8)

whereMt
T denotes the received messages, and Rt

T is the ran-

domness generated, by the adversaries and the server at round

t. The correct recovery of (7) is ensured by the constraint,

H(gt
agg|M

t
Ut) = 0 (9)

where Mt
Ut encompasses the set of messages held by the

surviving users U t at round t. To compute (7) under the privacy

guarantees from (8), users encode their local updates gt
i , send-

ing instead the encoded version to the server. The encoding

process obscures the true user updates from the server using

locally generated random masks, while still allowing the server

to decode their sum as in (7), without gaining any information

about the individual updates gt
i . While doing so, SA protocols

differ in their encoding/decoding process [5]±[8].

A major challenge of SA is its computational overhead; the

dimensionality of the model trained by each user is as large

as the global model, limiting scalability to resource-limited

networks with heterogeneous compute capabilities. We aim to

tackle this challenge by posing the question,

• Can submodel training enhance the scalability of SA to

networks with heterogeneous compute resources?

In this work, we show that submodel training can enable

SA in networks with heterogeneous compute resources, but

additional care should be taken to anonymize the updated

submodels, and naive approaches can be detrimental to the

security premise of SA. As discussed later in Section III, SA is

vulnerable to submodel training; varying submodel dimensions

across the users allow adversaries to reconstruct local data

samples of honest users even in the presence of SA. Our results

emphasize the necessity for stronger security guarantees for

submodel training, concealing not only the local submodels,
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Fig. 1. Overview of an attack scenario with N = 2 users.

but also the indices of updated submodel parameters:

I({gt
i(k), k} i∈H

k∈It
i

;Mt
T |{

∑

i∈St
k
∩Ut

gt
i(k)}k∈[d],

{gt
i(k), k} i∈T

k∈It
i

,RT ) = 0 (10)

To address this challenge, we introduce SESA (Secure

Submodel Aggregation), a secure aggregation framework for

submodel training. Our framework enables users to flexibly

train partial models based on their available system resources,

while satisfying (10). In doing so, SESA hides both the trained

submodels and indices of the updated submodel parameters

from the server, ensuring the formal information-theoretic

privacy guarantees from (10), while significantly enhancing

both the compute and communication efficiency of SA.

III. RECONSTRUCTION ATTACKS

SA frameworks are built upon various information-theoretic

primitives, while all are designed to achieve the same goal of

recovering the sum of the local parameters without revealing

the individual parameters. A naive approach to extend the

existing frameworks to submodel training is to perform SA

parameter-wise. On the other hand, as we demonstrate next,

by leveraging the heterogeneity between the submodels, the

server can perfectly reconstruct the sensitive training samples.

Consider a network of N = 2 users as shown in Fig. 1, with

the resource constraints B1 = 1/4 and B2 = 1/2. Let xi ∈
R

m denote the training sample of user i, which is the input to

a fully connected layer consisting of 4 nodes n1, n2, n3, n4.

Without loss of generality, at a given training round t, assume

that user 1 selects node n1 and user 2 selects nodes n1, n2.

Denote the global weight parameters corresponding to node

nj as wt
nj
∈ R

m and the bias parameter as ztnj
. As the server

knows the submodel indices of the users, it can identify that

the aggregate of the gradient parameters corresponding to node

n2 is equal to the local gradient parameter of user 2. Similarly,

the aggregate of the gradient parameters corresponding to node

n1 is sum of the local gradient parameters of users 1 and 2.

Then, the server can recover the input training samples of both

users as follows.

For user 2, the output of node n2 can be written as,

yt2,n2
≜ (wt

n2
)Tx2 + ztn2

(11)

hence, the gradients with respect to the weight wt
n2

and bias

ztn2
are given by,

∂F2

∂(wt
n2
)T

=
∂F2

∂yt2,n2

∂yt2,n2

∂(wt
n2
)T

=
∂F2

∂yt2,n2

× xT
2 (12)

∂F2

∂ztn2

=
∂F2

∂yt2,n2

∂yt2,n2

∂ztn2

=
∂F2

∂yt2,n2

× 1 (13)

By combining (12) and (13), one can recover the input sample,

xT
2 =

∂F2

∂(wt
n2
)T
/
∂F2

∂ztn2

. (14)

Therefore, by leveraging the gradient parameters correspond-

ing to node n2 sent by user 2, the server can reconstruct

the training sample of user 2. Then, the server can use the

recovered sample of user 2 to find the gradient parameters of

user 2 corresponding to node n1, i.e., ∂F2

∂(wt
n1

)T and ∂F2

∂zt
n1

. Using

the aggregate of the gradients (of two users) obtained through

SA, the server can recover the gradient of user 1,

∂F1

∂(wt
n1
)T

=
∑

i∈[2]

∂Fi

∂(wt
n1
)T
−

∂F2

∂(wt
n1
)T

(15)

∂F1

∂ztn1

=
∑

i∈[2]

∂Fi

∂ztn1

−
∂F2

∂ztn1

(16)

Finally, by using the gradient obtained from (15) and (16),

the server can also recover the training sample x1 of user 1 as

in (14). Hence, disclosing the submodel parameter indices can

reveal sensitive training samples, undermining the key premise

of SA. In the following, we introduce a secure submodel

aggregation framework, SESA, to address this challenge. Our

framework enables submodel aggregation without disclosing

neither the submodel parameters nor their indices.

IV. SECURE SUBMODEL AGGREGATION (SESA)

We next describe the individual steps of our framework.

Submodel Selection. We consider a random submodel extrac-

tion scheme, where the global model is divided into multiple

submodels, and each user selects a number of submodels in

accordance with their compute capability. To that end, we let

L denote the total number of layers2. The nodes within each

layer are divided into 1/Bmin shards, where

Bmin ≜ mini∈[N ]{Bi} (17)

denotes the resource constraint of the user with the lowest

compute capability. A submodel is then defined as the set of

all pairwise connections across two distinct shards between

two consecutive layers. Accordingly, the total number of

submodels between any two layers (l, l + 1) for l ∈ [L] is,

K ≜ 1/B2
min (18)

From each layer l ∈ [L], user i ∈ [N ] then selects Bi/Bmin

shards uniformly at random (without replacement), corre-

sponding to a total number of,

Ki ≜ B2
i /B

2
min (19)

2For ease of exposition, we describe our framework using fully connected
layers, while noting that the same principles can be applied also to convolu-
tional layers, in which case kernels can be used to form submodels.
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User 1 - low-resource

Round t Round t+1

Global model

Layer 1

User 2 - high-resource

Layer 2

shards from layer 1

shards from layer 2

Global model

User 1 - low-resource User 2 - high-resource

submodel

Fig. 2. Overview of submodel extraction with N = 2 users. The resource constraints of the users are given as B1 = 1/3, B2 = 2/3. The nodes in each
layer are divided into 1/B1 = 3 shards according to (17). The user with low computational power (user 1) selects B1/B1 = 1 shard, whereas the user
with higher computational power (user 2) selects B2/B1 = 2 shards from each layer. The pairwise connections between any two shards selected across two
consecutive layers represents a submodel selected by the user (each submodel is represented by a distinct color).

submodels. After submodel selection, user i extracts the se-

lected submodels from the global model wt, updates them

through local training as shown in (4), and forms the submodel

update gt
i as in (5). We provide an illustrative example in Fig.

2 for a network of N = 2 users.

Secure Aggregation. After submodel selection, our goal is

to sum the submodel updates as in (6), while ensuring that

the server cannot learn anything about which submodels are

selected by the individual users as shown in (10).

Our framework consists of an offline and an online phase.

The former is data-independent such as randomness gener-

ation, which can be executed in advance when the network

load is low. The latter is data-dependent, including local

training and model update. Then, the following operations

are performed layer-wise (independently) to aggregate the

submodels selected within each pair of consecutive layers

(l, l+ 1) for l ∈ [L]. For simplicity, in the following we omit

the layer index l, while noting that a new set of randomness

is generated for each layer. All operations are performed in a

finite field Fp of integers modulo a large prime p.

Offline. Initially, users agree on N + K + T distinct public

parameters {αi}i∈[N ], {βn}n∈[K+T ] from Fp. Let Kt
i denote

the ordered set of the submodel indices selected by user i,
where |Kt

i | = Ki, and Kt
i(k) ∈ [K] denotes the index of the

kth submodel selected. Then, user i defines a binary vector

bt
ik ∈ {0, 1}

K for k ∈ [Ki], with the nth element given by,

bt
ik(n) =

{

1 if n = Kt
i(k)

0 otherwise
, (20)

and constructs a Lagrange polynomial of degree K + T − 1,

φtik(α) ≜
∑

n∈[K]

bt
ik(n)

∏

n′∈[K+T ]\{n}

α− βn′

βn − βn′

+
K+T
∑

n=K+1

utikn
∏

n′∈[K+T ]\{n}

α− βn′

βn − βn′

, (21)

for all k ∈ [Ki], and utikn ∈ Fp for all k ∈ [Ki], n ∈ {K +
1, . . . ,K+T} are selected uniformly at random. Then, user i

generates Ki uniformly random masks rtik ∈ F
d′

K
p for k ∈ [Ki],

where d′ is the dimension of the model for the given layer,

and constructs a Lagrange polynomial of degree K + T − 1,

ϕt
ik(α) ≜

∑

n∈[K]

bt
ik(n)r

t
ik

∏

n′∈[K+T ]\{n}

α− βn′

βn − βn′

+

K+T
∑

n=K+1

vt
ikn

∏

n′∈[K+T ]\{n}

α− βn′

βn − βn′

, (22)

for each k ∈ [Ki] where vt
ikn ∈ F

d′/K
p for all k ∈ [Ki]

and n ∈ {K +1, . . . ,K + T} are selected uniformly random.

Finally, user i sends a distinct evaluation of the polynomials

{φtik(αj), ϕ
t
ik(αj)}k∈[Ki] to each user j ∈ [N ].

Online. In the online phase, after local training, each user

i ∈ [N ] initially generates a finite field representation of their

Ki local submodel updates, denoted by gt
ik ∈ F

d′/K
p for k ∈

Kt
i . This finite field transformation is a standard primitive in

secure multi-party computing frameworks [9], [10], [20]±[23].

For the details of this transformation, we refer to [10], [21],

[24], [25]. User i then broadcasts a masked submodel update,

xt
ik ≜ gt

i,Kt
i
(k) − rtik (23)

for all k ∈ [Ki]. After receiving the masked submodels from

the set of surviving users i ∈ U t, each user i ∈ U t computes,

ψt(αi) ≜
∑

j∈Ut

∑

k∈[Kj ]

(xt
jkφ

t
jk(αi) + ϕt

jk(αi)) (24)

=
∑

j∈Ut

∑

k∈[Kj ]

(

gt
j,Kt

j
(k)

∏

n′∈[K+T ]\{Kt
j(k)}

αi − βn′

βKt
j
(k) − βn′

+

K+T
∑

n=K+1

(gt
j,Kt

j
(k)u

t
jkn − rtjku

t
jkn

+ vt
jkn)

∏

n′∈[K+T ]\{n}

αi − βn′

βn − βn′

)

, (25)

and sends ψt(αi) to the server, which corresponds to a distinct

evaluation of the degree K + T − 1 polynomial,

ψt(α) =
∑

j∈Ut

∑

k∈[Kj ]

(

gt
j,Kt

j
(k)

∏

n′∈[K+T ]\{Kt
j(k)}

α− βn′

βKt
j
(k) − βn′

+

K+T
∑

n=K+1

(gt
j,Kt

j
(k)u

t
jkn − rtjku

t
jkn
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