
Sparsity-Based Secure Gradient Aggregation for
Resource-Constrained Federated Learning

Hasin Us Sami BaËsak Güler
Department of Electrical and Computer Engineering

University of California, Riverside, CA

hsami003@ucr.edu, bguler@ece.ucr.edu

AbstractÐSecure aggregation is an information-theoretic
mechanism for gradient aggregation in federated learning, to
aggregate the local user gradients without revealing them in the
clear. In this work, we study secure aggregation under gradient
sparsification constraints, for resource-limited wireless networks,
where only a small fraction of local parameters are aggregated
from each user during training (as opposed to the full gradi-
ent). We demonstrate that conventional mechanisms can reveal
sensitive user data when aggregating sparsified gradients, due to
the auxiliary coordinate information shared during sparsification,
even when the individual gradients are not disclosed in the
clear. We then propose a coordinate-hiding sparsified secure
aggregation mechanism to address this challenge, which hides
both the gradient parameters and the associated coordinates
under formal information-theoretic privacy guarantees. Our
framework reduces the communication overhead of conventional
secure aggregation baselines by an order of magnitude without
compromising model accuracy.

I. INTRODUCTION

Federated learning (FL) is a popular paradigm for dis-

tributed training, where data-owners (users) perform training

on locally collected datasets, after which the local updates

(e.g., local gradients) are aggregated by a server to form

a global model [1]. While popular in a variety of privacy-

sensitive applications (such as healthcare) due to its on-device

training architecture (data never leaves the device), FL can

still reveal sensitive information about the local data samples

through what is known as gradient inversion attacks [2]±[5].

Secure aggregation (SA) is an information-theoretic mech-

anism to address this challenge without compromising model

accuracy [6]±[11]. SA allows the server to learn the sum of the

local gradients, but without learning any further information

about the individual gradients (beyond their sum). In doing

so, SA prevents the server from associating the aggregated

gradients with any particular user, enhancing resilience against

inversion attacks as the number of users increases [6]±[11].

While popular in enhancing user privacy in distributed settings,

communication overhead is still a major challenge in SA,

which can hinder scalability to larger networks.

Gradient sparsification is a widely adopted technique to

reduce the communication overhead in FL. In this setting,

each user shares only a small portion of their local gradient

parameters with the server (as opposed to sending the entire
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gradient), along with their coordinates. The parameters are

selected uniformly random (rand-K), or based on their magni-

tude (top-K), where K is the number of parameters sent from

each user [12]±[19]. The server then aggregates the received

parameters using the received coordinates, where parameters

from different users are aggregated if their coordinates match,

to update the global model for the next training round.

In this work, we study gradient sparsification in the context

of SA. We first demonstrate the potential vulnerabilities associ-

ated with sharing coordinate information during sparsification.

In particular, we show that the local data samples can be recov-

ered from the aggregate of the gradient parameters using the

coordinates shared over multiple training rounds, even if the

gradients are securely aggregated (using SA) at each training

round. We then propose a coordinate-hiding SA framework

to address this challenge, which hides not only the gradient

parameters but also their coordinates during aggregation. Our

framework enables the server to aggregate the sparsified local

gradients, but without learning any information about the gra-

dient parameters (beyond their aggregate) or their coordinates,

under formal information-theoretic privacy guarantees.

Our framework builds on an offline-online trade-off, where

we offload the communication-intensive operations, such as

randomness generation, to a data-independent offline phase.

The offline phase can take place in advance when the network

load is low, or can be parallelized with other components

of training. The online phase depends on the local datasets,

hence should be carried out during training. We then propose

an efficient SA mechanism for the online phase, to aggregate

the sparsified gradients in FL, while revealing no information

about the individual parameters or their coordinates (beyond

their aggregated information).

A related line of work is preserving the privacy of sparse

updates and the corresponding coordinates for gradient spar-

sification in the context of Private Information Retrieval (PIR)

[20], [21]. Different from our work, the PIR setting builds

on a multi-server setup, where users do not collude with the

servers. In contrast, we consider a single-server FL task where

any set of up to T users may collude with the server.

Our contributions can be summarized as follows:

1) We identify the vulnerabilities of sharing coordinate in-

formation in SA, and the necessity of stronger, topology-

hiding privacy notions to enhance adversary-resilience

under sparsification constraints.
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2) We demonstrate successful reconstruction of local data

samples from the aggregate of sparsified gradients, by

utilizing only the knowledge of the rand-K/top-K coor-

dinates of the users.

3) We propose a coordinate-hiding sparsified SA framework,

TinySecAgg, to enhance the scalability of SA in large

model settings, without revealing any information about

the gradient parameters or their coordinates, under formal

information-theoretic privacy guarantees.

4) Our experiments demonstrate that our framework cuts the

communication cost by an order of magnitude (22.5×)

over conventional SA mechanisms.

II. PROBLEM FORMULATION

We consider a centralized FL architecture with N users,

coordinated by a central server. User i ∈ [N ] holds a local

dataset Di with Di ≜ |Di| samples. The goal is to train a

global model w ∈ R
d to minimize the global loss,

F (w) ≜

N∑

i=1

Fi(w) (1)

where Fi(w) denotes the local loss of user i. Training is

performed iteratively through global and local training rounds.

At the beginning of each global round t, the server sends the

current state of the global model wt to the users. User i ∈ [N ]
generates a local model wt

i ← w
t, which is updated locally

through E local training rounds,

w
t
i ← w

t
i − η∇Fi(w

t
i) (2)

where ∇Fi(w
t
i) is the gradient evaluated on Di, and η is the

learning rate. After E local training rounds, user i sends the

(cumulative) local gradient,

∆t
i ≜ w

t
i −w

t ∈ R
d (3)

to the server, who then aggregates the received gradients to

update the global model for the next training round,

w
t+1 = w

t −
1

|U(t)|

∑

i∈U(t)

∆t
i (4)

where U(t) denotes the set of surviving users who succeed in

sending their local updates to the server at round t, as some

users may drop out from the protocol due to poor wireless

connectivity, or device unavailability.

Gradient sparsification is a popular compression mechanism

to improve the communication efficiency in FL, where, instead

of sending the entire gradient ∆t
i to the server, each user sends

only K ≪ d selected parameters. Sparsification typically

involves a process known as error-accumulation, to track the

cumulative error resulting from the parameters that have not

been sent in previous rounds. Accordingly, the sparsification

operation is given by,

x
t
i ≜ b

t
i ⊙ ∆̃t

i (5)

where ⊙ is the Hadamard product, xt
i denotes the sparsified

local gradient, b
t
i ∈ {0,1}

d is a binary mask holding the

coordinates of the K parameters selected by user i, where

the ℓth element is given by,

b
t
i(ℓ) ≜

{
1 if user i selects coordinate ℓ at round t

0 otherwise

such that ∥bt
i∥1=K, where ∥·∥1 denotes the L1 norm and

∆̃t
i ≜ w

t
i −w

t + e
t−1
i = ∆t

i + e
t−1
i , (6)

where e
t
i denotes the error accumulated at round t,

e
t
i ≜ ∆t

i + e
t−1
i − x

t
i = ∆̃t

i − x
t
i. (7)

After constructing the sparsified local gradient x
t
i from (5),

user i then sends the selected K parameters from x
t
i to the

server, along with the coordinates of the selected parameters.

Using the received coordinates, the server aggregates the

sparsified local gradients x
t
i to update the global model,

w
t+1 = w

t −
1

|U(t)|

∑

i∈U(t)

x
t
i (8)

for the next training round. The specific structure of the binary

mask b
t
i depends on the sparsification methodology:

1) rand-K sparsification: In this setting, each user selects

K parameters uniformly at random (without replacement)

from ∆̃t
i, and b

t
i is a uniformly random binary vector where

∥bt
i∥1 = K, generated independently for each user i ∈ [N ].
2) top-K sparsification: In this setting, users send only the

top K parameters with the highest magnitude to the server,

and b
t
i ∈ {0, 1}

d is a binary vector indicating the coordinates

of the top K parameters from ∆̃t
i with the highest magnitude.

The two mechanisms (rand-K/top-K) have complementary

benefits. Rand-K is more memory and communication ef-

ficient; as the binary masks b
t
i are sampled independently

and uniformly at random, they can be generated offline in

advance when the network load is low. Top-K can speed

up convergence, but the coordinates depend on the gradient

magnitudes, which has to be sent online during training.

Threat model. In this work, our focus is on honest-but-

curious adversaries (as is the most common threat model in

SA), where adversaries do not poison the datasets, but try

to reveal additional information about the local datasets of

honest users using the information exchanged during protocol

execution. Similar to [22], the server can freeze the global

model parameters (albeit do not change them). Out of N users,

up to T < N users are adversarial, who may collude with each

other and/or the server. The set of honest and adversarial users

are denoted by H and T = [N ]\H, respectively.

Main problem. SA aims at aggregating the local updates x
t
i,

x
t
agg ≜

∑

i∈U(t)

x
t
i (9)

but without revealing any information about the individual

updates (beyond their sum). Formally, this can be stated by

the following mutual information condition,

I({xt
i}i∈H;Mt

T |x
t
agg, {x

t
i}i∈T ,R

t
T ) = 0 (10)

where Mt
T denotes the set of all messages received, and Rt

T
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is a J ×N matrix defined as,

A ≜



b
1
1(ℓ)(1− τ

1
1 (ℓ)) · · · b

1
N (ℓ)(1− τ1N (ℓ))

...
...

...

b
J
1 (ℓ)(J − τ

J
1 (ℓ)) · · · b

J
N (ℓ)(J − τJN (ℓ))


 (17)

by letting b
t
i(ℓ) = 0 for the dropout users i ∈ [N ]\U(t)

without loss of generality. By using A and the aggregate of the

sparsified gradients {xt
agg}t∈[J], the server can finally recover

the local gradients ∆∗(ℓ) ≜
[
∆1(ℓ) · · · ∆N (ℓ)

]T
for each

coordinate ℓ ∈ [d], by solving a least squares problem,

∆∗(ℓ) = (AT
A)−1

A
T
[
x
1
agg(ℓ) · · · x

J
agg(ℓ)

]T

Upon recovering the local gradients {∆∗(ℓ)}ℓ∈[d], the server

can apply any gradient inversion attack (e.g., [3]) to reveal the

local data samples from the local gradients.

In Fig. 1, we demonstrate the image reconstruction quality

on a ResNet-18 model trained on the CIFAR-10 dataset

across 5 users [23], [24], where each user holds a single

random data sample in accordance with [3], [22]. The selected

parameters are aggregated using the SA protocol SecAgg

from [6], while we note that our results are indifferent to the

specific SA protocol used (as the final aggregated gradient is

the same). After reconstructing the local gradients, gradient

inversion from [3] is applied to recover the images. The

reconstruction quality is measured using the mean square

error (MSE) between the recovered and original image. Fig. 1

demonstrates the recovered images for rand-K sparsification,

with K = 0.01d, i.e., only 1% of the gradient parameters

are aggregated from each user. We observe that the quality of

the recovered images approaches the original images after a

sufficiently large number of training rounds.

Our key observation is that the attack can only be launched

when coordinate information is available. When coordinate

information is not available, reconstruction is unsuccessful,

as observed in Fig. 1(b). Motivated by these findings, in the

following, we introduce a coordinate-hiding SA mechanism,

to enhance the security of SA under sparsification.

IV. COORDINATE-HIDING GRADIENT SPARSIFICATION FOR

SECURE AGGREGATION

This section presents TinySecAgg, a coordinate-hiding rand-

K gradient sparsification mechanism for SA. Our framework

builds on an offline-online trade-off, where we offload the

communication-intensive operations, such as randomness gen-

eration, to a data-independent offline phase, which can take

place in advance prior to training. In the online phase, users

only communicate an encoded version of the selected gradient

parameters and their coordinates (as opposed to their true

values). At the end, the server decodes the correct aggregate

of the gradient parameters for each coordinate, but without

learning the individual parameters or their coordinates. Our

framework operates in a finite field Fp of integers modulo a

large prime p, where all operations are carried out in Fp. We

next describe the details of the offline and online phases.

Offline Phase. Initially, users define a binary vector ak ∈
{0, 1}d for each k ∈ [d], where only the kth element is equal

to 1, and all other elements are 0, and then partition ak into

M equal-sized shards,

ak =
[
a

T
k1 . . . a

T
kM

]T
. (18)

where parameter M controls a trade-off between

communication-efficiency and adversary tolerance. Users

then agree on N + M + T distinct public parameters

{αi}i∈[N ], {βn}n∈[M+T ] from Fp. User i ∈ [N ] generates a

random binary mask b
t
i ∈ {0, 1}

d for rand-K sparsification,

where K out of d elements are set to 1 uniformly at random

(without replacement). Let Kt
i ≜ {ℓ : bt

i(ℓ) = 1} denote the

(ordered) set of the K coordinates selected by user i. Then,

user i generates two Lagrange interpolation polynomials,

ϕik(α) ≜
∑

n∈[M ]

aKt

i
(k),n

∏

n′∈[M+T ]\{n}

α− βn′

βn − βn′

+

M+T∑

n=M+1

v
t
ikn

∏

n′∈[M+T ]\{n}

α− βn′

βn − βn′

, (19)

ψik(α) ≜
∑

n∈[M ]

aKt

i
(k),nr

t
ik

∏

n′∈[M+T ]\{n}

α− βn′

βn − βn′

+

M+T∑

n=M+1

u
t
ikn

∏

n′∈[M+T ]\{n}

α− βn′

βn − βn′

, (20)

for all k ∈ [K], where Kt
i(k) denotes the kth element of

Kt
i ; {r

t
ik}k∈[K] are K random masks generated uniformly

at random from Fp; and {vt
ikn,u

t
ikn}k∈[K],n∈{M+1,...,M+T}

are generated uniformly at random from F
d/M
p . The random

masks {rtik}k∈[K] will later be used to hide the true value

of the gradient parameters in the online phase, whereas the

random vectors {vt
ikn,u

t
ikn}k∈[K],n∈{M+1,...,M+T} will hide

the contents of the masks {rtik}k∈[K] as well as the selected

coordinates. Finally, user i sends the encoded vectors ϕik(αj)
and ψik(αj) to user j ∈ [N ], which will later be used in

the online phase to ensure the correct matching of the local

gradient parameters within the global model, while preventing

the server from gaining explicit access to the coordinates.

Online Phase. After local training and sparsification, user i ∈
[N ] transforms its sparsified local gradient xt

i ∈ R
d to Fp,

x
t
i(ℓ) ≜ f(xt

i(ℓ)) ∀ℓ ∈ Kt
i (21)

where the finite field transform f(·) : Rd → F
d
p is common to

secure multi-party computing frameworks [25]±[28]. For the

details of this transformation, we refer to [11], [26], [29], [30].

Next, user i broadcasts a masked gradient parameter,

x̂
t
ik ≜ x

t
i(K

t
i(k))− r

t
ik (22)

for each k ∈ [K], where the true content of the K selected

parameters Kt
i are hidden by the K random masks rti1, . . . , r

t
iK

generated in the offline phase. After receiving (22), each user

i sends a local aggregate of the encoded gradients:

φ(αi) ≜
∑

j∈U(t)

∑

k∈[K]

(x̂t
jkϕjk(αi) + ψjk(αi)), (23)

to the server. The local computations φ(αi) in (23) can be
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