
To switch or not to switch to TCP Prague? Incentives
for adoption in a partial L4S deployment
Fatih Berkay Sarpkaya

fbs6417@nyu.edu
New York University
Brooklyn, NY, USA

Ashutosh Srivastava
as12738@nyu.edu

New York University
Brooklyn, NY, USA

Fraida Fund
ffund@nyu.edu

New York University
Brooklyn, NY, USA

Shivendra Panwar
panwar@nyu.edu

New York University
Brooklyn, NY, USA

ABSTRACT
The Low Latency, Low Loss, Scalable Throughput (L4S) ar-
chitecture has the potential to reduce queuing delay when it
is deployed at endpoints and routers throughout the Internet.
However, it is not clear how TCP Prague, a prototype scal-
able congestion control for L4S, behaves when L4S is not yet
universally deployed. Specifically, we consider the question:
in a partial L4S deployment, will a user benefit by unilat-
erally switching from the status quo TCP to TCP Prague?
To address this question, we evaluate the performance of a
TCP Prague flow when sharing an L4S or non-L4S bottle-
neck queue with a non-L4S flow. Our findings suggest that
the L4S congestion control, TCP Prague, has less favorable
throughput or fairness properties than TCP Cubic or BBR in
some coexistence scenarios, which may hinder adoption.

CCS CONCEPTS
• Networks→ Transport protocols.

KEYWORDS
TCP, Congestion Control, Low Latency, L4S, AQM

ACM Reference Format:
Fatih Berkay Sarpkaya, Ashutosh Srivastava, Fraida Fund, and Shiv-
endra Panwar. 2024. To switch or not to switch to TCP Prague?

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ANRW ’24, July 23, 2024, Vancouver, AA, Canada
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0723-0/24/07
https://doi.org/10.1145/3673422.3674896

Incentives for adoption in a partial L4S deployment. In Applied
Networking Research Workshop (ANRW ’24), July 23, 2024, Van-
couver, AA, Canada. ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/3673422.3674896

1 INTRODUCTION
Low Latency, Low Loss, Scalable Throughput (L4S) [3] is an
architecture that allows low-delay and classic (non-scalable)
data flows to coexist in the same network with reduced la-
tency. It achieves this primarily through three mechanisms:
scalable congestion control [1, 4], more accurate Explicit
Congestion Notification (AccECN) [5, 6], and a dual queue
Active Queue Management (AQM) [7–9]. When all three of
these components are in place at the sender, receiver, and
bottleneck router, an L4S flow can achieve high through-
put with very low latency. However, like any new Internet
technology, the deployment of L4S will be incremental. In
the initial stages of deployment, L4S flows will coexist with
non-L4S flows at L4S or non-L4S bottleneck routers.

This partial L4S deployment scenario is the primary focus
of our work. In particular, we are interested in the perspec-
tive of a sender that has not yet switched to TCP Prague,
the scalable congestion control protocol that has been pro-
posed as part of L4S [1, 4]. Given that the bottleneck router
may or may not have a dual queue AQM, and given that
the other flows sharing the same bottleneck may not be
TCP Prague flows, what benefit can a sender expect from
unilaterally switching its own congestion control (CC) to
TCP Prague? This is a key consideration for the eventual
deployment of L4S on the Internet. The benefit to individuals
deciding whether or not to unilaterally adopt a new technol-
ogy determines whether or not it will reach a “tipping point”
and achieve a stable non-zero equilibrium deployment [10].
To address this question, we conduct a series of experi-

ments on the FABRIC [11] testbed and measure the through-
put and latency of a TCP Prague flow in various partial

45

D
ow

nloaded from
 the A

C
M

 D
igital Library by Library on A

pril 8, 2025.

https://doi.org/10.1145/3673422.3674896
https://doi.org/10.1145/3673422.3674896
https://doi.org/10.1145/3673422.3674896
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3673422.3674896&domain=pdf&date_stamp=2024-07-20


ANRW ’24, July 23, 2024, Vancouver, AA, Canada Fatih Berkay Sarpkaya, Ashutosh Srivastava, Fraida Fund, and Shivendra Panwar

ECN Limit
Buffer Size
Bottleneck Capacity

Figure 1: Fundamental Problem of Classic Congestion Control. Adapted from [1], we conduct a FABRIC experiment
using a line network with 100 Mbps bottleneck capacity, a base RTT of 25 ms, and a buffer size of 2 BDP. The
bottleneck AQM is FIFO with ECN. The artifacts to reproduce this experiment are available in [2].

deployment scenarios. The results may inform further de-
velopment of L4S, especially with regard to its behavior in
an incremental deployment. While the IETF Transport and
Services Working Group (TSVWG) members have been ac-
tive in evaluating L4S in various scenarios, the academic
literature does not cover it extensively. Our work aims to
address this gap in the literature, and we will elaborate on
this in Sec. 2. We share our experiment artifacts for an open
access testbed (FABRIC) [11] so anyone can build on and
validate our research1. The rest of this paper is organized as
follows. Section 2 provides background information on the
L4S architecture and its key components. This section also
discusses the principles of L4S coexistence and the proposed
strategies for its incremental deployment. Section 3 describes
the experiment methodology with which we evaluated the
coexistence of L4S flows with classic flows and bottleneck
routers. Section 4 presents the results of our experiments
and offers a detailed analysis of these findings. Section 5
concludes with a summary and directions for future work.

2 BACKGROUND
The L4S architecture, detailed in [3], is designed to reduce
network queuing delay using three critical components: scal-
able congestion control, AccECN, and dual queue AQM. In
this section, we describe the key components of the L4S archi-
tecture, the state-of-the-art regarding the coexistence of L4S
with classic TCP, and the potential hurdles to its deployment
from a content provider’s perspective.

Classic congestion control, such as TCP Reno or TCP Cu-
bic, responds to network congestion signals such as dropped
packets or ECN markings by multiplicatively decreasing its
congestion window (𝑐𝑤𝑛𝑑), e.g., by a factor of 2 in TCP
Reno. A small ECN threshold would be ideal for maintain-
ing low queuing delays. However, a significant drop in the
𝑐𝑤𝑛𝑑 at every ECN mark will lead to under-utilization of the
link capacity. As depicted in Figure 1, for TCP Reno, a high
ECN marking threshold prevents under-utilization, but the
latency remains high. Setting a low marking threshold (e.g.,
1 ms) causes under-utilization. This highlights a fundamen-
tal limitation of traditional ECN-based congestion control

1Artifacts are available at: https://github.com/fatihsarpkaya/L4S

mechanisms: the inability to achieve extremely low queuing
delays without under-utilizing network capacity.
Scalable congestion controls, like DCTCP, [12] and TCP

Prague, address this issue along with an enhancement to
ECN known as AccECN. Using AccECN, a scalable sender
can calculate the fraction of ECN-marked packets in the last
round and reduce 𝑐𝑤𝑛𝑑 in proportion to a moving average
of this fraction. The scalable approach tries to react to the
extent of congestion and not only its presence. This behavior
is also illustrated in Figure 1, where TCP Prague achieves
high utilization despite a very low ECN threshold.

When a scalable TCP shares a single bottleneck queue (not
dual queue or multiple queues) with a classic TCP flow, the
difference in their response to ECN marks can cause fairness
issues [8]. To address this concern, TCP Prague includes an
optional ECN fallback heuristic [13] to detect the presence
of a single queue, non-L4S, ECN-capable AQM, primarily
through RTT variation measurement. On detecting this type
of queue, TCP Prague should revert to Reno-like behavior.

While the ECN fallback mechanism prevents TCP Prague
from starving classic traffic, we cannot realize the low la-
tency benefits of the L4S solution without upgrading routers.
A non-L4S AQM cannot set an extremely low ECN threshold
as this is detrimental to classic TCP traffic (Fig. 1). Per-flow
queuing enables flow isolation, but it would need to enable
marking at two different thresholds: a shallow threshold for
L4S traffic and a higher threshold for classic traffic. How-
ever, as pointed out in [3], per-flow AQMs rely on packet
inspection and thus may not be compatible with full end-to-
end encryption of transport layer identifiers for privacy and
confidentiality, such as IPsec or encrypted VPN tunnels. Per-
flow queuing approaches may also not be scalable to core
network bottlenecks with thousands of competing flows, a
common occurrence in peering links between ISPs [14, 15].
To address this, the Dual-Queue Coupled AQM [9] sepa-

rates L4S and non-L4S flows into different queues with dif-
ferent ECN marking thresholds. The marking/drop response
of the classic queue is coupled with that of the L4S queue
in order to ensure a fair share of available capacity between
the classic and low-latency traffic. Hence, the dual queue
solution can provide low latency for L4S traffic and achieve

46

D
ow

nloaded from
 the A

C
M

 D
igital Library by Library on A

pril 8, 2025.

https://github.com/fatihsarpkaya/L4S


To switch or not to switch to TCP Prague? Incentives for adoption in a partial L4S deployment ANRW ’24, July 23, 2024, Vancouver, AA, Canada

fair coexistence without the need for per-flow queuing. The
DualPI2 AQM introduced in [7] implements this idea.
Like any new Internet protocol, L4S will be deployed in

an incremental manner. Since L4S involves changes at TCP
senders (scalable congestion control), TCP receivers (Ac-
cECN), and routers (dual queue AQM), a key area of focus
in L4S design is the behavior of the protocol when some
of these elements are not yet in place. Ideally, to encourage
widespread deployment, an L4S flow should have throughput
and delay characteristics at least as favorable as a classic flow,
even if some elements of the full architecture are missing.
Also, an L4S flow should not harm classic flows.

With respect to incremental deployment, the L4S archi-
tecture design [16] envisions that the L4S AQM will first
be deployed on access network bottlenecks in the down-
stream direction (e.g., as part of low latency DOCSIS [17]).
Then, L4S flows that are part of highly controlled trials will
demonstrate the benefit of the architecture. Following this,
scalable congestion control and AccECN will be deployed on
endpoints to enable more general use of L4S.
However, there are likely to be scenarios in which L4S

flows will traverse non-L4S AQMs. First, multiple studies
have shown that bottlenecks at peering points between ISPs
are also common [14, 15]. Also, non-cable access links such
as 4G/5G cellular, Wi-Fi, and satellite networks can also be
potential bottlenecks. While major wireless network vendors
and device manufacturers like Apple are showing interest
in L4S [18], widespread deployment is still some time away.
Upgrading legacy access network routers, e.g., Wi-Fi routers
or 3G/4G base stations worldwide, to support L4S will also
be a challenge. Thus, the behavior of an L4S flow over a
non-L4S AQM is of great interest to content providers who
might consider switching to scalable congestion control.

Field trials and prototype demonstrations validate the low
latency benefits of the L4S architecture in controlled envi-
ronments [19, 20]. However, some early work evaluating
L4S [21–23], has raised concerns about partial deployment.
Although most of this work has not been published in the
academic literature, these results have been used in IETF
meetings and discussions [24, 25] and to inform further pro-
tocol development. It is shown in [22] and validated in [23]
that L4S flows dominate both Cubic and Reno flows in a
single-queue bottleneck with ECN. The ECN Fallback heuris-
tic [13] has been proposed to address this issue, but previous
work on low latency congestion control suggests that the
delay variance measure used in this heuristic is not a reliable
signal in all settings, and that in fact, there is no universally
effective signal of sharing a bottleneck with classic flow [26–
28]. Additionally, [22] mentions that DualPI2 consistently
provides a throughput advantage to Cubic flows, and [29]
finds that the fairness of the DualPI2 AQM is not robust to
small variations in protocol implementations.

L4S sender

Classic 
sender

L4S receiver

Classic 
receiverDelay Bottleneck

Figure 2: Experiment Topology

In this work, we seek to validate these early findings, eval-
uate the effectiveness of the ECN Fallback heuristic, and to
also consider scenarios where a TCP Prague flow shares a
bottleneck with a TCP BBR flow (as a substantial portion of
Internet traffic uses BBR [30]).

3 EXPERIMENT METHODOLOGY
In this section, we describe our experiment setup for evalu-
ating the performance of TCP Prague when sharing a bottle-
neck link with TCP Cubic or TCP BBR.

Experiment Platform:We conduct experiments on FAB-
RIC [11], a national scale programmable experimental net-
working testbed. Each node in our experiment is a virtual
machine running Ubuntu 22.04, with 4 cores and 32 GB RAM.

Topology:We use a line topology comprising two senders
and two receivers (L4S and classic), connected via a delay
node and a bottleneck router, as illustrated in Figure 2. At
the delay node, we use netem to emulate a base RTT, with
half of the delay added in each direction. At the bottleneck
router, we use the token bucket filter implemented in tc-htb
to configure the bottleneck bandwidth and buffer size.

Network Settings: On the Internet, a flow is most likely
to encounter a bottleneck either at a peering point, or at
the access link. For these experiments, we emulate network
conditions that are representative of an access link: 10 ms
base RTT, 100 Mbps bottleneck link capacity.
Queue: Our experiments consider the following queue

configurations at the bottleneck router:
• FIFO: a single drop tail queue without ECN support,
realized with tc-bfifo.

• FIFO + ECN: a single drop tail queue with ECN sup-
port using a static 5 ms marking threshold, realized
with tc-fq. (Although tc-fq is multi-queue, by set-
ting the orphan mask option to 0, we enforce that all
flows are hashed to a single queue.)

• CoDel: a single queue with CoDel AQM [31], which
uses the local minimumqueue sizewithin amonitoring
window as a measure of the standing queue, and marks
packets if there is a standing queue exceeding a target
value. We use tc-codel with a 5 ms target and the
ECN option enabled, so that it marks packets for flows
with ECN support and drops packets otherwise.

• FQ: a fair queue with flow isolation and ECN (using a
static 5 ms marking threshold), realized with tc-fq.

• FQ-CoDel: combines fair queuing with the CoDel
AQM. We realize this queue with tc fq_codel, with
a 5 ms target and the ECN option enabled.

47

D
ow

nloaded from
 the A

C
M

 D
igital Library by Library on A

pril 8, 2025.



ANRW ’24, July 23, 2024, Vancouver, AA, Canada Fatih Berkay Sarpkaya, Ashutosh Srivastava, Fraida Fund, and Shivendra Panwar

• DualPI2: a dual queue coupled AQM designed for L4S
[9], realized using tc-dualpi2 from the L4S repository
[32] (commit 4579ffb). The target parameter for the
Proportional Integral (PI) controller is 5 ms and the
step.thresh parameter for the L4S queue is 1 ms .

For each type of queue, we consider bottleneck buffer sizes
that are shallow and deep, including the following multiples
of the link bandwidth delay product (BDP): 0.5, 1, 2, 4, and 8.

Congestion control and AccECN at endpoints: In our
experiments, L4S flows run TCP Prague, using the implemen-
tation in the L4S repository [32] (commit 4579ffb). The L4S
sender and receiver support AccECN. We also evaluate TCP
Prague with and without the ECN Fallback heuristic [13],
which is an optional setting that needs to be turned on ex-
plicitly. For the classic flow, we consider two CCs that a TCP
Prague flow is likely to encounter at a shared bottleneck:
- TCP Cubic [33] - according to a recent estimate, this is the
predominant TCP variant on the Internet [30]. We consider
a classic Cubic flow (implementation in Linux kernel 5.13.12)
with and without ECN support.
- TCP BBR - BBR and its variants account for 22% of the
top websites and approximately 40% of Internet traffic by
volume [30]. We conduct experiments with BBRv1 (imple-
mentation in Linux kernel 5.13.12), which does not support
ECN. We also consider BBRv2, with and without ECN, us-
ing the implementation in the v2alpha branch of the official
BBR repository [34]. Finally, we also run experiments with an
L4S-compatible BBRv2 flow, using the BBRv2 with AccECN
support from the L4S repository [32] (commit 4579ffb).
Flow Generation: For each network configuration, we

generate a single TCP Prague flow from the L4S sender and
a single TCP Cubic or TCP BBRv1/v2 flow from the classic
sender using the iperf3 utility, for a duration of 60 seconds.
We then record the average throughput and RTT values for
each flow. The results presented are the average of 10 trials.

4 EXPERIMENT RESULTS
In this section, we present and evaluate the throughput and
queuing latency of a TCP Prague flow when it shares a sin-
gle bottleneck with a competing flow (Cubic or BBR) under
various previously described network conditions. The main
question we would like to answer is: should content origi-
nators use L4S (TCP Prague) as their congestion control
protocol? Our results are presented in Figures 3, 4, 5 and 6.
Here, we discuss some of the major findings.
Prague throughput is degraded when sharing a sin-

gle, ECN-enabled queue without AQM alongside a BBRv2
or Cubic flow that does not respond to ECN signals. This is
shown in Fig. 3 (Cubic - No ECN) and Fig. 4 (BBRv2 - No
ECN) for the FIFO + ECN AQM. This outcome is expected
because if the classic sender does not respond to ECN, it fills

the bottleneck buffer. However, we want to highlight this as
a concern for L4S deployment because such a scenario can
occur when an endpoint does not support ECN or an Inter-
net path encounters “ECN bleaching”, i.e., an intermediate
network device clearing the ECN flags. Both of these remain
problematic according to a recent measurement study [35].
Although not shown here, the same trend is observed

when competing with a BBRv1 flow1. Prague is starved by
BBRv1 in shallow buffer settings for most non-L4S queues
(except FQ-Codel). BBRv1’s domination over TCP Cubic in
shallow buffers has also been observed in previous work [36].
We observe that Prague is dominated by a BBRv2 flow

whose endpoints do not support ECN when sharing an L4S
AQM queue (Fig. 4, DualPI2). The DualPI2 coupling design
assumes the classic queue carries loss-based TCP traffic (Cu-
bic or Reno) but the same coupling parameters do not work
with BBR flows in the classic queue. This raises a broader
concern that the dual queue coupled AQM strategy may not
generalize well when an L4S CC competes with non-L4S traf-
fic that is not loss-based TCP. We further observe that even
when competing with Cubic, Prague achieves slightly lower
throughput (around 40%) under DualPI2 AQM regardless
of ECN support, contradicting the observation in [22] that
DualPI2 provides a throughput advantage to Prague flows.

Prague takes more than its fair share of throughput
when competing with a Cubic or BBRv2 flow that responds
to ECN while sharing a single, ECN-enabled queue (FIFO +
ECN or Codel + ECN). This arises from differences in TCP
Prague’s and other TCP’s response to ECN signals, as ex-
plained in section 2. Our results validate the observations in
[22] for single queue with classic ECN AQMs. This scenario
motivated the implementation of the ECN fallback heuristic
in TCP Prague, which we also evaluated. With ECN fallback
turned ON for TCP Prague, we see improved coexistence
between Prague and ECN-capable classic flows over single
queue ECN AQMs. However, we observed other problems
(to be discussed shortly) with ECN fallback.

An AQM like CoDel drops packets from classic flows that
do not react to ECN to maintain queuing delay close to its
target. Prague again dominates the classic flows in this case
(Fig. 3 & 4, CoDel) because of its scalable cwnd drop strategy.

When there is a non-ECN bottleneck, there is no ECN
signal, and Prague falls back to operating like TCP Reno to
maintain friendliness to classic TCP traffic. In our experiment
conditions, Prague then achieves a fair share of throughput
when competing with TCP Cubic (Fig. 3, FIFO). This find-
ing disagrees with [22] where Cubic flows dominate Prague
flows in FIFO bottlenecks without ECN. However, the buffer
size used in this work was much higher than the maximum
buffer of 8 BDP used in our experiments.

On the other hand, Prague dominates the BBRv2 flow over
a FIFO queue (Fig. 4, FIFO). A similar result was observed for

48

D
ow

nloaded from
 the A

C
M

 D
igital Library by Library on A

pril 8, 2025.



To switch or not to switch to TCP Prague? Incentives for adoption in a partial L4S deployment ANRW ’24, July 23, 2024, Vancouver, AA, Canada

0.5 1.0 2.0 4.0 8.0
Buffer Size (BDP)

FIFO

FIFO
(+ECN)

CoDel
(+ECN+AQM)

FQ
(+ECN

+MultiQueue)
FQ-Codel

(+ECN+AQM
+MultiQueue)

DualPI2
(+ECN+AQM

+DualQueue)

40.4 45.9 54.4 53.4 43.9

40.5 1.6 0.4 0.2 0.3

43.8 73.6 88.2 88.3 88.0

37.5 42.0 45.9 46.6 46.6

45.5 47.3 47.5 47.4 47.5

41.9 42.0 42.3 42.6 41.9

CUBIC - No ECN

0.5 1.0 2.0 4.0 8.0
Buffer Size (BDP)

40.6 44.6 52.3 51.5 41.9

52.1 89.4 90.3 90.5 90.0

42.9 74.9 88.4 88.6 88.6

46.0 52.0 47.7 47.9 47.8

45.8 47.0 47.5 47.4 47.6

42.9 42.8 42.7 43.1 43.5

CUBIC - ECN

0.5 1.0 2.0 4.0 8.0
Buffer Size (BDP)

42.1 47.5 54.5 56.4 39.6

38.0 40.0 40.1 40.7 39.8

43.8 42.9 44.6 44.0 44.8

47.3 47.5 47.5 47.6 47.6

45.8 47.4 47.8 47.3 47.4

8.3 8.6 8.6 8.8 8.6

CUBIC - ECN - Fallback

0

20

40

60

80

100

Figure 3: Prague throughput (Mbps) when sharing 100 Mbps bottleneck with Cubic flow.

0.5 1.0 2.0 4.0 8.0
Buffer Size (BDP)

FIFO

FIFO
(+ECN)

CoDel
(+ECN+AQM)

FQ
(+ECN

+MultiQueue)
FQ-Codel

(+ECN+AQM
+MultiQueue)

DualPI2
(+ECN+AQM

+DualQueue)

46.3 59.4 64.8 76.8 73.7

44.7 35.9 2.4 1.3 1.3

48.9 67.3 87.0 87.6 86.9

44.8 47.6 48.7 48.0 43.3

45.7 47.6 48.2 48.2 48.2

27.3 26.2 26.4 24.8 25.9

BBRv2 - No ECN

0.5 1.0 2.0 4.0 8.0
Buffer Size (BDP)

49.4 61.4 70.7 78.3 75.8

50.6 85.2 85.5 86.1 86.0

48.4 71.9 87.1 87.2 87.4

47.4 47.9 48.3 48.1 48.3

46.0 47.8 48.0 48.0 48.1

40.1 41.3 39.9 39.6 42.0

BBRv2 - ECN

0.5 1.0 2.0 4.0 8.0
Buffer Size (BDP)

47.9 58.2 63.2 75.0 80.1

42.5 53.8 52.4 50.5 52.7

49.5 45.7 41.7 34.1 33.7

46.7 47.5 47.3 47.5 47.6

46.8 47.8 47.6 47.7 47.8

11.0 11.8 9.6 12.5 12.0

BBRv2 - ECN - Fallback

0

20

40

60

80

100

Figure 4: Prague throughput (Mbps) when sharing 100 Mbps bottleneck with BBRv2 flow.

0.5 1.0 2.0 4.0 8.0
Buffer Size (BDP)

FIFO

FIFO
(+ECN)

CoDel
(+ECN+AQM)

FQ
(+ECN

+MultiQueue)
FQ-Codel

(+ECN+AQM
+MultiQueue)

DualPI2
(+ECN+AQM

+DualQueue)

2.8 6.6 14.9 31.2 63.8

2.9 6.4 14.9 32.8 66.3

3.0 6.3 8.8 8.8 8.9

1.1 2.2 3.9 4.1 4.2

2.2 6.9 9.3 8.0 9.2

0.3 0.3 0.4 0.3 0.3

CUBIC - No ECN

0.5 1.0 2.0 4.0 8.0
Buffer Size (BDP)

2.3 5.6 12.5 28.8 57.4

2.3 4.5 6.7 6.8 6.8

2.4 5.0 9.8 9.9 9.9

3.1 4.5 4.7 4.7 4.9

2.4 8.4 7.9 10.5 8.8

0.4 0.4 0.4 0.4 0.4

BBRv2 - No ECN

0.5 1.0 2.0 4.0 8.0
Buffer Size (BDP)

2.9 6.8 14.8 31.9 64.4

2.9 4.7 4.7 4.7 4.7

2.9 6.5 8.7 8.5 8.8

3.3 4.7 4.7 4.8 4.8

2.3 7.5 8.8 8.0 9.0

0.3 0.3 0.3 0.3 0.3

CUBIC - ECN

0

2

4

6

8

10

12

14

Figure 5: Prague queuing delay (ms) when sharing bottleneck with classic flow. (ECN threshold is 5 ms, where
applicable. For DualPI2, L4S queue has 1 ms threshold.)

BBRv1 in our experiments and is a well-documented issue for
BBR’s coexistence with loss-based TCP in deep buffers [36].

Prague gets its fair share of throughput when sharing
an FQ bottleneck, regardless of whether the competing flow
is TCP Cubic or BBRv2, or whether the Fallback algorithm is

ON or OFF (Fig. 3 & 4, FQ + ECN& FQ-CoDel + ECN). This
confirms the claim from [22] that the CodelAF AQM allows
for fair sharing between Cubic and Prague flows, as verified
by our results with per-flow queuing (FQ) bottlenecks.

49

D
ow

nloaded from
 the A

C
M

 D
igital Library by Library on A

pril 8, 2025.



ANRW ’24, July 23, 2024, Vancouver, AA, Canada Fatih Berkay Sarpkaya, Ashutosh Srivastava, Fraida Fund, and Shivendra Panwar

0.5 1.0 2.0 4.0 8.0
Buffer Size (BDP)

FIFO

FIFO
(+ECN)

CoDel
(+ECN+AQM)

FQ
(+ECN

+MultiQueue)
FQ-Codel

(+ECN+AQM
+MultiQueue)

DualPI2
(+ECN+AQM

+DualQueue)

40.7 50.8 59.5 69.4 67.5

38.6 69.9 70.9 72.4 71.7

41.3 57.7 54.2 52.5 43.6

46.5 47.9 48.1 48.3 48.2

46.1 47.8 48.0 48.2 48.2

61.4 60.9 60.9 61.0 61.4

BBRv2 - Accurate ECN

0

20

40

60

80

100

(a) Prague throughput (Mbps)

0.5 1.0 2.0 4.0 8.0
Buffer Size (BDP)

FIFO

FIFO
(+ECN)

CoDel
(+ECN+AQM)

FQ
(+ECN

+MultiQueue)
FQ-Codel

(+ECN+AQM
+MultiQueue)

DualPI2
(+ECN+AQM

+DualQueue)

2.4 5.8 13.6 29.9 56.9

2.4 4.7 4.7 4.7 4.7

2.5 6.4 10.2 10.6 11.4

3.8 4.5 4.6 4.7 4.7

2.4 6.8 7.4 9.2 9.0

0.8 0.8 0.8 0.8 0.8

BBRv2 - AccECN

0

2

4

6

8

10

12

14

(b) Prague queuing delay (ms)

Figure 6: Prague throughput and queuing delay, shar-
ing a 100Mbps bottleneckwith anAccECNBBRv2 flow.

For latency-sensitive applications, the only case where
we observe TCP Prague consistently getting sub-1 ms queu-
ing delays is with an L4S AQM that can mark L4S packets
at a shallow threshold (like DualPI2) (Fig. 5). The ECN fall-
back heuristic, aimed at preventing Prague from dominating
classic traffic in classic AQMs, may not benefit content orig-
inators. It may detect a classic queue even in cases where
the bottleneck is DualPI2. When this happens, TCP Prague
uses classic TCP behavior, and is starved because of the 1ms
threshold of the L4S queue (Fig. 3, 4, Fallback, DualPI2).

If the BBRv2 flow supports accurate ECN, it can also
experience the low latency benefits of L4S. With a DualPI2
bottleneck, both the Prague and AccECN enabled BBRv2 are
classified into the low latency queue, leading to sub-1 ms
queuing delays (Fig. 6b). The throughput share is 60 : 40 in
Prague’s favor (Fig. 6a).
Table 1 summarizes our findings into recommendations

on using the TCP Prague CC. Since the TCP sender does not
know what type of bottleneck it will encounter, the decision

Buffer Type ECN Fallback OFF ECN Fallback ON
Cubic BBRv2 Cubic BBRv2

SQ w/o ECN ✓ X ✓ X
SQ + ECN X X ✓ ✓
FQ + ECN ✓ ✓ ✓ ✓
DualPI2 ✓ ✓ X X

Table 1: Is it okay to turn on TCP Prague (✓) or not (X)?
(SQ: single queue, FQ: fair queuing)

of whether or not to turn on TCP Prague at the sender de-
pends on the expected types of queues likely to be deployed
at bottlenecks and the types of flows likely to traverse these
queues. If the bottleneck uses fair queuing (FQ), TCP Prague
can be safely turned ON. While the ECN fallback algorithm
improves fairness in single queue bottlenecks, it is prone to
misdetection of dual queue AQMs, which can lead to Prague
being starved even when AQMs compatible with the L4S
architecture are deployed, e.g., DualPI2. This finding moti-
vates the need to engineer better solutions for TCP Prague
coexistence in non-L4S bottlenecks (for encouraging incre-
mental deployment), to the extent possible [37], or at least
to ensure that Prague will not be harmful [38]. Additionally,
it is important that these solutions do not degrade Prague’s
performance in an L4S-enabled network.

5 CONCLUSION
In this work, we have investigated the conditions under
which switching to TCP Prague is beneficial for a content
originator and/or safe for other flows. Our findings suggest
that if the content originator of TCP Prague cannot be sure
what type of queue is at the bottleneck router, a range of
outcomes for throughput and latency are possible, some of
which are unfavorable. It is demonstrated that bottlenecks
with per-flow isolation are the only type that ensures fairness,
while dual queue AQM bottlenecks are the only type that
guarantees low latency. In certain scenarios, TCP Praguemay
consume much more than its fair share of the link capacity
when competing with Cubic, BBRv1, or BBRv2, and in other
scenarios, TCP Prague gets much less than its fair share.

For future work, we hope to extend this analysis tomore di-
verse network environments, including multiple flows, mul-
tiple bottlenecks, and more realistic traffic patterns. We will
also consider other scalable congestion control algorithms
that may be relevant to a content provider adopting L4S.

ACKNOWLEDGMENTS
This research was supported by the New York State Center
for Advanced Technology in Telecommunications and Dis-
tributed Systems (CATT), NYU WIRELESS, and the National
Science Foundation (NSF) under Grant No. CNS-2148309 and
OAC-2226408.

50

D
ow

nloaded from
 the A

C
M

 D
igital Library by Library on A

pril 8, 2025.



To switch or not to switch to TCP Prague? Incentives for adoption in a partial L4S deployment ANRW ’24, July 23, 2024, Vancouver, AA, Canada

REFERENCES
[1] B. Briscoe, K. De Schepper, O. Tilmans, M. Kühlewind, J. Misund,

O. Albisser, andA. S. Ahmed, “Implementing the ’Prague Requirements’
for Low Latency Low Loss Scalable Throughput (L4S),” Netdev 0x13,
2019.

[2] F. F. Fatih Berkay Sarpkaya, “Reproducing "Scalable Congestion Con-
trol Resolves the Delay Utilization Dilemma",” https://github.com/
fatihsarpkaya/TCP-ECN, 2024.

[3] B. Briscoe, K. D. Schepper, M. Bagnulo, and G. White, “Low
Latency, Low Loss, and Scalable Throughput (L4S) Internet Service:
Architecture,” RFC 9330, Jan. 2023. [Online]. Available: https:
//datatracker.ietf.org/doc/html/rfc9330

[4] K. D. Schepper, O. Tilmans, B. Briscoe, and V. Goel, “Prague
Congestion Control,” Internet Engineering Task Force, Internet-Draft
draft-briscoe-iccrg-prague-congestion-control-03, Oct. 2023, work in
Progress. [Online]. Available: https://datatracker.ietf.org/doc/draft-
briscoe-iccrg-prague-congestion-control/03/

[5] B. Briscoe, M. Kühlewind, and R. Scheffenegger, “More Accurate
Explicit Congestion Notification (ECN) Feedback in TCP,” Internet
Engineering Task Force, Internet-Draft draft-ietf-tcpm-accurate-
ecn-28, Nov. 2023, work in Progress. [Online]. Available: https:
//datatracker.ietf.org/doc/draft-ietf-tcpm-accurate-ecn/28/

[6] M. Kühlewind, R. Scheffenegger, and B. Briscoe, “Problem Statement
and Requirements for Increased Accuracy in Explicit Congestion
Notification (ECN) Feedback,” RFC 7560, Aug. 2015. [Online]. Available:
https://datatracker.ietf.org/doc/html/rfc7560

[7] O. Albisser, K. De Schepper, B. Briscoe, O. Tilmans, and H. Steen,
“DUALPI2—Low Latency, Low Loss and Scalable (L4S) AQM,” NetDev
0x13, Prague, 2019.

[8] K. D. Schepper, O. Albisser, O. Tilmans, and B. Briscoe, “Dual Queue
Coupled AQM: Deployable Very Low Queuing Delay for All,” 2022.

[9] K. D. Schepper, B. Briscoe, and G. White, “Dual-Queue Coupled
Active Queue Management (AQM) for Low Latency, Low Loss, and
Scalable Throughput (L4S),” RFC 9332, Jan. 2023. [Online]. Available:
https://datatracker.ietf.org/doc/html/rfc9332

[10] N. Economides, “The Economics of Networks,” Intl. Journal of Industrial
Organization, vol. 14, no. 6, pp. 673–699, 1996.

[11] I. Baldin, A. Nikolich, J. Griffioen, I. I. S. Monga, K.-C.Wang, T. Lehman,
and P. Ruth, “FABRIC: A National-Scale Programmable Experimental
Network Infrastructure,” IEEE Internet Computing, vol. 23, no. 6, pp.
38–47, 2019.

[12] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, and M. Sridharan, “Data Center TCP
(DCTCP),” SIGCOMM Comput. Commun. Rev., vol. 40, no. 4, p. 63–74,
aug 2010. [Online]. Available: https://doi.org/10.1145/1851275.1851192

[13] B. Briscoe and A. S. Ahmed, “TCP Prague Fall-back on Detection of a
Classic ECN AQM,” 2021. [Online]. Available: https://arxiv.org/abs/
1911.00710

[14] A. Dhamdhere, D. D. Clark, A. Gamero-Garrido, M. Luckie, R. K. P.
Mok, G. Akiwate, K. Gogia, V. Bajpai, A. C. Snoeren, and K. Claffy,
“Inferring persistent interdomain congestion,” in Proceedings of
the 2018 Conference of the ACM Special Interest Group on Data
Communication, ser. SIGCOMM ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 1–15. [Online]. Available:
https://doi.org/10.1145/3230543.3230549

[15] A. Akella, S. Seshan, and A. Shaikh, “An empirical evaluation of
wide-area internet bottlenecks,” in Proceedings of the 2003 ACM
SIGMETRICS International Conference on Measurement and Modeling
of Computer Systems, ser. SIGMETRICS ’03. New York, NY, USA:
Association for Computing Machinery, 2003, p. 316–317. [Online].
Available: https://doi.org/10.1145/781027.781075

[16] K. D. Schepper and B. Briscoe, “The Explicit Congestion Notification
(ECN) Protocol for Low Latency, Low Loss, and Scalable Throughput
(L4S),” RFC 9331, Jan. 2023. [Online]. Available: https://datatracker.ietf.
org/doc/rfc9331/

[17] J. Livingood, “Comcast Kicks Off Industry’s First Low Latency DOCSIS
Field Trials,” https://corporate.comcast.com/press/releases/comcast-
multi-gig-symmetrical-speeds-world-first-docsis-4-deployment,
2023.

[18] G. White, “L4S Interop Lays Groundwork for 10G Metaverse,”
https://www.cablelabs.com/blog/l4s-interop-lays-groundwork-for-
10g-metaverse, 2022.

[19] N. Corporation, “Nokia collaborates with Hololight to deliver reliable
immersive XR experiences with latency-improving technology L4S,”
https://www.nokia.com/about-us/news/releases/2023/11/02/nokia-
collaborates-with-hololight-to-deliver-reliable-immersive-xr-
experiences-with-latency-improving-technology-l4s/, 2023.

[20] J. Livingood, “Comcast L4S Field Trial Update,” https:
//datatracker.ietf.org/meeting/118/materials/slides-118-tsvwg-
sessa-61-l4s-experience-01, 2023.

[21] P. Heist, “sce-l4s-bakeoff,” https://github.com/heistp/sce-l4s-bakeoff,
2019.

[22] ——, “L4S Tests,” https://github.com/heistp/l4s-tests, 2021.
[23] T. Henderson, O. Tilmans, and G. White, “Testbed and Simulation

Results for TSVWG Scenarios,” 2019, accessed: 2024-06-12. [Online].
Available: https://l4s.cablelabs.com/l4s_issues.html

[24] G. W. Bob Briscoe, Koen De Schepper, “L4S Status Update,”
Presented at IETF 112, Online, 2021, accessed: 2024-06-12. [Online].
Available: https://datatracker.ietf.org/meeting/112/materials/slides-
112-tsvwg-sessa-32-l4s-ecn-drafts-01.pdf

[25] O. T. G. W. Bob Briscoe, Koen De Schepper, “Low Latency Low Loss
Scalable Throughput (L4S),” https://www.ietf.org/proceedings/interim-
2020-tsvwg-01/slides/slides-interim-2020-tsvwg-01-sessa-l4s-tcp-
prague-update-00.pdf, February 2020, interim 2020 TSVWG Meeting.

[26] A. Srivastava, F. Fund, and S. S. Panwar, “Coexistence of delay-based
TCP congestion control: Challenges and opportunities,” in 2022 IEEE In-
ternational Workshop Technical Committee on Communications Quality
and Reliability (CQR). IEEE, 2022, pp. 43–48.

[27] Ł. Budzisz, R. Stanojevic, A. Schlote, F. Baker, and R. Shorten, “On the
fair coexistence of loss-and delay-based TCP,” IEEE/ACM transactions
on networking, vol. 19, no. 6, pp. 1811–1824, 2011.

[28] Y. Zhu, M. Ghobadi, V. Misra, and J. Padhye, “ECN or Delay: Lessons
Learnt from Analysis of DCQCN and TIMELY,” in Proceedings of the
12th International on Conference on Emerging Networking EXperiments
and Technologies, ser. CoNEXT ’16. New York, NY, USA: Association
for Computing Machinery, 2016, p. 313–327. [Online]. Available:
https://doi.org/10.1145/2999572.2999593

[29] D. BoruOljira, K.-J. Grinnemo, A. Brunstrom, and J. Taheri, “Validating
the sharing behavior and latency characteristics of the L4S architec-
ture,” ACM SIGCOMM Computer Communication Review, vol. 50, no. 2,
pp. 37–44, 2020.

[30] A. Mishra, X. Sun, A. Jain, S. Pande, R. Joshi, and B. Leong, “The
Great Internet TCP Congestion Control Census,” Proc. ACM Meas.
Anal. Comput. Syst., vol. 3, no. 3, dec 2019. [Online]. Available:
https://doi.org/10.1145/3366693

[31] K. Nichols and V. Jacobson, “Controlling Queue Delay,” Commun.
ACM, vol. 55, no. 7, p. 42–50, jul 2012. [Online]. Available:
https://doi.org/10.1145/2209249.2209264

[32] L4S development hub, “Linux kernel tree with L4S patches,” https:
//github.com/L4STeam/linux, 2024.

[33] S. Ha, I. Rhee, and L. Xu, “CUBIC: a new TCP-friendly high-speed
TCP variant,” SIGOPS Oper. Syst. Rev., vol. 42, no. 5, p. 64–74, jul 2008.
[Online]. Available: https://doi.org/10.1145/1400097.1400105

51

D
ow

nloaded from
 the A

C
M

 D
igital Library by Library on A

pril 8, 2025.

https://github.com/fatihsarpkaya/TCP-ECN
https://github.com/fatihsarpkaya/TCP-ECN
https://datatracker.ietf.org/doc/html/rfc9330
https://datatracker.ietf.org/doc/html/rfc9330
https://datatracker.ietf.org/doc/draft-briscoe-iccrg-prague-congestion-control/03/
https://datatracker.ietf.org/doc/draft-briscoe-iccrg-prague-congestion-control/03/
https://datatracker.ietf.org/doc/draft-ietf-tcpm-accurate-ecn/28/
https://datatracker.ietf.org/doc/draft-ietf-tcpm-accurate-ecn/28/
https://datatracker.ietf.org/doc/html/rfc7560
https://datatracker.ietf.org/doc/html/rfc9332
https://doi.org/10.1145/1851275.1851192
https://arxiv.org/abs/1911.00710
https://arxiv.org/abs/1911.00710
https://doi.org/10.1145/3230543.3230549
https://doi.org/10.1145/781027.781075
https://datatracker.ietf.org/doc/rfc9331/
https://datatracker.ietf.org/doc/rfc9331/
https://corporate.comcast.com/press/releases/comcast-multi-gig-symmetrical-speeds-world-first-docsis-4-deployment
https://corporate.comcast.com/press/releases/comcast-multi-gig-symmetrical-speeds-world-first-docsis-4-deployment
https://www.cablelabs.com/blog/l4s-interop-lays-groundwork-for-10g-metaverse
https://www.cablelabs.com/blog/l4s-interop-lays-groundwork-for-10g-metaverse
https://www.nokia.com/about-us/news/releases/2023/11/02/nokia-collaborates-with-hololight-to-deliver-reliable-immersive-xr-experiences-with-latency-improving-technology-l4s/
https://www.nokia.com/about-us/news/releases/2023/11/02/nokia-collaborates-with-hololight-to-deliver-reliable-immersive-xr-experiences-with-latency-improving-technology-l4s/
https://www.nokia.com/about-us/news/releases/2023/11/02/nokia-collaborates-with-hololight-to-deliver-reliable-immersive-xr-experiences-with-latency-improving-technology-l4s/
https://datatracker.ietf.org/meeting/118/materials/slides-118-tsvwg-sessa-61-l4s-experience-01
https://datatracker.ietf.org/meeting/118/materials/slides-118-tsvwg-sessa-61-l4s-experience-01
https://datatracker.ietf.org/meeting/118/materials/slides-118-tsvwg-sessa-61-l4s-experience-01
https://github.com/heistp/sce-l4s-bakeoff
https://github.com/heistp/l4s-tests
https://l4s.cablelabs.com/l4s_issues.html
https://datatracker.ietf.org/meeting/112/materials/slides-112-tsvwg-sessa-32-l4s-ecn-drafts-01.pdf
https://datatracker.ietf.org/meeting/112/materials/slides-112-tsvwg-sessa-32-l4s-ecn-drafts-01.pdf
https://www.ietf.org/proceedings/interim-2020-tsvwg-01/slides/slides-interim-2020-tsvwg-01-sessa-l4s-tcp-prague-update-00.pdf
https://www.ietf.org/proceedings/interim-2020-tsvwg-01/slides/slides-interim-2020-tsvwg-01-sessa-l4s-tcp-prague-update-00.pdf
https://www.ietf.org/proceedings/interim-2020-tsvwg-01/slides/slides-interim-2020-tsvwg-01-sessa-l4s-tcp-prague-update-00.pdf
https://doi.org/10.1145/2999572.2999593
https://doi.org/10.1145/3366693
https://doi.org/10.1145/2209249.2209264
https://github.com/L4STeam/linux
https://github.com/L4STeam/linux
https://doi.org/10.1145/1400097.1400105


ANRW ’24, July 23, 2024, Vancouver, AA, Canada Fatih Berkay Sarpkaya, Ashutosh Srivastava, Fraida Fund, and Shivendra Panwar

[34] Google, “BBR - Source code,” https://github.com/google/bbr, 2024.
[35] H. Lim, S. Kim, J. Sippe, J. Kim, G. White, C.-H. Lee, E. Wustrow, K. Lee,

D. Grunwald, and S. Ha, “A Fresh Look at ECN Traversal in the Wild,”
2022.

[36] R. Ware, M. K. Mukerjee, S. Seshan, and J. Sherry, “Modeling BBR’s
Interactions with Loss-Based Congestion Control,” in Proceedings
of the Internet Measurement Conference, ser. IMC ’19. New York,
NY, USA: Association for Computing Machinery, 2019, p. 137–143.
[Online]. Available: https://doi.org/10.1145/3355369.3355604

[37] V. Arun, M. Alizadeh, and H. Balakrishnan, “Starvation in end-to-end
congestion control,” in Proceedings of the ACM SIGCOMM 2022

Conference, ser. SIGCOMM ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 177–192. [Online]. Available:
https://doi.org/10.1145/3544216.3544223

[38] R. Ware, M. K. Mukerjee, S. Seshan, and J. Sherry, “Beyond Jain’s
Fairness Index: Setting the Bar For The Deployment of Congestion
Control Algorithms,” in Proceedings of the 18th ACM Workshop on
Hot Topics in Networks, ser. HotNets ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 17–24. [Online].
Available: https://doi.org/10.1145/3365609.3365855

52

D
ow

nloaded from
 the A

C
M

 D
igital Library by Library on A

pril 8, 2025.

https://github.com/google/bbr
https://doi.org/10.1145/3355369.3355604
https://doi.org/10.1145/3544216.3544223
https://doi.org/10.1145/3365609.3365855

	Abstract
	1 Introduction
	2 Background
	3 Experiment Methodology
	4 Experiment Results
	5 Conclusion
	Acknowledgments
	References

