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ABSTRACT

Software scientists and practitioners have criticized Model-driven
engineering (MDE) for lacking effective tooling. Although progress
has been made, most MDE analysis tools rely on complex, heavy-
weight mathematical techniques that are not based on UML. Such
tools require a steep learning curve and suffer from many acci-
dental complexities. We developed the Temporal Property Val-
idator (TPV) to tackle this issue. TPV allows designers to spec-
ify and analyze temporal properties using UML notations, tech-
niques, and tools. We evaluated TPV using the user experience
evaluation method and obtained promising results in all aspects of
user needs. You can download TPV and view the demo video from
https://github.com/mustafalail/ TPV-Tool.
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1 INTRODUCTION

Tools are essential for any software development paradigm, and
their quality directly impacts its usefulness. Software engineers
have confirmed that high-quality, easy-to-use, and robust tools
can maximize the benefits of a paradigm while minimizing the
difficulties designers face when learning and using it. However,
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inadequate MDE tools have been identified by several researchers
as a significant, recurring obstacle to the industrial adoption of
MDE [6, 8, 14, 29-31]. For an MDE approach to be successful, soft-
ware designers need to incorporate practical techniques and tools
into the development process to improve the quality of the models.
When models with design flaws are used to generate executable
code, errors are passed down and can be expensive to fix. There-
fore, detecting defects in the models as early as possible is vital
by analyzing them and ensuring that their behavior adheres to
the specified requirements. Such requirements can be expressed as
safety temporal properties (e.g., ensuring the system never reaches
a deadlock) or liveness properties (e.g., preventing starvation).

Verifying a system model’s satisfying temporal properties is a
common practice involving model checking [9]. Many UML-based
model-checking techniques rely on UML behavioral models, such as
state machines or activity diagrams, to describe a system’s behavior,
as seen in Moffett’s approach [22]. However, a significant challenge
with these approaches is the transformation of UML models into
specific model-checking frameworks for verification, as argued by
France and Rumpe [14]. They emphasize the difficulty of ensuring
semantic correctness and hiding the complexities of target model-
checking technologies from UML designers. Furthermore, most of
these approaches use temporal logic formalisms like LTL [27] and
CTL [10] to specify temporal properties, which may be challenging
for designers to learn and use effectively [13]. In essence, existing
UML-based model-checking approaches face usability, effectiveness,
and efficiency issues similar to other MDE tools [15].

To overcome these challenges, Al Lail et al. [1-5] proposes a new
methodological framework that allows UML designers to use UML
notations, tools, and techniques to specify and analyze temporal
properties. This framework’s implementation is the cutting-edge
analysis tool called the Temporal Property Validator (TPV), specifi-
cally designed to cater to UML designers, the envisioned users.

2 THE UML-BASED FRAMEWORK

This section discusses the software engineering challenges TPV
addresses, the originality of the techniques it uses to address them,
and the methodology it implies for its users. The UML specifica-
tion defines many types of diagrams to model different aspects of
a system. Class diagrams are central and widely used in model-
driven design [26]. Although designers usually use class diagrams
for structural modeling, they can also specify behavior through
operation contracts. Operation contracts can adequately express
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Figure 1: Overview of the technique implemented by TPV [2]
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the behavior of a system, as shown by Porres and Rauf (2009) [28].
Designers use the Object Constraint Language (OCL) to specify
operation contracts and other constraints [23]. However, OCL does
not make it easy to specify temporal properties. To address this
shortcoming, Ziemann et al. (2003) defined Temporal OCL (TOCL),
an extension to OCL that supports temporal properties [34]. The
framework allows for the analysis of TOCL properties on UML class
diagrams. The framework consists of the following techniques:
(1) A UML-based analysis technique that exclusively employs
UML notations and tools.
(2) A UML-based method that simplifies the process of temporal
property specification for UML designers.
(3) An optimization technique that reduces the time required for
analysis, enabling the analysis to be applied to larger UML
models.

We elaborate on these techniques in the following subsections.

2.1 The Analysis Technique

TPV implements the analysis technique depicted in Fig. 1. Unlike
other related work, the novelty of the technique lies in its exclu-
sive use of UML notations and tools— eliminating the accidental
complexities and difficulties of related techniques. The first step
in the analysis workflow is to create a UML diagram for a specific
software system and then specify a temporal property in TOCL.

e —
BankAccourt
Detilcard balance - Integer
cardbumper : Integer |« 1| accourthlumber : Integer
limit : Irteger card account | deposhtiamourt : Integer)
pay(amourt : Integer) withciram(amoLnt : Integer)
assignEwCeard()

Figure 2: Class diagram modeling accounts and debit cards.

We use the class diagram presented in Fig. 2 to demonstrate
the analysis technique. This model comprises two classes, namely
BankAccount and DebitCard. Account objects have a balance that
can increase through the deposit() operation or decrease through
the withdraw() operation. Accounts can be assigned a debit card
through the assignNewCard() operation. A selection of OCL con-
tracts for these operations is displayed in Listing 1.

context BankAccount:: withdraw (amount: Integer)
post: self.balance = self.balance@pre - amount

Al Lail et al.

context BankAccount:: deposit(amount:Integer)

post: self.balance = self.balance@pre + amount

context DebitCard :: pay(amount:Integer)

pre: amount < self.limit

post: self.account.balance =
self.account.balance@pre ~amount

Listing 1: Operation contracts for the diagram in Fig. 2.

The designer inputs the system requirements as temporal prop-
erties that define the system’s behavior in TOCL. Listing 2 presents
an example of a property for the BankAccount class requiring the
account balance to be greater than 0 eventually.

context BankAccount
inv: sometime balance > 0

Listing 2: Example of a temporal property.

Once a designer specifies a temporal property, they can use TPV
to check it. TPV analyzes the system model and identifies any coun-
terexamples. At the back end, TPV automatically transforms the
class diagram into a different form to make it suitable for behavioral
analysis. Fig. 3 displays the resultant form in terms of a Snapshot
Transition Model (STM) of the class diagram in Fig. 2. The initial
form of STM was proposed in 2008 by Yu et al. [32] and extended
for temporal property verification by Al Lail et al. [1-5].

mssmnm nuﬂl-

Lastsnapshat | [ FirstSnapshot Bork AetHaiyyickney

amount : Integer

tanstisnCortest Bankacoount | [ arcaccout_depost |

amount : Iteger

Bankacsourt_assigntewCard

DetiCard_pay transttionCartext : BankAccourt

amourt: Integer
debitcard transition Cortet : DebitCard
DepCard BankAccout
cardhlumber - Infeger 1 Irteger
it ; Intewer card account] paiance : Integer
snapshotOhjscti - Integer snapsholchjectid : Integer

Figure 3: STM representation of the account system.

An STM is a structural representation of a system’s behavior
through states and transitions. Each state, known as a Snapshot, is
a structured class that represents an object diagram of the system
at a particular moment of execution. Transition classes, in Fig. 3,
indicate operation calls that cause new system states and result in
side effects. The operation pre- and post-conditions are converted
into invariants on the transition classes to preserve their constraints,
as shown by listing 3. The class invariants remain the same and
directly mapped their perspective class in STM. Everything else
stays intact.

context BankAccount_withdraw

inv postl: (self.transitionContext.getNext().balance = (
self.transitionContext.balance - amount))

context BankAccount_deposit

inv post2: (self.transitionContext.getNext().balance = (

self.transitionContext.balance + amount))

context DebitCard_pay

inv prel: (amount < self.transitionContext.limit)

context DebitCard_pay

inv post3: (self.transitionContext.getNext().account.
balance = (self.transitionContext.getNext().account.
getPrevious () . balance - amount))

Listing 3: Contracts in Listing 1 mapped into STM invariants.
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Figure 4: A counterexample as a snapshot-transition chain.

The STMs are automatically used to create object diagrams that
describe specific execution scenarios of a system. Fig. 4 displays
an example scenario. The scenario is composed of linked Snapshot
and Transition objects. Note the snapshotObjectld attribute present
in the Fig. 3 STM and in the Fig. 4 counterexample. This attribute
is used to identify objects in different snapshots as state represen-
tations of the same real-time object. For example, the scenario in
Fig. 4 shows three different STM objects with a snapshotObjectld
value of 20. These objects represent three states of a single real-time
bank account instance. Transition elements signify operation calls
that affect the system and lead to a new system state. This static
representation of system behavior allows the specification and eval-
uation of TOCL temporal properties and pre- and post-conditions
as OCL invariants on STM elements.

To analyze a system’s behavior, TPV uses the UML-based Specifi-
cation Environment (USE) tool and its Model Validator plugin [20].
The USE Model Validator automatically identify any object diagram
that violates the TOCL specification within a certain search range.
If the analysis detects a system state in which a temporal property is
violated, the validator generates a counterexample to demonstrate
that the system does not meet the respective property. The designer
can use this counterexample to improve their design. For example,
the counterexample displayed in Fig. 4 reveals that the account
model’s specification is too lenient, allowing the violation of the
temporal property listed in Listing 2. To fix this flaw, the model’s
behavior can be restricted by specifying additional constraints.

8 Seauence dingram . F [

E bankaccount3:BankAccount
'
'

withdraw(1

bersisernineana o,
withdraw(1

Figure 5: Counterexample scenario as a sequence diagram.
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When there are numerous snapshots and transitions in a coun-
terexample scenario, the verification results can become compli-
cated and challenging to analyze. To simplify this process, TPV
generates a sequence diagram from the counterexample scenario
to assist with debugging. The extracted sequence diagram from the
counterexample scenario in Fig. 4 is displayed in Fig. 5.

2.2 The Property Specification Technique

Formally specifying system requirements as temporal properties
is a challenging task for many designers [13]. This specification
technique streamlines the process of property specification for
UML designers. To achieve this goal, the specification patterns of
Dwyer et al are defined in TOCL. A user determines a pattern that
best fits the requirement and then uses the corresponding TOCL
pattern to obtain the intended property. The OCL property is then
systematically generated for verification. You can refer to Tables in
Fig. 6 for templates of the Response and Universality patterns.

Scope TOCL Pattern
Globally context [Class]
inv: [P] implies sometime Scope TOCL Pattern
Globall text [Cl
Before R context [Class] 2oaE ij\? Zi(wi Sa[s}s%
inv: [R] implies sometime ’ el
[S] Before R context [Class]
since [P] inv: [R] implies alwaysPast
P
After Q context [Class] v
inv: [Q] implies always After Q context [Class]
([P] implies sometime [S]) inv: [Q] implies always
P)
After Quntil R | context [Class] [r
inv: [Q] implies always After Quntil R | context [Class]

([P] implies sometime [S]
before [R])

inv: [Q] implies always
[P] until [R]

Between Q and R

context [Class]

inv: [Q] and sometime [R]
implies always ([P] implies
sometime [S] before [R])

Between Q and R

context [Class]

inv: [Q] and sometime [R]
implies always [P]

until [R]

Table 1: The response pattern in TOCL Table 2: The universality pattern in TOCL

Figure 6: Examples of pattern specifications in TOCL.

2.3 The Optimization Technique

State explosion is a known challenge in model checking [9]. This
issue arises when the state space becomes too large to be feasibly
checked. TPV employs two strategies to mitigate state explosion:
lightweight analysis of a restricted search space and search space
optimization. The lightweight analysis strategy reduces the search
space by constraining the search scope and search depth [18]. A
search scope defines the number of objects created for each class in
a snapshot, while a search depth specifies the number of transitions
considered in an analysis task. When analyzing a property related
to a class diagram, the optimization process identifies relevant
elements and returns an optimized diagram. Algorithm 1 outlines
the steps to identify affected elements by a temporal property (Tp),
taking pre and post-conditions (PcList), a list of class invariants
(InvList), and the class diagram (CD) as inputs.

The algorithm uses a function, elements(), that takes an OCL
expression as input and returns the set of affected elements in the
expression. The algorithm consists of two loops identifying the set
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Algorithm 1 Optimization to identify affected elements (AE)

: Input: CD, PcList, InvList, and Tp

: Output: AE

AE=10

PcAE=0

TpAE = elements(Tp)

. for Pc € PcList do

PtAE = elements(Pc)

if PtAE N TpAE # () then
PcAE = PcAE U PtAE

end if

: end for

: InvAE= 10

: for Inv € InvList do

PtAE = elements(Inv)

if PtAE N TpAE # ( then
InvAE = InvAE U PtAE

end if

: end for

. AE = TpAEU PcAE U InvAE

: Return AE

R A A >

I e L T e e
SV ® N U e W N = O

of affected elements from the pre and post-conditions of operations
(lines 6-11) and invariants (lines 13-18).

3 TOOL IMPLEMENTATION

We utilized MDE technologies to define, implement, and package
the code of the TPV tool as a USE plugin. The plugin includes a
user-friendly GUI and conceals the back-end processing from the
user. Additionally, it improves USE’s functionality by allowing it to
open and store models in XMI files which is the standard format
for UML models. This feature enhances the interoperability of TPV
by allowing models to be exported and imported from other tools.
To create TPV, we followed these steps:

(1) We developed a new modeling language for the STM by
using UML-based class diagrams to represent behavior.

(2) We created transformation rules that automatically convert-
ing UML class diagrams into the new modeling language.
We formally defined these rules using QVTo [24] and imple-
mented them using the EMF implementation of QVTo [16].

(3) We started with the original TOCL specification and devel-
oped a formal EBNF grammar, a parser for TOCL using the
ANTLR 4 parser generator [25], and a metamodel of TOCL.

(4) We established transformation rules from TOCL to OCL to
enable a more accessible analysis of TOCL properties. This
transformation involved the formal specification of QVTo
rules and their implementation.

(5) We implemented the optimization technique.

4 TPV EVALUATION

To assess TPV, we used a survey based on the innovative user needs
experience (NX) method by Zarour (2020) [33]. The survey includes
44 questions grouped into 4 sections focusing on usefulness, plea-
sure, aesthetics, and trust. We collected feedback from student
participants to gain insight into the user experience of TPV. The

Al Lail et al.

study was made as realistic as possible for actual TPV users. Stu-
dents downloaded TPV and received an evaluation guide with basic
training on software specification and validation. They completed
two specification and validation case studies before responding
to the survey questions. A total of 19 students participated in the
study. The questions, student responses, and detailed analysis can
be found in the online repository provided in the abstract.

Table 1 shows student survey results on four criteria. TPV is
helpful but needs improvement in user experience categories. Ul is
good but could be better. Students found TPV dependable.

Table 1: TPV Overll Evaluation

Criteria Satisfied | Dissatisfied
Usefulness 90.15% 9.85%
Pleasure 91.24% 8.76%
User Interface Aesthetics 93.63% 6.37%
Trust 91.65% 8.35%

5 RELATED WORK

A recent article provides an overview of the latest model-based for-
mal verification techniques and tools, discussing the current state-
of-the-art and outlining possible future research directions [15].
This section only covers recent and relevant approaches. In [7],
the MADES approach is presented, which combines several heavy-
weight formalisms and techniques to verify embedded systems.
These techniques require steep learning and mathematical skills,
making the tool hard to use by UML designers. Unlike this approach,
by examining TPV’s input and output, one can see that it exclu-
sively uses notations and techniques familiar to UML designers.
Combemale et al. [11] use a temporal extension to OCL based on
process states to specify temporal constraints. These constraints
are then translated to Petri nets for verification. Designers are,
therefore, required to learn Petri nets to understand the verifica-
tion results. Similarly, ProMoBox [21] supports verifying temporal
properties in the context of domain-specific modeling. ProMoBox
defines a family of five languages that are required to support prop-
erty specification and verification. Properties are specified in LTL,
and models are translated to the Spin model checker for verifica-
tion. In [17], an approach similar to the technique used in TPV is
described. The approach performs verification using UML class dia-
grams and OCL expressions by transforming them into the so-called
filmstrip model that is verified by the USE model finder. However,
compared to TPV, the approach offers a limited set of temporal
operators based on non-UML notation LTL and lacks support for
specification patterns. The research work described in [12, 19] dis-
cusses pattern-based specification approaches. [19] implements the
patterns on top of Eclipse but does not provide a verification tool.
On the other hand, [12] describes a new property, a model-based
testing approach using UML/OCL models to evaluate the quality of
test suites. However, the approach uses heavyweight techniques.
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