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ABSTRACT

Software scientists and practitioners have criticized Model-driven

engineering (MDE) for lacking effective tooling. Although progress

has been made, most MDE analysis tools rely on complex, heavy-

weight mathematical techniques that are not based on UML. Such

tools require a steep learning curve and suffer from many acci-

dental complexities. We developed the Temporal Property Val-

idator (TPV) to tackle this issue. TPV allows designers to spec-

ify and analyze temporal properties using UML notations, tech-

niques, and tools. We evaluated TPV using the user experience

evaluation method and obtained promising results in all aspects of

user needs. You can download TPV and view the demo video from

https://github.com/mustafalail/TPV-Tool.

CCS CONCEPTS

• Software and its engineering→UnifiedModeling Language
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1 INTRODUCTION

Tools are essential for any software development paradigm, and

their quality directly impacts its usefulness. Software engineers

have confirmed that high-quality, easy-to-use, and robust tools

can maximize the benefits of a paradigm while minimizing the

difficulties designers face when learning and using it. However,
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inadequate MDE tools have been identified by several researchers

as a significant, recurring obstacle to the industrial adoption of

MDE [6, 8, 14, 29–31]. For an MDE approach to be successful, soft-

ware designers need to incorporate practical techniques and tools

into the development process to improve the quality of the models.

When models with design flaws are used to generate executable

code, errors are passed down and can be expensive to fix. There-

fore, detecting defects in the models as early as possible is vital

by analyzing them and ensuring that their behavior adheres to

the specified requirements. Such requirements can be expressed as

safety temporal properties (e.g., ensuring the system never reaches

a deadlock) or liveness properties (e.g., preventing starvation).

Verifying a system model’s satisfying temporal properties is a

common practice involving model checking [9]. Many UML-based

model-checking techniques rely on UML behavioral models, such as

state machines or activity diagrams, to describe a system’s behavior,

as seen in Moffett’s approach [22]. However, a significant challenge

with these approaches is the transformation of UML models into

specific model-checking frameworks for verification, as argued by

France and Rumpe [14]. They emphasize the difficulty of ensuring

semantic correctness and hiding the complexities of target model-

checking technologies from UML designers. Furthermore, most of

these approaches use temporal logic formalisms like LTL [27] and

CTL [10] to specify temporal properties, which may be challenging

for designers to learn and use effectively [13]. In essence, existing

UML-basedmodel-checking approaches face usability, effectiveness,

and efficiency issues similar to other MDE tools [15].

To overcome these challenges, Al Lail et al. [1–5] proposes a new

methodological framework that allows UML designers to use UML

notations, tools, and techniques to specify and analyze temporal

properties. This framework’s implementation is the cutting-edge

analysis tool called the Temporal Property Validator (TPV), specifi-

cally designed to cater to UML designers, the envisioned users.

2 THE UML-BASED FRAMEWORK

This section discusses the software engineering challenges TPV

addresses, the originality of the techniques it uses to address them,

and the methodology it implies for its users. The UML specifica-

tion defines many types of diagrams to model different aspects of

a system. Class diagrams are central and widely used in model-

driven design [26]. Although designers usually use class diagrams

for structural modeling, they can also specify behavior through

operation contracts. Operation contracts can adequately express
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Figure 1: Overview of the technique implemented by TPV [2]

the behavior of a system, as shown by Porres and Rauf (2009) [28].

Designers use the Object Constraint Language (OCL) to specify

operation contracts and other constraints [23]. However, OCL does

not make it easy to specify temporal properties. To address this

shortcoming, Ziemann et al. (2003) defined Temporal OCL (TOCL),

an extension to OCL that supports temporal properties [34]. The

framework allows for the analysis of TOCL properties on UML class

diagrams. The framework consists of the following techniques:

(1) A UML-based analysis technique that exclusively employs

UML notations and tools.

(2) A UML-based method that simplifies the process of temporal

property specification for UML designers.

(3) An optimization technique that reduces the time required for

analysis, enabling the analysis to be applied to larger UML

models.

We elaborate on these techniques in the following subsections.

2.1 The Analysis Technique

TPV implements the analysis technique depicted in Fig. 1. Unlike

other related work, the novelty of the technique lies in its exclu-

sive use of UML notations and tools– eliminating the accidental

complexities and difficulties of related techniques. The first step

in the analysis workflow is to create a UML diagram for a specific

software system and then specify a temporal property in TOCL.

Figure 2: Class diagram modeling accounts and debit cards.

We use the class diagram presented in Fig. 2 to demonstrate

the analysis technique. This model comprises two classes, namely

BankAccount and DebitCard. Account objects have a balance that

can increase through the deposit() operation or decrease through

the withdraw() operation. Accounts can be assigned a debit card

through the assignNewCard() operation. A selection of OCL con-

tracts for these operations is displayed in Listing 1.

c on t e x t BankAccount : : withdraw ( amount : I n t e g e r )

po s t : s e l f . b a l an c e = s e l f . ba lance@pre − amount

c on t e x t BankAccount : : d e p o s i t ( amount : I n t e g e r )

po s t : s e l f . b a l an c e = s e l f . ba lance@pre + amount

c on t e x t Deb i tCard : : pay ( amount : I n t e g e r )

pre : amount < s e l f . l i m i t

po s t : s e l f . a c count . b a l an c e =

s e l f . a c count . balance@pre −amount

Listing 1: Operation contracts for the diagram in Fig. 2.

The designer inputs the system requirements as temporal prop-

erties that define the system’s behavior in TOCL. Listing 2 presents

an example of a property for the BankAccount class requiring the

account balance to be greater than 0 eventually.

c on t e x t BankAccount

inv : sometime ba l an c e > 0

Listing 2: Example of a temporal property.

Once a designer specifies a temporal property, they can use TPV

to check it. TPV analyzes the system model and identifies any coun-

terexamples. At the back end, TPV automatically transforms the

class diagram into a different form to make it suitable for behavioral

analysis. Fig. 3 displays the resultant form in terms of a Snapshot

Transition Model (STM) of the class diagram in Fig. 2. The initial

form of STM was proposed in 2008 by Yu et al. [32] and extended

for temporal property verification by Al Lail et al. [1–5].

Figure 3: STM representation of the account system.

An STM is a structural representation of a system’s behavior

through states and transitions. Each state, known as a Snapshot, is

a structured class that represents an object diagram of the system

at a particular moment of execution. Transition classes, in Fig. 3,

indicate operation calls that cause new system states and result in

side effects. The operation pre- and post-conditions are converted

into invariants on the transition classes to preserve their constraints,

as shown by listing 3. The class invariants remain the same and

directly mapped their perspective class in STM. Everything else

stays intact.

c on t e x t BankAccount_withdraw

inv pos t 1 : ( s e l f . t r a n s i t i o nC o n t e x t . ge tNex t ( ) . b a l an c e = (

s e l f . t r a n s i t i o nC o n t e x t . b a l an c e − amount ) )

c on t e x t BankAccount_depos i t

inv po s t 2 : ( s e l f . t r a n s i t i o nC o n t e x t . ge tNex t ( ) . b a l an c e = (

s e l f . t r a n s i t i o nC o n t e x t . b a l an c e + amount ) )

c on t e x t Deb i tCard_pay

inv pre1 : ( amount < s e l f . t r a n s i t i o nC o n t e x t . l i m i t )

c on t e x t Deb i tCard_pay

inv po s t 3 : ( s e l f . t r a n s i t i o nC o n t e x t . ge tNex t ( ) . a c count .

b a l an c e = ( s e l f . t r a n s i t i o nC o n t e x t . ge tNex t ( ) . a ccount .

g e t P r e v i o u s ( ) . b a l an c e − amount ) )

Listing 3: Contracts in Listing 1 mapped into STM invariants.
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Figure 4: A counterexample as a snapshot-transition chain.

The STMs are automatically used to create object diagrams that

describe specific execution scenarios of a system. Fig. 4 displays

an example scenario. The scenario is composed of linked Snapshot

and Transition objects. Note the snapshotObjectId attribute present

in the Fig. 3 STM and in the Fig. 4 counterexample. This attribute

is used to identify objects in different snapshots as state represen-

tations of the same real-time object. For example, the scenario in

Fig. 4 shows three different STM objects with a snapshotObjectId

value of 20. These objects represent three states of a single real-time

bank account instance. Transition elements signify operation calls

that affect the system and lead to a new system state. This static

representation of system behavior allows the specification and eval-

uation of TOCL temporal properties and pre- and post-conditions

as OCL invariants on STM elements.

To analyze a system’s behavior, TPV uses the UML-based Specifi-

cation Environment (USE) tool and its Model Validator plugin [20].

The USE Model Validator automatically identify any object diagram

that violates the TOCL specification within a certain search range.

If the analysis detects a system state in which a temporal property is

violated, the validator generates a counterexample to demonstrate

that the system does not meet the respective property. The designer

can use this counterexample to improve their design. For example,

the counterexample displayed in Fig. 4 reveals that the account

model’s specification is too lenient, allowing the violation of the

temporal property listed in Listing 2. To fix this flaw, the model’s

behavior can be restricted by specifying additional constraints.

Figure 5: Counterexample scenario as a sequence diagram.

When there are numerous snapshots and transitions in a coun-

terexample scenario, the verification results can become compli-

cated and challenging to analyze. To simplify this process, TPV

generates a sequence diagram from the counterexample scenario

to assist with debugging. The extracted sequence diagram from the

counterexample scenario in Fig. 4 is displayed in Fig. 5.

2.2 The Property Specification Technique

Formally specifying system requirements as temporal properties

is a challenging task for many designers [13]. This specification

technique streamlines the process of property specification for

UML designers. To achieve this goal, the specification patterns of

Dwyer et al are defined in TOCL. A user determines a pattern that

best fits the requirement and then uses the corresponding TOCL

pattern to obtain the intended property. The OCL property is then

systematically generated for verification. You can refer to Tables in

Fig. 6 for templates of the Response and Universality patterns.

Figure 6: Examples of pattern specifications in TOCL.

2.3 The Optimization Technique

State explosion is a known challenge in model checking [9]. This

issue arises when the state space becomes too large to be feasibly

checked. TPV employs two strategies to mitigate state explosion:

lightweight analysis of a restricted search space and search space

optimization. The lightweight analysis strategy reduces the search

space by constraining the search scope and search depth [18]. A

search scope defines the number of objects created for each class in

a snapshot, while a search depth specifies the number of transitions

considered in an analysis task. When analyzing a property related

to a class diagram, the optimization process identifies relevant

elements and returns an optimized diagram. Algorithm 1 outlines

the steps to identify affected elements by a temporal property (Tp),

taking pre and post-conditions (PcList), a list of class invariants

(InvList), and the class diagram (CD) as inputs.

The algorithm uses a function, elements(), that takes an OCL

expression as input and returns the set of affected elements in the

expression. The algorithm consists of two loops identifying the set
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Algorithm 1 Optimization to identify affected elements (AE)

1: Input: CD, PcList, InvList, and Tp

2: Output: AE

3: AE = ∅

4: PcAE = ∅

5: TpAE = elements(Tp)

6: for Pc ∈ PcList do

7: PtAE = elements(Pc)

8: if PtAE ∩ TpAE ≠ ∅ then

9: PcAE = PcAE ∪ PtAE

10: end if

11: end for

12: InvAE = ∅

13: for Inv ∈ InvList do

14: PtAE = elements(Inv)

15: if PtAE ∩ TpAE ≠ ∅ then

16: InvAE = InvAE ∪ PtAE

17: end if

18: end for

19: AE = TpAE ∪ PcAE ∪ InvAE

20: Return AE

of affected elements from the pre and post-conditions of operations

(lines 6-11) and invariants (lines 13-18).

3 TOOL IMPLEMENTATION

We utilized MDE technologies to define, implement, and package

the code of the TPV tool as a USE plugin. The plugin includes a

user-friendly GUI and conceals the back-end processing from the

user. Additionally, it improves USE’s functionality by allowing it to

open and store models in XMI files which is the standard format

for UML models. This feature enhances the interoperability of TPV

by allowing models to be exported and imported from other tools.

To create TPV, we followed these steps:

(1) We developed a new modeling language for the STM by

using UML-based class diagrams to represent behavior.

(2) We created transformation rules that automatically convert-

ing UML class diagrams into the new modeling language.

We formally defined these rules using QVTo [24] and imple-

mented them using the EMF implementation of QVTo [16].

(3) We started with the original TOCL specification and devel-

oped a formal EBNF grammar, a parser for TOCL using the

ANTLR 4 parser generator [25], and a metamodel of TOCL.

(4) We established transformation rules from TOCL to OCL to

enable a more accessible analysis of TOCL properties. This

transformation involved the formal specification of QVTo

rules and their implementation.

(5) We implemented the optimization technique.

4 TPV EVALUATION

To assess TPV, we used a survey based on the innovative user needs

experience (NX) method by Zarour (2020) [33]. The survey includes

44 questions grouped into 4 sections focusing on usefulness, plea-

sure, aesthetics, and trust. We collected feedback from student

participants to gain insight into the user experience of TPV. The

study was made as realistic as possible for actual TPV users. Stu-

dents downloaded TPV and received an evaluation guide with basic

training on software specification and validation. They completed

two specification and validation case studies before responding

to the survey questions. A total of 19 students participated in the

study. The questions, student responses, and detailed analysis can

be found in the online repository provided in the abstract.

Table 1 shows student survey results on four criteria. TPV is

helpful but needs improvement in user experience categories. UI is

good but could be better. Students found TPV dependable.

Table 1: TPV Overll Evaluation

Criteria Satisfied Dissatisfied

Usefulness 90.15% 9.85%

Pleasure 91.24% 8.76%

User Interface Aesthetics 93.63% 6.37%

Trust 91.65% 8.35%

5 RELATED WORK

A recent article provides an overview of the latest model-based for-

mal verification techniques and tools, discussing the current state-

of-the-art and outlining possible future research directions [15].

This section only covers recent and relevant approaches. In [7],

the MADES approach is presented, which combines several heavy-

weight formalisms and techniques to verify embedded systems.

These techniques require steep learning and mathematical skills,

making the tool hard to use by UML designers. Unlike this approach,

by examining TPV’s input and output, one can see that it exclu-

sively uses notations and techniques familiar to UML designers.

Combemale et al. [11] use a temporal extension to OCL based on

process states to specify temporal constraints. These constraints

are then translated to Petri nets for verification. Designers are,

therefore, required to learn Petri nets to understand the verifica-

tion results. Similarly, ProMoBox [21] supports verifying temporal

properties in the context of domain-specific modeling. ProMoBox

defines a family of five languages that are required to support prop-

erty specification and verification. Properties are specified in LTL,

and models are translated to the Spin model checker for verifica-

tion. In [17], an approach similar to the technique used in TPV is

described. The approach performs verification using UML class dia-

grams and OCL expressions by transforming them into the so-called

filmstrip model that is verified by the USE model finder. However,

compared to TPV, the approach offers a limited set of temporal

operators based on non-UML notation LTL and lacks support for

specification patterns. The research work described in [12, 19] dis-

cusses pattern-based specification approaches. [19] implements the

patterns on top of Eclipse but does not provide a verification tool.

On the other hand, [12] describes a new property, a model-based

testing approach using UML/OCL models to evaluate the quality of

test suites. However, the approach uses heavyweight techniques.
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