20
21
22
23
24
25
26
27
28
29
30
31
32

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

TPV: A Tool for Validating Temporal Properties in UML Class
Diagrams

Mustafa Al Lail, Antonio

Viesca, Hector Cardenas
mustafa.allail@tamiu.edu
antoniorosales@dusty.tamiu.edu
hector_cardenas@dusty.tamiu.edu
Texas A&M International University
Laredo, Texas, USA

ABSTRACT

Software scientists and practitioners have criticized Model-driven
engineering (MDE) for lacking effective tooling. Although progress
has been made, most MDE analysis tools rely on complex, heavy-
weight mathematical techniques that are not based on UML. Such
tools require a steep learning curve and suffer from many acci-
dental complexities. We developed the Temporal Property Val-
idator (TPV) to tackle this issue. TPV allows designers to spec-
ify and analyze temporal properties using UML notations, tech-
niques, and tools. We evaluated TPV using the user experience
evaluation method and obtained promising results in all aspects of
user needs. You can download TPV and view the demo video from
https://github.com/mustafalail/ TPV-Tool.

CCS CONCEPTS

« Software and its engineering — Unified Modeling Language
(UML), System modeling languages.

KEYWORDS
Temporal propeties,OCL, UML, tool, model checking, verification

ACM Reference Format:

Mustafa Al Lail, Antonio Viesca, Hector Cardenas, Mohammad Zarour,
and Alfredo Perez. 2024. TPV: A Tool for Validating Temporal Properties in
UML Class Diagrams. In 2024 IEEE/ACM 46th International Conference on
Software Engineering. ACM, New York, NY, USA, 5 pages. https://
doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Tools are essential for any software development paradigm, and
their quality directly impacts its usefulness. Software engineers
have confirmed that high-quality, easy-to-use, and robust tools
can maximize the benefits of a paradigm while minimizing the
difficulties designers face when learning and using it. However,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE, April 14-20, 2024, Lisbon, Portugal

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-x-xxxx-xxxx-x/YY/MM

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Mohammad Zarour
mzarour@hu.edu.jo
Hashemite University
Zarqa, Jordan

Alfredo Perez

alfredoperez@unomaha.edu
University of Nebraska at Omaha
Omabha, Nebraska, USA

inadequate MDE tools have been identified by several researchers
as a significant, recurring obstacle to the industrial adoption of
MDE [6, 8, 14, 29-31]. For an MDE approach to be successful, soft-
ware designers need to incorporate practical techniques and tools
into the development process to improve the quality of the models.
When models with design flaws are used to generate executable
code, errors are passed down and can be expensive to fix. There-
fore, detecting defects in the models as early as possible is vital
by analyzing them and ensuring that their behavior adheres to
the specified requirements. Such requirements can be expressed as
safety temporal properties (e.g., ensuring the system never reaches
a deadlock) or liveness properties (e.g., preventing starvation).

Verifying a system model’s satisfying temporal properties is a
common practice involving model checking [9]. Many UML-based
model-checking techniques rely on UML behavioral models, such as
state machines or activity diagrams, to describe a system’s behavior,
as seen in Moffett’s approach [22]. However, a significant challenge
with these approaches is the transformation of UML models into
specific model-checking frameworks for verification, as argued by
France and Rumpe [14]. They emphasize the difficulty of ensuring
semantic correctness and hiding the complexities of target model-
checking technologies from UML designers. Furthermore, most of
these approaches use temporal logic formalisms like LTL [27] and
CTL [10] to specify temporal properties, which may be challenging
for designers to learn and use effectively [13]. In essence, existing
UML-based model-checking approaches face usability, effectiveness,
and efficiency issues similar to other MDE tools [15].

To overcome these challenges, Al Lail et al. [1-5] proposes a new
methodological framework that allows UML designers to use UML
notations, tools, and techniques to specify and analyze temporal
properties. This framework’s implementation is the cutting-edge
analysis tool called the Temporal Property Validator (TPV), specifi-
cally designed to cater to UML designers, the envisioned users.

2 THE UML-BASED FRAMEWORK

This section discusses the software engineering challenges TPV
addresses, the originality of the techniques it uses to address them,
and the methodology it implies for its users. The UML specifica-
tion defines many types of diagrams to model different aspects of
a system. Class diagrams are central and widely used in model-
driven design [26]. Although designers usually use class diagrams
for structural modeling, they can also specify behavior through
operation contracts. Operation contracts can adequately express

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

116

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

160
161
162
163
164
165
166
167
168
169
170
171
172
173

174

ICSE °24, April 14-20, 2024, Lisbon, Portugal

Front-end Back-end
5 Stepl: Snapshot Transition
Bsdphnit : f Model (STM)—state
ADCM transition representation
Model {(ADCM) of behavior
Software A [
designer specified in interpreted on
Temporal
i Step2: OCLPr
el | Property in M operty
TocL Interpreting

b I
sequence of

Sequence Snapshot Transition —

Diagram & p

Figure 1: Overview of the technique implemented by TPV [2]

USE Model
Validator
e——

the behavior of a system, as shown by Porres and Rauf (2009) [28].
Designers use the Object Constraint Language (OCL) to specify
operation contracts and other constraints [23]. However, OCL does
not make it easy to specify temporal properties. To address this
shortcoming, Ziemann et al. (2003) defined Temporal OCL (TOCL),
an extension to OCL that supports temporal properties [34]. The
framework allows for the analysis of TOCL properties on UML class
diagrams. The framework consists of the following techniques:
(1) A UML-based analysis technique that exclusively employs
UML notations and tools.
(2) A UML-based method that simplifies the process of temporal
property specification for UML designers.
(3) An optimization technique that reduces the time required for
analysis, enabling the analysis to be applied to larger UML
models.

We elaborate on these techniques in the following subsections.

2.1 The Analysis Technique

TPV implements the analysis technique depicted in Fig. 1. Unlike
other related work, the novelty of the technique lies in its exclu-
sive use of UML notations and tools— eliminating the accidental
complexities and difficulties of related techniques. The first step
in the analysis workflow is to create a UML diagram for a specific
software system and then specify a temporal property in TOCL.

e —
BankAccourt
Detilcard balance - Integer
cardbumper : Integer |« 1| accourthlumber : Integer
limit : Irteger card account | deposhtiamourt : Integer)
pay(amourt : Integer) withciram(amoLnt : Integer)
assignEwCeard()

Figure 2: Class diagram modeling accounts and debit cards.

We use the class diagram presented in Fig. 2 to demonstrate
the analysis technique. This model comprises two classes, namely
BankAccount and DebitCard. Account objects have a balance that
can increase through the deposit() operation or decrease through
the withdraw() operation. Accounts can be assigned a debit card
through the assignNewCard() operation. A selection of OCL con-
tracts for these operations is displayed in Listing 1.

context BankAccount:: withdraw (amount: Integer)
post: self.balance = self.balance@pre - amount

Al Lail et al.

context BankAccount:: deposit(amount:Integer)

post: self.balance = self.balance@pre + amount

context DebitCard :: pay(amount:Integer)

pre: amount < self.limit

post: self.account.balance =
self.account.balance@pre ~amount

Listing 1: Operation contracts for the diagram in Fig. 2.

The designer inputs the system requirements as temporal prop-
erties that define the system’s behavior in TOCL. Listing 2 presents
an example of a property for the BankAccount class requiring the
account balance to be greater than 0 eventually.

context BankAccount
inv: sometime balance > 0

Listing 2: Example of a temporal property.

Once a designer specifies a temporal property, they can use TPV
to check it. TPV analyzes the system model and identifies any coun-
terexamples. At the back end, TPV automatically transforms the
class diagram into a different form to make it suitable for behavioral
analysis. Fig. 3 displays the resultant form in terms of a Snapshot
Transition Model (STM) of the class diagram in Fig. 2. The initial
form of STM was proposed in 2008 by Yu et al. [32] and extended
for temporal property verification by Al Lail et al. [1-5].

mssmnm nuﬂl-

Lastsnapshat | [FirstSnapshot Bork AetHaiyyickney

amount : Integer

tanstisnCortest Bankacoount | [arcaccout_depost |

amount : Iteger

Bankacsourt_assigntewCard

DetiCard_pay transttionCartext : BankAccourt

amourt: Integer
debitcard transition Cortet : DebitCard
DepCard BankAccout
cardhlumber - Infeger 1 Irteger
it ; Intewer card account] paiance : Integer
snapshotOhjscti - Integer snapsholchjectid : Integer

Figure 3: STM representation of the account system.

An STM is a structural representation of a system’s behavior
through states and transitions. Each state, known as a Snapshot, is
a structured class that represents an object diagram of the system
at a particular moment of execution. Transition classes, in Fig. 3,
indicate operation calls that cause new system states and result in
side effects. The operation pre- and post-conditions are converted
into invariants on the transition classes to preserve their constraints,
as shown by listing 3. The class invariants remain the same and
directly mapped their perspective class in STM. Everything else
stays intact.

context BankAccount_withdraw

inv postl: (self.transitionContext.getNext().balance = (
self.transitionContext.balance - amount))

context BankAccount_deposit

inv post2: (self.transitionContext.getNext().balance = (

self.transitionContext.balance + amount))

context DebitCard_pay

inv prel: (amount < self.transitionContext.limit)

context DebitCard_pay

inv post3: (self.transitionContext.getNext().account.
balance = (self.transitionContext.getNext().account.
getPrevious () . balance - amount))

Listing 3: Contracts in Listing 1 mapped into STM invariants.

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203

207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

226
227
228
229
230
231

232

233
234
235
236
237
238
239
240

242
243
244
245
246
247

248

255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289

290

TPV: A Tool for Validating Temporal Properties in UML Class Diagrams

S Object diagram ol H
banksccounts:BankAccount
firstsnapshot] FirstSnapshot accounthiumber=2
snapshm barkaccourt | pajanea=n
enoer)i_r snapshotObjectid=20

bankaccourt withdrawe BankAccount \withdraw
amount=1
transitionContext=hankaccount3

hetoreT
nexts

snapshat] Snapshot

hefores
nextT

bankaccountd: BankAccount
accourthumber=1
balance=-1
snapshotOkjectid=20

hankaccourt

bankaccount wyithdrave3:BankAccount withdram
amaunt=1
transtionContexd=hankaccouritd

heforeT
nexts bhankaccount? RankAccount

lastsnapshoti:L astSnapshot
—

ascountMumker=2
=napshot hankacoount | palances=-2
snapshotChjectid=20

Figure 4: A counterexample as a snapshot-transition chain.

The STMs are automatically used to create object diagrams that
describe specific execution scenarios of a system. Fig. 4 displays
an example scenario. The scenario is composed of linked Snapshot
and Transition objects. Note the snapshotObjectld attribute present
in the Fig. 3 STM and in the Fig. 4 counterexample. This attribute
is used to identify objects in different snapshots as state represen-
tations of the same real-time object. For example, the scenario in
Fig. 4 shows three different STM objects with a snapshotObjectld
value of 20. These objects represent three states of a single real-time
bank account instance. Transition elements signify operation calls
that affect the system and lead to a new system state. This static
representation of system behavior allows the specification and eval-
uation of TOCL temporal properties and pre- and post-conditions
as OCL invariants on STM elements.

To analyze a system’s behavior, TPV uses the UML-based Specifi-
cation Environment (USE) tool and its Model Validator plugin [20].
The USE Model Validator automatically identify any object diagram
that violates the TOCL specification within a certain search range.
If the analysis detects a system state in which a temporal property is
violated, the validator generates a counterexample to demonstrate
that the system does not meet the respective property. The designer
can use this counterexample to improve their design. For example,
the counterexample displayed in Fig. 4 reveals that the account
model’s specification is too lenient, allowing the violation of the
temporal property listed in Listing 2. To fix this flaw, the model’s
behavior can be restricted by specifying additional constraints.

8 Seauence dingram . F [

E bankaccount3:BankAccount
'
'

withdraw(1

bersisernineana o,
withdraw(1

Figure 5: Counterexample scenario as a sequence diagram.

ICSE’24, April 14-20, 2024, Lisbon, Portugal

When there are numerous snapshots and transitions in a coun-
terexample scenario, the verification results can become compli-
cated and challenging to analyze. To simplify this process, TPV
generates a sequence diagram from the counterexample scenario
to assist with debugging. The extracted sequence diagram from the
counterexample scenario in Fig. 4 is displayed in Fig. 5.

2.2 The Property Specification Technique

Formally specifying system requirements as temporal properties
is a challenging task for many designers [13]. This specification
technique streamlines the process of property specification for
UML designers. To achieve this goal, the specification patterns of
Dwyer et al are defined in TOCL. A user determines a pattern that
best fits the requirement and then uses the corresponding TOCL
pattern to obtain the intended property. The OCL property is then
systematically generated for verification. You can refer to Tables in
Fig. 6 for templates of the Response and Universality patterns.

Scope TOCL Pattern
Globally context [Class]
inv: [P] implies sometime Scope TOCL Pattern
Globall text [Cl
Before R context [Class] 2oaE ij\? Zi(wi Sa[s}s%
inv: [R] implies sometime ’ el
[S] Before R context [Class]
since [P] inv: [R] implies alwaysPast
P
After Q context [Class] v
inv: [Q] implies always After Q context [Class]
([P] implies sometime [S]) inv: [Q] implies always
P)
After Quntil R | context [Class] [r
inv: [Q] implies always After Quntil R | context [Class]

([P] implies sometime [S]
before [R])

inv: [Q] implies always
[P] until [R]

Between Q and R

context [Class]

inv: [Q] and sometime [R]
implies always ([P] implies
sometime [S] before [R])

Between Q and R

context [Class]

inv: [Q] and sometime [R]
implies always [P]

until [R]

Table 1: The response pattern in TOCL Table 2: The universality pattern in TOCL

Figure 6: Examples of pattern specifications in TOCL.

2.3 The Optimization Technique

State explosion is a known challenge in model checking [9]. This
issue arises when the state space becomes too large to be feasibly
checked. TPV employs two strategies to mitigate state explosion:
lightweight analysis of a restricted search space and search space
optimization. The lightweight analysis strategy reduces the search
space by constraining the search scope and search depth [18]. A
search scope defines the number of objects created for each class in
a snapshot, while a search depth specifies the number of transitions
considered in an analysis task. When analyzing a property related
to a class diagram, the optimization process identifies relevant
elements and returns an optimized diagram. Algorithm 1 outlines
the steps to identify affected elements by a temporal property (Tp),
taking pre and post-conditions (PcList), a list of class invariants
(InvList), and the class diagram (CD) as inputs.

The algorithm uses a function, elements(), that takes an OCL
expression as input and returns the set of affected elements in the
expression. The algorithm consists of two loops identifying the set

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313

314

325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

349
350
351
352
353
354
355
356

358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

ICSE’24, April 14-20, 2024, Lisbon, Portugal

Algorithm 1 Optimization to identify affected elements (AE)

: Input: CD, PcList, InvList, and Tp

: Output: AE

AE=10

PcAE=0

TpAE = elements(Tp)

. for Pc € PcList do

PtAE = elements(Pc)

if PtAE N TpAE # () then
PcAE = PcAE U PtAE

end if

: end for

: InvAE= 10

: for Inv € InvList do

PtAE = elements(Inv)

if PtAE N TpAE # (then
InvAE = InvAE U PtAE

end if

: end for

. AE = TpAEU PcAE U InvAE

: Return AE

R A A >

I e L T e e
SV ® N U e W N = O

of affected elements from the pre and post-conditions of operations
(lines 6-11) and invariants (lines 13-18).

3 TOOL IMPLEMENTATION

We utilized MDE technologies to define, implement, and package
the code of the TPV tool as a USE plugin. The plugin includes a
user-friendly GUI and conceals the back-end processing from the
user. Additionally, it improves USE’s functionality by allowing it to
open and store models in XMI files which is the standard format
for UML models. This feature enhances the interoperability of TPV
by allowing models to be exported and imported from other tools.
To create TPV, we followed these steps:

(1) We developed a new modeling language for the STM by
using UML-based class diagrams to represent behavior.

(2) We created transformation rules that automatically convert-
ing UML class diagrams into the new modeling language.
We formally defined these rules using QVTo [24] and imple-
mented them using the EMF implementation of QVTo [16].

(3) We started with the original TOCL specification and devel-
oped a formal EBNF grammar, a parser for TOCL using the
ANTLR 4 parser generator [25], and a metamodel of TOCL.

(4) We established transformation rules from TOCL to OCL to
enable a more accessible analysis of TOCL properties. This
transformation involved the formal specification of QVTo
rules and their implementation.

(5) We implemented the optimization technique.

4 TPV EVALUATION

To assess TPV, we used a survey based on the innovative user needs
experience (NX) method by Zarour (2020) [33]. The survey includes
44 questions grouped into 4 sections focusing on usefulness, plea-
sure, aesthetics, and trust. We collected feedback from student
participants to gain insight into the user experience of TPV. The

Al Lail et al.

study was made as realistic as possible for actual TPV users. Stu-
dents downloaded TPV and received an evaluation guide with basic
training on software specification and validation. They completed
two specification and validation case studies before responding
to the survey questions. A total of 19 students participated in the
study. The questions, student responses, and detailed analysis can
be found in the online repository provided in the abstract.

Table 1 shows student survey results on four criteria. TPV is
helpful but needs improvement in user experience categories. Ul is
good but could be better. Students found TPV dependable.

Table 1: TPV Overll Evaluation

Criteria Satisfied | Dissatisfied
Usefulness 90.15% 9.85%
Pleasure 91.24% 8.76%
User Interface Aesthetics 93.63% 6.37%
Trust 91.65% 8.35%

5 RELATED WORK

A recent article provides an overview of the latest model-based for-
mal verification techniques and tools, discussing the current state-
of-the-art and outlining possible future research directions [15].
This section only covers recent and relevant approaches. In [7],
the MADES approach is presented, which combines several heavy-
weight formalisms and techniques to verify embedded systems.
These techniques require steep learning and mathematical skills,
making the tool hard to use by UML designers. Unlike this approach,
by examining TPV’s input and output, one can see that it exclu-
sively uses notations and techniques familiar to UML designers.
Combemale et al. [11] use a temporal extension to OCL based on
process states to specify temporal constraints. These constraints
are then translated to Petri nets for verification. Designers are,
therefore, required to learn Petri nets to understand the verifica-
tion results. Similarly, ProMoBox [21] supports verifying temporal
properties in the context of domain-specific modeling. ProMoBox
defines a family of five languages that are required to support prop-
erty specification and verification. Properties are specified in LTL,
and models are translated to the Spin model checker for verifica-
tion. In [17], an approach similar to the technique used in TPV is
described. The approach performs verification using UML class dia-
grams and OCL expressions by transforming them into the so-called
filmstrip model that is verified by the USE model finder. However,
compared to TPV, the approach offers a limited set of temporal
operators based on non-UML notation LTL and lacks support for
specification patterns. The research work described in [12, 19] dis-
cusses pattern-based specification approaches. [19] implements the
patterns on top of Eclipse but does not provide a verification tool.
On the other hand, [12] describes a new property, a model-based
testing approach using UML/OCL models to evaluate the quality of
test suites. However, the approach uses heavyweight techniques.

ACKNOWLEDGMENTS

This work received partial support from NSF grant awards 1950416
and 2308741 and the University Research Grant from TAMIU.

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464

465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522

TPV: A Tool for Validating Temporal Properties in UML Class Diagrams

REFERENCES

(1]

[2

[

=
X0

[10

[11]

[12]

[13

[14]

[15

[16

(7

[18

[19]

[20]

[21]

[22

[23

[24]

[25

[26]

Mustafa Al-Lail. 2013. A Framework for Specifying and Analyzing Temporal
Properties of UML Class Models.. In MoDELS (Demos/Posters/StudentResearch).
112-117.

Mustafa Al Lail. 2018. A Unified Modeling Language Framework for Specifying and
Analyzing Temporal Properties. Ph.D. Dissertation. Colorado State University.
Mustafa Al-Lail, Ramadan Abdunabi, Robert B France, and Indrakshi Ray. 2013.
Rigorous Analysis of Temporal Access Control Properties in Mobile Systems. In
2013 18th International Conference on Engineering of Complex Computer Systems.
IEEE, 246-251.

Mustafa Al-Lail, Ramadan Abdunabi, Robert B France, Indrakshi Ray, and F
Boulanger. 2013. An Approach to Analyzing Temporal Properties in UML Class
Models.. In MoDeVVa@ MoDELS. Citeseer, 77-86.

Mustafa Al-Lail, Wuliang Sun, and Robert B. France. 2014. Analyzing Behavioral
Aspects of UML Design Class Models against Temporal Properties. In 2014 14th
International Conference on Quality Software, Allen, TX, USA, October 2-3, 2014.
IEEE, 196-201. https://doi.org/10.1109/QSIC.2014.56

Omar Badreddin, Rahad Khandoker, Andrew Forward, Omar Masmali, and Tim-
othy C Lethbridge. 2018. A decade of software design and modeling: A survey to
uncover trends of the practice. In Proceedings of the 21th acm/ieee international
conference on model driven engineering languages and systems. 245-255.
Luciano Baresi, Gundula Blohm, Dimitrios S Kolovos, Nicholas Matragkas, Al-
fredo Motta, Richard F Paige, Alek Radjenovic, and Matteo Rossi. 2015. Formal
verification and validation of embedded systems: the UML-based MADES ap-
proach. Software & Systems Modeling 14, 1 (2015), 343-363.

Antonio Bucchiarone, Jordi Cabot, Richard F Paige, and Alfonso Pierantonio.
2020. Grand challenges in model-driven engineering: an analysis of the state of
the research. Software and Systems Modeling 19 (2020), 5-13.

Edmund M Clarke. 2008. The birth of model checking. In 25 Years of Model
Checking. Springer, 1-26.

Edmund M Clarke and E Allen Emerson. 1981. Design and synthesis of synchro-
nization skeletons using branching time temporal logic. In Workshop on logic of
programs. Springer, 52-71.

Benoit Combemale, Xavier Crégut, Pierre-Loic Garoche, Xavier Thirioux, and
Francois Vernadat. 2007. A property-driven approach to formal verification of
process models. In International Conference on Enterprise Information Systems.
Springer.

Frédéric Dadeau, Elizabeta Fourneret, and Abir Bouchelaghem. 2019. Temporal
property patterns for model-based testing from UML/OCL. Software & Systems
Modeling 18, 2 (2019), 865-888.

Matthew B Dwyer, George S Avrunin, and James C Corbett. 1999. Patterns
in property specifications for finite-state verification. In Proceedings of the 21st
international conference on Software engineering. 411-420.

Robert France and Bernhard Rumpe. 2007. Model-driven development of complex
software: A research roadmap. In Future of Software Engineering (FOSE07). IEEE.
Sebastian Gabmeyer, Petra Kaufmann, Martina Seidl, Martin Gogolla, and Gerti
Kappel. 2019. A feature-based classification of formal verification techniques for
software models. Software & Systems Modeling 18, 1 (2019), 473-498.

Richard C Gronback. 2009. Eclipse modeling project: a domain-specific language
(DSL) toolkit. Pearson Education.

Frank Hilken and Martin Gogolla. 2016. Verifying linear temporal logic properties
in UML/OCL class diagrams using filmstripping. In 2016 Euromicro Conference
on Digital System Design (DSD). IEEE, 708-713.

Daniel Jackson. 2012. Software Abstractions: logic, language, and analysis. MIT
press.

Bilal Kanso and Safouan Taha. 2012. Temporal constraint support for OCL. In
International Conference on Software Language Engineering. Springer, 83-103.
Mirco Kuhlmann, Lars Hamann, and Martin Gogolla. 2011. Extensive validation
of OCL models by integrating SAT solving into USE. In International Conference
on Modelling Techniques and Tools for Computer Performance Evaluation. Springer,
290-306.

Bart Meyers, Romuald Deshayes, Levi Lucio, Eugene Syriani, Hans Vangheluwe,
and Manuel Wimmer. 2014. ProMoBox: a framework for generating domain-
specific property languages. In International Conference on Software Language
Engineering. Springer, 1-20.

Yann Moffett, Juergen Dingel, and Alain Beaulieu. 2013. Verifying protocol
conformance using software model checking for the model-driven development
of embedded systems. IEEE Transactions on Software Engineering 39, 9 (2013),
1307-13256.

2014. Object Constraint Language 2.4.1. Object Management Group (OMG).
https://www.omg.org/spec/OCL/2.4/About-OCL/

OMG. 2016. Meta Object Facility (MOF) 2.0 Query/View/Transformation Specifi-
cation, Version 1.3. https://www.omg.org/spec/QVT/1.3/

Terence Parr. 2013. The definitive ANTLR 4 reference. The Definitive ANTLR 4
Reference (2013), 1-326.

Marian Petre. 2013. UML in practice. In 2013 35th international conference on
software engineering (icse). IEEE.

[27

[28

[29

(31

(32

[34

]

ICSE ’24, April 14-20, 2024, Lisbon, Portugal

Amir Pnueli. 1977. The Temporal Logic of Programs. In 18th Annual Symposium
on Foundations of Computer Science, Providence, Rhode Island, USA, 31 October -
1 November 1977. IEEE Computer Society, 46-57. https://doi.org/10.1109/SFCS.
1977.32

Ivan Porres and Irum Rauf. 2009. Generating class contracts from determinis-
tic UML protocol statemachines. In International Conference on Model Driven
Engineering Languages and Systems. Springer, 172-185.

Charlotte Verbruggen and Monique Snoeck. 2021. Model-driven engineering: A
state of affairs and research agenda. In International Conference on Business Process
Modeling, Development and Support, International Conference on Evaluation and
Modeling Methods for Systems Analysis and Development. Springer, 335-349.
Thomas Weber, Alois Zoitl, and Heinrich HufSimann. 2019. Usability of devel-
opment tools: A case-study. In 2019 ACM/IEEE 22nd International Conference on
Model Driven Engineering Languages and Systems Companion (MODELS-C). IEEE,
228-235.

Jon Whittle, John Hutchinson, Mark Rouncefield, Hakan Burden, and Rogardt
Heldal. 2013. Industrial adoption of model-driven engineering: Are the tools
really the problem?. In International Conference on Model Driven Engineering
Languages and Systems. Springer, 1-17.

Lijun Yu, Robert B. France, and Indrakshi Ray. 2008. Scenario-Based Static
Analysis of UML Class Models. In Model Driven Engineering Languages and
Systems, 11th International Conference, MoDELS 2008, Toulouse, France, September
28 - October 3, 2008. Proceedings (Lecture Notes in Computer Science, Vol. 5301),
Krzysztof Czarnecki, Ileana Ober, Jean-Michel Bruel, Axel Uhl, and Markus Vélter
(Eds.). Springer, 234-248. https://doi.org/10.1007/978-3-540-87875-9_17
Mohammad Zarour. 2020. A rigorous user needs experience evaluation method
based on software quality standards. TELKOMNIKA (Telecommunication Com-
puting Electronics and Control) 18, 5 (2020), 2787-2799.

Paul Ziemann and Martin Gogolla. 2003. OCL extended with temporal logic.
In International Andrei Ershov Memorial Conference on Perspectives of System
Informatics. Springer, 351-357.

523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580

