

Start | Grid View | Author Index | View Uploaded Presentations | Meeting Information

GSA Connects 2024 Meeting in Anaheim, California

Paper No. 21-2

Presentation Time: 8:20 AM

EVIDENCE OF LATEST ARCHEAN TO HADEAN CRUSTAL MATERIAL IN THE NORTHERN WYOMING PROVINCE AND THE DEEP-TIME TECTONOTHERMAL HISTORY OF THE BRIDGER RANGE, MONTANA

KENNEDY, Rebekah¹, ORME, Devon¹, LAGESON, David R.¹, LASKOWSKI, Andrew¹, MORROW, Zach¹, MOSS, Konrad¹ and MURRAY, Kendra², (1)Department of Earth Sciences, Montana State University, P.O. Box 173480, Bozeman, MT 59717, (2)Department of Geosciences, Idaho State University, Pocatello, ID 83209

The Wyoming Province of Laurentia, which hosts some of the oldest known crustal material on Earth including zircon ²⁰⁷Pb/²⁰⁶Pb ages up to 3.96 Ga in the Beartooth Mountains, Montana, has been subjected to multiple periods of orogenesis and burial from Proterozoic time to present. We present new zircon U-Pb geochronology and zircon (U-Th)/He thermochronology from Archean-Proterozoic metamorphic rocks exposed in the Bridger Range, Montana, to resolve details of their origins and reconstruct their deeptime tectonothermal history.

Zircon U-Pb geochronology and cathodoluminescence imaging, paired with whole rock geochemistry and petrography, was obtained from four metamorphic samples including quartzofeldspathic and garnet-biotite gneisses proximal to the "Great Unconformity" (GU), where Archean-Proterozoic metamorphic rocks are unconformably overlain by \sim 7.5-9 km of compacted Phanerozoic strata. Single grain 207 Pb/ 206 Pb ages range from 4099 ± 44 Ma to 1776 ± 24 Ma, extending the age of known crustal material in the northern Wyoming Province into the Hadean and recording high-grade conditions during the Paleoproterozoic Great Falls/Big Sky orogeny.

Zircon (U-Th)/He thermochronology from five metamorphic samples proximal to the GU record cooling ages ranging from 705 Ma to 10.3 Ma, reflecting the variable He diffusivity of individual zircon grains with a large range of radiation damage as proxied by effective uranium (eU) concentrations, which range from ~5 to ~3000 ppm. A negative correlation between cooling age and eU is observed across the five samples suggesting the zircon (U-Th)/He system is sensitive to Proterozoic through Miocene thermal perturbations. Ongoing thermal history modeling seeks to reconstruct the temperature-time histories of these metamorphic rocks, including testing whether this dataset is sensitive to thermal effects imparted by the rifting of Rodina and erosion related to Cryogenian glaciation (i.e., hypotheses related to formation of the GU), and the onset of modern, active extension. These datasets and models provide crucial new constraints on the obscured Proterozoic tectonic history of the northern Wyoming Province and have important implications for our understanding of the formation of early crustal material on Earth.

Recorded Presentation

Session No. 21

<u>T160. North American Cordilleran Margin Tectonic Framework: Paleozoic and Precambrian</u> Sunday, 22 September 2024: 8:00 AM-12:00 PM

304A (Anaheim Convention Center)

Geological Society of America *Abstracts with Programs*. Vol. 56, No. 5 doi: 10.1130/abs/2024AM-404615

© Copyright 2024 The Geological Society of America (GSA), all rights reserved. Permission is hereby granted to the author(s) of this abstract to reproduce and distribute it freely, for noncommercial purposes. Permission is hereby granted to any individual scientist to download a single copy of this electronic file and reproduce up to 20 paper copies for noncommercial purposes advancing science and education, including classroom use, providing all reproductions include the complete content shown here, including the author information. All other forms of reproduction and/or transmittal are prohibited without written permission from GSA Copyright Permissions.

Back to: T160. North American Cordilleran Margin Tectonic Framework: Paleozoic and Precambrian