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Abstract—The secure summation problem is studied with user
selection and collusion, where a server may select any U out of K
users and compute the sum of the inputs from the selected users
without learning any additional information even if the server
colludes with any T out of K users. The optimal communication
and randomness rate is characterized when either U = 2 or
T = 1, i.e., to securely compute 1 bit of the selected sum, each
user needs to send 1 bit to the server, each user needs to hold a
key of T + 1 bits when U = 2 and U/(U − 1) bits when T = 1,
and all users need to hold key variables of

(
T+2
2

)
bits when U = 2

and U/(U − 1) + U − 1 bits when T = 1.

I. INTRODUCTION

Secure summation [1] arises as a useful Shannon theoretic

primitive to study the core security challenges in federated

learning [2], [3], i.e., how to enable a server to learn the sum

of gradient inputs from K distributed users and nothing more.

The focus of this work is on a variant of secure summation

that allows user selection, i.e., instead of computing the sum

of inputs from all users, the server may select a subset of users

and only compute their input sum. When the selected user set

can be arbitrary, i.e., ranging from any two users to all users,

we show that the minimum key size that each user needs to

hold is the harmonic number, 1 + 1/2 + · · ·+ 1/(K − 1) [4].

In this work, we further incorporate the element of user

collusion to the secure summation problem with user selection,

i.e., we wish to guarantee that the server does not obtain

anything beyond the desired sum even if colluding with some

users. It turns out that the problem becomes significantly more

intricate and we concentrate on a symmetric model where the

server may select any U out of the total K users and may

collude with any T out of K users, i.e., the cardinality of the

selected (colluding) user set is a constant. To securely compute

the sum of U inputs, say W1+W2+· · ·+WU , a typical protocol

is to use zero-sum randomness, i.e., protect each Wk with a key

variable Sk (sending Wk + Sk) and ensure S1 + · · ·+ SU = 0
(zero-sum property) so that

∑U
k=1(Wk + Sk) =

∑U
k=1 Wk

gives us the desired sum. Furthermore, except from the zero-

sum property, the key variables Sk should behave generically

(e.g., any U − 1 are independent) to ensure security, i.e.,

the server cannot infer anything beyond the sum. Along this

line, for the considered secure summation problem with user

selection and collusion, the technical crux is to ensure that any

U users can generate some generic zero-sum randomness keys

that are independent of the keys at any T colluding users. We

wish to understand the most efficient way of such construction,

i.e., the minimum size of the keys at the user side.

The main result of this work includes the exact information

theoretic answer for two settings, U = 2 or T = 1. When

U = 2 (i.e., each pair of users may be selected), we wish

to guarantee that each pair of users may generate a common

key (i.e., zero-sum randomness) that is independent of the keys

known to any T colluding users. Interpreting in this manner,

naturally the code construction from key distribution literature

[5] is useful and the converse proof can also be adapted to

our secure summation context relying on tools developed in

[1], [4]. More broadly and perhaps interestingly, the code

construction, which generates generic pairwise overlaps, is

identical to that of minimum bandwidth regenerating codes

in repairable distributed storage [6]. The detailed result is

presented in Theorem 1. When T = 1 (i.e., at most 1 user

may collude with the server), random linear codes suffice

whose dimension design is guided by the converse bounds.

The detailed result is presented in Theorem 2.

II. PROBLEM STATEMENT

Consider K users, where User k ∈ [1, 2, · · · ,K] � [K]
holds an input Wk and a key Zk. Each independent input Wk

is an L× 1 vector with i.i.d. uniform elements from the finite

field Fq . Inputs (Wk)k∈[K] are independent of keys (Zk)k∈[K].

H
(
(Wk)k∈[K] , (Zk)k∈[K]

)
= H

(
(Zk)k∈[K]

)
+

∑
k∈[K]

H (Wk) (= KL (in q-ary units)). (1)

Each Zk is comprised of LZ symbols from Fq . (Zk)k∈[K] can

be arbitrarily correlated and are a function of a source key

variable ZΣ, which is comprised of LZΣ symbols from Fq .

H
(
(Zk)k∈[K]

∣∣∣ZΣ

)
= 0. (2)

Consider a server who may select an arbitrary set of U users

U , where U ⊂ [K], |U| = U , and wish to securely compute∑
k∈U Wk. To this end, User k ∈ U sends a message XU

k to

the server. The message XU
k is a function of Wk, Zk and is

comprised of LX symbols from Fq .

H
(
XU

k |Wk, Zk

)
= 0, ∀k ∈ U . (3)
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From the messages received from the selected users, the server

must be able to decode the desired sum
∑

k∈U Wk while

nothing more is revealed even if the server may collude any set

of at most T ≤ K−U users1 T , where T ⊂ [K], 0 ≤ |T | ≤ T .

[Correctness] H

(∑
k∈U

Wk

∣∣∣∣ (XU
k

)
k∈U

)
= 0. (4)

[Security] (5)

I

(
(Wk)k∈[K] ;

(
XU

k

)
k∈U

∣∣∣∣∑
k∈U

Wk, (Wk, Zk)k∈T

)
= 0.

The communication and randomness consumption is measured

by the communication rate R, the individual key rate RZ , and

the total key rate RZΣ
, defined as follows.

R � LX

L
,RZ � LZ

L
, RZΣ � LZΣ

L
(6)

which characterizes the normalized number of symbols each

message, each key, and source key contains, respectively. A

rate tuple (R,RZ , RZΣ
) is said to be achievable if there

exists a secure summation scheme, for which correctness and

security are satisfied, and the communication rate, individual

key rate, and total key rate are no greater than R,RZ , and

RZΣ , respectively. The closure of the set of all achievable rate

tuples is called the optimal rate region, denoted as R∗.

III. MAIN RESULT

In this section, we state our main result in the following two

theorems, along with essential observations and intuition.

Theorem 1: For K-user secure summation with U = 2
selected users and at most T ≤ K − 2 colluding users,

R∗ =

{
(R,RZ , RZΣ

) :
R ≥ 1,

RZ ≥ T + 1,
RZΣ

≥
(
T + 2

2

)}
.

Note that the optimal rate region in Theorem 1 does not

depend on K and the rates may simultaneously achieve the

minimum, i.e., the rate region is rectangular. To understand

the result, first suppose K = T + 2. For any pair of the

T + 2 users, we assign both users an independent common

key symbol so that each user holds
(
T+1
1

)
key symbols and

in total we consume
(
T+2
2

)
key symbols. Equipped with such

key variables, the code construction is immediate (using zero-

sum randomness). The converse essentially shows that such

key assignment is necessary (minimum). Proceed now to the

K > T + 2 case where converse continues to hold as more

users cannot help and achievability relies on the ingenious

construction from key distribution [5] or minimum bandwidth

regenerating codes [6] indicating the above K = T + 2
construction scales to any larger K with exactly the same

performance. The detailed proof of Theorem 1 is presented

in Section IV.

1Without loss of generality, we assume T ≤ K −U because otherwise the
colluding user set must overlap with the selected user set, which degenerates
the security constraint and boils down to the T = K − U setting.

Theorem 2: For K-user secure summation with U selected

users and at most T = 1 ≤ K − U colluding user,

R∗ =

{
(R,RZ , RZΣ

) :
R ≥ 1, RZ ≥ U/(U − 1),
RZΣ

≥ U/(U − 1) + U − 1

}
.

Due to space limitation, the detailed proof of Theorem 2 is

deferred to the full version of this paper and here we give an

outline. First, consider the converse. From the total key rate

result of secure summation with U users (refer to Theorem 1

of [1]), we have H(Z2, · · · , ZU |Z1) ≥ (U−1)L. Further, User

1’s key must be correlated with the keys at User 2 to U (in the

amount of input size) in order for these U users to be able to

securely compute their sum, so I(Z1;Z2, · · · , ZU ) ≥ L (the

proof is similar to that of (95) in [1]). We now have

UL ≤ I(Z1;Z2, · · · , ZU ) +H(Z2, · · · , ZU |Z1)

= H(Z2, · · · , ZU ) (7)

so that on average each H(Zk) ≥ U/(U − 1)L and the

individual key rate bound follows. The total key rate bound is

then obtained immediately, i.e., H(ZΣ) ≥ H(Z1, · · · , ZU ) =
H(Z1) +H(Z2, · · · , ZU |Z1) ≥ (U/(U − 1) + U − 1)L. The

proof of the communicate rate bound R ≥ 1 is almost identical

to that of Theorem 1 in [1]. Second, consider the achievability

where we assign the random linear key space dimension ac-

cording to the converse bounds. Specifically, set L = U−1 and

let each key lie in an RZL = U dimensional generic subspace

of an RZΣ
L = U+(U−1)2 = U2−U+1 dimensional ambient

space. Any individual key will overlap with the collection of

U − 1 other keys in U2 − (U2 − U + 1) = U − 1 = L
generic dimensions and the overlapping subspaces will be used

as the zero-sum randomness keys to perform secure summation.

Security follows from the generic property of the spaces, i.e.,

the key spaces used by any U users in secure summation with

(U−1)2 dimensions are independent of the U dimensional key

known to any single colluding user.

IV. PROOF OF THEOREM 1

A. Converse Proof

The proof of R ≥ 1 is similar to that of Theorem 1 in [1]

and is thus omitted. Intuitively, each user needs to send out its

input so that LX ≥ L, i.e., R ≥ 1.

We proceed to the key rate bounds. Let us start with some

preliminary results. As U = 2 and each pair of users may

be selected for secure summation, we show that any two keys

must share L symbols (captured in a mutual information term,

given any colluding user set), in the following lemma.

Lemma 1: For any i, j ∈ [K], any T ⊂ [K], |T | ≤ T ,

i, j /∈ T , we have

I
(
Zi;Zj | (Zk)k∈T

)
≥ L. (8)

Proof: From the security constraint (5), we have

0 = I
(
Wi,Wj ;X

{i,j}
i , X

{i,j}
j |Wi +Wj , (Wk, Zk)k∈T

)
≥ I

(
Wi;X

{i,j}
i |Wi +Wj , (Wk, Zk)k∈T

)
(9)
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= H
(
Wi|Wi +Wj , (Wk, Zk)k∈T

)
−H

(
Wi|Wi +Wj , (Wk, Zk)k∈T , X

{i,j}
i

)
(10)

≥ L−H
(
Wi| (Wk, Zk)k∈T , X

{i,j}
i

)
(11)

⇒ H
(
Wi| (Wk, Zk)k∈T , X

{i,j}
i

)
≥ L (12)

where to obtain the first term of (11), we use the fact that each
input of L uniform symbols is independent of other inputs and

keys (see (1)). Then

I
(
Zi;Zj | (Zk)k∈T

)
= I

(
Wi, Zi;Wj , Zj | (Wk, Zk)k∈T

)
(13)

(3)

≥ I
(
Wi, X

{i,j}
i ;Wj , X

{i,j}
j | (Wk, Zk)k∈T

)
(14)

≥ I
(
Wi;Wj , X

{i,j}
j | (Wk, Zk)k∈T , X

{i,j}
i

)
(15)

= H
(
Wi| (Wk, Zk)k∈T , X

{i,j}
i

)
− H

(
Wi| (Wk, Zk)k∈T , X

{i,j}
i ,Wj , X

{i,j}
j

)
(16)

(12)

≥ L (17)

where (13) follows from the independence of the inputs and

keys (refer to (1)). In (14), we use the fact that XU
k is a

function of Wk, Zk. The second term of (16) is 0 because by

the correctness constraint (4), Wi +Wj can be obtained from

X
{i,j}
i , X

{i,j}
j and then combining with Wj (available in the

conditional terms), we can recover Wi.

To prepare for the converse proof, we obtain a consequence

of Lemma 1, stated in the following lemma.

Lemma 2: For any i ∈ [K], any T ⊂ [K], |T | ≤ T , i /∈ T ,

we have

H (Zi|(Zk)k∈T ) ≥ (T − |T |+ 1)L. (18)

Proof: Without loss of generality, set i = 1 and T =
{K − |T |+ 1, · · · ,K − 1,K}.

H (Z1|(Zk)k∈T )

≥ I
(
Z1;Z2, · · · , ZK−|T ||(Zk)k∈T

)
(19)

= I (Z1;Z2|(Zk)k∈T ) + I (Z1;Z3|(Zk)k∈T , Z2) + · · ·
+ I

(
Z1;ZK−|T ||(Zk)k∈T , Z2, · · · , ZK−|T |−1

)
(20)

(8)

≥ (T − |T |+ 1)L (21)

where to obtain (21), the first T − |T | + 1 terms of (20) are

bounded by Lemma 1 (note that the choice of T may need to

vary when bounding different terms), and remaining terms are

non-negative.

We are now ready to prove the key rate converse. First, we

apply Lemma 2 through setting T = ∅ to show RZ ≥ T + 1.

LZ ≥ H(Zk)
(18)

≥ (T + 1)L ⇒ RZ = LZ/L ≥ T + 1. (22)

Second, consider the total key rate bound RZΣ ≥
(
T+2
2

)
.

LZΣ ≥ H(ZΣ) ≥ H (Z1, Z2, · · · , ZT+2) (23)

≥ H (Z1) +H (Z2|Z1) + · · ·
+ H (ZT+2|Z1, · · · , ZT+1) (24)

(18)

≥ (T + 1)L+ TL+ · · ·+ L+ 0 (25)

=
(
T + 2

2

)
L (26)

⇒ RZΣ = LZΣ/L ≥
(
T + 2

2

)
. (27)

B. Achievability Proof of Example K = 5, U = 2, T = 2

We first present the achievable scheme for an example to

illustrate the idea in a simpler setting. Consider K = 5 users,

where any U = 2 users may be selected and any T = 2
users may collude with the server. We show that the rates

R = 1, RZ = 3, RZΣ
= 6 are achievable2.

Suppose L = B, i.e., each input Wk contains B symbols

from Fq . Equivalently, we may view Wk as one symbol from

the extension field FqB . Our scheme will operate over the

extension field FqB and it is useful for now to think of B
as a large integer so that we are working in a sufficiently large

field (an exact choice of B will be given in the general proof).

Consider a 6×1 vector over FqB , S = [S1, S2, · · · , S6]
� where

Si are i.i.d. uniform and define a symmetric matrix

S �

⎡
⎣ S1 S2 S3

S2 S4 S5

S3 S5 S6

⎤
⎦ . (28)

Set Ak = [a1k, a
2
k, a

3
k]

� ∈ F
3×1
qB

, k ∈ [5]. The vectors Ak are

chosen before the communication protocol starts and are known

to all users as global codebook knowledge. We will show that

there exists a choice of Ak that will produce a correct and

secure achievable scheme. Each individual key Zk is set as

Zk = SAk =

⎡
⎣ S1 S2 S3

S2 S4 S5

S3 S5 S6

⎤
⎦
⎡
⎣ a1k

a2k
a3k

⎤
⎦ , (29)

or equivalently,

Zk =

⎡
⎣ a1k a2k a3k 0 0 0

0 a1k 0 a2k a3k 0
0 0 a1k 0 a2k a3k

⎤
⎦
⎡
⎢⎢⎢⎢⎢⎢⎣

S1

S2

S3

S4

S5

S6

⎤
⎥⎥⎥⎥⎥⎥⎦

(30)

� AkS. (31)

Note that each Zk contains LZ = 3B symbols from Fq , so

RZ = LZ/L = 3; the source key variable S contains LZΣ
=

6B symbols from Fq , so RZΣ
= LZΣ

/L = 6.

2We present the achievable scheme using the product matrix framework from
regenerating codes literature [6] but note that the polynomial based approach
from key distribution literature will work equally well [5].
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For any U = 2 selected users i, j ∈ [5], i < j, the messages

are set as

X
{i,j}
i = Wi +A�

j Zi = Wi +A�
j SAi,

X
{i,j}
j = Wj −A�

i Zj = Wj −A�
i SAj (32)

where A�
j SAi = A�

i SAj as S is symmetric, i.e., S = S�.

Correctness is guaranteed as Wi + Wj = X
{i,j}
i + X

{i,j}
j .

Note that each message contains LX = B symbols from Fq ,

so R = LX/L = 1.

Finally, we are left with the security proof, which is the most

technical part. We will see that the security constraint (5) will

boil down to requiring that a number of matrices in variables

Ak have full rank. Therefore, if the elements of Ak are chosen

in a generic manner, the full rank condition will be satisfied

with non-zero probability (if B is chosen sufficiently large)

thus guaranteeing the existence of a feasible solution.

To see the full rank condition more concretely, let us consider

an example of the security constraint (5) when U = {1, 2} and

T = {3, 4},

I
(
W1,W2;X

{1,2}
1 , X

{1,2}
2 |W1 +W2,W3, Z3,W4, Z4

)
= I

(
W1,W2;W1 +A�

2 SA1|W1 +W2,W3, Z3,W4, Z4

)
(33)

= H
(
W1 +A�

2 SA1|W1 +W2,W3, Z3,W4, Z4

)
−H

(
A�

2 SA1|W1,W2,W3, Z3,W4, Z4

)
(34)

≤ B −H
(
A�

2 SA1|SA3,SA4

)
(35)

= B −H
(
A�

2 SA1,SA3,SA4

)
+H (SA3,SA4) (36)

= B − 6B + 5B (37)

= 0 (38)

where in (33), X
{1,2}
2 is removed since X

{1,2}
2 = W1 +W2 −

X
{1,2}
1 , and we plug in X

{1,2}
1 (see (32)). In (35), the first term

follows from the fact that W1 + A�
2 SA1 contains B symbols

from Fq , whose entropy is at most B in q-ary units; the second

term follows from the independence of the keys and inputs

(refer to (1)). To obtain (37), we are left to show that there

exists a choice of Ak so that H
(
A�

2 SA1,SA3,SA4

)
= 6B

and H (SA3,SA4) = 5B. We will see that when Ak is

sufficiently generic, e.g., i.i.d. uniform over a large field,

then A�
2 SA1 will likely be independent of SA3,SA4 and the

desired entropy equality holds.

First, consider H
(
A�

2 SA1,SA3,SA4

)
.

H
(
A�

2 SA1,SA3,SA4

)
= H

⎛
⎝
⎡
⎣ A3

A4

A1∩2

⎤
⎦S

⎞
⎠ (39)

where A1∩2 denotes the 1 dimensional overlap of Z1 and Z2

and is defined as

A1∩2S � A�
2 SA1. (40)

In this case, it can be shown that

A1∩2 = [a11a
1
2, a

1
1a

2
2 + a21a

1
2, a

3
1a

1
2 + a11a

3
2,

a21a
2
2, a

3
1a

2
2 + a21a

3
2, a

3
1a

3
2]. (41)

To ensure that H
(
A�

2 SA1,SA3,SA4

)
= 6B, we need to

guarantee matrix A = [A3;A4;A1∩2] has full rank of 6 over

FqB - this is the full rank condition we mentioned earlier.

To see that this full rank condition can be satisfied, view the

determinant of a square sub-matrix of A as a polynomial in

variables aik, k ∈ [5], i ∈ [3]. As long as the determinant

polynomial is not identically zero, then by Schwartz–Zippel

lemma, when the field size qB is sufficiently large, there must

exist a realization of the above matrix that has full rank. To

show the determinant is not the zero polynomial, it suffices to

give a realization such that A contains a full rank 6 × 6 sub-

matrix. Set (a13, a
2
3, a

3
3) = (1, 0, 0), (a14, a

2
4, a

3
4) = (0, 1, 0), and

a31a
3
2 = 1 so that

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

· · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(42)

where the elements in dots can be chosen arbitrarily and note

that the 6× 6 submatrix A(1, 2, 3, 5, 6, 7; :) has full rank (i.e.,

all rows except the 4-th, which is lower triangular with diagonal

entries being 1).
Second, consider H (SA3,SA4) = H([A3;A4]S), which

can be considered similarly as above. In fact, the exactly same

choice of aik will ensure that rank[A3;A4] = 5 over FqB as

[A3;A4] is a sub-matrix of A (i.e., the first 6 rows), so that

H (SA3,SA4) = 5B.
We have finished considering one choice of U and T . In

general we need to guarantee security for all choices of U and

T , each of which will induce a full rank condition. As long as

we can guarantee that the determinant polynomial in each case

is not the zero polynomial, then by Schwartz–Zippel lemma,

when the field size qB is larger than the degree of the product of

all determinant polynomials, there exists a choice of aik so that

all full rank conditions are satisfied, i.e., security is guaranteed.

We proceed next to the general proof.

C. General Achievability Proof
The general achievability proof is a generalization of that of

the above example and here we highlight the differences.
Suppose L = B, where3 qB > (1 + 2T 2)K22K and we

operate over field FqB . Consider S = [S1, S2, · · · , S(T+2
2 )]

�

whose elements are i.i.d. uniform over FqB and define (T +
1)× (T + 1) symmetric matrix

S �

⎡
⎢⎢⎢⎣

S1 S2 · · · ST+1

S2 ST+2 S2T+1

...
. . .

...

ST+1 S2T+1 · · · S(T+2
2 )

⎤
⎥⎥⎥⎦ . (43)

3The block size B is exceedingly large and we view it as a Shannon style
existence proof (B is not optimized).
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Set Ak = [a1k, a
2
k, · · · , aT+1

k ]� ∈ F
(T+1)×1

qB
, k ∈ [K] and each

individual key as

Zk = SAk � AkS. (44)

For any U = 2 selected users i, j ∈ [K], i < j, the messages

are set as

X
{i,j}
i = Wi +A�

j Zi = Wi +A�
j SAi,

X
{i,j}
j = Wj −A�

i Zj = Wj −A�
i SAj (45)

so Wi +Wj = X
{i,j}
i +X

{i,j}
j (note that A�

j SAi = A�
i SAj

due to the symmetry of S) and correctness is guaranteed.

Next, we proceed to the security proof (by showing existence

of Ak) and capture the crucial property in the following lemma.

Define Ai∩jS � A�
i SAj .

Lemma 3: When qB > (1+2T 2)K22K , there exists a choice

of Ak, k ∈ [K] such that ∀T , |T | ≤ T , ∀i, j /∈ T ,

H
(
Ai∩jS, (Zk)k∈T

)
≥

(
1 +

1

2

(
2T + 3− |T |

)
|T |

)
B,

(46)

H
(
(Zk)k∈T

)
≤

(
1

2

(
2T + 3− |T |

)
|T |

)
B, (47)

H
(
Ai∩jS| (Zk)k∈T

)
≥ B. (48)

Remark: The three inequalities in Lemma 3 can be shown
to be equalities, but the inequality form suffices for our proof.

Proof: First, consider (46). Denote T = {t1, t2, · · · , t|T |}.

H
(
Ai∩jS, (Zk)k∈T

)
= H

⎛
⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎣

At1

At2
...

At|T |

Ai∩j

⎤
⎥⎥⎥⎥⎥⎦S

⎞
⎟⎟⎟⎟⎟⎠ � H (AS) .

It suffices to show that we may set Ak so that the rank of A
is at least 1 + 1

2 (2T + 3 − |T |)|T |, ∀T , |T | ≤ T, ∀i, j /∈ T
over FqB . Similar to the proof of the previous example, we

show that for each A, the determinant polynomial of a square

submatrix is not identically zero. To this end, set

antm =

{
1, n = m
0, n 	= m

, ∀m ∈ [|T |], (49)

aT+1
i = aT+1

j = 1, (50)

and similar to (42), A contains a square submatrix which is

lower triangular and all diagonal entries are 1; the dimension

of the square matrix is 1+(T +1)+T +(T − 1)+ · · ·+(T +
2− |T |) = 1 + 1

2 (2T + 3− |T |)|T |. Note that the dimension

is no greater than 1 + 2T 2 and there are at most K22K such

polynomials, as the number of choices of i, j is no greater

than K2 and the number of choices of T is no greater than

2K . Consider now the product of all such non-zero determinant

polynomials, whose degree is at most (1 + 2T 2)K22K < qB .

By Schwartz–Zippel lemma, there exists a choice of Ak for

which (46) holds. Fix now the choice of Ak and next we show

that for this choice of Ak, (47) and (48) are also valid.

Second, consider (47). The proof is based on mathematical

induction on |T |.
Base case: when |T | = 1, H(Zk) ≤ (T +1)B as from (44),

Zk contains T + 1 symbols from FqB .
Induction step: Suppose (47) holds ∀T , |T | ≤ m < T and

we need to show that (47) also holds ∀T ′, |T ′| = m+ 1 ≤ T .

Denote T ′ = {t1, t2, · · · , tm+1}.

H
(
(Zk)k∈T ′

)
= H(Zt1 , · · · , Ztm+1

) (51)

= H (Zt1 , · · · , Ztm) +H
(
Ztm+1 |Zt1 , · · · , Ztm

)
(52)

= H (Zt1 , · · · , Ztm) +H
(
Ztm+1

)
−

∑
i∈[m]

I
(
Ztm+1 ;Zti |(Ztj )j∈[i−1]

)
(53)

≤ H (Zt1 , · · · , Ztm) +H
(
Ztm+1

)
−

∑
i∈[m]

H
(
Atm+1∩tiS|(Ztj )j∈[i−1]

)
(54)

= H (Zt1 , · · · , Ztm) +H
(
Ztm+1

)
−

∑
i∈[m]

(
H

(
Atm+1∩tiS, (Ztj )j∈[i−1]

)

−H
(
(Ztj )j∈[i−1]

))
(55)

(46)

≤
(
1

2

(
2T + 3−m

)
m+ (T + 1)−m

)
B (56)

=

(
1

2

(
2T + 3− (m+ 1)

)
(m+ 1)

)
B (57)

where (54) follows from our key assignment (44) so that Ztm+1

and Zti share Atm+1∩tiS. To obtain (56), we plug in the

induction assumption on H
(
(Zk)k∈T

)
for all T such that

|T | ≤ m and (46). The proof of (47) is complete.
Finally, (48) is a direct consequence of (46) and (47).

We are now ready to verify the security constraint (5).

I
(
Wi,Wj ;X

{i,j}
i , X

{i,j}
j |Wi +Wj , (Wk, Zk)k∈T

)
= H

(
X

{i,j}
i , X

{i,j}
j |Wi +Wj , (Wk, Zk)k∈T

)
−H

(
X

{i,j}
i , X

{i,j}
j |Wi,Wj , (Wk, Zk)k∈T

)
(58)

(45),(4)
= H

(
Wi +A�

j SAi|Wi +Wj , (Wk, Zk)k∈T
)

−H
(
A�

j SAi|Wi,Wj , (Wk, Zk)k∈T
)

(59)

(1)

≤ B −H
(
Ai∩jS| (Zk)k∈T

)
(60)

(48)

≤ B −B = 0. (61)

Finally, we have R = LX/L = 1, RZ = LZ/L = T + 1,

and RZΣ
= LZΣ

/L =
(
T+2
2

)
, as desired.
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