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Abstract—The secure summation problem is studied with user
selection and collusion, where a server may select any U out of K
users and compute the sum of the inputs from the selected users
without learning any additional information even if the server
colludes with any 7" out of K users. The optimal communication
and randomness rate is characterized when either U = 2 or
T =1, i.e., to securely compute 1 bit of the selected sum, each
user needs to send 1 bit to the server, each user needs to hold a
key of 7'+ 1 bits when U = 2 and U/(U — 1) bits when T = 1,
and all users need to hold key variables of (T;rQ) bits when U = 2
and U/(U — 1) + U — 1 bits when T' = 1.

I. INTRODUCTION

Secure summation [1] arises as a useful Shannon theoretic
primitive to study the core security challenges in federated
learning [2], [3], i.e., how to enable a server to learn the sum
of gradient inputs from K distributed users and nothing more.
The focus of this work is on a variant of secure summation
that allows user selection, i.e., instead of computing the sum
of inputs from all users, the server may select a subset of users
and only compute their input sum. When the selected user set
can be arbitrary, i.e., ranging from any two users to all users,
we show that the minimum key size that each user needs to
hold is the harmonic number, 1 +1/2+---+1/(K — 1) [4].

In this work, we further incorporate the element of user
collusion to the secure summation problem with user selection,
i.e., we wish to guarantee that the server does not obtain
anything beyond the desired sum even if colluding with some
users. It turns out that the problem becomes significantly more
intricate and we concentrate on a symmetric model where the
server may select any U out of the total K users and may
collude with any 7" out of K users, i.e., the cardinality of the
selected (colluding) user set is a constant. To securely compute
the sum of U inputs, say W1 +Wa+- - -+Wy,, a typical protocol
is to use zero-sum randomness, i.e., protect each W}, with a key
variable Sy (sending Wy, 4+ Sj) and ensure S; +---+ Sy =0
(zero-sum property) so that ZkU:l(VV;C + Sk) = 25:1 Wy
gives us the desired sum. Furthermore, except from the zero-
sum property, the key variables .S, should behave generically
(e.g., any U — 1 are independent) to ensure security, i.e.,
the server cannot infer anything beyond the sum. Along this
line, for the considered secure summation problem with user
selection and collusion, the technical crux is to ensure that any
U users can generate some generic zero-sum randomness keys
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that are independent of the keys at any 7" colluding users. We
wish to understand the most efficient way of such construction,
i.e., the minimum size of the keys at the user side.

The main result of this work includes the exact information
theoretic answer for two settings, U = 2 or 7' = 1. When
U = 2 (i.e., each pair of users may be selected), we wish
to guarantee that each pair of users may generate a common
key (i.e., zero-sum randomness) that is independent of the keys
known to any 7' colluding users. Interpreting in this manner,
naturally the code construction from key distribution literature
[5] is useful and the converse proof can also be adapted to
our secure summation context relying on tools developed in
[1], [4]. More broadly and perhaps interestingly, the code
construction, which generates generic pairwise overlaps, is
identical to that of minimum bandwidth regenerating codes
in repairable distributed storage [6]. The detailed result is
presented in Theorem 1. When 7" = 1 (i.e., at most 1 user
may collude with the server), random linear codes suffice
whose dimension design is guided by the converse bounds.
The detailed result is presented in Theorem 2.

II. PROBLEM STATEMENT
Consider K users, where User k € [1,2,---, K] = [K]
holds an input W}, and a key Z. Each independent input W
is an L x 1 vector with i.i.d. uniform elements from the finite
field Fy. Inputs (W), ¢ ) are independent of keys (Z )¢ (k-

H ((Wk)ke[K]a(Zk)ke[K]) =H ((Zk)ke[K])

+ Z H (W) (= KL (in g-ary units)). (1)
ke[K]

Each Zj, is comprised of Ly symbols from Fy. (Zy),¢ (5 can
be arbitrarily correlated and are a function of a source key
variable Zy,, which is comprised of Lz, symbols from [,.

H ((Zk)ke[K] ’Zg) —0. 2)

Consider a server who may select an arbitrary set of U users
U, where U C [K], |U| = U, and wish to securely compute
Zkeu Wi. To this end, User k € U sends a message X,ﬁ’ to
the server. The message X,lj is a function of Wp, Z; and is
comprised of Lx symbols from F,.

H (XY Wy, Zy,) =0,Vk € U. (3)
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From the messages received from the selected users, the server
must be able to decode the desired sum ), ., Wj while
nothing more is revealed even if the server may collude any set
of at most T' < K —U users! T, where T C [K],0 < |T| < T.

[Correctness] H (Z Wi (Xlg)keu> =0. “)
kel
[Security] (5)
1 <(Wk)/€€[K] ) (X]Z;{)kez,{ Z Wka (ka Zk)kg'f) =0.
keu

The communication and randomness consumption is measured
by the communication rate R, the individual key rate Rz, and
the total key rate Rz, defined as follows.
LTX,RZ = % Ry, 2 Lzz
which characterizes the normalized number of symbols each
message, each key, and source key contains, respectively. A
rate tuple (R, Rz, Rz,) is said to be achievable if there
exists a secure summation scheme, for which correctness and
security are satisfied, and the communication rate, individual
key rate, and total key rate are no greater than R, Rz, and
Rz, respectively. The closure of the set of all achievable rate
tuples is called the optimal rate region, denoted as R*.

R2 (6)

III. MAIN RESULT

In this section, we state our main result in the following two
theorems, along with essential observations and intuition.

Theorem 1: For K-user secure summation with U = 2
selected users and at most 7' < K — 2 colluding users,

Rz, > (TQH)}

Note that the optimal rate region in Theorem 1 does not
depend on K and the rates may simultaneously achieve the
minimum, i.e., the rate region is rectangular. To understand
the result, first suppose K = T + 2. For any pair of the
T + 2 users, we assign both users an independent common
key symbol so that each user holds (Tfl) key symbols and
in total we consume (*}?) key symbols. Equipped with such
key variables, the code construction is immediate (using zero-
sum randomness). The converse essentially shows that such
key assignment is necessary (minimum). Proceed now to the
K > T + 2 case where converse continues to hold as more
users cannot help and achievability relies on the ingenious
construction from key distribution [5] or minimum bandwidth
regenerating codes [6] indicating the above K = T + 2
construction scales to any larger K with exactly the same
performance. The detailed proof of Theorem 1 is presented
in Section IV.

R>1,

R* = {(R7RZ7RZE): RZ >T+].

"'Without loss of generality, we assume T' < K — U because otherwise the
colluding user set must overlap with the selected user set, which degenerates
the security constraint and boils down to the 7" = K — U setting.

Theorem 2: For K-user secure summation with U selected
users and at most 7' =1 < K — U colluding user,

R>1,R; >U/(U-1), }

R= {(R’RZ’RZE): Rz > UJ(U-1)+U—1

Due to space limitation, the detailed proof of Theorem 2 is
deferred to the full version of this paper and here we give an
outline. First, consider the converse. From the total key rate
result of secure summation with U users (refer to Theorem 1
of [11), we have H(Zs,- -+ , Zy|Z1) > (U —1)L. Further, User
1’s key must be correlated with the keys at User 2 to U (in the
amount of input size) in order for these U users to be able to
securely compute their sum, so [(Zy; Zs, -+ ,Zy) > L (the
proof is similar to that of (95) in [1]). We now have

UL < I(Zy;Zy,---,2y)+ H(Zs, -, Zy|Zy)
— H(Zsy- , Z0) 7

so that on average each H(Z;) > U/(U — 1)L and the
individual key rate bound follows. The total key rate bound is
then obtained immediately, i.e., H(Zx) > H(Zy, -+ ,Zy) =
H(Zy)+ H(Zy, -+ ,Zy|Z1) > (U/(U - 1)+ U — 1)L. The
proof of the communicate rate bound R > 1 is almost identical
to that of Theorem 1 in [1]. Second, consider the achievability
where we assign the random linear key space dimension ac-
cording to the converse bounds. Specifically, set L = U —1 and
let each key lie in an Rz L = U dimensional generic subspace
ofan Rz, L = U+(U—1)? = U?—~U +1 dimensional ambient
space. Any individual key will overlap with the collection of
U — 1 other keys in U? — (U2 -U +1) =U-1=1L
generic dimensions and the overlapping subspaces will be used
as the zero-sum randomness keys to perform secure summation.
Security follows from the generic property of the spaces, i.e.,
the key spaces used by any U users in secure summation with
(U —1)? dimensions are independent of the U dimensional key
known to any single colluding user.

IV. PROOF OF THEOREM 1
A. Converse Proof

The proof of R > 1 is similar to that of Theorem 1 in [1]
and is thus omitted. Intuitively, each user needs to send out its
input so that Lx > L, i.e., R > 1.

We proceed to the key rate bounds. Let us start with some
preliminary results. As U = 2 and each pair of users may
be selected for secure summation, we show that any two keys
must share L symbols (captured in a mutual information term,
given any colluding user set), in the following lemma.

Lemma 1: For any i,j € [K], any T C [K]|, |T| < T,
1,7 ¢ T, we have

I(Zi; Zj| (Z)per) = L. ®)
Proof: From the security constraint (5), we have
0=1 (Wi, Wy X B x B w4, (i, Zk)keT)

> 1 (Wi;Xi{i’j}‘VVi + Wi, (W, Zk)keT) ©)
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= H (Wl‘Wz + Wja (Wk’ Zk‘)k:ET)

— H (WilWi + Wy, (Wi Ze) e, X)) 10)
> L= H (Wil Wy, Zi)ger » X1) (11)
- H (Wi\ (Wk,zk)kg,x}i’j}) ) (12)

where to obtain the first term of (11), we use the fact that each
input of L uniform symbols is independent of other inputs and
keys (see (1)). Then

I(Zi; Zil (Zk) pet)

= I (Wi, Zi; Wy, Zi| (Wi, Z1) er) (13)
(3) y y

> 1 (W, X7 wy, X 59 (Wi, Z4) e ) (14)
> 1 (Wi Wy, XJ9 (Wi, Z4) ey X1 (15)
= H (Wil (Wi, Zi) e, X1

- H (W1| (Wk7Zk:)keTaX'L{lJ}7Wj>XJ{Z’]}) (16)

(12)

> L (17)

where (13) follows from the independence of the inputs and
keys (refer to (1)). In (14), we use the fact that X,Z;’ is a
function of Wy, Zi. The second term of (16) is 0 because by
the correctness constraint (4), W; + W} can be obtained from
Xi{w }, X j{w } and then combining with W; (available in the
conditional terms), we can recover W;.
[ |

To prepare for the converse proof, we obtain a consequence
of Lemma 1, stated in the following lemma.

Lemma 2: For any i € [K]|,any T C [K], |[T| <T,i¢ T,
we have

H(Zi|(Zk)ker) = (T = |T| + 1)L. (18)
Proof: Without loss of generality, set ¢ = 1 and 7 =
{K—-|T|+1,--- ,K-1,K}.
H (Z1|(Zk)keT)
> 1 (Z1; 22, Zr_\7|(Zk)keT) (19)

= 1(Z1; Zo|(Zi)ket) + 1 (Z1; Z3|(Z1)keTs Z2) + -+
+ I (Z1; Zg\7|(Zk)kers Z2s -+, Zk—171-1) (20)

®
> (I'—|T|+1)L

21

where to obtain (21), the first 7 — |7| + 1 terms of (20) are

bounded by Lemma 1 (note that the choice of 7 may need to

vary when bounding different terms), and remaining terms are
non-negative.

]

We are now ready to prove the key rate converse. First, we

apply Lemma 2 through setting 7 = ) to show Rz > T + 1.

(18)
Ly;>H(Z) > (T+1)L = Ry;=Ly/L>T+1. (22)

Second, consider the total key rate bound Rz, > (TE'Q).

Lz, > H(Zs)>H(Z1,Z2, ,Zr12) (23)

> H(Z)+H(Z|Z)+ -
+ H(Zri2|Z1,- -+ Z141) (24)

(18)
> (T'+1)L+TL+---+L+0 (25)
T+2

( ; )L (26)
= Rzy =Lao/L= (")) @7)

B. Achievability Proof of Example K =5,U =2,T =2

We first present the achievable scheme for an example to
illustrate the idea in a simpler setting. Consider K = 5 users,
where any U = 2 users may be selected and any 7" = 2
users may collude with the server. We show that the rates
R=1,Rz =3, Rz, = 6 are achievable®.

Suppose L = B, i.e., each input W}, contains B symbols
from F,. Equivalently, we may view W as one symbol from
the extension field F, 5. Our scheme will operate over the
extension field F,s and it is useful for now to think of B
as a large integer so that we are working in a sufficiently large
field (an exact choice of B will be given in the general proof).
Consider a 6x 1 vector over Fy s, S = [S1, S5, -+, 9] " where
S, are i.i.d. uniform and define a symmetric matrix

Sy Sy Ss
S&£ | Sy, Sy S; (28)
S S5 S

Set Ay, = [a},a},a}]" € F;El,k € [5]. The vectors Ay are
chosen before the communication protocol starts and are known
to all users as global codebook knowledge. We will show that
there exists a choice of Ay that will produce a correct and
secure achievable scheme. Each individual key Zj, is set as

Sl 52 Sg (Z,lC
Zk = SAk: SQ 54 55 (li. s (29)
53 S5 SG ai
or equivalently,
S
ap a2 ai 0 0 0 gz
Z, = 0 al 0 @ a} 0 S?’ (30)
4
0 0 a, 0 a} a S5
Se
= AiS (31)

Note that each Zj, contains Ly = 3B symbols from F,, so
Ry = Lz /L = 3; the source key variable S contains Lz, =
6B symbols from Fy, so Rz, = Ly, /L = 6.

2We present the achievable scheme using the product matrix framework from
regenerating codes literature [6] but note that the polynomial based approach
from key distribution literature will work equally well [5].
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For any U = 2 selected users 4, j € [5],7 < j, the messages
are set as

X1 =W+ ATz, = Wi + ATS A,

X{W} W, — A Z, = W; — A] SA,

(32)

where A;—SAi = A;'—SAJ- as S is symmetric, i.e., S = ST,
Correctness is guaranteed as W; + W; = X"/ + x j{” 5,
Note that each message contains Lx = B symbols from [,
so R=Lx/L=1.

Finally, we are left with the security proof, which is the most
technical part. We will see that the security constraint (5) will
boil down to requiring that a number of matrices in variables
A}, have full rank. Therefore, if the elements of A;, are chosen
in a generic manner, the full rank condition will be satisfied
with non-zero probability (if B is chosen sufficiently large)
thus guaranteeing the existence of a feasible solution.

To see the full rank condition more concretely, let us consider
an example of the security constraint (5) when & = {1,2} and

T ={3,4},
1 (W, was X920 X2 W+ W, W, 25, W, 24)
= I (W1, Wo; W1 + Ay SA Wy + Wo, W3, Z3, W, Zy)

(33)
= H (Wi + Ay SA W + Wa, Ws, Z5, Wy, Zy)
— H (A) SA|W1, Wa, W3, Z3, Wy, Zs) (34)
< B— H (A; SA;|SA;3,SA,) (35)
= B — H (A;SA;,SA;3,SA,) + H (SA3,SAy) (36)
= B—-6B+5B (37)
=0 (38)
where in (33), Xé{m} is removed since X{ 2 = =Wy + Wy —

Xfl’z}, and we plug in Xi{u} (see (32)). In (35), the first term
follows from the fact that W + AJ SA; contains B symbols
from IF,, whose entropy is at most I3 in g-ary units; the second
term follows from the independence of the keys and inputs
(refer to (1)). To obtain (37), we are left to show that there
exists a choice of Ay so that H (Aj SA;,SA3,SA,) = 6B
and H (SA;3,SA,) = 5B. We will see that when Ay is
sufficiently generic, e.g., ii.d. uniform over a large field,
then A; SA; will likely be independent of SA3, SA, and the
desired entropy equality holds.
First, consider H (AzTSAl, SAs, SA4).

2 2 23 33
aja3,aia3 + aia3, afaj).

To ensure that H (A;SAl,SAg,S/L;) = 6B, we need to
guarantee matrix A = [A3; A4; Ain2] has full rank of 6 over
F 5 - this is the full rank condition we mentioned earlier.
To see that this full rank condition can be satisfied, view the
determinant of a square sub-matrix of A as a polynomial in
variables a,k € [5],i € [3]. As long as the determinant
polynomial is not identically zero, then by Schwartz—Zippel
lemma, when the field size qB is sufficiently large, there must
exist a realization of the above matrix that has full rank. To
show the determinant is not the zero polynomial, it suffices to
give a realization such that A contains a full rank 6 x 6 sub-

(41)

matrlx Set (a3, a?,a3) = (1,0,0), (a}, a3, al) = (0,1,0), and
aja3 =1 so that
(10 0 0 0 0]
01 0 0 00
00 1 000
A=|101 0 0 00 (42)
00 0 1 00
00 0O 010
L 1 -

where the elements in dots can be chosen arbitrarily and note
that the 6 x 6 submatrix A(1,2,3,5,6,7;:) has full rank (i.e.,
all rows except the 4-th, which is lower triangular with diagonal
entries being 1).

Second, consider H (SAs,SAs) = H([As; A4]S), which
can be considered similarly as above. In fact, the exactly same
choice of aj, will ensure that rank[As; Ay4] = 5 over F 5 as
[As; Ay is a sub-matrix of A (i.e., the first 6 rows), so that
H (SA3,SA,) =5B.

We have finished considering one choice of U and 7. In
general we need to guarantee security for all choices of ¢/ and
T, each of which will induce a full rank condition. As long as
we can guarantee that the determinant polynomial in each case
is not the zero polynomial, then by Schwartz—Zippel lemma,
when the field size ¢® is larger than the degree of the product of
all determinant polynomials, there exists a choice of a}, so that
all full rank conditions are satisfied, i.e., security is guaranteed.
We proceed next to the general proof.

C. General Achievability Proof

The general achievability proof is a generalization of that of
the above example and here we highlight the differences.

Suppose L = B, where® ¢% > (1 4 2T7?)K?2% and we
operate over field 5. Consider S = [51, 55, - ,S(T2+2)]T

As . .
H (A;SAl, SAs, SA4) —H A, s | 39 whose elements are 1.1..d. umform over F 5 and define (7' +
1) x (T + 1) symmetric matrix
Ao
where Ajn2 denotes the 1 dimensional overlap of Z; and Z; gl 552 SS T+
. 2 T+2 2T+1
and is defined as ga _ _ (43)
AipS 2 AJSA;. 40 ' '
1n2 2 1 ( ) ST+1 S2T+1 S(T;r2)
In this case, it can be shown that
3The block size B is exceedingly large and we view it as a Shannon style
Ao = [a%a%, ay a2 + a?a%, a1a2 + a}ag, existence proof (B is not optimized).
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Set Ay = [a},a}, -+ a5 |7 € IE",(;H)M,k € [K] and each
individual key as

7. = SA, £ ALS. (44)

For any U = 2 selected users 4, j € [K],i < j, the messages
are set as

X = wi + ATz, = W, + AT S A,

X1 =Wy — ATz, = w; - AT S A, 45)
so Wi + W, = X1 4 X]{Z’]} (note that AJSA; = A/ SA;
due to the symmetry of S) and correctness is guaranteed.

Next, we proceed to the security proof (by showing existence
of Ay,) and capture the crucial property in the following lemma.
Define A;n;S = A;'—SAJ».

Lemma 3: When ¢ > (14+2T?)K?22%, there exists a choice
of Ay, k € [K] such that VT, |T| < T, Vi,j & T,

1
H(AnsS (Ber) > (1+5(2r+3-17))17]) B

2
(46)
1
H(Zer) < (3er+a-1T)IT) B0 @)
H (AinjS| (Zk)er) = B. (48)

Remark: The three inequalities in Lemma 3 can be shown
to be equalities, but the inequality form suffices for our proof.

Proof: First, consider (46). Denote 7 = {t1,t2,--- , {7}
Ay
Ay,

H (AinjS, (Zk)per) = H . | S|2H(AS).
Atm
ing

It suffices to show that we may set Ay so that the rank of A
is at least 14+ (27 4+ 3 — |[T\)|T|,\VT,|T| < T.Vi,j ¢ T
over [F 5. Similar to the proof of the previous example, we
show that for each A, the determinant polynomial of a square
submatrix is not identically zero. To this end, set

n ) Ln=m
atm - { 07 n 75 m ,Vm S “T”a (49)
al M =ajt =1, (50)

and similar to (42), A contains a square submatrix which is
lower triangular and all diagonal entries are 1; the dimension
of the square matrix is 1+ (T'+ 1)+ T+ (T'— 1)+ -+ (T +
2—|T]) =1+ 1(2T + 3 — |T|)|T|. Note that the dimension
is no greater than 1 + 27 and there are at most K225 such
polynomials, as the number of choices of ¢,j is no greater
than K? and the number of choices of 7 is no greater than
2K Consider now the product of all such non-zero determinant
polynomials, whose degree is at most (1 + 272)K22K < ¢P.
By Schwartz—Zippel lemma, there exists a choice of A for
which (46) holds. Fix now the choice of A; and next we show
that for this choice of Ay, (47) and (48) are also valid.

Second, consider (47). The proof is based on mathematical
induction on |7

Base case: when |T| =1, H(Zy) < (T'+1)B as from (44),
7. contains T"+ 1 symbols from F 5.

Induction step: Suppose (47) holds VT, |7T| < m < T and
we need to show that (47) also holds VT, |T'|=m+1<T.
Denote 7' = {tl, to, - ,tm+1}.

H((Zy)yer) = H(Zs,, -+ 24, 00) (51)
:H(Zh?”' )Ztm)+H(Ztnl+1‘Zt17"' 7Ztm) (52)
=H (Zt1>' T aZtm) +H (Ztm+1)

- Z I(Ztm+15Zti (th)je[i—l]) (53)
i€[m]
S H(Zt17 e 7Ztm) + H (Ztm+1)
=Y H (A, ne.SI(Z)jeri-n) (54)
i€[m]
= H(Zt1,~-~ ,Ztm) + H (Ztmﬂ)
- Z <H (Atm+1ﬁti5’ (th)jé[i—l])
1€[m]
- H ((th)je[il])) (55)
(46) /1
< (2(2T+3—m)m+(T+1)—m)B (56)
1
- <2<2T+3—(m+1))(m+1)>3 (57)

where (54) follows from our key assignment (44) so that Z; |
and Z;, share A; . ~;S. To obtain (56), we plug in the
induction assumption on H ((Zy),c+) for all T such that
|7| < m and (46). The proof of (47) is complete.
Finally, (48) is a direct consequence of (46) and (47).
[ |
We are now ready to verify the security constraint (5).
I (WiyijXi{ld}vX]{%]}‘Wi +Wja(Wk,Zk)keT>

= B (X[ XS4 Wy (Wi Ziser )
_H(XZ{Z’]}aX]{ZJ}‘Wl7W]7(WkaZk)keT) (58)

45),(4
(45),(4) H (Wi + A SA|W; + Wi, Wi, Zi) e 1)

— H (A] SA|Wi, Wy, (Wi, Z1) er) 59)
(1)

< B—H (Ain;S| (Zk)per) (60)
(48)

< B-B=0. (61)

Finally, we have R = Lx/L =1, Ry = Lz/L =T + 1,
and Ry, = Ly /L = (T;r2), as desired.
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