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Secure Groupcast: Extra-Entropic Structure and
Linear Feasibility

Hua Sun , Member, IEEE

Abstract— In the secure groupcast problem, a transmitter
wants to securely groupcast a message with the maximum rate
to the first N of K receivers by broadcasting with the minimum
bandwidth, where the K receivers are each equipped with a
key variable from a known joint distribution. Examples are
provided to prove that different instances of secure groupcast
that have the same entropic structure, i.e., the same entropy for
all subsets of the key variables, can have different maximum
groupcast rates and different minimum broadcast bandwidth.
Thus, extra-entropic structure matters for secure groupcast. Next,
the maximum groupcast rate is explored when the key variables
are generic linear combinations of a basis set of independent key
symbols, i.e., the keys lie in generic subspaces. The maximum
groupcast rate is characterized when the dimension of each
key subspace is either small or large, i.e., the extreme regimes.
For the intermediate regime, various interference alignment
schemes originated from wireless interference networks, such
as eigenvector based and asymptotic schemes, are shown to be
useful.

Index Terms— Capacity, secure groupcast, entropy.

I. INTRODUCTION

BUILDING an efficient secure communication network

is a central problem in information theory, for which

insights are obtained from studying canonical system models,

e.g., ideas for secure point-to-point communication protocols

emerge out of the study of Shannon’s one-time pad system [1].

Aiming to shed light on secure group communication pro-

tocols, we consider a recently proposed multi-user extension

of the one-time pad system - secure groupcast [2] (for more

background and related work, refer to [2] and references

therein).

In secure groupcast, a transmitter wishes to communicate

a common message W of LW bits to the first N of K
receivers, i.e., the last E = K−N receivers are eavesdroppers.

Each receiver k ∈ {1, · · · , K} shares a key variable Zk with

the transmitter. The key variables (Z1, · · · , ZK) are L length

extensions of a discrete memoryless source with a known joint

distribution. The message is groupcast through broadcasting a

signal X of LX bits to every receiver such that combining with

the known key Zk, qualified Receiver k ∈ {1, · · · , N} can

recover W while eavesdropping Receiver k ∈ {N+1, · · · , K}
learns nothing about W . The communication performance is
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measured by the secure groupcast rate R = LW /L and the

broadcast bandwidth β = LX/L. We naturally look for secure

groupcast schemes with the maximum groupcast rate, termed

the capacity C, and the minimum broadcast bandwidth β∗.

The first question studied in this work is whether C and
β∗ can always be described by the entropy of all subsets
of the key variables (Z1, · · · , ZK), i.e., are entropy mea-

sures sufficient to characterize the capacity and the minimum

broadcast bandwidth for secure groupcast? The answer turns

out to be negative. To show this, we construct two secure

groupcast instances with N = 2 qualified receivers and

E = 1 eavesdropping receiver (i.e., K = 3) such that the

entropy of all 23 − 1 subsets of (Z1, Z2, Z3) and the capacity

C are identical, while the minimum broadcast bandwidth β∗

required to achieve the capacity is different. As a result,

β∗ is not a function of only the entropy measures of the

key variables, and extra-entropic structure matters. Along the

similar line, we construct two secure groupcast instances

with N = 2 qualified receivers and E = 2 eavesdropping

receivers (i.e., K = 4) with the same entropy of all subsets of

(Z1, Z2, Z3, Z4), while the capacity C is different. Therefore,

C cannot be expressed as a function of only the entropy

measures of the key variables. The necessity of extra-entropic

structures is related to one of the biggest mysteries in network

information theory, i.e., the involvement of auxiliary variables

in capacity characterizations. If C, β∗ may have a closed-form

characterization in terms of entropy measures, we need to

invoke (highly non-trivial) auxiliary variables (beyond the K
keys) that do not appear in the problem statement. The role

of extra-entropic structures might lurk under many network

information theory problems and has started to be revealed,

e.g., in the context of computation broadcast [3].

The instances constructed in studying the first question

above turn out to have linear keys, i.e., the key variables are

linear combinations of a basis set of independent symbols,

and the optimal achievable schemes are based on vector

linear coding. This motivates us to delve deeper into the

secure groupcast problem with linear keys. Another reason

for linear keys and linear schemes to be interesting is that

even the more preliminary form of combinatorial keys (i.e.,

independent uncoded keys that are shared among subsets of

receivers) requires sophisticated design of the signal spaces

used by the key variables (Z1, · · · , ZK) and the message

W , in forming the transmit signal X . As such, we wish to

understand the necessary and sufficient condition for a linear

scheme to be feasible, i.e., the linear feasibility question.

Last but not least, when the key variables are subject to

design (i.e., the compound secure groupcast problem [4]),
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the tradeoff between key storage and broadcast bandwidth

remains open and all known schemes are linear. The

understanding of linear schemes will help the design of key

variables. The considerations listed above lead us to the

second question, where we study the natural set-up of generic

linear keys.

The second question studied in this work is the capacity
characterization of secure groupcast with generic linear keys,

i.e., for one key block, each key variable consists of d linear

combinations of m independent basis key symbols. Further,

the linear combination coefficients are drawn independently

and uniformly from a finite field. We focus on the case where

the finite field is sufficiently large and study the capacity

characterization for almost all cases (i.e., results that hold

almost surely). In other words, the setting studied is where

the key space of each receiver is a generic d-dimensional

subspace from an m-dimensional overall key space. Inter-

estingly, the capacity C depends crucially on ratio of the

key space dimension seen by each receiver to the total key

dimension, i.e., d/m, whose reciprocal γ = m/d can be

viewed as the space expansion factor. When γ is large, the key

subspaces are far apart from each other such that the groupcast

rate will be higher; when γ is small, the key subspaces are

overlapping to a large extent such that the groupcast rate

will be lower. We show that for any number of qualified

receivers N and any number of eavesdropping receivers E,

the capacity is C/d = 1 when γ ≥ min(N + 1, E + 1) and

C/d = γ − 1 when γ ≤ max(1 + 1/N, 1 + 1/E). When

either N = 1 (secure unicast) or E = 1 (secure multicast),

the capacity is characterized for all possible γ. This result is

generalized along two lines. For the first line, we consider

the simplest uncovered setting where N = 2, E = 2, and

provide partial characterization for the remaining regimes of

3/2 < γ < 3. For the second line, we fix γ = 2 (i.e.,

each key subspace has half the dimension of the overall key

space), and add more qualified or eavesdropping receivers to

the basic N = 2, E = 2 system. In particular, we show

that if we add one qualified or eavesdropping receiver, i.e.,

set N = 3 or E = 3, then the earliest known interference

alignment schemes, first appeared in the 2 user wireless X
network [5], are useful; if we add 2 qualified or eavesdropping

receivers, i.e., set N = 4 or E = 4, then eigenvector based

interference alignment schemes, originated from the 3 user

wireless interference network [6], can be applied; if we further

add more qualified receivers or eavesdropping receivers, i.e.,

set N > 4 or E > 4, then asymptotic interference alignment

schemes, which lie in the core of the canonical half-the-

cake result for wireless interference networks [6], [7], play

significant roles. Ideas that resemble the wireless counter-

part appear in secure groupcast, e.g., spatial normalization,

diagonal channel coefficients, over-constrained linear systems,

duality, and space overlaps. We will go through these ideas in

the following sections of this work.

Notation: For positive integers K1, K2, K1 ≤ K2, we use

the notation [K1 : K2] = {K1, K1 + 1, · · · , K2}. Define

the notation ZK1:K2 as the vector (ZK1 ; · · · ;ZK2) if K1 ≤
K2 and as the null vector otherwise. The notation |Q| is used

to denote the cardinality of a set Q. We use 0 to denote a

matrix whose each element is 0 and use Id×d to denote the

identity matrix of dimension d. For a matrix H, H(i : j, :) is

used to denote the sub-matrix of H formed by retaining only

the i-th row to the j-th row.

II. PROBLEM STATEMENT

Consider K discrete random variables z1, · · · , zK of

finite cardinality, drawn from an arbitrary joint distribution

Pz1,··· ,zK
. In this work, we focus on the linear setting, where

zk, k ∈ [1 : K] are arbitrary linear combinations of a basis

set of independent symbols from a finite field. Let the basis

symbols be specified through the m × 1 column vector s =
(s1; · · · ; sm) = s1:m, where si, i ∈ [1 : m] are i.i.d. uniform

symbols from a finite field Fp for a prime power p. Since

all variables zk are linear combinations of the basis symbols,

they are represented by 1 × m vectors of linear combining

coefficients. Each variable zk is then specified in terms of

such vectors, zk = Hks, where Hk ∈ Fd×m
p , and each zk

contains d symbols from Fp, where each symbol is a linear

combination of the basis symbols with coefficients specified by

one row vector of Hk. Z1, · · · , ZK are L length extensions of

z1, · · · , zK , where each block Z1(l), · · · , ZK(l) is produced

i.i.d. according to Pz1,··· ,zK
.

The secure groupcast problem is comprised of a transmitter

and K receivers. The key variable Zk is shared between the

transmitter and Receiver k. The transmitter wishes to send a

message W that has LW i.i.d. uniform symbols from Fp and

is independent of the key variables Z1, · · · , ZK to the first

N < K receivers.

H(W ) = LW (in p-ary units), (1)

I(W ; Z1, · · · , ZK) = 0. (2)

To securely groupcast the message W , the transmitter broad-

casts a signal X of LX symbols from Fp to every receiver.

Each qualified receiver can decode W with no error1.

[Correctness] H(W |X, Zk) = 0, ∀k ∈ [1 : N ]. (3)

Each unqualified (eavesdropping) receiver learns no informa-

tion about W .

[Security] I(W ; X, Zk) = 0, ∀k ∈ [N + 1 : K]. (4)

The secure groupcast rate characterizes how many symbols

of the message are securely groupcast per key block and

the broadcast bandwidth characterizes how many symbols of

the transmit signal are broadcast per key block to securely

groupcast a message of certain rate.

R =
LW

L
, β(R) =

LX

L
. (5)

A rate R is said to be achievable if there exists a secure

groupcast scheme (that satisfies the correctness constraint (3)

and the security constraint (4)) of rate greater than or equal

to R. The supremum of achievable rates is called the capacity

C. A broadcast bandwidth β(R) is said to be achievable if

1For the linear key setting, all achievable schemes of this work (except that
in Section VI-E.2) have zero error and zero leakage. Note that all converse
results of this work also hold under ε error and ε leakage.
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there exists a secure groupcast scheme of rate greater than or

equal to R and of broadcast bandwidth smaller than or equal

to β(R). The infimum of achievable broadcast bandwidth is

called the minimum broadcast bandwidth β∗(R).

A. Preliminary Result

We recall a useful converse result on R and β(R) that is

stated in the following theorem and will be used later. The

proof can be found in [2].

Theorem 1 (Theorem 1 and Theorem 2 in [2]): For the

secure groupcast problem, we have

R ≤ H(zq|ze),∀q ∈ [1 : N ],∀e ∈ [N + 1 : K], (6)

β(R) ≥ I(X;W, Z1:K |Ue)/L

≥ |Q|R −
( |Q|∑

i=1

H(zqi
|ue) − H(zq1 , · · · , zq|Q| |ue)

)
,

∀Q = {q1, · · · , q|Q|} ⊂ [1 : N ],
∀e ∈ [N + 1 : K],∀ue s.t. H(ue|ze) = 0. (7)

III. EXTRA-ENTROPIC STRUCTURE

In this section, we consider the question if the capacity C
and the minimum broadcast bandwidth for capacity achieving

schemes β∗(C) can be characterized by the entropy of all

subsets of the key variables. Our result shows that the answer

is no in general.

Theorem 2: There exist instances of the secure groupcast

problem where the entropy structure of the key variables and

the capacity C are the same, while the minimum broadcast

bandwidth β∗(C) is different; there exist instances of the

secure groupcast problem where the entropy structure of the

key variables is the same while the capacity values C are

different. Thus extra-entropic structure matters for secure

groupcast.

Proof: First, consider β∗(C). We present two instances of

secure groupcast, say SG1, SG2, that have the same entropy

values of all subsets of the key variables and the same capacity.

Yet, these two instances have different minimum broadcast

bandwidth for capacity achieving schemes. Incidentally, both

instances have linear keys and are specified as follows. For

both instances2, N = 2, K = 3 and each key variable consists

of d = 2 linear combinations of m = 3 basis key symbols

s1, s2, s3 from any field Fp.

SG1 : z1 = (s1; s2), z2 = (s1; s3), z3 = (s2; s3);
SG2 : z1 = (s1; s2), z2 = (s1; s3), z3 = (s1; s2 + s3). (8)

The entropy values of all subsets of (z1, z2, z3) are found as

follows.

H(zi) = 2, ∀i ∈ {1, 2, 3}, H(zi, zj) = H(z1, z2, z3) = 3,

∀i, j ∈ {1, 2, 3}, i �= j. (9)

2The parameters N = 2, K = 3 are the smallest so that the instances
are the simplest, because if N = 1 (single qualified receiver, i.e., the secure
unicast setting), then β∗(C) = mine∈[2:K] H(z1|ze) is fully characterized
by the entropy structure of the key variables (see Theorem 9 in [2]).

So the entropy structure of both SG1 and SG2 is the same.

We next characterize the capacity and the minimum broadcast

bandwidth for both instances.

SG1 : CSG1 = 1, β∗
SG1

(C) = 1. (10)

Rate Converse: R ≤ H(z1|z3) = 1
(set q = 1, e = 3 in (6) of Theorem 1). (11)

Bandwidth Converse: β(C) ≥ C = 1
(set Q = {1}, ue = () in (7)). (12)

Achievability: X = W + s1. (13)

SG2 : CSG2 = 1, β∗
SG2

(C) = 2. (14)

Rate Converse: R ≤ H(z1|z3) = 1
(set q = 1, e = 3 in (6) of Theorem 1). (15)

Bandwidth Converse:

β(C) ≥ 2C − (H(z1|s1) + H(z2|s1)
− H(z1, z2|s1)) (16)

= 2
(set Q = {1, 2}, e = 3, ue = s1 in (7)). (17)

Achievability: X = (W + s2;−W + s3). (18)

Note that we use L = 1 key block so that Zi = zi and

W has LW = 1 symbol. Therefore while the capacity for

SG1, SG2 is the same, the minimum broadcast bandwidth is

different3. A closer look at the proof reveals that the converse

bound (7) has an auxiliary variable ue that might need to be

set differently for different secure groupcast instances.

Second, consider C. We present two instances of secure

groupcast, say SG3, SG4, that have the same entropy values

of all subsets of the key variables. Yet, these two instances

have different capacity values. For both instances4, N =
2, K = 4, the keys are linear, and each key variable consists

of d = 9 linear combinations of m = 15 basis key symbols

s1, · · · , s15 from field Fp, where p ≥ 5 is a prime.

SG3 : z1 = (s1:3; s4:6; s7:9)
z2 = (s1:3; s10:12; s13:15)
z3 = (s4:6; s10:12;

s1:3 + s4:6 + s7:9 + s10:12 + s13:15)
z4 = (s7:9; s13:15;

s1:3 + s4:6 + s7:9 + s10:12 + s13:15)
SG4 : z1 = (s1:3; s4:6; s10:12)

z2 = (s1:3; s7:9; s13:15)
z3 = (s1:3; s4 + s7; s5 + s8; s6 + s9;

s10 + s13; s11 + s14; s12 + s15)
z4 = (s1:3; s4 + 2s7; s5 + 3s8; s6 + 4s9;

s10 + 2s13; s11 + 3s14; s12 + 4s15). (19)

3Another interesting perspective to understand this result through

Gacs-Korner common information [8] is that the key variables of SG1 have
zero common information while the key variables of SG2 have 1 unit of
common information.

4N = 2, K = 4 is the simplest setting, because if either N = 1 or
K − N = 1 (secure unicast or secure multicast), then the capacity is fully
characterized by the entropy structure of the key variables (see Theorem
9 in [2]).
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The entropy values of all subsets of (z1, z2, z3, z4) are found

as follows.

H(zi) = 9, ∀i ∈ {1, 2, 3, 4}, (20)

H(zi, zj) = H(zi, zj , zk) = H(z1, z2, z3, z4) = 15,

∀i, j, k ∈ {1, 2, 3, 4}, i �= j. (21)

So the entropy structure of both SG3 and SG4 is the same.

The capacity of SG3 is characterized as follows. W =
(W1:3; W4:6) has LW = 6 symbols and we use L = 1 key

block.

SG3 : CSG3 = 6.

Converse: R ≤ H(z1|z3) = 6
(set q = 1, e = 3 in (6) of Theorem 1).

Achievability:

X =

⎛
⎝ W1:3 + s1:3

W4:6 + s4:6 + s7:9

−W1:3 − W4:6 + s10:12 + s13:15

⎞
⎠ .

(22)

Correctness and security can be easily verified. The capacity

of SG4 is more involved (e.g., the converse from Theorem 1

no longer suffices) and the result is presented in the following

lemma.

Lemma 1: For the secure groupcast instance SG4, the

capacity is CSG4 = 4.

The proof is deferred to Section VI-A and an outline is given

here. The symbols s1:3 are useless as all receivers know them.

The remaining 6 key symbols for each receiver can be divided

into 2 groups, and each group is essentially a generic secure

groupcast instance, where each receiver has a 3-dimensional

key subspace in general position of a 6-dimensional space,

e.g., for one group, Receiver 1 has s4:6, Receiver 2 has s7:9,

Receiver 3 has (s4 + s7; s5 + s8; s6 + s9), and Receiver 4 has

(s4 + 2s7; s5 + 3s8; s6 + 4s9). This generic secure groupcast

instance will be settled in Theorem 4 and the capacity is 2 so

that for 2 groups with independent keys, the capacity of SG4 is

4. The insights of Theorem 4 can be generalized to produce

the proof of Lemma 1 (see Section VI-A).

Therefore while the entropy structure of SG3, SG4 is the

same, the capacity values are different. Extra-entropic structure

matters and the proof of Theorem 2 is complete.

IV. LINEAR FEASIBILITY

In this section, we characterize the feasibility condition of

a linear secure groupcast scheme under the linear key setting.

Note that while the achievable rates defined in the problem

statement section are not restricted to linear schemes, linear

schemes are of interest because on the one hand they are

simple, and on the other hand they often turn out to be optimal

for linear keys.

Linear Scheme: For a linear secure groupcast scheme with

linear keys, zk = Hks,Hk ∈ Fd×m
p , s ∈ Fm×1

p , the transmit

signal

X = BW + Vs,

B ∈ FLX×LW
p , W ∈ FLW ×1

p ,V ∈ FLX×m
p (23)

is specified by two full rank5 precoding matrices, B for the

message W and V for the key variables s such that the

following properties are satisfied.

• Identify the overlap of the key space of X and the key

space of Receiver k ∈ [1 : K], i.e., find matrices Pk and

Uk such that

UkV = PkHk,

rank(Uk) = rank(Pk)
= dim(rowspan(V) ∩ rowspan(Hk)), (24)

then the projection of W in X to the Uk space satisfies

[Correctness] rank(UkB) = LW , ∀k ∈ [1 : N ], (25)

[Security] UkB = 0, ∀k ∈ [N + 1 : K]. (26)

The rate achieved is R = LW and the broadcast bandwidth

achieved is β(R) = LX as L = 1. Generalizations to L >
1 are immediate.

Note that the precoding matrices B, V and the key matrices

Hk are constants and are assumed globally known to the

transmitter and all receivers, so that it is straightforward to

find the projection matrices Uk,Pk and verify the feasibility

condition. We show that the correctness constraint (25) and the

security constraint (26) for linear schemes implies the entropic

versions (3) and (4). For correctness, we have

UkX = UkBW + UkVs
(24)
= UkBW + PkHks (27)

⇒ UkX − PkHks = UkBW ∀k ∈ [1 : N ] (28)

so by (25), UkBW can recover W and then H(W |X,Zk) =
0. For security, we use the fact that PkHk contains all row

vectors of Hk that can be expressed as linear combinations of

the row vectors of V (i.e., all overlaps) so that the row space

of the remaining vectors (denoted by QkHk) is orthogonal to

the row space of V, i.e.,

rowspan(QkHk) is independent of rowspan(V). (29)

Then we have ∀k ∈ [N + 1 : K]

I(W ; X, Zk)
(2)
= I(W ; X,PkHks | QkHks) (30)

(26)
= I(W ; X | QkHks) (31)

= H(X | QkHks) − H(X | W,QkHks) (32)
(2)

≤ LX − H(Vs | QkHks) (33)
(29)
= LX − H(Vs) = 0 (34)

where in the last step, we use the fact that V ∈ FLX×m
p has

full row rank, i.e., H(Vs) = rank(V) = LX . From now on,

5We assume without loss of generality that V ∈ F
LX×m
p has full row rank,

i.e., rank(V) = LX ≤ m. Otherwise, some row of V is a linear combination
of other rows and due to the security constraint (4), the corresponding linear
combinations of B must be zero. As a result, some row of the transmit signal
X is a linear combination of other rows, i.e., X contains some redundant row
that does not need to be sent.
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Fig. 1. Normalized generic secure groupcast capacity C/d as a
function of space expansion factor γ = m/d.

we will employ the simplified correctness and security con-

straints (25), (26) for achievability proofs of linear schemes.

Evidently, the conditions (25) and (26) are necessary as

otherwise, either the qualified receiver cannot decode the

desired message (refer to (25)) or the eavesdropping receiver

can obtain some linear combination of the message symbols

(refer to (26)).

V. GENERIC SECURE GROUPCAST

In this section, we study the secure groupcast problem when

the keys are generic linear combinations of the basis symbols,

abbreviated as generic secure groupcast. In particular, zk =
Hks, where

each element of Hk ∈ Fd×m
p is drawn

independently and uniformly from Fp (35)

and we are interested mainly in the case for a large p. Define

γ = m/d ∈ Q as the ratio of the dimension of the overall key

space to the dimension of the generic key subspace seen by

each receiver. It is convenient to adopt the normalization of the

groupcast rate by d, R/d as the rate measure. We denote the

number of eavesdropping receivers by E = K−N , to simplify

the notations. The maximum normalized rate is characterized

when γ is either small or large, in the following theorem.

Theorem 3: For generic secure groupcast with N qualified

receivers and E eavesdropping receivers, when the key of each

receiver consists of d generic linear combinations of m =
γd ≥ d basis symbols, the capacity is

C/d = 1, when γ ≥ min(N + 1, E + 1); (36)

C/d = γ − 1, when 1 ≤ γ ≤ max(1 + 1/N, 1 + 1/E) (37)

almost surely when the field size p approaches infinity.

The result in Theorem 3 is plotted in Fig. 1. The detailed

proof of Theorem 3 is presented in Section VI-B. To illustrate

the idea in a simpler setting, we give a few examples here.

Example 1 (Large γ): Suppose we have N = 2 qualified

receivers and E = 3 eavesdropping receivers. From Theo-

rem 3, we know that as long as γ ≥ min(3, 4) = 3, then

C/d = 1. Suppose γ = 3, e.g., d = 1, m = γd = 3 so

that each receiver has d = 1 generic linear combination of

m = 3 basis key symbols s1, s2, s3, as the key zk. We show

that the capacity is C = d = 1. Converse follows immediately

from (6) in Theorem 1, R ≤ H(zq|ze) = 1, ∀q ∈ {1, 2}, ∀e ∈
{3, 4, 5}. Note that zq, ze each lies in a 1-dimensional subspace

in general position of a 3-dimensional space so that zq, ze are

linearly independent almost surely. Achievability is proved as

follows. We simply send the sum of the message symbol and

each key of qualified receivers, i.e., the transmit signal is set

as

X = (W + z1; W + z2) (38)

where X ∈ F2×1
p , W ∈ Fp. Correctness is easy to see -

referring to (25), the overlap of the key space of X and the

key space of qualified Receiver q is zq and the projection of

the message space to zq is W , from which W can be decoded

with no error. Security is guaranteed, because referring to (26),

the overlap of the key space of X and the key space of

eavesdropping Receiver e is null because the key in X has

2 dimensions in general position, which is independent of the

1-dimensional key space ze almost surely. In other words, the

messages are sent along the qualified key spaces, which are

independent of each eavesdropping key space almost surely.

The above case satisfies N ≤ E and when N > E,

a different idea is required. Suppose N = 3, E = 2, γ =
min(4, 3) = 3. Similarly, suppose d = 1, m = 3, i.e., each key

space is a 1-dimensional generic subspace of a 3-dimensional

space. We show that C = d = 1. The converse proof is same

as above and we consider achievability. The transmit signal is

designed as

X = BW + s (39)

where X,B, s ∈ F3×1
p , W ∈ Fp and B is chosen so that[
H4

H5

]
2×3

B = 02×1, (40)

i.e., B lies in the right null space of each eavesdropping key

space. Such a (1-dimensional) null space exists because the

overall key space has 3 dimensions and the 2 eavesdropping

receivers see a generic 2-dimensional subspace collectively.

Correctness constraint (25) holds, because X uses the full key

space such that its overlap with each qualified key space is

zq, and the projection of the message space BW to zq is not

zero almost surely, i.e., HqB �= 0, ∀q ∈ {1, 2, 3} (note that

B is determined fully by the eavesdropping key space and is

independent of the qualified key space almost surely). Security

constraint (26) holds because of the design of B (refer to (40)).

To sum up, the message is sent along the null space of the

eavesdropping key spaces, whose projection to each qualified

key space is not null almost surely.

Finally, we note that the idea of the achievable scheme

for the above two cases are similar to that for the minimum

key storage extreme point of the compound secure groupcast

problem [4].

Example 2 (Small γ): Similar to the large γ regime,

we also have 2 cases for the small γ regime, depending on

N ≤ E or N > E. The 2 cases require different ideas and

are considered sequentially.

First, suppose N = 2, E = 3. Theorem 3 states that if

γ ≤ max(1 + 1/2, 1 + 1/3) = 3/2, then C/d = γ − 1.

To illustrate this, suppose γ = 3/2, e.g., d = 2, m = γd =
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3 so that each zk consists of 2 generic linear combinations of

3 basis key symbols s1, s2, s3. We show that the capacity is

C = d(γ − 1) = m − d = 1. Converse follows from (6)

in Theorem 1, R ≤ H(zq|ze) = H(zq, ze) − H(ze) =
H(s1, s2, s3)−H(ze) = 3−2 = 1, ∀q ∈ {1, 2}, ∀e ∈ {3, 4, 5}.

Note that zq, ze each lies in a 2-dimensional subspace in

general position of a 3-dimensional space so that they have

full rank collectively almost surely. Achievability follows from

the fact that the 2 generic 2-dimensional qualified key spaces

z1, z2 have 1-dimensional overlap in the 3-dimensional overall

key space with high probability. Denote this row vector as HQ
so that

rowspan(HQ) = rowspan(H1) ∩ rowspan(H2). (41)

Then the transmit signal is set as

X = W + HQs (42)

where X,W ∈ Fp,HQ ∈ F1×3
p , s ∈ F3×1

p . Correctness

constraint (25) follows from the construction that HQ lies in

the key space of each qualified receiver (see (41)), so HQs and

W are recoverable. Security constraint (26) follows from the

observation that the row vector HQ is determined fully by the

qualified key spaces such that it is almost surely independent

of each 2-dimensional eavesdropping generic key space in the

3-dimensional overall key space. As a recap, the qualified key

spaces have a common overlap that is independent of each

eavesdropping key space with high probability and this overlap

is used as the common key to send the desired message with

one-time pad.

Second, suppose N = 3, E = 2. We set γ = max(1 +
1/3, 1 + 1/2) = 3/2, same as above. Similarly, suppose

d = 2, m = 3, i.e., each key space is a 2-dimensional

generic subspace of a 3-dimensional space. We show that

C = d(γ−1) = 1. The converse proof is same as above while

achievability requires a somewhat dual idea. The 2 eavesdrop-

ping key spaces z4, z5 each has 2 dimensions and have a

1-dimensional overlap in the 3-dimensional overall key space

almost surely. Denote this row vector as HE so that

rowspan(HE) = rowspan(H4) ∩ rowspan(H5). (43)

Then the transmit signal is set as

X = (HE s; W + Hrand s) (44)

where X ∈ F2×1
p , W ∈ Fp,HE ,Hrand ∈ F1×3

p , s ∈ F3×1
p

and Hrand is a random row vector where each element

is drawn independently and uniformly from Fp. To verify

correctness constraint (25), note that the row vector HE
is linearly independent of each 2-dimensional qualified key

space in the 3-dimensional overall key space almost surely,

so from (HE s;Hqs),∀q ∈ {1, 2, 3}, each qualified receiver

has 3 generic linear combinations of all basis symbols s and

can fully recover s. Then Hrand s can be obtained and then W
is decoded with no error. To verify security constraint (26),

note that HE s is known to each eavesdropping receiver

such that no additional information is revealed and the row

vector Hrand is linearly independent of each 2-dimensional

eavesdropping key space in the 3-dimensional overall key

space almost surely. To sum up, the message is sent along

random row vectors and the common overlap of eavesdropping

key spaces is broadcast to enable qualified receiver to recover

the key along the random precoding vectors (that are mixed

with the message) and ensure eavesdropping receiver learns

no information about the message.

Finally, we note that the idea of the achievable scheme

for the above two cases are similar to that for the minimum

broadcast bandwidth extreme point of the compound secure

groupcast problem [4].

Note that when N = 1 or E = 1, there is no gap between

the γ regimes in Theorem 3 so that the capacity is fully

characterized for all γ values. This result is stated in the

following corollary.

Corollary 1: For generic secure unicast (N = 1) and

generic secure multicast (E = 1), the capacity is C/d =
1, if γ ≥ 2, and C/d = γ − 1, otherwise 1 ≤ γ ≤ 2 almost

surely when p → ∞.

A. N = E = 2 and Spatial Normalization

As the settings where either N = 1 or E = 1 are fully

understood, we proceed to consider the simplest open generic

secure groupcast problem with N = 2 and E = 2. We start by

introducing the metric - spatial normalized rate and capacity.

The achievable spatial normalized rate of generic secure

groupcast, denoted by R(γ), is defined as R/d if the secure

groupcast rate R is achievable when each key zk = Hks and

each element of Hk ∈ Fd×m
p is drawn independently and

uniformly from Fp for some d and m = γd. Note that the

space expansion factor γ is a constant and we allow scaling

of the spatial dimension d and m while retaining their ratio

γ = m/d. The spatial normalized capacity is the supremum

of the achievable rate, C(γ) = supd R(γ) = supd R/d.

Next we explain why we allow spatial normalization,

in spite of the fact that symbol extension along the key block

domain already appears in the rate definition (refer to (5)).

The reason is that key block normalization creates structured
(specifically, block diagonal with the same block) key matri-

ces, which are more challenging to deal with, while spatial

normalization creates fully generic key matrices. An example

might help to illustrate this point. Suppose N = 2, E = 2 and

γ = 2, i.e., each receiver sees a generic key subspace that

has half dimension of the overall key space. When d = 1 and

m = γd = 2, for one block each key zk = Hks is a generic

linear combination of 2 basis symbols and Hk ∈ F1×2
p . Now

consider spatial scaling by d = 3 and key block scaling by

L = 3.

Spatial Extension: zk = Hext
k︸︷︷︸

3×6

s︸︷︷︸
6×1

,

where each element of Hext
k is randomly drawn; (45)

Key Block Extension: Zk =

⎡
⎣ Zk(1)

Zk(2)
Zk(3)

⎤
⎦

=

⎡
⎣ Hk 0 0

0 Hk 0
0 0 Hk

⎤
⎦

3×6

⎡
⎣ s(1)

s(2)
s(3)

⎤
⎦

6×1

(46)
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Fig. 2. For generic secure groupcast with N = 2, E = 2,
the spatial normalized capacity C(γ) is characterized except when
5/3 < γ < 2.

where in key block extension, each block has identical distribu-

tions so that the linear combining coefficients must remain the

same. Because of the constant diagonal key matrix structure,

the generic secure groupcast problem is challenging without

spatial normalization when we need symbol extensions (e.g.,

when the rate is non-integer) but the keys are no longer

generic. In wireless parlance, key block extension corresponds

to constant wireless channels with limited diversity [9], [10],

[11], which is also a challenging problem in degrees of

freedom (DoF) studies and spatial normalization is exactly

the remedy and a commonly used metric in wireless litera-

ture [12], [13], [14], [15]. Therefore, motivated by literature

on DoF in wireless communications, we bring spatial normal-

ization to generic secure groupcast and focus on the spatial

normalized capacity for the setting with N = 2, E = 2.

We note that the capacity when spatial normalization is not

allowed, i.e., the capacity C as a function of constant d, m,

may not be equal to C(γ)d for every d and remains an open

problem in general.

We are now ready to present our results on the spatial

normalized capacity for generic secure groupcast with N =
2, E = 2, in the following theorem.

Theorem 4: For generic secure groupcast with 2 qualified

receivers and 2 eavesdropping receivers, the spatial normalized

capacity is

C(γ) =

⎧⎨
⎩

1, γ ≥ 5/2
2(γ − 1)/3, 2 ≤ γ ≤ 5/2
γ − 1, 1 ≤ γ ≤ 5/3

(47)

almost surely when p → ∞.

The result in Theorem 4 is plotted in Fig. 2. Compared with

Theorem 3, the small γ regime where C(γ) = γ−1 is extended

from 1 ≤ γ ≤ 3/2 to include 3/2 ≤ γ ≤ 5/3 and the large

γ regime where C(γ) = 1 is extended from γ ≥ 3 to include

5/2 ≤ γ ≤ 3. In addition, a new regime 2 ≤ γ ≤ 5/2 is

established, where C(γ) = 2(γ − 1)/3 and a converse that

is tighter than the conditional entropy bound (6) in Theorem 1

is required. The remaining regime where 5/3 ≤ γ ≤ 2 is open.

The proof of Theorem 4 is deferred to Section VI-C and we

give an example of γ = 2 here.

Example 3 (γ = 2): We show that when γ = 2, C(γ) =
2/3. An intuitive explanation of the converse result for linear

schemes is as follows. Suppose rate R is achievable. As γ =

2 so that the N = 2 qualified receivers have independent keys

almost surely, then the transmit signal size must be at least

LX ≥ 2R (refer to (7)), i.e., the dimension of the key space

of X must be at least 2R, rank(V) ≥ 2R (refer to (23)). Each

eavesdropping key space has dimension d (rank(Hk) = d),

so that its overlap with the key space of X is at least d+LX−
m, i.e., rank(Ue) ≥ d + LX −m, e ∈ {3, 4} (see (24)). From

the security constraint (26), the projection of the message in

X to Ue must be zero, i.e., [U3;U4]B = 0. Except from the

projection to U3,U4, the orthogonal space of the message in

X has dimension at most LX−2(d+LX−m), from which the

message can be recovered by the correctness constraint (25).

Thus

LX − 2(d + LX − m) ≥ R (48)

⇒ 2m − 2d ≥ R + LX ≥ 3R (49)

⇒ R(γ) = R/d ≤ 2(γ − 1)/3
γ=2
= 2/3. (50)

It is not hard to translate the above argument to an information

theoretic converse. In fact, we have further generalized it to

cover a larger range of parameters (see Theorem 5).

Interestingly, the converse argument above naturally leads

us to the optimal achievable scheme. To this end, consider

d = 3, m = γd = 6 (note that for spatial normalized rate,

we may pick d, m values as long as the ratio r = m/d is

what we want). We present a coding scheme that achieves

R = 2d/3 = 2. Following the insights from (50), the transmit

signal shall have dimension 2R = 4 and does not need much

special structure, thus it is set as

X = BW + Vs,B ∈ F4×2
p , W ∈ F2×1

p ,

V ∈ F4×6
p , s ∈ F6×1

p ,

where V = [H1(1 : 2, :);H2(1 : 2, :)]
and B will be specified later. (51)

That is, the first two rows of the key in X are from the key

known to qualified Receiver 1 and the last two key rows in

X are known to qualified Receiver 2. Next we identify the

overlap of the key space of X (i.e., rowspan(V)) and the

key space of each eavesdropping Receiver e ∈ {3, 4}, i.e.,

rowspan(He),He ∈ F3×6
p . For e ∈ {3, 4},

rowspan(UeV) = rowspan(PeHe)

= rowspan(V) ∩ rowspan(He), Ue ∈ F1×4
p ,Pe ∈ F1×3

p

⇒ [Ue − Pe]1×7

[
V
He

]
7×6

= 01×6,

i.e., Ue can be obtained from the left null space. (52)

Note that matrices V and He are generic so that the left

null space has 1 dimension with high probability and Ue

exists. We are now ready to specify B. From the security

constraint (26), we have[
U3

U4

]
2×4

B = 02×2, i.e., B can be set as

column vectors from the right null space. (53)

Finally, to guarantee correctness (25), we need to ensure that

qualified Receiver 1 can obtain W from the first two rows of
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X (as the keys from the first two rows are known) and the

qualified Receiver 2 can obtain W from the last two rows,

rank
(
B(1 : 2, :)

)
= 2, rank

(
B(3 : 4, :)

)
= 2. (54)

The assignment of B from (53) satisfies the above two rank

constraints almost surely, because the key spaces of each

receiver are generic (the coefficients of Hk are randomly

drawn). The detailed proof of this observation is based on the

Schwartz-Zippel lemma and appears in Section VI-C.

The converse required for Theorem 4 is a special case of

the following general converse result, whose idea generalizes

that described in Example 3.

Theorem 5: For the secure groupcast problem to the first

N of K receivers, suppose the keys of the eavesdropping

receivers are independent, i.e.,

H(zN+1:K) =
K∑

e=N+1

H(ze), (55)

then we have

R + (K − N − 1)I(X; W, Z1:K |UE)/L

≤ (K − N)H(z1:K |uE) −
K∑

e=N+1

H(ze|uE) (56)

where uE satisfies H(uE |ze) = 0, ∀e ∈ [N + 1 : K], i.e., uE
is known to all eavesdropping receivers.

The proof of Theorem 5 is presented in Section VI-D.

B. N > 2, E > 2 and Interference Alignment

In this section, we fix γ = 2 and add more qualified or

eavesdropping receivers to the N = 2, E = 2 generic secure

groupcast system to see if the capacity C(γ = 2) = 2/3 will

change. Surprisingly, through various forms of interference

alignment, including additional receivers may not hurt.

Example 4 (Increasing N ): Before including additional

qualified receivers into the generic secure groupcast system

with N = 2, E = 2, let us first review the insights for the

achievable scheme with the optimal rate R(γ = 2) = 2/3.

From Example 3, we set d = 3 so that m = γd = 6, i.e., each

receiver has 3 generic linear combinations of 6 basis systems

s = s1:6 as the key. To achieve rate R = 2d/3 = 2, i.e., send

LW = 2 message symbols over L = 1 key block, the transmit

signal X has LX = 4 symbols (refer to (51)). The essential

components are as follows.

1) The 4-dimensional key space of X consists of ran-
dom 2 dimensions from qualified key z1 and random
2 dimensions from qualified key z2, so that each

qualified receiver can decode 2 equations on message

symbols.

2) The 4-dimensional key space of X has 1-dimensional

overlap each with eavesdropping key z3 and z4,

respectively. To ensure security, the 2-dimensional mes-

sage space of X is set to be orthogonal to the

2-dimensional overlap (both overlaps), which exists as

X has 4 dimensions.

Now if we increase N from 2 to 3 (i.e., receivers 1 to 3 are

qualified and receivers 4, 5 are eavesdropping) and wish to

achieve the same rate R = 2, then we need to ensure that the

key space of X has a 2-dimensional overlap with that of the

additional qualified receiver. To this end, we can no longer pick

2 random dimensions from z1 and z2 each, as such a random

4-dimensional key space will overlap with the newly added

3-dimensional qualified key z3 in 3 + 4 − 6 = 1 dimension.

Therefore, we need to pick a 4-dimensional key space that

has 2-dimensional overlaps with each of z1, z2, z3. As γ = 2,

each zi, zj pair has no overlap almost surely, so what we need

to do is to pick a 2-dimensional subspace of z3 that aligns

into the span of the direct sum of 2-dimensional subspaces of

z1, z2. In other words, we only need to change the first point

(on correctness) above while the second point (on security)

can be treated similarly (as the subspace of z3 is aligned into

those of z1, z2 so that z3 essentially does not appear).

The detailed scheme with N = 3 is as follows. We first

perform a change of basis operation so that z1 and z2 are

symbols along the standard basis after the transformation.

H12 � [H1; H2]6×6 has full rank almost surely, (57)

new basis s6×1 � H12s, i.e., s = H−1
12 s (58)

⇒ z1 = H1s = H1H−1
12 s = [I3×3 03×3]s = s1:3 (59)

z2 = H2s = H2H−1
12 s = [03×3 I3×3]s = s4:6 (60)

zk = Hks = HkH−1
12︸ ︷︷ ︸

�[H
[1]
k H

[2]
k ]

s

= H
[1]

k︸︷︷︸
3×3

s1:3 + H
[2]

k︸︷︷︸
3×3

s4:6, ∀k ∈ {3, 4, 5}. (61)

The transmit signal is set as

X = BW + Vs1:6 = BW +
[

V1 02×3

02×3 V2

]
s1:6

= BW +
[

V1s1:3

V2s4:6

]
(62)

where X ∈ F4×1
p ,B ∈ F4×2

p , W ∈ F2×1
p ,V ∈

F4×6
p ,V1,V2 ∈ F2×3

p . Through the above design of the

key space of X , i.e., rowspan(V), z1 and z2 each has a

2-dimensional overlap, i.e., rowspan(V1) and rowspan(V2),
and we consider z3. We wish to guarantee the existence of a

2 × 3 matrix V3 so that

V3z3 = V3(H
[1]

3 s1:3 + H
[2]

3 s4:6)
can be obtained from V1s1:3,V2s4:6 (63)

⇐ V1 = V3H
[1]

3 ,V2 = V3H
[2]

3 (64)

⇐ We generate V3 generically and set

V1,V2 following (64). (65)

The alignment constraints in (64) and the solution are similar

to those in 2 user wireless X network [5]. After V is specified,

B is generated in the same manner as the N = 2 case (see (53)

for detailed steps),

rowspan(B) ⊥ rowspan(V) ∩ rowspan(H4),
rowspan(V) ∩ rowspan(H5) (66)

so that security (26) is guaranteed. Note that V is fully

determined by qualified keys z1, z2, z3. For correctness (25),
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we require that B(1 : 2, :),B(3 : 4, :),B(1 : 2, :) + B(3 : 4, :)
each has rank 2 (which holds almost surely by showing

each determinant polynomial is not the zero polynomial) so

that Receiver 1, 2, and 3 can decode the desired message,

respectively.

Next, what if N is further increased to 4? We use the same

transmit signal structure (62) and naturally have additional

alignment constraints due to the new qualified Receiver 4, i.e.,

we wish to guarantee that both z3 and z4 have a 2-dimensional

overlap with Vs1:6. This is realized by setting 2× 3 matrices

V3,V4 so that

V3z3 = V3(H
[1]

3 s1:3 + H
[2]

3 s4:6)
can be obtained from V1s1:3,V2s4:6 (67)

V4z4 = V4(H
[1]

4 s1:3 + H
[2]

4 s4:6)
can be obtained from V1s1:3,V2s4:6 (68)

⇐ rowspan(V1) = rowspan(V3H
[1]

3 )

= rowspan(V4H
[1]

4 )

rowspan(V2) = rowspan(V3H
[2]

3 )

= rowspan(V4H
[2]

4 ) (69)

⇐ rowspan(V3)

= rowspan(V3 H
[2]

3 (H
[2]

4 )−1H
[1]

4 (H
[1]

3 )−1︸ ︷︷ ︸
�Hc

) (70)

⇐ We set VT
3 as the eigenvectors of H

T

c

and then set V1,V2,V4 following (69). (71)

The alignment constraints in (69) and the solution are similar

to those in 3 user interference network [6]. The assignment of

B is exactly the same as above (see (66)). As the overlapping

key space of X for the additional qualified receiver is aligned

into those for the original qualified receivers 1, 2, the proof of

correctness and security remains the same.

Finally, suppose we have a large integer N . If we follow the

same idea above, the linear systems will be over-constrained.

Following (69), we need to find Vq, q ∈ [1 : N ] so that

rowspan(V1) ≈ rowspan(V3H
[1]

3 )

≈ rowspan(V4H
[1]

4 ) ≈ · · · ≈ rowspan(VNH
[1]

N )

rowspan(V2) ≈ rowspan(V3H
[2]

3 )

≈ rowspan(V4H
[2]

4 ) ≈ · · · ≈ rowspan(VNH
[2]

N ). (72)

Such over-constrained linear systems for large N are a

canonical challenge in interference alignment. Exact solutions

may not exist and we have replaced the exact equality ‘=’

with approximate equality ‘≈’. A well-known technique is to

employ CJ asymptotic interference alignment [6], which how-

ever, requires diagonal channel (key) matrices. The solution

of (72) turns out to be the generalization of CJ asymptotic

interference alignment from single antenna to multiple antenna

wireless systems [16], [17], [18]. In short, when H
[1]

q ,H
[2]

q , q ∈
[3 : N ] are generic diagonal matrices, we can find an

asymptotic interference alignment based solution to (72). The

details are deferred to the proof of the theorem stated below

in Section VI-E.

Theorem 6: For generic secure groupcast with either N >
2, E = 2 or N = 2, E > 2, if γ = 2 and the keys zk, k ∈ [1 :
N + E] are

zk = H[1]
k s1:d + H[2]

k sd+1:2d (73)

where H[1]
k ,H[2]

k ∈ Fd×d
p are generic diagonal matrices, i.e.,

each diagonal element of H[1]
k ,H[2]

k is drawn independently

and uniformly from Fp and all non-diagonal elements are equal

to zero, then C(γ = 2) = 2/3. When E > 2, the achievable

scheme has ε leakage, i.e., I(W ; X, Zk) = o(d).
Remark 1: Note that Theorem 6 requires generic diagonal

key matrices, which satisfy commutativity - the key for align-

ment to be possible in over-constrained systems. The case with

generic full key matrices (each element randomly drawn with

no fixed zeros, see (35)) is generally open.

Note that Theorem 6 states that we may either increase N
or E, without decreasing the capacity. Interestingly, the case of

increasing E turns out to be somewhat the dual of increasing

N . When only N is increased, we design the key space

of X , rowspan(V) first (fully determined by qualified keys

z1, · · · , zN ), and then find the overlaps with the eavesdropping

keys zN+1, · · · , zK to determine the message space of X ,

rowspan(B) (refer to (66)), i.e., from V to B. When only E
is increased, the order is reversed. Specifically, we design the

overlap of the key space of X with the eavesdropping keys

zN+1, · · · , zK first (fully determined by alignment constraints

among the eavesdropping keys) such that rowspan(B) is set

as the orthogonal space, and then find the key space of X ,

rowspan(V) to have the desired determined overlaps with the

eavesdropping keys, i.e., from B to V. Further, rowspan(V)
must be designed so that its overlap with each qualified key

has sufficient dimensions to ensure correctness. The details are

presented in Section VI-E.

Remark 2: We have only considered the case of either

increasing N or increasing E above. What if we simultane-

ously increase N and E? This is an open problem and the

ideas presented above may not suffice because the design of

V (fully determined by qualified keys for large N ) and B
(fully determined by eavesdropping keys for large E) is not

compatible in general.

VI. PROOFS

A. Proof of Lemma 1: Capacity of SG4

We present the achievability and converse proofs in the

following two sections.

1) Achievability: R ≥ 4: To send LW = 4 message

symbols W1:4 with L = 1 key block, we set the transmit

signal X = (X1; X2) as follows. Note that X contains two

independent parts X1 ∈ F4×1
p and X2 ∈ F4×1

p .

X1 =

⎛
⎜⎜⎝

W1 + s4

W2 + s5 + s6

−2W1 − 3W2 + s8

W1 + 2W2 + s7 + s9

⎞
⎟⎟⎠ ,
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X2 =

⎛
⎜⎜⎝

W3 + s10

W4 + s11 + s12

−2W3 − 3W4 + s14

W3 + 2W4 + s13 + s15

⎞
⎟⎟⎠ . (74)

Correctness (25) follows from the observation that qualified

Receiver 1 knows s4:6, s10:12 and can obtain the message

symbols W1:4 from the first two rows of X1, X2, and qualified

Receiver 2 knows s7:9, s13:15 and can obtain the message

symbols W1:4 from the last two rows of X1, X2.

Consider security (26) and the eavesdropping Receiver

3. Note that the overlap of the key space of X1 and the

eavesdropping key z3 is

s4 + s5 + s6 + s8 + s7 + s9, (75)

i.e., the sum of all four rows of X1. The projection of the

message symbols to this space is

W1 + W2 + (−2W1 − 3W2) + (W1 + 2W2) = 0 (76)

so that nothing is revealed. The case with X2 is similar, i.e.,

from X1, X2, z3, we obtain no information about W . Consider

eavesdropping Receiver 4. The overlap of the key space of

X1 and the eavesdropping key z4 is

2s4 + (s5 + s6) + 3s8 + 4(s7 + s9)
= 2(s4 + 2s7) + (s5 + 3s8) + (s6 + 4s9), (77)

i.e., [2, 1, 3, 4]1×4×X1. The projection of the message symbols

to this space is

2 W1 + W2 + 3(−2W1 − 3W2) + 4(W1 + 2W2) = 0 (78)

so that nothing is revealed from (X1, X2, z4). The achievabil-

ity proof of Lemma 1 is complete.

2) Converse: R ≤ 4: We use Theorem 5 and Theorem 1.

Set uE = s1:3 in Theorem 5, then we have

R + I(X;W, Z1:4|UE)/L

≤ 2 H(z1:4|uE) − H(z3|uE) − H(z4|uE) (79)

= 2 × 12 − (6 + 6) = 12. (80)

Set Q = {1, 2} and ue = uE = s1:3 in Theorem 1, then we

have

I(X; W, Z1:4|UE)/L

≥ 2R −
(
H(z3|uE) + H(z4|uE) − H(z3, z4|uE)

)
(81)

= 2R − (6 + 6 − 12) = 2R. (82)

Combining with the above two inequalities, we have the

desired outer bound,

3R ≤ 12 ⇒ R ≤ 4. (83)

B. Proof of Theorem 3: Extreme γ Regimes

1) Large γ: γ ≥ min (N + 1, E + 1): The converse proof

follows immediately from Theorem 1. From (6), ∀q ∈ [1 :
N ],∀e ∈ [N + 1 : K] we have

R ≤ H(zq|ze) ≤ H(zq) = rank(Hq) ≤ d. (84)

Note that R/d ≤ 1 always holds, e.g., there is no probabilistic

argument involved.

The achievability proof has two parts. First, we show that

when γ ≥ N + 1, R = d is achievable. Consider L = 1 key

block, and the message has d symbols, W ∈ Fd×1
p . We set

X =

⎛
⎜⎜⎜⎝

W + z1

W + z2

...

W + zN

⎞
⎟⎟⎟⎠ ∈ FNd×1

p (85)

where zq ∈ Fd×1
p , q ∈ [1 : N ] and ‘+’ represents element-

wise addition. Correctness constraint (25) is always satisfied

because each qualified Receiver q can use zq to obtain W
from X . For security (26), we require that ∀e ∈ [N + 1 : K]

(z1, z2, · · · , zN ) is independent of ze (86)

⇐ HQ∪{e} � [H1; H2; · · · ; HN ; He](N+1)d×m

has full row rank (87)

which holds almost surely because m = γd ≥ (N + 1)d
and each element of HQ∪{e} is drawn independently and

uniformly from Fp. Consider the determinant of any (N +
1)d×(N+1)d sub-matrix of HQ∪{e} and view the determinant

as a polynomial, whose variables are the elements of HQ∪{e}.

This polynomial is not the zero polynomial so that by the

Schwartz-Zippel lemma [19], [20], [21], the probability that

the determinant is not zero approaches 1 as the field size p
approaches infinity, i.e., (87) holds almost surely. As (87) holds

with probability approaching 1 for each e ∈ [N + 1 : K],
the probability that (87) holds for all e ∈ [N + 1 : K]
also approaches 1, i.e., the security constraint (26) is satisfied

almost surely.

Second, we show that when γ ≥ E+1, R = d is achievable.

Set L = 1 and

X = BW + s (88)

where X, s ∈ Fm×1
p ,B ∈ Fm×d

p , W ∈ Fd×1
p and B is chosen

so that ⎡
⎢⎢⎢⎣

HN+1

HN+2

...

HK

⎤
⎥⎥⎥⎦

Ed×m︸ ︷︷ ︸
�HE

B = 0Ed×d. (89)

Note that m = γd ≥ (E + 1)d, i.e., m−Ed ≥ d, so the

right null space of HE has at least d dimensions, i.e., B
exists and can be chosen as any d linearly independent column

vectors from the right null space. This choice of B ensures

security (26) and we verify correctness (25). We require that

∀q ∈ [1 : N ], from HqX = HqBW + zq, we can decode W ,

i.e.,

rank(HqB) = d. (90)

We similarly invoke the Schwartz-Zippel lemma [19], [20],

[21]. To this end, view the determinant of HqB as a poly-

nomial in variables of the elements of Hk, k ∈ [1 : K]. This

polynomial is not the zero polynomial because it is not always

zero, e.g., we may assign the matrices Hk as follows,

HE =
[

IEd×Ed 0Ed×(m−Ed)

]
,
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Hq =
[

0d×(m−d) Id×d

]
(91)

so that

B =
[

0(m−d)×d

Id×d

]
, HqB = Id×d

⇒ det(HqB) = 1 �= 0. (92)

As a result, the non-zero polynomial will not be zero with

probability approaching 1 as p → ∞. As (90) holds with

probability approaching 1 for each q ∈ [1 : N ], the probability

that (90) holds for all q ∈ [1 : N ] also approaches 1, i.e., the

correctness constraint (25) is satisfied almost surely.

2) Small γ: γ ≤ max (1 + 1/N, 1 + 1/E): We use Theo-

rem 1 to prove the converse. From (6), ∀q ∈ [1 : N ],∀e ∈
[N + 1 : e] we have

R ≤ H(zq|ze) = H(zq, ze) − H(ze)
≤ H(s) − H(ze) = m − rank(He) (93)

which is equal to m−d almost surely, as He contains d generic

rows. Thus R/d ≤ m/d − 1 = γ − 1 almost surely.

We now consider the achievability proof, which has two

parts. First, we show that, when γ ≤ 1 + 1/N , R = m− d is

achievable. Set L = 1 and

X = W + HQs (94)

where X, W ∈ F
(m−d)×1
p ,HQ ∈ F

(m−d)×m
p , s ∈ Fm×1

p and

HQ is chosen so that

HQ = P1H1 = P2H2 = · · · = PNHN (95)

⇐ 0(m−d)×(N−1)m

=
[

P1 P2 · · · PN

]
(m−d)×Nd

×⎡
⎢⎢⎢⎢⎢⎣

H1 H1 · · · H1

−H2 0d×m · · · 0d×m

0d×m −H3 · · · 0d×m

...
...

. . .
...

0d×m 0d×m · · · −HN

⎤
⎥⎥⎥⎥⎥⎦

Nd×(N−1)m︸ ︷︷ ︸
�HB

,

HQ = P1H1. (96)

Note that Nd − (N − 1)m = m − N(γ − 1)d ≥ m − d,

so the left null space of HB has at least m−d dimensions, i.e.,

Pq, q ∈ [1 : N ] exists and can be chosen as any m−d linearly

independent row vectors from the left null space. Then HQ
exists and this choice of HQ ensures correctness (25), because

any qualified Receiver q ∈ [1 : N ] can obtain HQs = Pqzq

and then extract W from X . Next, consider security (26).

We require that ∀e ∈ [N + 1 : K]

HQ∪{e} � [HQ; He]m×m has full rank almost surely (97)

which follows from the Schwartz-Zippel lemma [19], [20],

[21] and the determinant polynomial of HQ∪{e} is not the

zero polynomial (easy to see as HQ only depends on the

qualified key matrices Hq, q ∈ [1 : N ], which is independent

of the eavesdropping key matrix He). Thus the security

constraint (26) is satisfied almost surely over large fields, i.e.,

when p → ∞.

Second, we show that when γ ≤ 1 + 1/E, R = m − d is

achievable. Set L = 1 and

X =
(

HE s
W + Hrand s

)
(98)

where X ∈ F
2(m−d)×1
p ,HE ,Hrand ∈ F

(m−d)×m
p , W ∈

F
(m−d)×1
p , s ∈ Fm×1

p and HE ,Hrand are chosen as follows.

Each element of Hrand is drawn independently

and uniformly from Fp and (99)

rowspan(HE) = rowspan(HN+1) ∩ rowspan(HN+2)
∩ · · · ∩ rowspan(HK) (100)

⇐ HE = PN+1HN+1 = PN+2HN+2

= · · · = PKHK , Pe ∈ F(m−d)×d
p , e ∈ [N + 1 : K]

(101)

where HE can be solved in the same manner as (96) because

the overlap of the row spaces of He has sufficient dimensions,

i.e., Ed − (E − 1)m = m − E(γ − 1)d ≥ m − d. To ensure

correctness (25), we require

[HE ; Hq]m×m has full rank almost surely,∀q ∈ [1 : N ]
(102)

whose proof follows similarly from that of (97). Then each

qualified Receiver q can recover s from HE s and the key

zq = Hqs, and obtain Hrand s (so that W is decoded with no

error). To ensure security (26), we require

Hrand∪{e} � [Hrand; He]m×m

has full rank almost surely,∀e ∈ [N + 1 : K] (103)

which follows from the Schwartz-Zippel lemma [19], [20],

[21] and the determinant polynomial of Hrand∪{e} is not

the zero polynomial (trivial as we may find a realization of

Hrand and Hk, k ∈ [1 : K] such that Hrand∪{e} is an

identity matrix). To sum up, both correctness constraint (25)

and security constraint (26) are satisfied almost surely over

a sufficiently large field. The proof of Theorem 3 is now

complete.

C. Proof of Theorem 4: N = E = 2

As the regimes where 1 ≤ γ ≤ 3/2 and γ ≥ 3 have been

covered by Theorem 3, we only need to consider the remaining

three regimes, which are discussed sequentially as follows.

1) 5/2 ≤ γ ≤ 3: Converse follows from Theorem 1.

From (6), we have R ≤ H(zq|ze) ≤ H(zq) = rank(Hq) ≤
d, ∀q ∈ {1, 2},∀e ∈ {3, 4}.

Achievability of R = d is similar to that of Example 3. Set

L = 1 and the transmit signal as

X = BW + Vs = BW +
[

H1

H2

]
s = BW +

[
z1

z2

]
(104)

where X ∈ F2d×1
p ,B ∈ F2d×d

p , W ∈ Fd×1
p ,V ∈ F2d×m

p , s ∈
Fm×1

p ,H1,H2 ∈ Fd×m
p , and B is designed as follows,[

U3

U4

]
︸ ︷︷ ︸

2(3d−m)×2d

B = 0, i.e., B exists as
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2d − 2(3d − m) ≥ d (γ ≥ 5/2), (105)

where for e ∈ {3, 4},

[Ue − Pe](3d−m)×3d

[
V
He

]
3d×m

= 0. (106)

Note that V is fully determined by H1,H2, which is indepen-

dent of He, so Ue (obtained from the overlap of the row space

of V and the row space of He) will have dimension 3d − m
with high probability. Security (26) is guaranteed by (105).

For correctness (25), we require that

B(1 : d, :),B(d + 1 : 2d, :) both have full rank (107)

which is proved by showing that the determinant polynomials

(of variables from Hk, k ∈ [1 : 4]) are not the zero polynomial

so that by the Schwartz-Zippel lemma [19], [20], [21], the

two matrices have full rank almost surely as p → ∞.

The determinant polynomials are non-zero for the following

realization of Hk so that they are not always zero.

H1s = s1:d, H2s = s(d+1):2d (108)

H3s = (s1:(3d−m) + s(d+1):(4d−m); s(2d+1):m) (109)

H4s = (s(3d−m+1):2(3d−m) + s(4d−m+1):(7d−2m);
s(2d+1):m) (110)[

U3

U4

]
= [I2(3d−m)×2(3d−m) 02(3d−m)×(2m−5d)

I2(3d−m)×2(3d−m) 02(3d−m)×(2m−5d)] (111)

B = [Id×d;−Id×d]. (112)

The proof of achievability when 5/2 ≤ γ ≤ 3 is complete.

2) 2 ≤ γ ≤ 5/2: We first provide the converse proof.

In Theorem 5, we set uE = (). Note that γ ≥ 2 so the

eavesdropping keys z3, z4 are independent almost surely, i.e.,

the condition of Theorem 5 is satisfied. Then we have

R + I(X; W, Z1:4)/L ≤ 2H(z1:4) − H(z3) − H(z4)
= 2m − 2d (113)

almost surely as the keys are generic. Then we apply

Theorem 1. In (7), we set Q = {1, 2} and it follows that

I(X; W, Z1:4)/L ≥ 2R − (H(z1, z2) − H(z1) − H(z2))
= 2R (114)

almost surely. Note that when γ ≥ 2, the qualified keys

z1, z2 are independent almost surely. Combining the two

inequalities above, we have

3R ≤ 2m − 2d

⇒ R(γ) = R/d ≤ 2(m − d)/(3d) = 2(γ − 1)/3 (115)

and the converse proof when 2 ≤ γ ≤ 5/2 is complete.

We next provide the achievability proof, which is very

similar to that presented in the previous section and only

the parameters need to be adjusted to match the current γ
regime. As the normalized rate R(γ) = 2(γ − 1)/3 may

not be an integer, we consider spatial extension by a factor

of 3, i.e., set d′ = 3d, m′ = 3m and show that R =

2(m′ − d′)/3 = 2(m − d) is achievable when each key is

3d generic combinations of 3m basis symbols. Set L = 1 and

X = BW + Vs = BW +
[

H1(1 : 2(m − d), :)
H2(1 : 2(m − d), :)

]
s (116)

where X ∈ F
4(m−d)×1
p ,B ∈ F

4(m−d)×2(m−d)
p , W ∈

F
2(m−d)×1
p ,V ∈ F

4(m−d)×3m
p , s ∈ F3m×1

p . Note that 2(m −
d) ≤ 3d as γ ≤ 5/2. B is designed so that[

U3

U4

]
︸ ︷︷ ︸

2(m−d)×4(m−d)

B = 0, where for e ∈ {3, 4},

[Ue − Pe]︸ ︷︷ ︸
(m−d)×(4m−d)

[
V
He

]
(4m−d)×3m

= 0. (117)

Security (26) is guaranteed by (117). For correctness (25),

we require that

B(1 : 2(m − d), :),B(2(m − d) + 1 : 4(m − d), :)
both have full rank (118)

which is similarly proved by the Schwartz-Zippel lemma [19],

[20], [21] and the property that the determinant polynomials

(of variables from Hk, k ∈ [1 : 4]) are not the zero polynomial.

The following realization of Hk shows that the determinant

polynomials are not always zero.

H1(1 : 2(m − d), :)s = s1:2(m−d),

H2(1 : 2(m − d)), :)s = s(2m−2d+1):4(m−d) (119)

H3s = (s1:(m−d) + s(2m−2d+1):3(m−d); s(4m−4d+1):3m)
(120)

H4s = (s(m−d+1):2(m−d) + s(3m−3d+1):4(m−d);
s(4m−4d+1):3m) (121)[

U3

U4

]
= [I2(m−d)×2(m−d) I2(m−d)×2(m−d)],

B =
[

I2(m−d)×2(m−d)

−I2(m−d)×2(m−d)

]
. (122)

The proof of achievability when 2 ≤ γ ≤ 5/2 is complete.

3) 3/2 ≤ γ ≤ 5/3: Converse follows from (6) in

Theorem 1. R ≤ H(zq|ze) = H(zq, ze) − H(ze) = m − d
almost surely as γ < 2 so that from zq, ze, we can recover

s1:m with high probability.

For achievability, we note that there is a (2d − m)-
dimensional overlap between H1 and H2 (the two qualified

keys),

H12 � V12H1,

where [V12 − V21](2d−m)×2d

[
H1

H2

]
2d×m

= 0(2d−m)×m (123)

and similarly, for the two eavesdropping receivers, H3 and

H4 have a (2d − m)-dimensional overlap, from which we

will use 2m − 3d ≤ 2d − m (recall that γ ≤ 5/3) generic

dimensions.

H34 � V34H3,
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where [V34 − V43](2m−3d)×2d

[
H3

H4

]
2d×m

= 0(2m−3d)×m. (124)

With high probability, H1 and H2 span the overall key space

s1:m and we can express H34 as linear combinations of the

rows of H1 and H2.

H1
invertible←→ [H1(1 : m − d, :); H12],

H2
invertible←→ [H2(1 : m − d, :);H12]; (125)

H34 = C1H1(1 : m − d, :) + C2H2(1 : m − d, :)
+ C12H12 (126)

where C1,C2 ∈ F
(2m−3d)×(m−d)
p ,C12 ∈ F

(2m−3d)×(2d−m)
p .

We wish to send LW = m − d message symbols W .

Specifically, the first 2d − m message symbols are denoted

by W1 ∈ F
(2d−m)×1
p and last 2m − 3d message symbols are

denoted by W2 ∈ F
(2m−3d)×1
p . The message W is sent over

L = 1 key block and the transmit signal is set as

X =

⎛
⎝ W1 + H12s1:m

W2 + C1H1(1 : m − d, :)s1:m

−C12W1 − W2 + C2H2(1 : m − d, :)s1:m

⎞
⎠

∈ F(3m−4d)×1
p . (127)

Correctness (25) is easily seen, as qualified Receiver 1 can

obtain W1,W2 from the first two row blocks of X , and

qualified Receiver 2 can obtain W1,W2 from the first and

third row block of X . Security (26) holds because the overlap

of each of z3, z4 (of dimension d) with the key space of X (of

dimension 3m−4d) is H34 (of dimension d+3m−4d−m =
2m − 3d), along which the projection of W in X is null.

(Key space of X) ∩ rowspace(H3)
= (Key space of X) ∩ rowspace(H4) = H34. (128)

Note that this design wherein both overlaps are the same space

also follows from interference alignment principles. We need

to ensure that the overlap is only H34 with high probability,

i.e., the direct sum of the key space in X and the row space

of each of H3,H4 have full row rank almost surely, which

is formalized by the Schwartz-Zippel lemma [19], [20], [21].

Note that the remaining rows of H3 and H4 (except H34) are

generated independently of H1,H2, so the determinant poly-

nomials of corresponding matrices contain distinct monomials

and are thus non-zero.

D. Proof of Theorem 5: New Converse

Following the insights from (50), we consider the overlap

of the transmit signal X and each eavesdropping key spaces

Ze, e ∈ [N + 1 : K] conditioned on UE . On the one hand,

I(X;Ze|UE)
(4)
= I(X; Ze, W |UE) (129)

= I(X; Z1:K , Ze, W |UE) − I(X; Z1:K |Ze, W, UE) (130)

≥ I(X; Z1:K , W |UE) − H(Z1:K |Ze, W, UE) (131)

(2)
= I(X; Z1:K , W |UE) − H(Z1:K |UE) + H(Ze|UE) (132)

= I(X; Z1:K , W |UE) − H(z1:K |uE)L + H(ze|uE)L.

(133)

On the other hand,

K∑
e=N+1

I(X; Ze|UE)

≤
K∑

e=N+1

I(X, ZN+1:e−1; Ze|UE) (134)

(55)
=

K∑
e=N+1

I(X; Ze|ZN+1:e−1, UE) (135)

= I(X; ZN+1:K |UE) (136)

≤ I(X; Z1:K |UE) (137)

= I(X; Z1:K , W |UE) − I(X; W |Z1:K , UE) (138)
(3)
= I(X; Z1:K , W |UE) − H(W |Z1:K , UE) (139)
(2)
= I(X; Z1:K , W |UE) − LW . (140)

Adding (133) for all e ∈ [N + 1 : K] and combining

with (140), we have

(K − N)
(
I(X; Z1:K , W |UE) − H(z1:K |uE)L

)
+

K∑
e=N+1

H(ze|uE)L

≤ I(X; Z1:K , W |UE) − LW (141)

⇒ LW + (K − N − 1)I(X; W, Z1:K |UE)

≤ (K − N)H(z1:K |uE)L −
K∑

e=N+1

H(ze|uE)L (142)

and normalizing by L gives us the desired bound.

E. Proof of Theorem 6: Asymptotic Alignment

Adding more receivers (qualified or eavesdropping) cannot

help so that for the converse proof, it suffices to consider the

N = 2, E = 2 system. From Theorem 4, we have the desired

bound R(γ = 2) ≤ 2/3. Next, we provide the achievability

proof, which is asymptotic, i.e., the normalized R(γ = 2)
approaches 2/3 when a parameter of the scheme goes to

infinity.

1) Achievability When N > 2, E = 2: Suppose 2d/3 =(
Δ+1
2N

)
for some positive integer Δ (later Δ will be driven to

infinity). Define a matrix that is parameterized by Δ and is

comprised of a collection of row vectors as follows.

VΔ =

{
1

(∏
q1,q2

(H[1]
q1

)α[1]
q1 (H[2]

q2
)α[2]

q2

)
:

∑
q1,q2

(α[1]
q1

+ α[2]
q2

) ≤ Δ, α[1]
q1

, α[2]
q2

∈ Z+, q1, q2 ∈ [1 : N ]

}

(143)

where 1 is the 1 × d all 1 row vector and Z+ is the set

of positive integers. Thus VΔ contains product terms up to
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degree Δ. The number of row vectors in VΔ+1 is equal to(
Δ+1
2N

)
, which has been set to 2d/3.

Set L = 1, LW =
(

Δ
2N

)
< 2d/3, LX = 2

(
Δ+1
2N

)
= 4d/3 and

the transmit signal X as

X = BW +
[

VΔ+1 0
0 VΔ+1

]
s1:2d

= BW +
[

VΔ+1s1:d

VΔ+1sd+1:2d

]
(144)

where X ∈ FLX×1
p ,B ∈ FLX×LW

p , W ∈ FLW ×1
p . B is

designed so that[
UK−1

UK

]
︸ ︷︷ ︸
2d/3×4d/3

B = 0, where for e ∈ {K − 1, K},

[Ue − Pe]︸ ︷︷ ︸
d/3×7d/3

⎡
⎣ VΔ+1 0

0 VΔ+1

H[1]
e H[2]

e

⎤
⎦

︸ ︷︷ ︸
7d/3×2d

= 0. (145)

Note that LW < 2d/3 so that B exists. Security (26) follows

from (145) and VΔ+1 is determined fully by qualified key

matrices H[1]
q ,H[2]

q , q ∈ [1 : N ] thus Ue has d/3 rows almost

surely. Correctness (25) is due to the observation that ∀q ∈
[1 : N ]

VΔH[1]
q ⊂ VΔ+1,VΔH[2]

q ⊂ VΔ+1 (146)

⇒ VΔzq = VΔH[1]
q s1:d + VΔH[2]

q sd+1:2d (LW rows)

can be obtained from the rows of

VΔ+1s1:d,VΔ+1sd+1:2d

i.e., there exists Dq ∈ FLW ×LX
p s.t.

Dq[VΔ+1s1:d;VΔ+1sd+1:2d] = VΔzq (147)

⇒ DqX − VΔzq = DqBW (148)

so we need to ensure DqB has full rank almost surely. The

determinant polynomial of DqB is not always zero as there

exists one such realization Hk, k ∈ [1 : K]. Finally, the

normalized rate achieved is

R(γ = 2) =
LW

d
=

(
Δ
2N

)
3
2

(
Δ+1
2N

) =
2
3

Δ + 1 − 2N

Δ + 1
→ 2

3
as Δ → ∞. (149)

2) Achievability When N = 2, E > 2: Suppose d/3 =(
Δ+1
2E

)
for some positive integer Δ. Define a matrix that is

comprised of the following row vectors. Note that K = E +
2 and receivers 3 to K are eavesdroppers.

VΔ =

{
1

(∏
e1,e2

(H[1]
e1

)α[1]
e1 (H[2]

e2
)α[2]

e2

)
:

∑
e1,e2

(α[1]
e1

+ α[2]
e2

) ≤ Δ, α[1]
e1

, α[2]
e2

∈ Z+, e1, e2 ∈ [3 : K]

}

(150)

where 1 is the 1×d all 1 row vector and VΔ contains product

terms up to degree Δ. The number of row vectors in VΔ+1

is equal to
(
Δ+1
2E

)
, which has been set to d/3.

We wish to design the scheme so that the overlap of each

eavesdropping key and the key space of X belongs to the space

spanned by [VΔ+1s1:d; VΔ+1sd+1:2d]. To this end, we wish

to see how to create this space from the qualified keys. As γ =
2, so the qualified keys z1, z2 are invertible to all 2d basis

key symbols almost surely. Define H12 � [H1; H2], s1:2d �
H12s1:2d, then z1 = s1:d, z2 = sd+1:2d. The 2d × 2d square

matrix H12 is invertible almost surely, i.e., inv(H12) exists.

We define the four d × d sub-matrix of inv(H12) as follows,

inv(H12) =
[

inv[11](H12) inv[12](H12)
inv[21](H12) inv[22](H12)

]
∈ F2d×2d

p ,

inv[ij](H12) ∈ Fd×d
p , i, j ∈ {1, 2} (151)

and then we have[
VΔ+1s1:d

VΔ+1sd+1:2d

]
=
[

VΔ+1 0
0 VΔ+1

]
s1:2d (152)

=
[

VΔ+1 0
0 VΔ+1

]
inv(H12)s1:2d (153)

=
[

VΔ+1 0
0 VΔ+1

]
×[

inv[11](H12) inv[12](H12)
inv[21](H12) inv[22](H12)

]
s1:2d (154)

=
[

VΔ+1inv[11](H12)z1 + VΔ+1inv[12](H12)z2

VΔ+1inv[21](H12)z1 + VΔ+1inv[22](H12)z2

]
(155)

Set L = 1, LW = 2d/3, LX = 4d/3 and the transmit signal

X as

X = BW + Vs1:2d

=

⎡
⎢⎢⎣

W1:d/3

Wd/3+1:2d/3

−W1:d/3

−Wd/3+1:2d/3

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

VΔ+1inv[11](H12)z1

VΔ+1inv[21](H12)z1

VΔ+1inv[12](H12)z2

VΔ+1inv[22](H12)z2

⎤
⎥⎥⎦
(156)

where X ∈ FLX×1
p ,B ∈ FLX×LW

p , W ∈ FLW ×1
p ,V ∈

FLX×2d
p .

We prove that the scheme is correct and the leakage is small

compared to d. Correctness (25) follows from the observation

that from the first two row blocks of X , qualified Receiver

1 can decode all LW = 2d/3 symbols of W , and from the

last two row blocks of X , qualified Receiver 2 can decode

all LW = 2d/3 symbols of W . Next, consider security (26).

Note that ∀e ∈ [3 : K]

VΔH[1]
e ⊂ VΔ+1,VΔH[2]

e ⊂ VΔ+1 (157)

⇒ rowspan([VΔH[1]
e VΔH[2]

e ])

⊂ rowspan

([
VΔ+1 0

0 VΔ+1

])
(158)

⇒ VΔze = VΔH[1]
e s1:d + VΔH[2]

e sd+1:2d

can be obtained from[
VΔ+1 0

0 VΔ+1

]
s1:2d =

[
VΔ+1s1:d

VΔ+1sd+1:2d

]
. (159)
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The row space of ze (of dimension of d) and the key space

of X (of dimension 4d/3) have overlap of d + 4d/3 −
2d = d/3 dimensions with high probability (easily verified

by showing that the determinant polynomials are non-zero).

The row space of VΔ belongs to this overlap as it can be

obtained from Vs1:2d (which follows from the design of the

scheme, refer to (155), (156), (159)). Further, the dimension

of the row space of VΔ is equal to the number of row vectors

in VΔ with high probability, which is
(

Δ
2E

)
. The projection of

the message W in the transmit signal X to this overlapping

space VΔze is zero thus nothing is revealed. Except from

(orthogonal to) the row space of VΔ, the remaining overlap

of the row space of ze and the key space of X has dimension

at most

d/3 − dim
(
rowspace(VΔ)

)
=
(

Δ + 1
2E

)
−
(

Δ
2E

)
(160)

⇒ d/3 − dim
(
rowspace(VΔ)

)
d

=
1
3

(
1 −

(
Δ
2E

)(
Δ+1
2E

)
)

=
2E

3(Δ + 1)
→ 0 as Δ, d → ∞.

(161)

Therefore, the leakage vanishes with the spatial dimension d.

As we allow d to approach infinity, the normalized leakage is

negligible, i.e., I(W ; X, Ze) = o(d) (the derivation is the ε
leakage relaxation of the zero leakage counterpart in (34)).

VII. CONCLUSION

In this work, we show that for the secure groupcast

problem which involves no noise, the communicate rate is

not fully specified by the source variables in the problem

statement. As a result, a more general entropic description that

includes auxiliary variables for the achievability and converse

is required. Additional insights are necessary to reveal the

structure of auxiliary variables.

We also study the generic secure groupcast problem where

each key is comprised of a number of generic linear combina-

tions. The groupcast rate is measured as a function of the ratio

of the dimension of the overall key space to the dimension of

each receiver’s key space. The feasibility of linear schemes

is stated in terms of space projections and overlaps, which

leads to the natural application of various interference align-

ment schemes originated in wireless communications. While

complete answers are obtained when the overall key space is

either large or small, the intermediate cases are open and call

for more advanced techniques.
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