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Secure Groupcast: Extra-Entropic Structure and
Linear Feasibility

Hua Sun

Abstract—1In the secure groupcast problem, a transmitter
wants to securely groupcast a message with the maximum rate
to the first IN of K receivers by broadcasting with the minimum
bandwidth, where the K receivers are each equipped with a
key variable from a known joint distribution. Examples are
provided to prove that different instances of secure groupcast
that have the same entropic structure, i.e., the same entropy for
all subsets of the key variables, can have different maximum
groupcast rates and different minimum broadcast bandwidth.
Thus, extra-entropic structure matters for secure groupcast. Next,
the maximum groupcast rate is explored when the key variables
are generic linear combinations of a basis set of independent key
symbols, i.e., the keys lie in generic subspaces. The maximum
groupcast rate is characterized when the dimension of each
key subspace is either small or large, i.e., the extreme regimes.
For the intermediate regime, various interference alignment
schemes originated from wireless interference networks, such
as eigenvector based and asymptotic schemes, are shown to be
useful.

Index Terms— Capacity, secure groupcast, entropy.

I. INTRODUCTION

UILDING an efficient secure communication network
is a central problem in information theory, for which
insights are obtained from studying canonical system models,
e.g., ideas for secure point-to-point communication protocols
emerge out of the study of Shannon’s one-time pad system [1].
Aiming to shed light on secure group communication pro-
tocols, we consider a recently proposed multi-user extension
of the one-time pad system - secure groupcast [2] (for more
background and related work, refer to [2] and references
therein).
In secure groupcast, a transmitter wishes to communicate
a common message W of Ly, bits to the first N of K
receivers, i.e., the last ' = K — N receivers are eavesdroppers.
Each receiver k € {1,---, K} shares a key variable Zj, with
the transmitter. The key variables (Z1,--- , Zx) are L length
extensions of a discrete memoryless source with a known joint
distribution. The message is groupcast through broadcasting a
signal X of L x bits to every receiver such that combining with
the known key Zj, qualified Receiver & € {1,---, N} can
recover W while eavesdropping Receiver k € {N+1,--- , K}
learns nothing about W. The communication performance is

Received 29 November 2023; revised 1 August 2024; accepted 10 November
2024. Date of publication 13 November 2024; date of current version
26 December 2024. This work was supported in part by NSF under Grant
CCF-2045656 and Grant CCF-2312228.

The author is with the Department of Electrical Engineering, University of
North Texas, Denton, TX 76203 USA (e-mail: hua.sun@unt.edu).

Communicated by A. Ozgur, Associate Editor for Security and Privacy.

Digital Object Identifier 10.1109/TIT.2024.3497920

, Member, IEEE

measured by the secure groupcast rate R = Ly /L and the
broadcast bandwidth 3 = Lx /L. We naturally look for secure
groupcast schemes with the maximum groupcast rate, termed
the capacity C, and the minimum broadcast bandwidth §*.

The first question studied in this work is whether C and
B can always be described by the entropy of all subsets
of the key variables (Zy,--- ,Zk), i.e., are entropy mea-
sures sufficient to characterize the capacity and the minimum
broadcast bandwidth for secure groupcast? The answer turns
out to be negative. To show this, we construct two secure
groupcast instances with N = 2 qualified receivers and
E = 1 eavesdropping receiver (i.e., K = 3) such that the
entropy of all 23 — 1 subsets of (Z7, Zo, Z3) and the capacity
C' are identical, while the minimum broadcast bandwidth (5*
required to achieve the capacity is different. As a result,
[* is not a function of only the entropy measures of the
key variables, and extra-entropic structure matters. Along the
similar line, we construct two secure groupcast instances
with N = 2 qualified receivers and £ = 2 eavesdropping
receivers (i.e., ' = 4) with the same entropy of all subsets of
(Z1, Zo, Zs, Z4), while the capacity C is different. Therefore,
C cannot be expressed as a function of only the entropy
measures of the key variables. The necessity of extra-entropic
structures is related to one of the biggest mysteries in network
information theory, i.e., the involvement of auxiliary variables
in capacity characterizations. If C', 3* may have a closed-form
characterization in terms of entropy measures, we need to
invoke (highly non-trivial) auxiliary variables (beyond the A
keys) that do not appear in the problem statement. The role
of extra-entropic structures might lurk under many network
information theory problems and has started to be revealed,
e.g., in the context of computation broadcast [3].

The instances constructed in studying the first question
above turn out to have linear keys, i.e., the key variables are
linear combinations of a basis set of independent symbols,
and the optimal achievable schemes are based on vector
linear coding. This motivates us to delve deeper into the
secure groupcast problem with linear keys. Another reason
for linear keys and linear schemes to be interesting is that
even the more preliminary form of combinatorial keys (i.e.,
independent uncoded keys that are shared among subsets of
receivers) requires sophisticated design of the signal spaces
used by the key variables (Z;,---,Zk) and the message
W, in forming the transmit signal X. As such, we wish to
understand the necessary and sufficient condition for a linear
scheme to be feasible, i.e., the linear feasibility question.
Last but not least, when the key variables are subject to
design (i.e., the compound secure groupcast problem [4]),
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the tradeoff between key storage and broadcast bandwidth
remains open and all known schemes are linear. The
understanding of linear schemes will help the design of key
variables. The considerations listed above lead us to the
second question, where we study the natural set-up of generic
linear keys.

The second question studied in this work is the capacity
characterization of secure groupcast with generic linear keys,
i.e., for one key block, each key variable consists of d linear
combinations of m independent basis key symbols. Further,
the linear combination coefficients are drawn independently
and uniformly from a finite field. We focus on the case where
the finite field is sufficiently large and study the capacity
characterization for almost all cases (i.e., results that hold
almost surely). In other words, the setting studied is where
the key space of each receiver is a generic d-dimensional
subspace from an m-dimensional overall key space. Inter-
estingly, the capacity C' depends crucially on ratio of the
key space dimension seen by each receiver to the total key
dimension, i.e., d/m, whose reciprocal v = m/d can be
viewed as the space expansion factor. When -y is large, the key
subspaces are far apart from each other such that the groupcast
rate will be higher; when 7 is small, the key subspaces are
overlapping to a large extent such that the groupcast rate
will be lower. We show that for any number of qualified
receivers N and any number of eavesdropping receivers I,
the capacity is C'/d = 1 when v > min(N + 1, E + 1) and
C/d = v—1 when v < max(1 + 1/N,1 + 1/E). When
either N = 1 (secure unicast) or £ = 1 (secure multicast),
the capacity is characterized for all possible 7. This result is
generalized along two lines. For the first line, we consider
the simplest uncovered setting where N = 2, F = 2, and
provide partial characterization for the remaining regimes of
3/2 < ~ < 3. For the second line, we fix v = 2 (ie.,
each key subspace has half the dimension of the overall key
space), and add more qualified or eavesdropping receivers to
the basic N = 2,F = 2 system. In particular, we show
that if we add one qualified or eavesdropping receiver, i.e.,
set N = 3 or £ = 3, then the earliest known interference
alignment schemes, first appeared in the 2 user wireless X
network [5], are useful; if we add 2 qualified or eavesdropping
receivers, i.e., set N = 4 or £ = 4, then eigenvector based
interference alignment schemes, originated from the 3 user
wireless interference network [6], can be applied; if we further
add more qualified receivers or eavesdropping receivers, i.e.,
set N > 4 or E > 4, then asymptotic interference alignment
schemes, which lie in the core of the canonical half-the-
cake result for wireless interference networks [6], [7], play
significant roles. Ideas that resemble the wireless counter-
part appear in secure groupcast, e.g., spatial normalization,
diagonal channel coefficients, over-constrained linear systems,
duality, and space overlaps. We will go through these ideas in
the following sections of this work.

Notation: For positive integers K1, Ko, K1 < Ko, we use
the notation [Ky : K] = {K;,K; + 1,---,Ks}. Define
the notation Zy, .k, as the vector (Zx,;- - ;Zk,) if K1 <
K5 and as the null vector otherwise. The notation |Q| is used
to denote the cardinality of a set Q. We use O to denote a

matrix whose each element is 0 and use I;.4 to denote the
identity matrix of dimension d. For a matrix H, H(i : j,:) is
used to denote the sub-matrix of H formed by retaining only
the i-th row to the j-th row.

II. PROBLEM STATEMENT

Consider K discrete random variables zp,---,zg of
finite cardinality, drawn from an arbitrary joint distribution
P, ... 2. In this work, we focus on the linear setting, where
zi, k € [1 : K] are arbitrary linear combinations of a basis
set of independent symbols from a finite field. Let the basis
symbols be specified through the m x 1 column vector s =
(815 ; Sm) = S1.m, Where $;,4 € [1 : m| are i.i.d. uniform
symbols from a finite field F,, for a prime power p. Since
all variables zj, are linear combinations of the basis symbols,
they are represented by 1 x m vectors of linear combining
coefficients. Each variable z; is then specified in terms of
such vectors, zp = Hpgs, where H, € ]ngm, and each z
contains d symbols from I, where each symbol is a linear
combination of the basis symbols with coefficients specified by
one row vector of Hy,. Z;,--- |, Z are L length extensions of
21, ,ZK, where each block Z1(1), -, Zk(l) is produced
i.i.d. according to P, ... ...

The secure groupcast problem is comprised of a transmitter
and K receivers. The key variable Zj, is shared between the
transmitter and Receiver k. The transmitter wishes to send a
message W that has Ly i.i.d. uniform symbols from [F,, and
is independent of the key variables Zi,---, Zx to the first
N < K receivers.

H(W) = Lw (in p-ary units), (D
I(W;Zy,--- , Zk) = 0. (2)

To securely groupcast the message W, the transmitter broad-
casts a signal X of Lx symbols from ), to every receiver.

Each qualified receiver can decode W with no error'.

[Correctness] H(W|X, Z;) =0,Vk € [1: NJ. 3)

Each unqualified (eavesdropping) receiver learns no informa-
tion about W.

[Security] I(W;X,Z;)=0,Vk € [N +1:K]. 4)

The secure groupcast rate characterizes how many symbols
of the message are securely groupcast per key block and
the broadcast bandwidth characterizes how many symbols of
the transmit signal are broadcast per key block to securely
groupcast a message of certain rate.

Lx

_Lw Lx
R=—=, B(R) =~ (5)

A rate R is said to be achievable if there exists a secure
groupcast scheme (that satisfies the correctness constraint (3)
and the security constraint (4)) of rate greater than or equal
to 2. The supremum of achievable rates is called the capacity
C'. A broadcast bandwidth 3(R) is said to be achievable if

'For the linear key setting, all achievable schemes of this work (except that
in Section VI-E.2) have zero error and zero leakage. Note that all converse
results of this work also hold under € error and e leakage.
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there exists a secure groupcast scheme of rate greater than or
equal to R and of broadcast bandwidth smaller than or equal
to B(R). The infimum of achievable broadcast bandwidth is
called the minimum broadcast bandwidth 5*(R).

A. Preliminary Result

We recall a useful converse result on R and G(R) that is
stated in the following theorem and will be used later. The
proof can be found in [2].

Theorem 1 (Theorem 1 and Theorem 2 in [2]): For the
secure groupcast problem, we have
R < H(z4|ze),Yg € [1: N],Vee [N+1:K], (6)
B(R) > I(X; W, Z1.x|U.) /L
12|
> QIR — (D H(zglue) = Hlzgr - sz, lue) )
i=1
VO = {Qh"' 7q|Q|} C [1 : N],
Ve € [N +1: K|,Vu, s.t. H(ue|ze) = 0. (7)

III. EXTRA-ENTROPIC STRUCTURE

In this section, we consider the question if the capacity C
and the minimum broadcast bandwidth for capacity achieving
schemes (*(C) can be characterized by the entropy of all
subsets of the key variables. Our result shows that the answer
is no in general.

Theorem 2: There exist instances of the secure groupcast
problem where the entropy structure of the key variables and
the capacity C' are the same, while the minimum broadcast
bandwidth §*(C) is different; there exist instances of the
secure groupcast problem where the entropy structure of the
key variables is the same while the capacity values C' are
different. Thus extra-entropic structure matters for secure
groupcast.

Proof: First, consider 3*(C). We present two instances of
secure groupcast, say SGi, SGy, that have the same entropy
values of all subsets of the key variables and the same capacity.
Yet, these two instances have different minimum broadcast
bandwidth for capacity achieving schemes. Incidentally, both
instances have linear keys and are specified as follows. For
both instances?, N = 2, K = 3 and each key variable consists
of d = 2 linear combinations of m = 3 basis key symbols
51, 82, 53 from any field I,

SGi : 21 = (813 82), 22 = (513 83), 23 = (523 83);
SGy : 21 = (81582), 22 = (51;83), 23 = (81582 + 83).  (8)

The entropy values of all subsets of (z1, 22, z3) are found as
follows.

H(Zl) = Q,Vi S {1, 2, 3}, H(Zi, Zj) = H(Zl, 29, 2:3) =3,
Vi,j € {1,2,3}i# 5. (9
>The parameters N = 2, K = 3 are the smallest so that the instances
are the simplest, because if N = 1 (single qualified receiver, i.e., the secure

unicast setting), then 3*(C) = minee(a. k] H(21]2e) is fully characterized
by the entropy structure of the key variables (see Theorem 9 in [2]).

So the entropy structure of both SG; and SG» is the same.
We next characterize the capacity and the minimum broadcast
bandwidth for both instances.

SG:  Cy =1, 85 (C) = 1. (10)
Rate Converse: R < H(z|z3) =1
(set g =1,e =3 in (6) of Theorem 1). (11)
Bandwidth Converse: §(C) > C =1
(set Q = {1},ue = () in (7)). (12)
Achievability: X =W +s;. (13)
SGy:  Cuy =1, B5,(C) =2. (14)

Rate Converse: R < H(zi|z3) =1

(set ¢ = 1,e =3 in (6) of Theorem 1). (15)
Bandwidth Converse:

B(C) 2 2C — (H(z1]s1) + H(22]s1)

— H(z1, 22|s1))
=2

(set @ ={1,2},e =3,u. = s1 in (7)). (17)

Achievability: X = (W + so; —W + s3). (18)

(16)

Note that we use L = 1 key block so that Z; = z; and
W has Ly = 1 symbol. Therefore while the capacity for
SG1,SGs, is the same, the minimum broadcast bandwidth is
different®. A closer look at the proof reveals that the converse
bound (7) has an auxiliary variable u. that might need to be
set differently for different secure groupcast instances.

Second, consider C. We present two instances of secure
groupcast, say SGs, SGy, that have the same entropy values
of all subsets of the key variables. Yet, these two instances
have different capacity values. For both instances*, N =
2, K = 4, the keys are linear, and each key variable consists
of d = 9 linear combinations of m = 15 basis key symbols
S1,---, 515 from field F),, where p > 5 is a prime.

SG3 : 21 = (51:3; S4:65 57:9)
22 = (31:3; 810:12;313:15)
23 = (S4:65 $10:12;
51:3 + S4:6 + S7:9 + S10:12 + S13:15)
Z4 = (87:9; $13:15;
51:3 + S4:6 + S7:0 + S10:12 + 513:15)
SGy : 21 = (51:3; 54:65 510:12)
Z2 = (81:3; 87:9;813:15)
z3 = (51.3; 84 + 575 85 + 88; 56 + 50;
510 + 5133 511 + 5145 S12 + S15)
24 = (51:3; 54 + 257; 55 + 3585 56 + 459;

s10 + 28135 811 + 38145 S12 + 4515). (19)

3Another interesting perspective to understand this result through
Gacs-Korner common information [8] is that the key variables of SG1 have
zero common information while the key variables of SG2 have 1 unit of
common information.

IN = 2, K = 4 is the simplest setting, because if either N = 1 or
K — N =1 (secure unicast or secure multicast), then the capacity is fully

characterized by the entropy structure of the key variables (see Theorem
9 in [2]).
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The entropy values of all subsets of (21, 22, 23, 24) are found
as follows.

H(z)=9,vie {1,2,3,4}, (20)

H(zi,zj) = H(z;, 25, z1) = H(21, 22, 23, 24) = 15,

Vi g, k€ {1,2,3,4},i # j. 21
So the entropy structure of both SG3 and SG, is the same.
The capacity of SGs is characterized as follows. W =

(W1.3; Wa) has Ly = 6 symbols and we use L = 1 key
block.

SGs : Ciey = 6.
Converse: R < H(z1]|z3) =6
(set ¢ =1,e =3 in (6) of Theorem 1).
Achievability:
Wi + s1:3
Wae + Sa:6 + S729
Wiz — Wae + s10:12 + S13:15

X =

(22)

Correctness and security can be easily verified. The capacity
of SG4 is more involved (e.g., the converse from Theorem 1
no longer suffices) and the result is presented in the following
lemma.

Lemma 1: For the secure groupcast instance SGy, the
capacity is Cy;, = 4.

The proof is deferred to Section VI-A and an outline is given
here. The symbols s;.3 are useless as all receivers know them.
The remaining 6 key symbols for each receiver can be divided
into 2 groups, and each group is essentially a generic secure
groupcast instance, where each receiver has a 3-dimensional
key subspace in general position of a 6-dimensional space,
e.g., for one group, Receiver 1 has s4.¢, Receiver 2 has s7.g,
Receiver 3 has (s4 + s7;85 + ss; S6 + So), and Receiver 4 has
(s4 + 2s7; 85 + 3sg; s + 4sg). This generic secure groupcast
instance will be settled in Theorem 4 and the capacity is 2 so
that for 2 groups with independent keys, the capacity of SGy is
4. The insights of Theorem 4 can be generalized to produce
the proof of Lemma 1 (see Section VI-A).

Therefore while the entropy structure of SGs,SGy is the
same, the capacity values are different. Extra-entropic structure
matters and the proof of Theorem 2 is complete.

|

IV. LINEAR FEASIBILITY

In this section, we characterize the feasibility condition of
a linear secure groupcast scheme under the linear key setting.
Note that while the achievable rates defined in the problem
statement section are not restricted to linear schemes, linear
schemes are of interest because on the one hand they are
simple, and on the other hand they often turn out to be optimal
for linear keys.

Linear Scheme: For a linear secure groupcast scheme with
linear keys, 2z, = Hys, Hy, € ngm,s S IFg"”Xl, the transmit
signal

X =BW + Vs,

B € Fxxtw W e FLwv* v e FLx>m  (23)

is specified by two full rank® precoding matrices, B for the
message W and V for the key variables s such that the
following properties are satisfied.

« Identify the overlap of the key space of X and the key
space of Receiver k € [1 : K], i.e., find matrices P}, and
Uy, such that

U,V =P, Hy,
rank(Uy,) = rank(Py)

= dim(rowspan(V) N rowspan(Hy)), (24)

then the projection of W in X to the Uy, space satisfies

[Correctness] rank(UxB) = Ly, Vk € [1: N],
[Security] UyB =0, Vk € [N +1: K].

(25)
(26)

The rate achieved is R = Ly, and the broadcast bandwidth
achieved is §(R) = Lx as L = 1. Generalizations to L >
1 are immediate.

Note that the precoding matrices B, V and the key matrices
H;, are constants and are assumed globally known to the
transmitter and all receivers, so that it is straightforward to
find the projection matrices Uy, P and verify the feasibility
condition. We show that the correctness constraint (25) and the
security constraint (26) for linear schemes implies the entropic
versions (3) and (4). For correctness, we have

U,X = UBW + U, Vs 2 U,BW + P,Hjs
= UrX —P.H,s =U,BW Vk € [1 : N}

27)
(28)

so by (25), UBW can recover W and then H(W|X, Z;,) =
0. For security, we use the fact that Py Hj contains all row
vectors of Hy, that can be expressed as linear combinations of
the row vectors of V (i.e., all overlaps) so that the row space
of the remaining vectors (denoted by Q;Hj) is orthogonal to
the row space of V, i.e.,

rowspan(QxH}y) is independent of rowspan(V). 29)
Then we have Vk € [N +1: K|
I(W; X, Zy)
2 I X, PyHys | QuHys) (30)
LI X | QuHys) (31)
= H(X|QiHys) - H(X [ W,Q Hys) (32
(%) Lx — H(Vs | Qi Hys) (33)
@ Ly~ H(Vs) =0 (34)

where in the last step, we use the fact that V € ]FIJ;‘X XM has
full row rank, i.e., H(Vs) = rank(V) = Lx. From now on,

SWe assume without loss of generality that V € ]FZI;“ XX has full row rank,

i.e., rank(V) = Lx < m. Otherwise, some row of V is a linear combination
of other rows and due to the security constraint (4), the corresponding linear
combinations of B must be zero. As a result, some row of the transmit signal
X 1is a linear combination of other rows, i.e., X contains some redundant row
that does not need to be sent.
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1+ max(g, )
Fig. 1. Normalized generic secure groupcast capacity C'/d as a

function of space expansion factor v = m/d.

we will employ the simplified correctness and security con-
straints (25), (26) for achievability proofs of linear schemes.

Evidently, the conditions (25) and (26) are necessary as
otherwise, either the qualified receiver cannot decode the
desired message (refer to (25)) or the eavesdropping receiver
can obtain some linear combination of the message symbols
(refer to (20)).

V. GENERIC SECURE GROUPCAST

In this section, we study the secure groupcast problem when
the keys are generic linear combinations of the basis symbols,
abbreviated as generic secure groupcast. In particular, z; =
H,.s, where

each element of H;, € ]ngm is drawn

independently and uniformly from I, (35)

and we are interested mainly in the case for a large p. Define
~=m/d € Q as the ratio of the dimension of the overall key
space to the dimension of the generic key subspace seen by
each receiver. It is convenient to adopt the normalization of the
groupcast rate by d, R/d as the rate measure. We denote the
number of eavesdropping receivers by £ = K — N, to simplify
the notations. The maximum normalized rate is characterized
when 7 is either small or large, in the following theorem.

Theorem 3: For generic secure groupcast with N qualified
receivers and E eavesdropping receivers, when the key of each
receiver consists of d generic linear combinations of m =
~vd > d basis symbols, the capacity is

C/d =1, when v > min(N + 1, E + 1); (36)
C/d=~—1,when 1 <~ <max(l+1/N,1+1/E) (37)

almost surely when the field size p approaches infinity.

The result in Theorem 3 is plotted in Fig. 1. The detailed
proof of Theorem 3 is presented in Section VI-B. To illustrate
the idea in a simpler setting, we give a few examples here.

Example 1 (Large 7v): Suppose we have N = 2 qualified
receivers and ¥ = 3 eavesdropping receivers. From Theo-
rem 3, we know that as long as v > min(3,4) = 3, then
C/d = 1. Suppose v = 3, eg,d = 1,m = vd = 3 so
that each receiver has d = 1 generic linear combination of
m = 3 basis key symbols sy, so, 53, as the key z;. We show
that the capacity is C' = d = 1. Converse follows immediately

from (6) in Theorem 1, R < H(z4|z.) = 1,¥q € {1,2},Ve €
{3,4,5}. Note that z,, z. each lies in a 1-dimensional subspace
in general position of a 3-dimensional space so that z,, 2. are
linearly independent almost surely. Achievability is proved as
follows. We simply send the sum of the message symbol and
each key of qualified receivers, i.e., the transmit signal is set
as

X=WH+Hz; W+ 29) (38)

where X € F2*', W € F,. Correctness is easy to see -
referring to (25), the overlap of the key space of X and the
key space of qualified Receiver ¢ is z, and the projection of
the message space to z, is W, from which W can be decoded
with no error. Security is guaranteed, because referring to (26),
the overlap of the key space of X and the key space of
eavesdropping Receiver e is null because the key in X has
2 dimensions in general position, which is independent of the
1-dimensional key space z, almost surely. In other words, the
messages are sent along the qualified key spaces, which are
independent of each eavesdropping key space almost surely.

The above case satisfies N < FE and when N > FE,
a different idea is required. Suppose N = 3,FE = 2,y =
min(4, 3) = 3. Similarly, suppose d = 1, m = 3, i.e., each key
space is a 1-dimensional generic subspace of a 3-dimensional
space. We show that C' = d = 1. The converse proof is same
as above and we consider achievability. The transmit signal is
designed as

X =BW +s (39)
where X, B,s € Ff,“, W € F), and B is chosen so that
H, ]
B = 02x1, (40)
[ Hs J53

i.e., B lies in the right null space of each eavesdropping key
space. Such a (1-dimensional) null space exists because the
overall key space has 3 dimensions and the 2 eavesdropping
receivers see a generic 2-dimensional subspace collectively.
Correctness constraint (25) holds, because X uses the full key
space such that its overlap with each qualified key space is
2¢, and the projection of the message space BIW to z, is not
zero almost surely, i.e., HB # 0,Vq € {1,2,3} (note that
B is determined fully by the eavesdropping key space and is
independent of the qualified key space almost surely). Security
constraint (26) holds because of the design of B (refer to (40)).
To sum up, the message is sent along the null space of the
eavesdropping key spaces, whose projection to each qualified
key space is not null almost surely.

Finally, we note that the idea of the achievable scheme
for the above two cases are similar to that for the minimum
key storage extreme point of the compound secure groupcast
problem [4].

Example 2 (Small ): Similar to the large -~ regime,
we also have 2 cases for the small v regime, depending on
N < Eor N > E. The 2 cases require different ideas and
are considered sequentially.

First, suppose N = 2, E = 3. Theorem 3 states that if
v < max(l +1/2,1+1/3) = 3/2, then C/d = ~ — 1.
To illustrate this, suppose v = 3/2, e.g., d = 2,m = vyd =
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3 so that each zj, consists of 2 generic linear combinations of
3 basis key symbols s;, s2, s3. We show that the capacity is
C =d(y—1) = m —d = 1. Converse follows from (6)
in Theorem 1, R < H(zy|ze) = H(zg,2:.) — H(z.) =
H(s1,82,83)—H(z.) =3—2=1,Vq € {1,2},Ve € {3,4,5}.
Note that z,,z. each lies in a 2-dimensional subspace in
general position of a 3-dimensional space so that they have
full rank collectively almost surely. Achievability follows from
the fact that the 2 generic 2-dimensional qualified key spaces
21, z2 have 1-dimensional overlap in the 3-dimensional overall
key space with high probability. Denote this row vector as Ho
so that

rowspan(Hg) = rowspan(H;) N rowspan(Hy). (41)
Then the transmit signal is set as
X =W + Hos 42)

where X, W ¢ F, Hg € F},X‘g,s € F;’,Xl. Correctness
constraint (25) follows from the construction that Hg lies in
the key space of each qualified receiver (see (41)), so Hos and
W are recoverable. Security constraint (26) follows from the
observation that the row vector Hg is determined fully by the
qualified key spaces such that it is almost surely independent
of each 2-dimensional eavesdropping generic key space in the
3-dimensional overall key space. As a recap, the qualified key
spaces have a common overlap that is independent of each
eavesdropping key space with high probability and this overlap
is used as the common key to send the desired message with
one-time pad.

Second, suppose N = 3, E = 2. We set v = max(1 +
1/3,1 + 1/2) = 3/2, same as above. Similarly, suppose
d = 2,m = 3, ie., each key space is a 2-dimensional
generic subspace of a 3-dimensional space. We show that
C' = d(y—1) = 1. The converse proof is same as above while
achievability requires a somewhat dual idea. The 2 eavesdrop-
ping key spaces z4, 25 each has 2 dimensions and have a
1-dimensional overlap in the 3-dimensional overall key space
almost surely. Denote this row vector as H¢ so that

rowspan(Hg) = rowspan(H,) N rowspan(Hs). (43)
Then the transmit signal is set as
X = (Hg S; W + Hpana S) (44)

where X € IF?)“,W € Fp,He,Hypna € F;,X3,s c IE‘Z“
and H,,,q is a random row vector where each element
is drawn independently and uniformly from F,. To verify
correctness constraint (25), note that the row vector Hg
is linearly independent of each 2-dimensional qualified key
space in the 3-dimensional overall key space almost surely,
so from (Hgs;Hys), Vg € {1,2,3}, each qualified receiver
has 3 generic linear combinations of all basis symbols s and
can fully recover s. Then H;,,q s can be obtained and then W
is decoded with no error. To verify security constraint (26),
note that Hes is known to each eavesdropping receiver
such that no additional information is revealed and the row
vector H,,q is linearly independent of each 2-dimensional
eavesdropping key space in the 3-dimensional overall key

space almost surely. To sum up, the message is sent along
random row vectors and the common overlap of eavesdropping
key spaces is broadcast to enable qualified receiver to recover
the key along the random precoding vectors (that are mixed
with the message) and ensure eavesdropping receiver learns
no information about the message.

Finally, we note that the idea of the achievable scheme
for the above two cases are similar to that for the minimum
broadcast bandwidth extreme point of the compound secure
groupcast problem [4].

Note that when N = 1 or E/ = 1, there is no gap between
the v regimes in Theorem 3 so that the capacity is fully
characterized for all « values. This result is stated in the
following corollary.

Corollary 1: For generic secure unicast (N = 1) and
generic secure multicast (£ = 1), the capacity is C'/d =
1,if v > 2, and C'//d = v — 1, otherwise 1 < v < 2 almost
surely when p — oo.

A. N = FE = 2 and Spatial Normalization

As the settings where either N = 1 or E = 1 are fully
understood, we proceed to consider the simplest open generic
secure groupcast problem with NV = 2 and I = 2. We start by
introducing the metric - spatial normalized rate and capacity.

The achievable spatial normalized rate of generic secure
groupcast, denoted by R(v), is defined as R/d if the secure
groupcast rate R is achievable when each key 2z, = Hys and
each element of Hy ¢ ngm is drawn independently and
uniformly from I, for some d and m = ~d. Note that the
space expansion factor «y is a constant and we allow scaling
of the spatial dimension d and m while retaining their ratio
~v = m/d. The spatial normalized capacity is the supremum
of the achievable rate, C(vy) = sup, R(y) = sup, R/d.

Next we explain why we allow spatial normalization,
in spite of the fact that symbol extension along the key block
domain already appears in the rate definition (refer to (5)).
The reason is that key block normalization creates structured
(specifically, block diagonal with the same block) key matri-
ces, which are more challenging to deal with, while spatial
normalization creates fully generic key matrices. An example
might help to illustrate this point. Suppose N =2, E' = 2 and
v = 2, i.e., each receiver sees a generic key subspace that
has half dimension of the overall key space. When d = 1 and
m = ~yd = 2, for one block each key z; = Hys is a generic
linear combination of 2 basis symbols and Hj, € F,*?. Now
consider spatial scaling by d = 3 and key block scaling by
L =3.

Spatial Extension: z;, = H' s |

~
3x6 Ox1
where each element of H* is randomly drawn;  (45)
Zx(1)
Key Block Extension: Zy, = | Z;(2)
Z(3)
Hk- 0 0 S(l)
= 0 H, O s(2) (46)
0 0 Hy|u4L80) Jea
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Fig. 2. For generic secure groupcast with N = 2, F = 2,

the spatial normalized capacity C(v) is characterized except when
5/3 <y <2

where in key block extension, each block has identical distribu-
tions so that the linear combining coefficients must remain the
same. Because of the constant diagonal key matrix structure,
the generic secure groupcast problem is challenging without
spatial normalization when we need symbol extensions (e.g.,
when the rate is non-integer) but the keys are no longer
generic. In wireless parlance, key block extension corresponds
to constant wireless channels with limited diversity [9], [10],
[11], which is also a challenging problem in degrees of
freedom (DoF) studies and spatial normalization is exactly
the remedy and a commonly used metric in wireless litera-
ture [12], [13], [14], [15]. Therefore, motivated by literature
on DoF in wireless communications, we bring spatial normal-
ization to generic secure groupcast and focus on the spatial
normalized capacity for the setting with N = 2. F = 2.
We note that the capacity when spatial normalization is not
allowed, i.e., the capacity C' as a function of constant d,m,
may not be equal to C(v)d for every d and remains an open
problem in general.

We are now ready to present our results on the spatial
normalized capacity for generic secure groupcast with N =
2, F = 2, in the following theorem.

Theorem 4: For generic secure groupcast with 2 qualified
receivers and 2 eavesdropping receivers, the spatial normalized
capacity is

1, v >5/2
Cy)=4 2(v—1)/3, 2<~y<5/2 (47)

almost surely when p — oc.

The result in Theorem 4 is plotted in Fig. 2. Compared with
Theorem 3, the small vy regime where C'(y) = y—1 is extended
from 1 < < 3/2 to include 3/2 < v < 5/3 and the large
7 regime where C(7) = 1 is extended from 7 > 3 to include
5/2 < ~v < 3. In addition, a new regime 2 < v < 5/2 is
established, where C(y) = 2(y — 1)/3 and a converse that
is tighter than the conditional entropy bound (6) in Theorem 1
is required. The remaining regime where 5/3 < v < 2 is open.
The proof of Theorem 4 is deferred to Section VI-C and we
give an example of v = 2 here.

Example 3 (v = 2): We show that when v = 2, C(y) =
2/3. An intuitive explanation of the converse result for linear
schemes is as follows. Suppose rate R is achievable. As v =

2 so that the N = 2 qualified receivers have independent keys
almost surely, then the transmit signal size must be at least
Lx > 2R (refer to (7)), i.e., the dimension of the key space
of X must be at least 2R, rank(V) > 2R (refer to (23)). Each
eavesdropping key space has dimension d (rank(Hy) = d),
so that its overlap with the key space of X is at least d+ Lx —
m, i.e., rank(U,) > d+ Lx —m,e € {3,4} (see (24)). From
the security constraint (26), the projection of the message in
X to U, must be zero, i.e., [U3; Uy]B = 0. Except from the
projection to Us, Uy, the orthogonal space of the message in
X has dimension at most Lx —2(d+ Lx —m), from which the
message can be recovered by the correctness constraint (25).
Thus

Lx—2(d+Lx—m)
= 2m — 2d

= R(y)=R/d <

R (43)
R+Lx >3R (49)
20y — 1)/3 "= 2/3. (50)

>
>

It is not hard to translate the above argument to an information
theoretic converse. In fact, we have further generalized it to
cover a larger range of parameters (see Theorem 5).

Interestingly, the converse argument above naturally leads
us to the optimal achievable scheme. To this end, consider
d = 3,m = vd = 6 (note that for spatial normalized rate,
we may pick d,m values as long as the ratio r = m/d is
what we want). We present a coding scheme that achieves
R = 2d/3 = 2. Following the insights from (50), the transmit
signal shall have dimension 2R = 4 and does not need much
special structure, thus it is set as

X =BW+Vs,BeF, > W eF.*",
VeF, % secF) ",
where V = [H;(1:2,:); Ho(1:2,:)]

and B will be specified later. (S

That is, the first two rows of the key in X are from the key
known to qualified Receiver 1 and the last two key rows in
X are known to qualified Receiver 2. Next we identify the
overlap of the key space of X (i.e., rowspan(V)) and the
key space of each eavesdropping Receiver e € {3,4}, i.e.,
rowspan(H.), H, € F3*°. For e € {3,4},

rowspan(U,.V) = rowspan(P.H,)

= rowspan(V) Nrowspan(H.), U, € F,** P, € F,**
Vv

= [Ue _Pe]1><7 |: H. :|7><6 = O1xs,

i.e., U, can be obtained from the left null space. (52)

Note that matrices V and H, are generic so that the left
null space has 1 dimension with high probability and U,
exists. We are now ready to specify B. From the security
constraint (26), we have
Us
U,
column vectors from the right null space.

} B = 0549,i.e., B can be set as
2x4
(53)

Finally, to guarantee correctness (25), we need to ensure that
qualified Receiver 1 can obtain W from the first two rows of
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X (as the keys from the first two rows are known) and the
qualified Receiver 2 can obtain W from the last two rows,

rank(B(1:2,:)) =2, rank(B(3:4,:)) =2. (54)

The assignment of B from (53) satisfies the above two rank
constraints almost surely, because the key spaces of each
receiver are generic (the coefficients of Hj are randomly
drawn). The detailed proof of this observation is based on the
Schwartz-Zippel lemma and appears in Section VI-C.

The converse required for Theorem 4 is a special case of
the following general converse result, whose idea generalizes
that described in Example 3.

Theorem 5: For the secure groupcast problem to the first
N of K receivers, suppose the keys of the eavesdropping
receivers are independent, i.e.,

K
H(znirx) = Y H(z), (55)
e=N+1
then we have
R+ (K —N—1)I(X;W,Zy.x|Ug)/L
K
< (K= N)H(zixlug) = Y H(zelug) (56)
e=N+1

where ug satisfies H(ug|z.) = 0,Ve € [N +1: K], i.e., ug
is known to all eavesdropping receivers.
The proof of Theorem 5 is presented in Section VI-D.

B. N > 2 E > 2 and Interference Alignment

In this section, we fix v = 2 and add more qualified or
eavesdropping receivers to the N = 2, I/ = 2 generic secure
groupcast system to see if the capacity C'(y = 2) = 2/3 will
change. Surprisingly, through various forms of interference
alignment, including additional receivers may not hurt.

Example 4 (Increasing N): Before including additional
qualified receivers into the generic secure groupcast system
with N = 2, F = 2, let us first review the insights for the
achievable scheme with the optimal rate R(y = 2) = 2/3.
From Example 3, we set d = 3 so that m = vyd = 6, i.e., each
receiver has 3 generic linear combinations of 6 basis systems
s = $1.¢ as the key. To achieve rate R = 2d/3 = 2, i.e., send
Ly = 2 message symbols over L = 1 key block, the transmit
signal X has Lx = 4 symbols (refer to (51)). The essential
components are as follows.

1) The 4-dimensional key space of X consists of ran-

dom 2 dimensions from qualified key z; and random
2 dimensions from qualified key z5, so that each
qualified receiver can decode 2 equations on message
symbols.

2) The 4-dimensional key space of X has 1-dimensional
overlap each with eavesdropping key z3 and 24,
respectively. To ensure security, the 2-dimensional mes-
sage space of X is set to be orthogonal to the
2-dimensional overlap (both overlaps), which exists as
X has 4 dimensions.

Now if we increase /N from 2 to 3 (i.e., receivers 1 to 3 are
qualified and receivers 4,5 are eavesdropping) and wish to

achieve the same rate 2 = 2, then we need to ensure that the
key space of X has a 2-dimensional overlap with that of the
additional qualified receiver. To this end, we can no longer pick
2 random dimensions from z; and z, each, as such a random
4-dimensional key space will overlap with the newly added
3-dimensional qualified key z3 in 3 +4 — 6 = 1 dimension.
Therefore, we need to pick a 4-dimensional key space that
has 2-dimensional overlaps with each of z1, 25, 23. As v = 2,
each z;, z; pair has no overlap almost surely, so what we need
to do is to pick a 2-dimensional subspace of z3 that aligns
into the span of the direct sum of 2-dimensional subspaces of
z1, 22. In other words, we only need to change the first point
(on correctness) above while the second point (on security)
can be treated similarly (as the subspace of z3 is aligned into
those of 21, zo so that z3 essentially does not appear).

The detailed scheme with N = 3 is as follows. We first
perform a change of basis operation so that z; and z are
symbols along the standard basis after the transformation.

H» = [Hy; Halgxe has full rank almost surely,  (57)
new basis Sgx1 = Hygs, ie., s = H1_21§ (58)
= 2z = His = HiH;'S = [Isx3 03,3/ =513 (59)
2o = Hos = HoH 'S = [0353 Isx3Js =346 (60)
zr, = Hps = HkHﬁl S

——

2w =Y

L 2] _
= Hk S1:3 + Hk S4.6, Vk € {3,4, 5} 61)

3x3

The transmit signal is set as

X = BW +Vs.,s=BW+ Vi Ooxs 516
02x3 Vo
V1513
= BW + _ 62
|:V254:6 (62)
where X e F*'B e F2,W € F*'.V €

IF;%X‘;,Vl,VQ c ]FIQ)X3. Through the above design of the
key space of X, i.e., rowspan(V), z; and zo each has a
2-dimensional overlap, i.e., rowspan(V7) and rowspan(Va),
and we consider z3. We wish to guarantee the existence of a
2 x 3 matrix V3 so that

Tl (2]

Vizs = Va(H, 515 + Hy 54)

can be obtained from V131.5, VoSy6 (63)
= v, =v;H v, = v;H (64)
«< We generate V3 generically and set

V1,V following (64). (65)

The alignment constraints in (64) and the solution are similar
to those in 2 user wireless X network [5]. After V is specified,
B is generated in the same manner as the N = 2 case (see (53)
for detailed steps),

rowspan(B) L rowspan(V) N rowspan(Hy,),

rowspan(V) Nrowspan(Hs)  (66)

so that security (26) is guaranteed. Note that V is fully
determined by qualified keys z1, 2o, z3. For correctness (25),
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we require that B(1:2,:),B(3:4,:),B(1:2,:)+B(3:4,:)
each has rank 2 (which holds almost surely by showing
each determinant polynomial is not the zero polynomial) so
that Receiver 1, 2, and 3 can decode the desired message,
respectively.

Next, what if IV is further increased to 4? We use the same
transmit signal structure (62) and naturally have additional
alignment constraints due to the new qualified Receiver 4, i.e.,
we wish to guarantee that both z3 and z4 have a 2-dimensional
overlap with Vs;.4. This is realized by setting 2 x 3 matrices
V3, V4 so that

] —2_
Vizg = Vs(Hg ]81:3 + HE ]54:6)

can be obtained from V1357.3, VoS4 67)
Vizy =V, (ﬁz[f]gl:?) + ﬁ£12]§4:6)
can be obtained from V1313, Va5s.6 (68)
< rowspan(V1) = rowspan(Vgﬁgl])
= rowspan(V4ﬁE])
rowspan(Vs) = rowspan(Vgﬁf])
= rowspan(V4ﬁ£12]) (69)
< rowspan(Vy3)
= rowspan(V3 ﬁ?] (ﬁf])_lﬁE] (ﬁg] )™ (70)
AH,
< We set V1 as the eigenvectors of ﬁCT
and then set V1, V,, Vy following (69). (71)

The alignment constraints in (69) and the solution are similar
to those in 3 user interference network [6]. The assignment of
B is exactly the same as above (see (66)). As the overlapping
key space of X for the additional qualified receiver is aligned
into those for the original qualified receivers 1, 2, the proof of
correctness and security remains the same.

Finally, suppose we have a large integer N. If we follow the
same idea above, the linear systems will be over-constrained.
Following (69), we need to find V, ¢ € [1: N] so that

rowspan(Vy) ~ rowspan(Vgﬁgll)

Tl

~ rowspan(V4ﬁ£11]) ~ .-~ rowspan(VyHy)

rowspan(Vy) ~ rowspan(VgﬁE])

[2

~ rowspan(V,H, HY

)~ - ~rowspan(VyHy ).  (72)
Such over-constrained linear systems for large N are a
canonical challenge in interference alignment. Exact solutions
may not exist and we have replaced the exact equality ‘=’
with approximate equality ‘~’. A well-known technique is to
employ CJ asymptotic interference alignment [6], which how-
ever, requires diagonal channel (key) matrices. The solution
of (72) turns out to be the generalization of CJ asymptotic
interference alignment from single antenna to multiﬁ)le antenna
wireless systems [16], [17], [18]. In short, when ﬁgl ,ﬁgz] ,q €
[3 : N] are generic diagonal matrices, we can find an

asymptotic interference alignment based solution to (72). The

details are deferred to the proof of the theorem stated below
in Section VI-E.

Theorem 6: For generic secure groupcast with either N >
2,E=2o0r N=2FE>2,if y =2 and the keys z, k € [1:
N + E] are

2]

2p = Hg]é’l;d +H; 5441:24 (73)

where H HIY € F?*? are generic diagonal matrices, i.c.,
each diagonal element of HE},HE] is drawn independently
and uniformly from IF), and all non-diagonal elements are equal
to zero, then C(y = 2) = 2/3. When E > 2, the achievable
scheme has ¢ leakage, i.e., I(W; X, Z;) = o(d).

Remark 1: Note that Theorem 6 requires generic diagonal
key matrices, which satisfy commutativity - the key for align-
ment to be possible in over-constrained systems. The case with
generic full key matrices (each element randomly drawn with
no fixed zeros, see (35)) is generally open.

Note that Theorem 6 states that we may either increase N
or I/, without decreasing the capacity. Interestingly, the case of
increasing F turns out to be somewhat the dual of increasing
N. When only N is increased, we design the key space
of X, rowspan(V) first (fully determined by qualified keys
z1,- -+, 2n), and then find the overlaps with the eavesdropping
keys znyi1, -+ ,2K to determine the message space of X,
rowspan(B) (refer to (60)), i.e., from V to B. When only F
is increased, the order is reversed. Specifically, we design the
overlap of the key space of X with the eavesdropping keys
ZN41, -, 2K first (fully determined by alignment constraints
among the eavesdropping keys) such that rowspan(B) is set
as the orthogonal space, and then find the key space of X,
rowspan (V) to have the desired determined overlaps with the
eavesdropping keys, i.e., from B to V. Further, rowspan(V)
must be designed so that its overlap with each qualified key
has sufficient dimensions to ensure correctness. The details are
presented in Section VI-E.

Remark 2: We have only considered the case of either
increasing N or increasing £ above. What if we simultane-
ously increase N and E? This is an open problem and the
ideas presented above may not suffice because the design of
V (fully determined by qualified keys for large V) and B
(fully determined by eavesdropping keys for large E) is not
compatible in general.

VI. PROOFS
A. Proof of Lemma 1: Capacity of SGy4

We present the achievability and converse proofs in the
following two sections.

1) Achievability: R > 4: To send Ly = 4 message
symbols Wi.4 with L = 1 key block, we set the transmit
signal X = (X7;X2) as follows. Note that X contains two
independent parts X; € F,*! and X, € Fp*'.

Wi+ 54
X, — Wa + s5 + s6
L= —2W71 — 3Ws + sg ’

W1+ 2Ws + s7 + s9
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W3 + s1p
Wi+ s11 + 812
—2W3 — 3Wy + s14
W3 +2Wy + 513 + s15

Correctness (25) follows from the observation that qualified
Receiver 1 knows $4.6,S10:.12 and can obtain the message
symbols Wi.4 from the first two rows of X, X5, and qualified
Receiver 2 knows s7.9,513.15 and can obtain the message
symbols Wi.4 from the last two rows of X7, Xo.

Consider security (26) and the eavesdropping Receiver
3. Note that the overlap of the key space of X; and the
eavesdropping key z3 is

Xy, = (74)

54 + 85 + 8¢ + S8 + 57 + 89, (75)

i.e., the sum of all four rows of X;. The projection of the
message symbols to this space is

Wi+ Wy + (=2W; — 3Ws) + (W1 +2W5) =0 (76)

so that nothing is revealed. The case with X5 is similar, i.e.,
from X1, X5, z3, we obtain no information about W. Consider
eavesdropping Receiver 4. The overlap of the key space of
X and the eavesdropping key z4 is

254 + (s5 + s6) + 3ss + 4(s7 + s9)

= 2(54 + 257) + (85 + 358) + (85 + 459)7 (77)

i.e., [2,1,3,4]1 x4 x X;1. The projection of the message symbols
to this space is

2 Wy +Wso + 3(—2W1 — 3W2) + 4(W1 + QWQ) =0 (78)

so that nothing is revealed from (X7, X, z4). The achievabil-
ity proof of Lemma 1 is complete.
2) Converse: R < 4: We use Theorem 5 and Theorem 1.
Set ug = s1.3 in Theorem 5, then we have
R+ 1(X;W,Z1.4|Ug)/L
< 2 H(z1.4lug) — H(z3|ug) — H(z4|ug)
=2x12—(6+6)=12.

(79)
(80)

Set @ = {1,2} and u, = ug = $1.3 in Theorem 1, then we
have

I(X; W, Z1.4|Us) /L
> 9R - (H(Z3\Ug) + H(zalug) — H(zs, Z4|Ug)> (81)
— 2R — (646 — 12) = 2R. (82)

Combining with the above two inequalities, we have the
desired outer bound,

3R<12 = R<A4. (83)

B. Proof of Theorem 3: Extreme vy Regimes

1) Large v: v > min(N + 1, E + I): The converse proof
follows immediately from Theorem 1. From (6), Vg € [1 :

N],Ve € [N + 1 : K| we have
R < H(zlze) < H(z,) = rank(H,) < d.  (84)

Note that R/d < 1 always holds, e.g., there is no probabilistic
argument involved.

The achievability proof has two parts. First, we show that
when v > N + 1, R = d is achievable. Consider L = 1 key
block, and the message has d symbols, W & Iﬁ‘g“. We set

W+21
W+ZQ
X = ,

eFyxt (85)

W+ zn

where z, € FI*! ¢ € [1 : N] and ‘+ represents element-
wise addition. Correctness constraint (25) is always satisfied
because each qualified Receiver ¢ can use z, to obtain W
from X. For security (26), we require that Ve € [N + 1 : K|

(21,22, ,2n) is independent of z. (86)
< Hougey 2 [Hy; Hoy -5 Hys Hel(vi1)asom
has full row rank (87)

which holds almost surely because m = ~vd > (N + 1)d
and each element of Hgy (.} is drawn independently and
uniformly from FF,. Consider the determinant of any (N +
1)dx (N+1)d sub-matrix of Hg (.} and view the determinant
as a polynomial, whose variables are the elements of Hg.}-
This polynomial is not the zero polynomial so that by the
Schwartz-Zippel lemma [19], [20], [21], the probability that
the determinant is not zero approaches 1 as the field size p
approaches infinity, i.e., (87) holds almost surely. As (87) holds
with probability approaching 1 for each e € [N +1 : K],
the probability that (87) holds for all e € [N + 1 : K]
also approaches 1, i.e., the security constraint (26) is satisfied
almost surely.

Second, we show that when v > E'+1, R = d is achievable.
Set L =1 and

X =BW +s (88)

where X,s € Fy'*!, B € F"*?, W € F2*! and B is chosen
so that

Hy 1
Hy 2

B =0ggxa- (89)

HK Edxm

AH,

Note that m = ~vd > (E + 1)d, i.e., m—Ed > d, so the
right null space of H¢ has at least d dimensions, i.e., B
exists and can be chosen as any d linearly independent column
vectors from the right null space. This choice of B ensures
security (26) and we verify correctness (25). We require that
Vg € [1: NJ, from H,X = H,BW + z,, we can decode W,
ie.,

rank(H,B) = d. (90)

We similarly invoke the Schwartz-Zippel lemma [19], [20],
[21]. To this end, view the determinant of H,B as a poly-
nomial in variables of the elements of Hy, k € [1 : K|. This
polynomial is not the zero polynomial because it is not always
zero, e.g., we may assign the matrices Hj, as follows,

He = [Igaxsd Opdx(m—pa) |-

Authorized licensed use limited to: University of North Texas. Downloaded on January 29,2025 at 16:41:19 UTC from IEEE Xplore. Restrictions apply.



SUN: SECURE GROUPCAST: EXTRA-ENTROPIC STRUCTURE AND LINEAR FEASIBILITY 693

H, = [ O0ux(m—ay laxa ] o1
so that
B { O(m—dyxd ] . H,B = Ly
Lixa
= det(H,B)=1#0. (92)

As a result, the non-zero polynomial will not be zero with
probability approaching 1 as p — oo. As (90) holds with
probability approaching 1 for each ¢ € [1 : N, the probability
that (90) holds for all ¢ € [1 : N]| also approaches 1, i.e., the
correctness constraint (25) is satisfied almost surely.

2) Small ~v: v < max (I 4+ 1/N,1+ 1/E): We use Theo-

rem | to prove the converse. From (6), Vg € [1 : N|,Ve €
[N +1:¢] we have
R < H(zglze) = H(zq, 2e) — H(2e)
< H(s) — H(z.) = m — rank(H,) (93)

which is equal to m—d almost surely, as H, contains d generic
rows. Thus R/d < m/d —1 =~ — 1 almost surely.

We now consider the achievability proof, which has two
parts. First, we show that, when v <1+ 1/N, R=m —d is

achievable. Set L = 1 and
X =W+ Hgs 94)

where X, W € Fy" """ Hg € Fy" "™ s € Fr*! and
Hy is chosen so that

Ho =P H, = P,H, = --- = PyHy (95)
< O(m—d)yx(N-1)m
=[P, Py Py }(m—d)de X

H, H, --- H,

7H2 Ode Ode

0d><m _HS dem R

Odxm  Odxm “HN | vax(v—1ym

£Hg
Ho = P H;. (96)

Note that Nd — (N — 1)m = m — N(v — 1)d > m — d,
so the left null space of Hp has at least m —d dimensions, i.e.,
P,,q € [1: N] exists and can be chosen as any m —d linearly
independent row vectors from the left null space. Then Ho
exists and this choice of Hg ensures correctness (25), because
any qualified Receiver ¢ € [1 : N| can obtain Hgs = Pz,
and then extract W from X. Next, consider security (26).
We require that Ve € [N +1: K]

Houge; = [Ho; Helpxnm has full rank almost surely (97)

which follows from the Schwartz-Zippel lemma [19], [20],
[21] and the determinant polynomial of Hgy.} is not the
zero polynomial (easy to see as Hg only depends on the
qualified key matrices H,, ¢ € [1 : N|, which is independent
of the eavesdropping key matrix H.). Thus the security
constraint (20) is satisfied almost surely over large fields, i.e.,
when p — oo.

Second, we show that when v < 1+ 1/E, R =m —d is
achievable. Set L = 1 and

o HgS
X= ( W+Hrands>

where X € F2" D He Hypng € F" "W €
F;m_d)“, s € FZ”l and He, H,.,,q are chosen as follows.

(98)

Each element of H,,,4 is drawn independently

and uniformly from I, and 99)
rowspan(Hg) = rowspan(H 1) Nrowspan(Hy 1 2)
N -+ Nrowspan(H) (100)

< Hs =Py 1Hyp =PrioHpyo

=...=PrgHg, P, EFémid)Xd,e S [N+1 : K]
(101)

where H¢ can be solved in the same manner as (96) because
the overlap of the row spaces of H, has sufficient dimensions,
ie, Ed— (E—1)m =m— E(y—1)d > m — d. To ensure
correctness (25), we require

[Hg; Hylxom has full rank almost surely, Vg € [1 : N]
(102)

whose proof follows similarly from that of (97). Then each
qualified Receiver ¢ can recover s from Hgs and the key
2q = Hys, and obtain H,.4,,4 s (so that W is decoded with no
error). To ensure security (26), we require

Hrandu{e} = [Hrand; He]mxm

has full rank almost surely, Ve € [N + 1 : K] (103)

which follows from the Schwartz-Zippel lemma [19], [20],
[21] and the determinant polynomial of H,u,qufe} 1S not
the zero polynomial (trivial as we may find a realization of
H,ung and Hy,k € [1 : K] such that H,4,q07¢) i an
identity matrix). To sum up, both correctness constraint (25)
and security constraint (26) are satisfied almost surely over
a sufficiently large field. The proof of Theorem 3 is now
complete.

C. Proof of Theorem 4: N = F =2

As the regimes where 1 < v < 3/2 and v > 3 have been
covered by Theorem 3, we only need to consider the remaining
three regimes, which are discussed sequentially as follows.

1) 5/2 < ~ < 3: Converse follows from Theorem 1.
From (6), we have R < H(zg|z.) < H(z,) = rank(H,) <
d,Vq € {1,2},Ve € {3,4}.

Achievability of R = d is similar to that of Example 3. Set
L =1 and the transmit signal as

H,
H,
where X € F2X1 B € F24xd 1y € FI*1 V ¢ F24xm 5 ¢
Fr>t Hy, Hy € F2*™, and B is designed as follows,
Us
Uy

X:BW+Vs:BW+[ :|S=BW—|- [ j ] (104)
2

} B =0, ie., B exists as

2(3d—m)x2d
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2d —2(3d —m) > d (v > 5/2), (105)
where for e € {3,4},
Y
[Ue - Pe}(Sdfm)XSd |: H :| =0. (106)
€ 13dxm

Note that V is fully determined by H;, H,, which is indepen-
dent of H,, so U, (obtained from the overlap of the row space
of V and the row space of H.) will have dimension 3d — m
with high probability. Security (26) is guaranteed by (105).
For correctness (25), we require that

B(1:d,:),B(d+1:2d,:) both have full rank  (107)

which is proved by showing that the determinant polynomials
(of variables from Hy, k € [1 : 4]) are not the zero polynomial
so that by the Schwartz-Zippel lemma [19], [20], [21], the
two matrices have full rank almost surely as p — oo.
The determinant polynomials are non-zero for the following
realization of Hy, so that they are not always zero.

His = 51,4, Has = S(d+1):2d (108)
H3s = (51:(3d—m) T 8(d+1):(4d—m)} S(2d+1):m) (109)

Hys = (S(3d7m+1):2(3d7m) T S(4d—m—+1):(7d—2m)}
S(2d+1):m) (110)

U

[ Ui } = [La3d—m)x2(3d—m) 02(3d—m)x (2m—5d)
Io(3d—m)x2(3d—m) 02(3d—m)x(2m—5a)] (111)
B = [Lyxa; —Laxal- (112)

The proof of achievability when 5/2 < v < 3 is complete.

2)2 < v < 5/2: We first provide the converse proof.
In Theorem 5, we set ug = (). Note that v > 2 so the
eavesdropping keys zs, z4 are independent almost surely, i.e.,
the condition of Theorem 5 is satisfied. Then we have

R + I(X, W, Z1:4)/L S 2H(21;4) - H(Zg) — H(Z4)
=2m —2d (113)

almost surely as the keys are generic. Then we apply
Theorem 1. In (7), we set Q = {1,2} and it follows that

I(X,VV,Z14)/L Z 2R — (H(Zl722) — H(Zl) — H(ZQ))
= 2R (114)

almost surely. Note that when v > 2, the qualified keys
21,722 are independent almost surely. Combining the two
inequalities above, we have

3R <2m —2d

= R(y)=R/d<2(m—d)/(3d) =2(y—1)/3 (115)
and the converse proof when 2 < < 5/2 is complete.

We next provide the achievability proof, which is very
similar to that presented in the previous section and only
the parameters need to be adjusted to match the current
regime. As the normalized rate R(y) = 2(y — 1)/3 may
not be an integer, we consider spatial extension by a factor
of 3, ie., set d = 3d,m’ = 3m and show that R =

2(m’ — d')/3 = 2(m — d) is achievable when each key is
3d generic combinations of 3m basis symbols. Set L = 1 and
H(1:2(m—d),:)

Hy(1: 2(m —d),:) |5 (110

X:BW—}-Vs:BW—i—[

where X € Fym 1B ¢ Eam-dx2m=d) g, o
Fam= Xl ¢ pplmmdxIm g ¢ F3m>1. Note that 2(m —
d) < 3d as v < 5/2. B is designed so that
{ Us } B = 0, where for ¢ € {3,4},
Uy

~——

\%

H.

2(m—d)x4(m—d)
Security (26) is guaranteed by (117). For correctness (25),
we require that
B(1:2(m—d),:),B2(m—d)+1:4(m—d),:)
both have full rank (118)

(U, — P, =0.
———

(m—d)x(4m—d)

} (117)
(4m—d)x3m

which is similarly proved by the Schwartz-Zippel lemma [19],
[20], [21] and the property that the determinant polynomials
(of variables from Hy, k € [1 : 4]) are not the zero polynomial.
The following realization of Hj shows that the determinant
polynomials are not always zero.

Hl(l : 2(m - d)a :)S = S1:2(m—d)>
H2(1 : 2(m - d))v :)S = S(2m—2d+1):4(m—d) (119)

Hss = (S1:(m—d) T 5(2m—2d+1):3(m—d)} S(4m—4d+1):3m)

(120)
Hys = (S(m—d+1):2(m—d) T 5(3m—3d+1):4(m—d);
S(4m—4d+1):3m) (121)
U
{ Ui } = Ta(m-dyx2(m—a) La(m-d)x2(m—d)ls
B [ Io(m—d)x2(m—d) (122)
712(m—d)><2(m—d)

The proof of achievability when 2 < v < 5/2 is complete.

3)3/2 < ~ < 5/3: Converse follows from (6) in
Theorem 1. R < H(z4|2.) = H(2g,2¢) — H(z.) = m —d
almost surely as v < 2 so that from z,, z., we can recover
S1..m With high probability.

For achievability, we note that there is a (2d — m)-
dimensional overlap between H; and H, (the two qualified
keys),

H12 é V12H15
H;
where [Via — Vai](2d—m)x2d [ }
( s H2 2dxm

= 0(2d—m)xm (123)

and similarly, for the two eavesdropping receivers, Hs and
H, have a (2d — m)-dimensional overlap, from which we
will use 2m — 3d < 2d — m (recall that v < 5/3) generic
dimensions.

Hj, £ V3,H;,
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H
where [V34 — Vi3](2m—3d)x24 [ Hi ]
2dxm

= 0(2m—3d)><m~ (124)

With high probability, H; and H5 span the overall key space
s1.m and we can express Hgy as linear combinations of the
rows of H; and Ho.

invertible

H, — [H(1:m—d,:); Hysl,
H, "0 [Hy(1:m — d,1); Hygls (125)
H3;, =CHi{(1:m—d,:)+ CoHy(1:m —d,:)

+ Ci2Hyo (126)

where Cy, Cy € FEm =30 (m=d) ¢, ¢ pl2m=3d)x(2d=m)

We wish to send Ly = m — d message symbols W.
Specifically, the first 2d — m message symbols are denoted
by W; € IE‘I(,dem)Xl and last 2m — 3d message symbols are
denoted by W, € IFI(,Qm*Sd)Xl. The message W is sent over
L =1 key block and the transmit signal is set as

Wi +Hizs1:m
W2 + (lel(1 m—= da :)Slzm
—C1oW; — Wy + CoHo(1:m —d, :)S1:m
3m—4d)x1
€ Fm—ad)x1,

X =

(127)

Correctness (25) is easily seen, as qualified Receiver 1 can
obtain W1, Wy from the first two row blocks of X, and
qualified Receiver 2 can obtain W1, W4 from the first and
third row block of X. Security (26) holds because the overlap
of each of z3, z4 (of dimension d) with the key space of X (of
dimension 3m — 4d) is Hs4 (of dimension d+ 3m —4d—m =
2m — 3d), along which the projection of W in X is null.

(Key space of X) N rowspace(Hs)
= (Key space of X)Nrowspace(H,) = H3y. (128)

Note that this design wherein both overlaps are the same space
also follows from interference alignment principles. We need
to ensure that the overlap is only Hs, with high probability,
i.e., the direct sum of the key space in X and the row space
of each of Hj3, Hy have full row rank almost surely, which
is formalized by the Schwartz-Zippel lemma [19], [20], [21].
Note that the remaining rows of H3 and H, (except Hs,) are
generated independently of H;, H5, so the determinant poly-
nomials of corresponding matrices contain distinct monomials
and are thus non-zero.

D. Proof of Theorem 5: New Converse

Following the insights from (50), we consider the overlap
of the transmit signal X and each eavesdropping key spaces
Ze,e € [N +1: K] conditioned on Ug. On the one hand,

1(X; Z.|Ue)

Y r(x; 2., W|Ue) (129)
=I1(X;Z1.5, Ze, W|Ug) = I(X; Z1.x | Ze, W, Ug) ~ (130)
> I1(X; Zy.ie, W|Ue) — H(Zy.x¢| Ze, W, Ug) (13D

2
D 1(X; Zy, W|Ue) — H(Z1.x|Us) + H(Z.|Us) (132)

= I(X; 71K, W‘Ug) — H(Zl:K|Ug)L + H(ZG|Ug)L.

(133)
On the other hand,
K
> I(X: Z|Ue)
e=N+1
K
< Y (X, Znirie1; Ze|Ue) (134)
e=N+1
(55)
= > I(X:Z|Zni1.e-1,Ue) (135)
e=N+1
= I(X;Zn i1k |Ue) (136)
< I(X; Z1k|Ue) (137)
= I(X;Z1x, W|Us) = I(X; W|Z1.5c, Ug) (138)
& I(X; Z1.x, W|Ug) — HW|Z1.x,Ue)  (139)
(2

= I(X;Zy.x,W|Us) — Lw. (140)

Adding (133) for all e € [N + 1
with (140), we have

: K] and combining

(K — N) (J(X; Zix, W|Ue) — H(ZLK‘Ug)L)

K
+ Y H(zelug)L
e=N+1

§I(X;ZLK,W‘U5)7LW (141)
= Ly + (K — N = D)I(X; W, Zy.k|Ug)
K
< (K - N)H(zuxlug)L— Y H(z|ug)L (142)
e=N+1

and normalizing by L gives us the desired bound.

E. Proof of Theorem 6: Asymptotic Alignment

Adding more receivers (qualified or eavesdropping) cannot
help so that for the converse proof, it suffices to consider the
N =2, E = 2 system. From Theorem 4, we have the desired
bound R(y = 2) < 2/3. Next, we provide the achievability
proof, which is asymptotic, i.e., the normalized R(y = 2)
approaches 2/3 when a parameter of the scheme goes to
infinity.

1) Achievability When N > 2, E = 2: Suppose 2d/3 =
(511 for some positive integer A (later A will be driven to
infinity). Define a matrix that is parameterized by A and is
comprised of a collection of row vectors as follows.

ol al2!
VA = {1 (H (FL) o (HE2) ) :

q1,92

Z(agll] +a)y<a o) ol ez, g €1 N]}

91,92

(143)

where 1 is the 1 x d all 1 row vector and Z, 1is the set
of positive integers. Thus V2 contains product terms up to
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degree A. The number of row vectors in VA1 is equal to

(%El), which has been set to 2d/3.

Set L =1, Ly = (5n) <2d/3, Lx = 2(5}') = 4d/3 and
the transmit signal X as

vatt o
X = BW+{ 0 VA }31:2d
VA+181~d :|
- BW+ : 144
{VA—HSdJrl:Qd (144)
where X € FLx*1 B e FLxxtw W e Fiwxl B is
designed so that
Uk—1 | B _ 0, where f K-1,K
Ux =0, where fore € {K —1,K},
—_——
2d/3%4d/3
VA—H 0
[U. — P, 0 VAtL o (145)
(1] (2]
d/3x7d/3 He He
7d/3x2d

Note that Ly < 2d/3 so that B exists. Security (26) follows
from (145) and VAT is determined fully by qualified key

matrices H([zl]7 H[qz], g € [1: N] thus U, has d/3 rows almost

surely. Correctness (25) is due to the observation that Vq €
[1:N]
VAH c vAaT vaRE c vat (146)
= VA%, =VAHUs1 4+ VAHE 41104 (Ly tows)
can be obtained from the rows of
VA 10, VAT s 1004
i.e., there exists D, € Ffw>Ex s,
D [VA 1.4 VA s 1004 = VA2,
= D,X -V?z,=D,BW

(147)
(148)

so we need to ensure D,B has full rank almost surely. The
determinant polynomial of D,B is not always zero as there
exists one such realization Hy,k € [1 : K. Finally, the
normalized rate achieved is

— Lw (&) 2A+1-2N 2
d 55K 3 A+l 3
as A — oo. (149)
2) Achievability When N = 2,E > 2: Suppose d/3 =

(A;gl) for some positive integer A. Define a matrix that is

comprised of the following row vectors. Note that K = E +
2 and receivers 3 to K are eavesdroppers.

VA = {1 (H (HI) ) (H2)os )

€1,€2
S @ +al)y<Aall,a ez, er,e5€[3: K]}

€1,€2

(150)

where 1 is the 1 x d all 1 row vector and V4 contains product
terms up to degree A. The number of row vectors in VA1
is equal to (%), which has been set to d/3.

We wish to design the scheme so that the overlap of each
eavesdropping key and the key space of X belongs to the space
spanned by [VA*1s;.4: VA%1s,.1.54]. To this end, we wish
to see how to create this space from the qualified keys. As v =
2, so the qualified keys z1, 2o are invertible to all 2d basis
key symbols almost surely. Define Hys = [H;; Ha, 5104 =
H551.94, then 21 = 51.4,20 = S4+1:24- The 2d x 2d square
matrix Hyy is invertible almost surely, i.e., inv(H;is) exists.
We define the four d x d sub-matrix of inv(Hjz) as follows,

inV[ll} (ng) iI’lV[IZ} (ng)

) H _ ]F2d><2d
inv(H») [ inv2U(Hyp) V2 (H,y) | ’
and then we have
|: VAJrlSl:d :|
VAHls 1104
r VA+1 0
= I O VA+1 ] 81:2d (152)
r VA+1 0 1 . _
| 0o var inv(H12)51:24 (153)
r VA—',—l 0
= i 0 VA+1 ] X
vl U (Hy,)  inv(Hy,)
- 154
nvi2 }(le) inv??(H,) } P (>
_ VA“mV[U] (Hip)z + VA (Hy)z ] oo
T L VAR (H ) 2 + VAN (H ) 29

Set L =1, Ly = 2d/3, Lx = 4d/3 and the transmit signal
X as

X =BW + Vsi.99

Wi.ay3 VAHinyM (H )z

_ Wassi1:24/3 VA+H iy (Hiz2)z

B 7W1:d/3 VA+1iIlV[12] (H12)22

—Wayzyi:2a/3 VA iny(22l(Hy5) 2
(156)

where X € FLx*! B e Fixxtw w e FLw*lV ¢
F£Xx2d_

We prove that the scheme is correct and the leakage is small
compared to d. Correctness (25) follows from the observation
that from the first two row blocks of X, qualified Receiver
1 can decode all Ly, = 2d/3 symbols of W, and from the
last two row blocks of X, qualified Receiver 2 can decode
all Ly, = 2d/3 symbols of W. Next, consider security (26).
Note that Ve € [3 : K]

VAHU ¢ vAa+t vAHE ¢ vA+! (157)
= rowspan([VAH vAH)
VA+1 0

C rowspan <[ 0 VA+L }) (158)
= V22, = VAHW s .+ VAH 541104

can be obtained from

VA+ 0 VAtlg,,
{ 0 vaH }51;% = [ VA“sUz:fzd } . (159)
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The row space of z. (of dimension of d) and the key space
of X (of dimension 4d/3) have overlap of d + 4d/3 —
2d = d/3 dimensions with high probability (easily verified
by showing that the determinant polynomials are non-zero).
The row space of V2 belongs to this overlap as it can be
obtained from Vsi.04 (Which follows from the design of the
scheme, refer to (155), (156), (159)). Further, the dimension
of the row space of V2 is equal to the number of row vectors
in V2 with high probability, which is (,},). The projection of
the message W in the transmit signal X to this overlapping
space V22, is zero thus nothing is revealed. Except from
(orthogonal to) the row space of V2, the remaining overlap
of the row space of z. and the key space of X has dimension
at most

d/3 — dim (rowspace(VA)) = (AZ—'L:? 1> — <2%) (160)
d/3 — dim (rowspace(VA))

- d
1 (55) 28

=—-|1- = —0as A,d — oo.
3 (A;El) 3(A+1)

(161)

Therefore, the leakage vanishes with the spatial dimension d.
As we allow d to approach infinity, the normalized leakage is
negligible, i.e., I(W; X, Z,) = o(d) (the derivation is the €
leakage relaxation of the zero leakage counterpart in (34)).

VII. CONCLUSION

In this work, we show that for the secure groupcast
problem which involves no noise, the communicate rate is
not fully specified by the source variables in the problem
statement. As a result, a more general entropic description that
includes auxiliary variables for the achievability and converse
is required. Additional insights are necessary to reveal the
structure of auxiliary variables.

We also study the generic secure groupcast problem where
each key is comprised of a number of generic linear combina-
tions. The groupcast rate is measured as a function of the ratio
of the dimension of the overall key space to the dimension of
each receiver’s key space. The feasibility of linear schemes
is stated in terms of space projections and overlaps, which
leads to the natural application of various interference align-
ment schemes originated in wireless communications. While
complete answers are obtained when the overall key space is
either large or small, the intermediate cases are open and call
for more advanced techniques.
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