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Abstract—In this paper, we study the information theoretic
secure aggregation problem, where the server node aims to
aggregate K users’ locally trained models, without revealing
any other information about the users’ local data. To ensure
security, some keys are shared among the users, which is referred
to as the key sharing phase. Uncoded groupwise keys are
considered, where each key is shared by a subset of S users and
is independent from other keys. After the key sharing phase,
each user masks its trained model and sends to the server,which
is referred to as the model aggregation phase. In the presence
of users’ dropouts (i.e., up to K − U user may drop during
the model aggregation phase and the identity of the dropped
users cannot be predicted), to guarantee the information theoretic
security, two-round transmissions are necessary. Our objective
is to characterize the capacity region of the transmission rates
(i.e., the normalized numbers of two-round transmissions by each
user) in the two rounds. When S ≥ K − U + 1, the capacity
region was recently characterized. In this paper, we additionally
consider the potential effect of user collusion, where there may
exist up to T users colluding with the server. With the presence
of the colluding users, the security constraint becomes that,
except the sum of trained models, the server cannot learn any
information about the other users’ local data even if it colludes
with any set of up to T users. For this new problem, we propose
two secure aggregation schemes, which work for the cases of
S = K−U+ 1 and of K−U+ 1 ≤ S ≤ K−T, respectively. The
first scheme is then proven to achieve the capacity region.

Index Terms—Secure aggregation; information theory; un-
coded groupwise keys; user collusion

I. INTRODUCTION

With the development of modern edge devices such as

mobile phones, it is possible to access a large amount of data

suitable for learning models. Federated learning (FL) leverages

the edge devices’ local data and computational resource to

proceed trainings [1]. In a FL framework, users compute

the trained model and send back the computation results to

the central server; the server then updates the model with

the received results aggregation [2]–[4]. Compared to other

distributed machine learning scenarios, FL has a significant

advantage in preserving the security of users’ local data against

the server, since the users do not need to transmit the original

local data to the server.

To further guarantee that the server only gets the sum of

updated models without retrieving any other information about

the users’ local data, secure aggregation for FL was originally

introduced in [5], where various secure aggregation schemes

were proposed with the tolerance against user dropout and

collusion. Recently, an information theoretic (K,U,T) secure

aggregation problem against user dropout and collusion was

proposed in [6]. The secure aggregation framework contains

two phases. During the key sharing phase, the users share

the keys in an offline scenario, where the generated keys

are independent from the trained models in the future phase.

During the model aggregation phase, each user first computes

the trained model by using its local data. Assume that each

trained model has L i.i.d. symbols on some finite field Fqsf .

To ensure security, a two-round transmission process is used.

In the first round, each user sends a coded message to the

server as a function of their trained model and shared key.

Due to user dropout, the server only receives messages from

the users in U1, where U1 ⊆ {1, . . . ,K} and |U1| ≥ U. The

server then informs the users in U1. In the second round, each

user in U1 transmits linear combination of keys to the server.

Due to user dropouts in the second round, the server receives

answers from the users in U2, where U2 ⊆ U1 and |U2| ≥ U.

The decodability constraint is that the server should recover

the sum of the trained models by the users in U1 from its

received messages. For the security constraint, the server may

collude with any subset of users T where T ⊆ {1, . . . ,K}
and |T | ≤ T. Besides the sum of the trained models by the

users in U1, the server should not know any other information

about the trained models by the users in {1, . . . ,K} \ T even

if it knows the trained models and stored keys of the users in

T . According to [6], each user needs to send a minimum of

L symbols in the first round and L/(U − T) symbols in the

second round, which can be achieved simultaneously.

In the secure aggregation schemes in [6], [7], which can

achieve the minimum numbers of transmissions, the users

store some coded keys. In [8], the information theoretic secure

aggregation problem with uncoded groupwise keys was formu-

lated. The keys shared by users are groupwise and uncoded,

which is motivated by practical key generation techniques.

Each key is stored by a set of users and is independent

among each other. In contrast to the model proposed in [6],

this formulation introduces an additional constraint on the

uncoded groupwise keys, namely that each key is shared by

S users.Without the consideration of user collusion, a secure

aggregation scheme achieving the optimal communication

rates was proposed in [8] when S ≥ K− U+ 1.
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(a) First round.

(b) Second round.

Fig. 1: Information theoretic secure aggregation with uncoded
groupwise keys: A case study with (K,U, S) = (4, 2, 3)

Main Contributions: In this paper, we formulate the

(K,U, S,T) information theoretic secure aggregation problem

with uncoded groupwise keys against user collusion, as illus-

trated in Fig. 1. For this new problem, we propose two secure

aggregation schemes:

• The first scheme is from an extension from the secure

aggregation scheme in [8] and works for the case S =
K − U + 1. Interestingly, this scheme achieves the same

communication rates as the optimal secure aggregation

schemes [6], [7] which are built on coded keys.

• The second scheme works for the case K−U+1 ≤ S ≤
K− T, and is built on a smart application of the coding

strategy for distributed gradient descent [9]–[11].

The details of all proofs in this paper will be provided in our

future extended version.

Notation Convention: Calligraphic symbols denote sets,

bold symbols denote vectors and matrices, and sans-serif

symbols denote system parameters. We use | · | to represent

the cardinality of a set or the length of a vector; [a : b] :=
{a, a+ 1, . . . , b} and [n] := [1 : n]; Fq represents a finite field

with order q; MT and M−1 represent the transpose and the

inverse of matrix M, respectively; the matrix [a; b] is written

in a Matlab form, representing

[
a
b

]
; rank(M) represents the

rank of matrix M; we let
(
x
y

)
= 0 if x < 0 or y < 0 or

x < y; for any set S and an integer s, we let
(S
s

)
represent

the collection of all subsets of S with s elements. Entropies

will be in base q, where q represents the field size.

II. SYSTEM MODEL

We formulate a (K,U, S,T) information theoretic secure

aggregation problem involving a server and K ≥ 2 users.

Each user k ∈ [K] holds an input vector Wk and uncoded

groupwise keys Zk =
(
ZV : V ∈

(
[K]
S

)
, k ∈ V

)
, where ZV is

shared among S users. The input vectors in (Wk : k ∈ [K]) are

independent, consisting of L uniform and i.i.d. symbols over a

finite field Fq. The keys in
(
ZV : V ∈

(
[K]
S

))
are independent

of each other and independent of the input vectors. Thus

H

(
(Wk : k ∈ [K]), (ZV : V ∈

(
[K]

S

)))
=

∑
k∈[K]

H(Wk) +
∑

V∈([K]S )

H(ZV).
(1)

The model aggregation phase contains two rounds of trans-

missions.

In the first round. User k sends the ciphertext Xk, which is a

function of Wk and Zk, to the server. In the first transmission

round, a subset of users may drop and the surviving users are

denoted by U1, where U1 ⊆ [K] and |U1| ≥ U; thus the server

receives Xk where k ∈ U1. The communication rate for the

first round is determined by the maximum transmission load

of all users, i.e., R1 := maxk∈[K]
|Xk|
L .

In the second round. The server sends the value U1 back

to the users in U1. User k then sends Y U1

k , which is the

linear combination of keys Zk, to the server. In the second

transmission round, a subset of users may still drop and the

surviving users are denoted by U2, where U2 ⊆ U1 and

|U2| ≥ U; thus the server receives Y U1

k where k ∈ U2.

The communication rate for the second round is determined

by the maximum transmission load of U1 users, i.e., R2 :=

maxU1⊆[K]:|U1|≥U maxk∈U1

|Y U1
k |
L .

Decodability. The server can recover
∑

k∈U1
Wk from (Xk :

k ∈ U1) and
(
Y U1

k : k ∈ U2

)
, i.e., for any U1 ⊆ [K] and

U2 ⊆ U1,

H

(∑
k∈U1

Wk

∣∣∣(Xk : k ∈ U1), (Y
U1

k : k ∈ U2)

)
= 0. (2)

Security. Even if the server may collude with any set of

users T where |T | ≤ T , the server cannot get any information

about the input vectors of the non-colluding users except∑
k∈U1

Wk. Thus for any U1 ⊆ [K] where |U1| ≥ U,

(we assume the server can receive all possible transmissions,
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i.e.,(Xk : k ∈ [K]) and (Y U1

k : k ∈ U1) )

I
(
(Wk : k ∈ [K]); (Xk : k ∈ [K]), (Y U1

k : k ∈ U1)
∣∣∣∑

k∈U1

Wk, (Wk,Zk : k ∈ T )
)
= 0.

(3)

Note that in our problem, for the security constraint, we must

have T < U as shown in [6].

Objective. The rate tuple (R1,R2) is achievable if there

exists a secure aggregation scheme satisfying (2) and (3),

where the keys satisfy (1). Our goal is to determine the

capacity region R∗ (i.e., set of all achievable rate tuples).

A converse bound on the capacity region of our considered

problem (K,U, S,T) can be obtained from the converse bound

in [6], which is the converse bound for any possible key

generations.

Lemma 1 ( [6]). For the (K,U, S,T) information theoretic
secure aggregation problem where T < U, each achievable
rate tuple (R1,R2) satisfies

R1 ≥ 1, R2 ≥ 1/(U− T). (4)

When T = 0, the following capacity results were character-

ized in [8].

Lemma 2 ( [8]). For the (K,U, S,T) information theoretic
secure aggregation problem where T = 0 and S > K − U,
every achievable rate tuple (R1,R2) satisfies

R1 ≥ 1, R2 ≥ 1/U. (5)

III. MAIN RESULTS

Theorem 1. For the (K,U, S,T) information theoretic secure
aggregation problem where S = K− U+ 1 and T < U,

R� = {(R1,R2) : R1 ≥ 1,R2 ≥ 1/(U− T)} . (6)

The converse bound for Theorem 1 follows directly from

Lemma 1, and the proposed achievable scheme is described

in Section IV.

In [8], the number of keys needed is K when U ≤ K−U+1
and is O(K2) when U > K−U+1. But if there are colluding

users, this number of keys will not be enough to guarantee the

security constraint. Instead, we propose to use all
(
K
S

)
keys in

our secure scheme.

The transmission rates of the proposed secure aggregation

scheme in Theorem 1 are exactly the same as the optimal

secure aggregation scheme in [6]. Hence, in the case of

S = K − U + 1, the uncoded groupwise keys can achieve

the general optimality among all possible key generations.

Next, we propose our second secure aggregation scheme for

the more general case where K− U+ 1 ≤ S ≤ K− T.

Theorem 2. For the (K,U, S,T) information theoretic secure
aggregation problem where K − U + 1 ≤ S ≤ K − T and
T < U, the following rate region is achievable

R1 ≥ 1,R2 ≥ 1

S+ U− K
. (7)

IV. PROOF OF THEOREM 1: ACHIEVABILITY

For each set V where V ∈
(
[K]
S

)
, we choose one vector aV =

[aV,1, . . . , aV,U]
T, where each element aV,j is a coefficient in

Fq to be designed later.

In the first round, for each k ∈ [K] we divide Wk into U−T
pieces, each with L/(U−T) uniformly i.i.d. symbols over Fq.

Each user k sends

Xk,j = Wk,j +
∑

V∈([K]S ):k∈V

aV,jZV,k, ∀j ∈ [U− T], (8)

where Xk,j contains L/(U − T) symbols, and the coef-

ficients aV,j ∈ Fq are designed accordingly. The vector

Xk = (Xk,1, . . . ,Xk,U−T ) contains L symbols, resulting in

R1 = 1. In the first round, the server receives Xk for each

user k ∈ U1,and thus recovers

∑
k∈U1

Xk,j =
∑
k∈U1

Wk,j +
∑

V∈([K]S ):V∩U1 �=∅

(
aV,j

∑
k1∈V∩U1

ZV,k1

)

=
∑
k∈U1

Wk,j +
∑

V∈([K]S )

(
aV,j

∑
k1∈V∩U1

ZV,k1

)
, ∀j ∈ [U− T],

(9)

where (9) follows since S = K − U + 1 and thus there is no

V ∈
(
[K]
S

)
where V ∩ U1 = ∅. It can be seen from (9) that the

server still needs to recover
∑

V∈([K]S )
(
aV,j

∑
k1∈V∩U1

ZV,k1

)
for each j ∈ [U − T] in the next round. For the sake of ease

notation, we define

ZU1

V :=
∑

k1∈V∩U1

ZV,k1
, ∀V ∈

(
[K]

S

)
, (10)

This quantity contains L/(U− T) uniform and i.i.d. symbols.

By the construction of the first round transmission, the server

only needs to further recover
∑

V∈([K]S )
aV,jZ

U1

V for each j ∈
[U] in the second round to obtain

∑
k∈U1

Wk,j .

In the second round, we denote the sets in
(
[K]
S

)
by

S(1), . . . ,S
((

K
S

))
, and for each k ∈ [K] denote the sets in(

[K]\{k}
S

)
by Sk(1), . . . ,Sk

((
K−1
S

))
. We let the server recover

⎡
⎢⎣
F1

...

FU

⎤
⎥⎦ =

[
aS(1), . . . , aS((KS))

]
⎡
⎢⎢⎣

ZU1

S(1)

...

ZU1

S((KS))

⎤
⎥⎥⎦ , (11)

where each Fj , j ∈ [U], contains L/(U− T) symbols.

Each user k ∈ U1 sends

Y U1

k = sk

⎡
⎢⎣
F1

...

FU

⎤
⎥⎦ , (12)

where sk represents a left null space vector of[
aSk(1)

, . . . , aSk((
K−1
S ))

]
. Note that Y U1

k contains L/(U − T)

symbols, leading to R2 = 1/(U− T).
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For each V ∈
(
[K]
S

)
, we define a′V as the sub-vector including

the first U − T elements of aV . For each T ⊆ [K] where

|T | ≤ T and each k ∈ [K]\T , we sort all sets S ∈
(
[K]
S

)
where

k ∈ S and S∩T = ∅ in a lexicographic order and denote them

by Sk,T (1), . . . ,Sk,T

((
K−|T |−1

S−1

))
. To satisfy the decodability

and security constraints, our choose of the coefficient vectors

aV where V ∈
(
[K]
S

)
has the following properties.

Property 1. For each k ∈ [K] and each T ⊆ [K] \ {k} where
|T | ≤ T,[
a′Sk,T (1), . . . , a

′
Sk,T ((

K−|T |−1
S−1 ))

]
has rank equal to U− T.

(13)

Property 1 guarantees that even if the server colludes with

T users, it cannot learn any information about Wk from Xk.

Property 2. For each user k ∈ [K],[
aSk(1)

, . . . , aSk((
K−1
S ))

]
has rank equal to U− 1. (14)

Property 2 guarantees that the left null space of[
aSk(1)

, . . . , aSk((
K−1
S ))

]
exists, such that the encodability of

user k in the second round transmission is guaranteed.

Property 3.

Any U vectors in {sk : k ∈ U1} are linearly independent.
(15)

From any set of surviving users in the second round U2 ⊆
U1 where |U2| ≥ U, the server should recover F1, . . . ,FU. So

Property 3 guarantees that the server can recover F1, . . . ,FU

in the second round, from the answers of any set of users U2.

Property 4. For any T ⊆ [K] where |T | ≤ T, by denoting all
sets V ∈

(
[K]
S

)
where V ∩ T = ∅ by ST (1), . . . ,ST

((
K−T
S

))
,[

aST (1), . . . , aST ((
K−T
S ))

]
has rank equal to U− |T |.

(16)

On the condition of secure transmissions in the first round,

Property 4 guarantees the second round transmission does not

hurts the security constraint neither.

Due to the limitation of pages, we skip the general de-

scription on the choice of the above coefficient vectors, as

well as the proofs of decodability and security for the pro-

posed scheme. Instead, we will illustrate the main ingredients

through the following example.

Example 1 ((K,U, S,T)) = (6, 4, 3, 1)). The proposed

scheme is inspired from the secure aggregation scheme in [8]

for the case T = 0. In this example, since T = 1, the server

may collude with one or zero user. As explained in [6], without

loss of generality, we can assume that q is large enough. In

this example we further assume that q is a large prime number,

which is not necessary in our general scheme.

We divide each input vector Wk, where k ∈ [6], into U−T =
3 pieces Wk = (Wk,1,Wk,2,Wk,3) . For each V ∈

(
[6]
3

)
, we

generate ZV = (ZV,k : k ∈ V) shared by all users in V , where

each ZV,k contains L/3 uniformly i.i.d. symbols over Fq.

The next step is to select the U-dimensional coefficient

vectors aV where V ∈
(
[K]
S

)
.

First, we select a{1,2,3}, a{1,2,4}, a{1,2,5}, a{1,2,6}
as the basis vectors, where the other vectors are lo-

cated at the linear space spanned by the basis vec-

tors. We select [a{1,2,3},a{1,2,4},a{1,2,5}, a{1,2,6}] as a

4 × 4 Minimum Distance Separable (MDS) matrix; one

possibility could be [a{1,2,3},a{1,2,4},a{1,2,5},a{1,2,6}] =⎡
⎢⎢⎣
1 2 3 1
4 2 5 3
3 1 7 1
5 3 1 0

⎤
⎥⎥⎦ = [m4,1,m4,2,m4,3,m4,4]. Let us define G1 =

{{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 2, 6}}. By determining the

basis vectors aV′ where V ′ ∈ G1, for each V ∈
(
[6]
3

)
\ G1,

we look for the minimum subset of G1 the union of whose

elements are a superset of V , and then let aV be a linear

combination of aV1 where V1 is in the found set. Next we

determine coefficients in the linear combination.

We consider each V ∈
(
[K]
S

)
\ G1 where {3, 4} ⊆ V .

For example, when V = {1, 3, 4}, the minimum subset of

G1 the union of whose elements are a superset of {1, 3, 4}
is {{1, 2, 3}, {1, 2, 4}}; we let a{1,3,4} be a random linear

combination of a{1,2,3} and a{1,2,4},

a{1,3,4} = a{1,2,3} + 4a{1,2,4} = m4,1 + 4m4,2.

Similarly, we have

a{2,3,4} = a{1,2,3} + 8a{1,2,4} = m4,1 + 8m4,2,

a{3,4,5} = a{1,2,3} + a{1,2,4} + a{1,2,5}
= m4,1 +m4,2 +m4,3,

a{3,4,6} = a{1,2,3} + 2a{1,2,4} + a{1,2,6}
= m4,1 + 2m4,2 +m4,4.

Define G2 = {{1, 3, 4}, {2, 3, 4}, {3, 4, 5}, {3, 4, 6}}.

For each set V ∈
(
[6]
3

)
\(G1∪G2), we search for the minimal

subset of G2 whose union of whose elements is a superset of

V . Assume that this set is F . Let aV be a linear combination

of aV1 where V1 ∈ F .

If V ∈
(
[6]
3

)
\ (G1 ∪ G2) where 3 ∈ V , for example

V = {1, 3, 5} a{1,3,5} is also a linear combination of a{1,2,3}
and a{1,2,5}; thus a{1,3,5} does not contains m4,2 and only

has a unique linear combination representation of a{1,3,4} and

a{3,4,5}, which is

a{1,3,5} = −a{1,3,4} + 4a{3,4,5} = 3m4,1 + 4m4,3.

Similarly, we can fix a{1,3,6}, a{2,3,5}, a{2,3,6}, and a{3,5,6}
in Table I.

If V ∈
(
[6]
3

)
\ (G1 ∪ G2) where 4 ∈ V , aV does not contains

m4,1 and only has a unique linear combination representation.

For example, a{1,4,5} is a linear combination of a{1,3,4} and

a{3,4,5}, and does not contain m4,1. Thus we have

a{1,4,5} = a{1,3,4} − a{3,4,5} = 3m4,2 −m4,3.
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TABLE I: Coefficient vectors aV in the (K,U, S,T) = (6, 4, 3, 1) information theoretic secure aggregation problem.

aV Composition Value aV Composition Value

a{1,2,3} m4,1 m4,1 a{2,3,4} m4,1,m4,2 m4,1 + 8m4,2

a{1,2,4} m4,2 m4,2 a{2,3,5} m4,1,m4,3 7m4,1 + 8m4,3

a{1,2,5} m4,3 m4,3 a{2,3,6} m4,1,m4,4 3m4,1 + 4m4,4

a{1,2,6} m4,4 m4,4 a{2,4,5} m4,2,m4,3 7m4,2 −m4,3

a{1,3,4} m4,1,m4,2 m4,1 + 4m4,2 m{2,4,6} m4,2,m4,4 6m4,2 −m4,4

a{1,3,5} m4,1,m4,3 3m4,1 + 4m4,3 a{2,5,6} m4,3,m4,4 6m4,3 − 7m4,4

a{1,3,6} m4,1,m4,4 m4,1 + 2m4,4 a{3,4,5} m4,1,m4,2,m4,3 m4,1 +m4,2 +m4,3

a{1,4,5} m4,2,m4,3 3m4,2 −m4,3 a{3,4,6} m4,1,m4,2,m4,4 m4,1 + 2m4,2 +m4,4

a{1,4,6} m4,2,m4,4 2m4,2 −m4,4 a{3,5,6} m4,1,m4,3,m4,4 m4,1 + 2m4,3 −m4,4

a{1,5,6} m4,3,m4,4 2m4,3 − 3m4,4 a{4,5,6} m4,2,m4,3,m4,4 −m4,2 +m4,3 −m4,4

Similarly, we can fix a{1,4,6}, a{2,4,5}, a{2,4,6}, and a{4,5,6}
in Table I.

For V ∈
(
[6]
3

)
\ (G1 ∪ G2) where 3, 4 /∈ V , we let

a{1,5,6} = −2a{1,4,5} + 3a{1,4,6}
= 1/2a{1,3,5} − 3/2a{1,3,6} = 2m4,3 − 3m4,4,

a{2,5,6} = −6a{2,4,5} + 7a{2,4,6}
= 3/4a{2,3,5} − 7/4a{2,3,6} = 6m4,3 − 7m4,4.

Thus we have determined each aV where V ∈
(
[K]
S

)
as shown in Table I. Note that in the secure aggregation

scheme [8], the vectors a{1,4,5}, a{1,4,6}, a{1,5,6}, a{2,4,5},

a{2,4,6}, a{2,5,6}, a{4,5,6} are all zero vectors.
We have the following definitions for ease of

notation,
[
a′{1,2,3},a

′
{1,2,4}, . . . , a

′
{1,5,6}, . . . , a

′
{4,5,6}

]
as S′

1,
[
a′{1,2,3},a

′
{1,2,4}, . . . , a

′
{1,5,6}

]
as S′

2 and[
a{1,2,3},a{1,2,4}, . . . , a{1,5,6}, . . . , a{4,5,6}

]
as S1,[

a{2,3,4},a{2,3,5}, . . . , a{4,5,6}
]

as S2.
First round. Each user sends the information protected by

keys to the server. Since we divide the input into 3 pieces, we

only need to use the first three rows of the coefficient matrix.
User 1 sends X1 = (X1,1,X1,2,X1,3), where⎡

⎣X1,1

X1,2

X1,3

⎤
⎦ =

⎡
⎣W1,1

W1,2

W1,3

⎤
⎦+ S′

2

⎡
⎢⎣
Z{1,2,3},1

...

Z{1,5,6},1

⎤
⎥⎦ .

Similarly, the transmissions by each user k ∈ [6] can be

described as Xk,j = Wk,j+
∑

V∈([6]3 ):k∈V aV,jZV,k, ∀j ∈ [3].

In the first round, the server receives the transmissions by

user k ∈ U1, and recovers (recall that ZU1

V is defined in (10))

⎡
⎣
∑

k∈U1
Xk,1∑

k∈U1
Xk,2∑

k∈[U1
Xk,3

⎤
⎦ =

⎡
⎣
∑

k∈U1
Wk,1∑

k∈U1
Wk,1∑

k∈U1
wk,1

⎤
⎦+ S′

1

⎡
⎢⎢⎣
ZU1

{1,2,3}
...

ZU1

{4,5,6}

⎤
⎥⎥⎦ .

In X1, if the server colludes with user 4 and knows

Z{1,2,4},1,Z{1,3,4},1,Z{1,4,5},1,Z{1,4,6},1, W1 is perfectly pro-

tected by (Z{1,2,3},1,Z{1,2,5},1,Z{1,2,6},1), since the sub-

matrix of S′
1 including the columns corresponding to

(Z{1,2,3},1,Z{1,2,5},1,Z{1,2,6},1) has equal to 3. Hence, the

server cannot get any information about W1 from X1. Simi-

larly, the transmissions in the first round are secure.

Second round. In order to recover
∑

k∈U1
Wk, in the second

round we let the server recover⎡
⎢⎢⎣
F1

F2

F3

F4

⎤
⎥⎥⎦ = S1

⎡
⎢⎢⎣
ZU1

{1,2,3}
...

ZU1

{4,5,6}

⎤
⎥⎥⎦ . (17)

We let each user k ∈ U2 transmit in the second round a

linear combination of F1, . . . ,F4. Assume that 1 ∈ U1. User

1 cannot encode ZU1

V where V ∈
(
[2:6]
3

)
. By the choice of

coefficient vectors in Table I, the matrix S2 has rank equal to

3, which is the same as the rank of [a{2,3,4},a{3,4,5},a{3,4,6}].
Thus the left null space of S2 contains exactly one linearly

independent vector, which could be [−497,−137, 134, 335].
So we let user 1 send

Y U1
1 = −497F1 − 137F2 + 134F3 + 335F4.

Similarly, if user k ∈ U1 \ {1}, user k sends Y U1

k , where

Y U1
2 = −95F1 − 3F2 + 18F3 + 45F4,

Y U1
3 = −47F1 + 13F2 + 8F3 + 20F4,

Y U1
4 = 25F1 − 6F2 − 7F3 + 4F4,

Y U1
5 = −10F1 + 11F2 − 23F3 + 7F4,

Y U1
6 = 4F1 − 56F2 − 35F3 + 23F4.

By construction, for any U2 ⊆ U1 where |U2| = 4, (Y U1

k : k ∈
U2) are linearly independent; therefore, the server can recover

F1,F2,F3,F4, and then recover
∑

k∈U1
Wk.

Next we check the security of the proposed scheme.

Let us assume U1 = [6]. First, we consider the case

where |T | = 1; for example T = {4}. By col-

luding with user 4, the server knows (ZV : 4 ∈
V). The coefficient matrix corresponding to aV where

4 /∈ V , [a{1,2,3},a{1,2,5},a{1,2,6},a{1,3,5}, . . . , a{3,5,6}] has

rank equal to 3, which is the same as the rank of

[a{1,2,3},a{1,2,5},a{1,2,6}]. Intuitively, from the first round

transmissions, the server cannot get any information about

the input vectors except W4. From the second round trans-

missions, the server can get 3 linear combinations of keys,
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and then can obtain at most 3 linear combinations of Wk,j’s.

By the decodability, the server can obtain
∑

k∈U1
Wk,j where

j ∈ [3] by the help of the second round transmissions. Hence,

the server cannot get any other information about the input

vectors, and thus the proposed scheme is secure in this case.

We then consider the case that T = ∅, and prove the security

of the proposed scheme by using a genie-aided method.

Assume that in the first round, we generate Wk,4 for each

k ∈ [6], where Wk,4 contains L/3 uniformly i.i.d. symbols

over Fq. For each k ∈ [6], we let W ′
k = (Wk,1, . . . ,Wk,4).

Assume that besides Xk,1,Xk,2,Xk,3, in the first round user

k also transmits Xk,4 = Wk,4 +
∑

V∈([6]3 ):k∈V aV,4ZV,k.

From the first round transmissions (X1,1, . . . ,X1,4), since the

coefficient matrix S1 has rank equal to 4 (by Property 4), the

server cannot get any information about W ′
k. The second round

transmissions remain the same. It can be seen that after two

rounds the server can recover
∑

k∈[6] Wk,j for each j ∈ [4].
In addition, the second round transmissions only contains 4
linear combinations; thus from the second round transmissions,

we can at most obtain 4 linear combinations of the input

vectors, which are exactly
∑

k∈[6] Wk,j for each j ∈ [4].
Except these, the server cannot obtain any other information

about W ′
1, . . . ,W

′
6. In addition, from

(∑
k∈[6] Wk,j : j ∈ [4]

)
we only recover

∑
k∈[6] Wk,i where i ∈ [3] without the

interference from
∑

k∈[6] Wk,4. Hence, the proposed scheme

is secure in this case.

Hence, we proved that the proposed scheme is secure when

U1 = [6]. Similarly, the proposed scheme is also secure for

other possible U1. As a result, we achieve the rates (R1,R2) =
(1, 1/3), coinciding the converse bound in Lemma 1.

V. AN EXAMPLE FOR THEOREM 2

Due to the limitation of pages, we only provide an example

to illustrate the main idea of the scheme in Theorem 2.

Example 2 ((K,U, S,T)) = (4, 3, 3, 1)). In this example,

we have S > K − U + 1 and thus the proposed scheme in

Theorem 1 cannot work. Instead, we propose the following

secure aggregation scheme. For each V ∈
(
[4]
3

)
, we generate

ZV = (ZV,k : k ∈ V) shared by all users in V , where each

ZV,k contains L uniformly i.i.d. symbols over Fq.

First round. We let the users in [4] transmit,

X1 = W1 + Z{1,2,3},1 + Z{1,2,4},1 + Z{1,3,4},1,

X2 = W2 + Z{1,2,3},2 + Z{1,2,4},2 + Z{2,3,4},2,

X3 = W3 + Z{1,2,3},3 + Z{1,3,4},3 + Z{2,3,4},3,

X4 = W4 + Z{1,2,4},4 + Z{1,3,4},4 + Z{2,3,4},4,

respectively. Xk contains L symbols, leading to R1 = 1. Even

if the server colludes with one user, the server cannot get

any information about Wk from Xk, where user k is not the

colluding user. For example, if the server colludes with user

4, W1 is perfectly protect by Z{1,2,3},1 and thus secure.

Second round. Recall that the definition of ZU1

V is given

in (10). We divide ZU1

{1,2,3} into U + S − K = 2 pieces

{ZU1

{1,2,3},1,Z
U1

{1,2,3},2}. In order to let the server recover

W1 + · · ·+W4, each user k ∈ U1 sends Y U1

k , where

⎡
⎢⎢⎣
Y U1
1

Y U1
2

Y U1
3

Y U1
4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
s1
s2
s3
s4

⎤
⎥⎥⎦
⎡
⎣1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ZU1

{1,2,3},1
...

ZU1

{2,3,4},1
ZU1

{1,2,3},2
...

ZU1

{2,3,4},2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

where [s1; s2; s3; s4] is any MDS matrix with dimension 4×3,

and each ‘∗’ represents a coefficient to be determined. Note

that ZU1

{1,2,3} cannot be encoded by user 4; thus s4
[
1, 0, ∗

]T
=

0, from which we can fix this ‘∗’. Similarly, we can determine

every ‘∗’.
The decodability is directly from the fact that [s1; s2; s3; s4]

is an MDS matrix. The security constraint can be proved by the

similar method provided in Example 1. Hence, the proposed

scheme is decodable and secure, with R1 = 1 and R2 = 1/2.
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