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Abstract—In this paper, we study the information theoretic
secure aggregation problem, where the server node aims to
aggregate K users’ locally trained models, without revealing
any other information about the users’ local data. To ensure
security, some keys are shared among the users, which is referred
to as the key sharing phase. Uncoded groupwise keys are
considered, where each key is shared by a subset of S users and
is independent from other keys. After the key sharing phase,
each user masks its trained model and sends to the server,which
is referred to as the model aggregation phase. In the presence
of users’ dropouts (i.e., up to K — U user may drop during
the model aggregation phase and the identity of the dropped
users cannot be predicted), to guarantee the information theoretic
security, two-round transmissions are necessary. Our objective
is to characterize the capacity region of the transmission rates
(i.e., the normalized numbers of two-round transmissions by each
user) in the two rounds. When S > K — U + 1, the capacity
region was recently characterized. In this paper, we additionally
consider the potential effect of user collusion, where there may
exist up to T users colluding with the server. With the presence
of the colluding users, the security constraint becomes that,
except the sum of trained models, the server cannot learn any
information about the other users’ local data even if it colludes
with any set of up to T users. For this new problem, we propose
two secure aggregation schemes, which work for the cases of
S=K-U+1and of K—U+1<S <K-—T, respectively. The
first scheme is then proven to achieve the capacity region.

Index Terms—Secure aggregation; information theory; un-
coded groupwise keys; user collusion

I. INTRODUCTION

With the development of modern edge devices such as
mobile phones, it is possible to access a large amount of data
suitable for learning models. Federated learning (FL) leverages
the edge devices’ local data and computational resource to
proceed trainings [1]. In a FL framework, users compute
the trained model and send back the computation results to
the central server; the server then updates the model with
the received results aggregation [2]-[4]. Compared to other
distributed machine learning scenarios, FL has a significant
advantage in preserving the security of users’ local data against
the server, since the users do not need to transmit the original
local data to the server.

To further guarantee that the server only gets the sum of
updated models without retrieving any other information about
the users’ local data, secure aggregation for FL. was originally
introduced in [5], where various secure aggregation schemes

978-1-6654-5612-8/23/$31.00 ©2023 IEEE

were proposed with the tolerance against user dropout and
collusion. Recently, an information theoretic (K, U, T) secure
aggregation problem against user dropout and collusion was
proposed in [6]. The secure aggregation framework contains
two phases. During the key sharing phase, the users share
the keys in an offline scenario, where the generated keys
are independent from the trained models in the future phase.
During the model aggregation phase, each user first computes
the trained model by using its local data. Assume that each
trained model has L i.i.d. symbols on some finite field F.
To ensure security, a two-round transmission process is used.
In the first round, each user sends a coded message to the
server as a function of their trained model and shared key.
Due to user dropout, the server only receives messages from
the users in Uy, where U; C {1,...,K} and |U4| > U. The
server then informs the users in ;. In the second round, each
user in U/, transmits linear combination of keys to the server.
Due to user dropouts in the second round, the server receives
answers from the users in Us, where Us C Uy and |Us| > U.
The decodability constraint is that the server should recover
the sum of the trained models by the users in U/ from its
received messages. For the security constraint, the server may
collude with any subset of users 7 where 7 C {1,...,K}
and |7| < T. Besides the sum of the trained models by the
users in U, the server should not know any other information
about the trained models by the users in {1,...,K} \ 7 even
if it knows the trained models and stored keys of the users in
T. According to [6], each user needs to send a minimum of
L symbols in the first round and L/(U — T) symbols in the
second round, which can be achieved simultaneously.

In the secure aggregation schemes in [6], [7], which can
achieve the minimum numbers of transmissions, the users
store some coded keys. In [8], the information theoretic secure
aggregation problem with uncoded groupwise keys was formu-
lated. The keys shared by users are groupwise and uncoded,
which is motivated by practical key generation techniques.
Each key is stored by a set of users and is independent
among each other. In contrast to the model proposed in [6],
this formulation introduces an additional constraint on the
uncoded groupwise keys, namely that each key is shared by
S users.Without the consideration of user collusion, a secure
aggregation scheme achieving the optimal communication
rates was proposed in [8] when S > K — U + 1.
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Fig. 1: Information theoretic secure aggregation with uncoded
groupwise keys: A case study with (K,U,S) = (4,2, 3)

Main Contributions: In this paper, we formulate the
(K, U,S, T) information theoretic secure aggregation problem
with uncoded groupwise keys against user collusion, as illus-
trated in Fig. 1. For this new problem, we propose two secure
aggregation schemes:

e The first scheme is from an extension from the secure
aggregation scheme in [8] and works for the case S =
K — U + 1. Interestingly, this scheme achieves the same
communication rates as the optimal secure aggregation
schemes [6], [7] which are built on coded keys.

o The second scheme works for the case K—U+1<S <
K — T, and is built on a smart application of the coding
strategy for distributed gradient descent [9]-[11].

The details of all proofs in this paper will be provided in our
future extended version.

Notation Convention: Calligraphic symbols denote sets,
bold symbols denote vectors and matrices, and sans-serif
symbols denote system parameters. We use | - | to represent
the cardinality of a set or the length of a vector; [a : b] :=
{a,a+1,...,b} and [n] := [1 : n|; Fq, represents a finite field
with order q; MT and M~! represent the transpose and the
inverse of matrix M, respectively; the matrix [a; ] is written

in a Matlab form, representing [Z]; rank(M) represents the

rank of matrix M; we let (;) =0ifz <0ory <0 or

x < y; for any set S and an integer s, we let (f) represent
the collection of all subsets of S with s elements. Entropies
will be in base q, where g represents the field size.

II. SYSTEM MODEL

We formulate a (K,U,S,T) information theoretic secure
aggregation problem involving a server and K > 2 users.
Each user & € [K] holds an input vector W}, and uncoded

groupwise keys Zj, = (ZV Ve (['g]),k: € V), where Zy is
shared among S users. The input vectors in (W, : k € [K]) are
independent, consisting of L uniform and i.i.d. symbols over a
finite field Fy. The keys in (ZV (Ve ([g])> are independent
of each other and independent of the input vectors. Thus

H ((Wk ke K], (Zy:Ve C?)))
(D
=Y HWo+ Y. H(Zy).
kelK]

ve(')

The model aggregation phase contains two rounds of trans-
missions.

In the first round. User k sends the ciphertext X}, which is a
function of W}, and Z, to the server. In the first transmission
round, a subset of users may drop and the surviving users are
denoted by U, where U; C [K] and |Uy| > U; thus the server
receives X, where k& € U;. The communication rate for the
first round is determined by the maximum transmission load
of all users, i.e., Ry := maxpye(K] @

In the second round. The server sends the value U{; back
to the users in U,. User k then sends Y,gl, which is the
linear combination of keys Zj, to the server. In the second
transmission round, a subset of users may still drop and the
surviving users are denoted by Us, where Us C Uy and
Us| > U; thus the server receives Y' where k € Us.
The communication rate for the second round is determined
by the maximum transmissionuload of U; users, i.e., Ry :=

1
maxyy, C[K]:u,|>U MaXge, lY'E l-
Decodability. The server can recover » _; o, Wy, from (X, :

k € U;) and (qul k EZ/IQ), ie., for any ¢, C [K] and
Uy C U,

H ZWk‘(Xk:kJEZ/ﬁ),(qul:k‘EUQ) —0. (2
kel

Security. Even if the server may collude with any set of
users 7 where | 7| < T, the server cannot get any information
about the input vectors of the non-colluding users except
> ke, Wi. Thus for any Uy C [K] where || > U,
(we assume the server can receive all possible transmissions,
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ie,(Xy:ke[K])and (Y"1 kecl))
I((Wy, - k € [K]); (Xg s k € [K]), (Y -k €h)
> Wi, (W, Zi k€ T)) =0.

kel

3)

Note that in our problem, for the security constraint, we must
have T < U as shown in [6].

Objective. The rate tuple (R;, R2) is achievable if there
exists a secure aggregation scheme satisfying (2) and (3),
where the keys satisfy (1). Our goal is to determine the
capacity region R* (i.e., set of all achievable rate tuples).

A converse bound on the capacity region of our considered
problem (K, U, S, T) can be obtained from the converse bound
in [6], which is the converse bound for any possible key
generations.

Lemma 1 ( [6]). For the (K,U,S,T) information theoretic
secure aggregation problem where T < U, each achievable
rate tuple (R1,R2) satisfies

Ri>1, R >1/(U-T). “4)

When T = 0, the following capacity results were character-
ized in [8].

Lemma 2 ( [8]). For the (K,U,S,T) information theoretic
secure aggregation problem where T = 0 and S > K — U,
every achievable rate tuple (R1,R2) satisfies

Ry >1, Ry > 1/U. )
III. MAIN RESULTS

Theorem 1. For the (K,U,S, T) information theoretic secure
aggregation problem where S =K —-U+1and T < U,

R*:{(Rl,Rg)R1217R221/(U7T)} (6)

The converse bound for Theorem 1 follows directly from
Lemma 1, and the proposed achievable scheme is described
in Section IV.

In [8], the number of keys needed is K when U < K—U+1
and is O(K?) when U > K — U + 1. But if there are colluding
users, this number of keys will not be enough to guarantee the
security constraint. Instead, we propose to use all ('g) keys in
our secure scheme.

The transmission rates of the proposed secure aggregation
scheme in Theorem 1 are exactly the same as the optimal
secure aggregation scheme in [6]. Hence, in the case of
S = K — U + 1, the uncoded groupwise keys can achieve
the general optimality among all possible key generations.
Next, we propose our second secure aggregation scheme for
the more general case where K—U+1<S<K-T.

Theorem 2. For the (K,U,S, T) information theoretic secure
aggregation problem where K— U+ 1 < S < K—T and
T < U, the following rate region is achievable

1

Ri>1Ry>——
=SS UK

(7

IV. PROOF OF THEOREM 1: ACHIEVABILITY

For each set Y where V € ([g]), we choose one vector ay =

[ay.1,...,apu]", where each element ay ; is a coefficient in
[F, to be designed later.

In the first round, for each k& € [K] we divide W}, into U—T
pieces, each with L/(U — T) uniformly i.i.d. symbols over F,,.
Each user k£ sends

Xk,j = Wk,j + Z aV,jZV,Iw v.] S [U — TL (8)
ve(l):kev
where X3 ; contains L/(U — T) symbols, and the coef-
ficients ay; € [Fy are designed accordingly. The vector
Xi = (Xg1,..., Xpu—r) contains L symbols, resulting in
Ry = 1. In the first round, the server receives X for each
user k € U ,and thus recovers

Z X = Z Wi, +

kel kel

> (Wj > Zv,k1>

VE([S])IVﬂbﬁ;ﬁ@ ky€VNU,

= Z Wi, + Z ((IVJ' Z Zv,;ﬂ) , VjelU-T],

kel ve (1) k1 €VNU

9)
where (9) follows since S = K — U + 1 and thus there is no
Ve ([g]) where V NU; = (. It can be seen from (9) that the
server still needs to recover ZVE(@) (av.j Dok, evru, Zvik)

for each j € [U — T] in the next round. For the sake of ease
notation, we define

Z = > Zyy, WE <“s<]>’

k1 EVNU;

(10)

This quantity contains L/(U — T) uniform and i.i.d. symbols.

By the construction of the first round transmission, the server
U- .

only needs to further recover Zv e (1) ay ;Zy," for each j €

[U] in the second round to obtain ), ., Wi ;.

In the second round, we denote the sets in ([lg]) by

S(1),...,S (('g)), and for each k € [K] denote the sets in

([K]\S{k}) by Sx(1),...,S¢ ((Kgl)) We let the server recover

u
Iy Zs(1)

= [35(1),---,33((5))] : ;
7%

s((5))
where each F}, j € [U], contains L/(U — T) symbols.

Each user k € U, sends

(11
Fy

Iy
u .
Vit =se |t

Fy

12)

where s, represents a left null space vector of
[as;u), cBg (KoY } Note that qul contains L/(U —T)

symbols, leading toS Ra=1/(U-T).
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Foreach V € (“g]), we define al, as the sub-vector including
the first U — T elements of ay. For each 7 C &K] where
|T] < T andeach k € [K]\ T, we sort all sets S € ( é]) where
k € Sand SNT = () in a lexicographic order and denote them

by S, 7(1).- -, Sz (K717 To satisfy the decodability
and security constraints, our choose of the coefficient vectors
ay where V € (X)) has the following properties.

Property 1. For each k € [K| and each T C [K]\ {k} where

TI<T,
{agkj(l), e ,angT((KSTil))} has rank equal to U —T.
(13)

Property 1 guarantees that even if the server colludes with
T users, it cannot learn any information about W}, from Xj.

Property 2. For each user k € [K],
{asﬁ(l), ey asi((Kgl))} has rank equal to U — 1. (14)

that the left null
as (1);-- - asi((K—1)>i| exists, such that the encodability of
k S
user k in the second round transmission is guaranteed.

Property 2 guarantees space of

Property 3.

Any U vectors in {sy : k € Uy} are linearly independent.
(15)

From any set of surviving users in the second round Uy C
U, where |Us| > U, the server should recover F7, ..., Fy. So
Property 3 guarantees that the server can recover Fi, ..., Fy
in the second round, from the answers of any set of users Us.

Property 4. For any T C [K] where |T| < T, by denoting all
sets V € ([g]) where VN'T =0 by S+(1),...,S+ ((KET))

[as?(l), . 7a8?((KgT)):| has rank equal to U — |T]|. .
(16)

On the condition of secure transmissions in the first round,
Property 4 guarantees the second round transmission does not
hurts the security constraint neither.

Due to the limitation of pages, we skip the general de-
scription on the choice of the above coefficient vectors, as
well as the proofs of decodability and security for the pro-
posed scheme. Instead, we will illustrate the main ingredients
through the following example.

Example 1 ((K,U,S,T)) = (6,4,3,1)). The proposed
scheme is inspired from the secure aggregation scheme in [8]
for the case T = 0. In this example, since T = 1, the server
may collude with one or zero user. As explained in [6], without
loss of generality, we can assume that q is large enough. In
this example we further assume that q is a large prime number,
which is not necessary in our general scheme.

We divide each input vector Wy, where k € [6], into U-T =
3 pieces Wy, = (W1, Wi2, Wy 3) . For each V € ([g]), we

generate Zy = (Zy j, : k € V) shared by all users in V, where
each Zy j, contains L/3 uniformly i.i.d. symbols over F.

The next step is to select the U-dimensional coefficient
vectors ay, where V € ([él).

FiI'St, we select 3{17273}, 3{17274}, a{17275}, a{17276}
as the basis vectors, where the other vectors are lo-
cated at the linear space spanned by the basis vec-
tors. We select [ai23},a41,2,4},a(1,2,5},3{1,2,6}] aS a
4 x 4 Minimum Distance Separable (MDS) matrix; one
possibility could be [aji23y,a51,2.4), 811,25}, a(1,2.6})) =

= [M41, M4z, My3, My 4] Let us define G; =

{1,2,3},{1,2,4},{1,2,5},{1,2,6}}. By determining the
basis vectors ay where V' € Gy, for each V € ([g]) \ G1,
we look for the minimum subset of G; the union of whose
elements are a superset of V), and then let a), be a linear
combination of ay, where V; is in the found set. Next we
determine coefficients in the linear combination.

We consider each V € ([l;]) \ G where {3,4} C V.
For example, when V = {1,3,4}, the minimum subset of
Gy the union of whose elements are a superset of {1,3,4}
is {{1,2,3},{1,2,4}}; we let ay; 343 be a random linear
combination of a; 23y and a2 4y,

ag134) = aq123) +4ag124) = my 1 +4my .

Similarly, we have

ap34) = ay123) +8ay124) =My + 8my s,
arg a5 = 1,23} T a[124} +a{125)

=my + My + mys3,

ar346) = (1,23} T 2a[1,24} + a{1,2,6}
=my 1 +2my s +my,.

Define Go = {{1,3,4},{2,3,4},{3,4,5},{3,4,6}}.

For each set V € ([g]) \ (G1UG5), we search for the minimal
subset of G, whose union of whose elements is a superset of
V. Assume that this set is F. Let a)) be a linear combination
of ay, where V; € F.

itV e (B)\ (G UG) where 3 € V, for example
V ={1,3,5} a; 35y is also a linear combination of ay; 5 33
and ayy 25y; thus agy 35, does not contains my o and only
has a unique linear combination representation of ay; 3 43 and
a[3.4,5}» which is

ag135) = —a(1,34) T4a(345) = 3my 1 +4my 3.
Similarly, we can fix ag; 36}, af2,3,5)> a{2,3,6}> and agz 5 6}
in Table I.

Ifye ([g]) \ (G1 UGy) where 4 € V, ay, does not contains
my ; and only has a unique linear combination representation.
For example, af; 45y is a linear combination of ay; 34y and
a3 45), and does not contain my ;. Thus we have

ag1,4,5) = A(1,34} — A(34,5} = SMy2 — My3.
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TABLE I: Coefficient vectors ay in the (K,U,S,T) = (6,4, 3, 1) information theoretic secure aggregation problem.

’ ay \ Composition \ Value H ay \ Composition \ Value ‘
a3} my my g a23.4} my 1, My 2 my; + 3my o
aq12.43 my o my o 7235} my 1,My 3 Tmy 1 + Smy3
1,25} my 3 my 3 (23,6} my 1,1y 4 3my; +4my 4
(1,26} my my 4 (2,45} my o, My 3 Tmy o —myg3
ar134y | My, Myo my; +4my || mp46 my o, My 4y 6my o —my 4
ag13s) | My1,my3 | 3myy +4mys || apse) my 3, 1My 4 6my 3 — 7Tmy 4
af13,6} | Mygq,Myy my 1+ 2myy arg4st | Mygn,Myo,My3 | My +Myo+1Ny3
A145) | Myo,My3 3my o — My 3 A34,6) | Ma1,Myo,Myy | My +2myo+myy
a{1,4,6} my o, My 4 2my o —myy a(3,5,6} my 1, My 3, My 4 | My +2my3 — My,
(156} | M43, Mgg | 2my3 —3mMyy || Apg56) | My, My3,Myyg | —Myo+ My 35—y y

Similarly, we can fix a{1$4}6}, 3{2,4’5}, 3{2’4’6}, and 3{4’5’6}
in Table L.
For V € ([g]) \ (G1 UGy) where 3,4 ¢ V), we let

ag5,6) = —2a1,45) +3aq1,46)
=1/2ay; 35 — 3/2a7136) = 2my 3 — 3my 4,
ag25.6) = —0ap245) + 722,46}
= 3/da(a 35y — 7/4aja3,6) = 6myz — Tmy 4.

Thus we have determined each a), where V ¢ (“g])
as shown in Table I. Note that in the secure aggregation
scheme [8], the vectors afy 45}, af1,46)> a{1,5,6)> &[2,4,5}»
ar2.4.6)> A(2,5,6)> A{4,5,6) are all zero vectors.

We have the following definitions for ease of
notation, ‘51/{1,2,3}7 a{{1,2,4}’ e 7a{{1,5,6}’ e 7a{{4,5,6}
as S, {a/{1,2,3}’ "311{1,2,4}7 - ’ag[l,S,G} as S5 and

A(123), (1,24} s A{1,5,6)5 - - - s A{4,5,6) as S1,

a(234},8{235},---,{456}| as Sa.

First round. Each user sends the information protected by
keys to the server. Since we divide the input into 3 pieces, we
only need to use the first three rows of the coefficient matrix.
User 1 sends X = (X711, X519, X1 3), where

X1, Wia A2
X1,2 = W1,2 + SI2 .
X13 Wis 2115611

Similarly, the transmissions by each user &k € [6] can be
described as Xy ; = W +ZVE([§J):J~:€V ay ;i Zy i, Vj € [3].

In the first round, the server receives the transmissions by
user k € U1, and recovers (recall that Z]lfl is defined in (10))

Uy
Zkeul X1 Ekeul Wi Z{L?,B}
Zkeul X2 | = Zkeul Wial| +S) :
Zke[u1 X3 Zkeul WE,1 ZZ{/ZI’S’(S}

In X4, if the server colludes with user 4 and knows
Z{1,2,4},1, Z{1,3,4},1» Z{1,4,5},1, Z{1,4,6},1, W1 is perfectly pro-
tected by (Z{1,2,3},17Z{1,2,5},17Z{l,?.ﬁ},l)’ since the sub-
matrix of S} including the columns corresponding to
(Z{1,2,3y,1> Z{1,2,51,1, Z11,2,6),1) has equal to 3. Hence, the

server cannot get any information about W; from X;. Simi-
larly, the transmissions in the first round are secure.

Second round. In order to recover ), -, Wi, in the second
round we let the server recover

u
? Z{11,2,3}

2l =8, : (17)
F3 M1'
Fy {156}

We let each user k € Uy transmit in the second round a
linear combination of Fi,..., Fy. Assume that 1 € Uf;. User
1 cannot encode Zgl where V € ([2;36]). By the choice of
coefficient vectors in Table I, the matrix So has rank equal to
3, which is the same as the rank of a2 341, a(3,.4,5},a73,4,61]-
Thus the left null space of S, contains exactly one linearly
independent vector, which could be [—497, —137, 134, 335].
So we let user 1 send

Y = —497F, — 137F, + 134F3 + 335F}.
Similarly, if user k € U; \ {1}, user k sends Y,gl, where

V3" = —95F| — 3F, + 18F; + 45F),
Vil = —ATF| + 13F, + 8F3 + 20F),
Y = 25F) — 6Fy — TF; + 4Fy,

YH' = —10F, + 11F, — 23F5 + TF},

o

Y = AF) — 56F, — 35F3 + 23F).

By construction, for any Us C U; where |Us| = 4, (Y,i’{1 1k e
U>) are linearly independent; therefore, the server can recover
Fy, F5, F3, Fy, and then recover Zkeul Wi..

Next we check the security of the proposed scheme.
Let us assume U; = [6]. First, we consider the case
where |T| = 1, for example 7 = {4}. By col-
luding with user 4, the server knows (Zy 4 €
V). The coefficient matrix corresponding to ay where
4 ¢V, [ag23),8(1,25),2(1,2,6),2(1,35)»- - -, &(3,56}] has
rank equal to 3, which is the same as the rank of
[af1,2,3),a(1,2,5},@{1,2,6}]- Intuitively, from the first round
transmissions, the server cannot get any information about
the input vectors except Wy. From the second round trans-
missions, the server can get 3 linear combinations of keys,
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and then can obtain at most 3 linear combinations of Wy ;’s.
By the decodability, the server can obtain ), ,, Wj ; where
J € [3] by the help of the second round transmissions. Hence,
the server cannot get any other information about the input
vectors, and thus the proposed scheme is secure in this case.

We then consider the case that 7 = (), and prove the security
of the proposed scheme by using a genie-aided method.
Assume that in the first round, we generate W}, 4 for each
k € [6], where W, 4 contains L/3 uniformly i.i.d. symbols
over Fq. For each k € [6], we let W, = (Wi1,..., Wia).
Assume that besides X, 1, Xy 2, Xj 3, in the first round user
k also transmits X4 = Wya + Zve([gl):kev ay 12y k.
From the first round transmissions (X1 1,. .., X7 4), since the
coefficient matrix S; has rank equal to 4 (by Property 4), the
server cannot get any information about W}, The second round
transmissions remain the same. It can be seen that after two
rounds the server can recover > s Wi,; for each j € [4].
In addition, the second round transmissions only contains 4
linear combinations; thus from the second round transmissions,
we can at most obtain 4 linear combinations of the input
vectors, which are exactly 3, 5 Wi,; for each j € [4].
Except these, the server cannot obtain any other information
about W, ..., W{. In addition, from (zke[ﬁ] Wi, j€ [4})
we only recover 3 ;g Wi, where i € [3] without the
interference from Zke[G] Wy,4. Hence, the proposed scheme
is secure in this case.

Hence, we proved that the proposed scheme is secure when
U, = [6]. Similarly, the proposed scheme is also secure for
other possible /. As a result, we achieve the rates (R, Ry) =
(1,1/3), coinciding the converse bound in Lemma 1.

V. AN EXAMPLE FOR THEOREM 2

Due to the limitation of pages, we only provide an example
to illustrate the main idea of the scheme in Theorem 2.

Example 2 ((K,U,S,T)) = (4,3,3,1)). In this example,
we have S > K — U + 1 and thus the proposed scheme in
Theorem 1 cannot work. Instead, we propose the following
secure aggregation scheme. For each V € ([g]), we generate
Zy = (Zyy : k € V) shared by all users in V), where each
Zy.). contains L uniformly i.i.d. symbols over Fy.

First round. We let the users in [4] transmit,

X1 =Wi+Zpasia+ 224, + 21,3415
Xo=Wo+t Zp12312+ Z{124y,2 T Z(2,3,4},2;
X3 =Ws+ Zp12313+ Z{1,34},3 T £(2,3,4},3;
Xa=Wi+ Zuoaya+ 213434+ Z(23,4) 4

respectively. X contains L symbols, leading to R; = 1. Even
if the server colludes with one user, the server cannot get
any information about Wy from X}, where user k is not the
colluding user. For example, if the server colludes with user
4, Wy is perfectly protect by Zy; 231 and thus secure.
Second round. Recall that the definition of Z‘Lfl is given

in (10). We divide Zz{41123} into U+ S — K = 2 pieces

{Zlf?,z,g},pZ?f,Q,?,},z}' In order to let the server recover

Wy 4+ ---+ Wy, each user k € U; sends Y,fj’l, where

- U -
Z{11,2,3},1
yih :
b :1111100002u1
vie | = lloooo 1111 Z{ﬁv&‘*}i
3u 53 * ok ok ok ok ok k% {1,2,3},2
Y," S4 .
U1‘
[ 213,34 2

where [S1;S2;S3; 84] is any MDS matrix with dimension 4 x 3,
and each ‘x’ represents a coefficient to be determined. Note

that ZI{”l1 5 41 cannot be encoded by user 4; thus sy [17 0, *]T =

0, from which we can fix this “+’. Similarly, we can determine
every ‘x’.

The decodability is directly from the fact that [s;;s2; S3; S4]
is an MDS matrix. The security constraint can be proved by the
similar method provided in Example 1. Hence, the proposed
scheme is decodable and secure, with Ry = 1 and Ry = 1/2.
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