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Abstract. These notes provide an introduction to the stable homotopy types in Khovanov
theory (due to Lipshitz-Sarkar) and in knot Floer theory (due to Manolescu-Sarkar). They
were written following a lecture series given by Sucharit Sarkar at the Rényi Institute during
a special semester on “Singularities and low-dimensional topology”, organised by the Erdős
Center.
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1. Introduction

Invariants of knots and links witnessed an unparalleled development in the past couple
of decades. The subject of knot theory was born at the end of the XIX century, while
a systematic mathematical study began with work of Reidemeister in the 1920s [Rei27].
Alexander’s work (and in particular the introduction of the Alexander polynomial invariant
[Ale28]) in the late 1920s was a remarkable step in understanding this subject. The next
major development was brought by work of Vaughan Jones in the 80s: his introduction of the
Jones polynomial [Jon85], and subsequent generalizations, the HOMFLY-PT polynomial
and the definition of quantum invariants, reconnected the subject with theoretical physics.
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After the turn of the century a new paradigm, categorification, provided deep insight
into the (still mysterious) world of knots. Khovanov’s definition of his homologies [Kho00]
refined the Jones polynomial, while work of Ozsváth and Szabó [OS04], and independently
of Rasmussen [Ras03] produced a family of homology theories having the Alexander poly-
nomial as their (graded) Euler characteristic. It was a routine exercise to find knots which
are not distiguished by their Jones (or Alexander) polynomials, but have distinct Khovanov
(or knot Floer) homologies. Indeed, both Khovanov and Heegaard Floer homologies are
unknot detectors (i.e. the unknot is characterized by its homology in either theory). For
comparison, this statement is false for the Alexander polynomial, and an open problem for
the Jones polynomial.

Recently a further level of abstraction, spacification, brought new tools in knot theory.
In this context one wants to construct topological spaces (or, more generally, spectra) with
the property that these objects are knot invariants, and their singular homology (in the
appropriate sense) is the Khovanov homology (or knot Floer homology) of the underlying
knot. Having a spectrum provides the opportunity of applying further structures (such
as Steenrod operations) and possibly other functors (like 𝐾-theory) to find further knot
invariants. The program has been completed for Khovanov homology [LS14], and the first
step has been taken for knot Floer homology [MS21].

These notes are based on lectures of Sucharit Sarkar given at a focused week of the
special semester Singularities and low-dimensional topology at the Erdős Center, Budapest
in the Spring semester of 2023. We thank Michael Willis for his comments on an earlier
version of these notes.

MM acknowledges that: This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie Sk lodowska-Curie
grant agreement No. 893282. AS was partially supported by NKFIH Grant K146401.

2. Framed flow categories

The basic idea of spacification via flow categories is to start from a chain complex 𝐶
together with a given basis and construct a ‘space’ (more precisely a CW spectrum) 𝑋
with the property that its reduced cellular chain complex C̃cell

∗ (𝑋) is isomorphic to 𝐶. The
following remark explains why we really need to choose a basis of 𝐶 for our construction.

Remark 2.1. If we have a chain complex 𝐶, which we assume to be finitely generated for
simplicity, and we disregard its basis and grading, then we can always make a basis change
so that

𝐶 � Z𝑘 ⊕
⊕
𝑖

(Z 𝑘𝑖−→ Z),

where the boundary map on Z𝑘 is zero and the symbol Z
𝑘𝑖−→ Z denotes a two-step complex

where the boundary map is the multiplication by 𝑘𝑖 , and from here we can construct a CW
complex 𝑀 (𝐶) with C̃cell

∗ (𝑋) = 𝐶 simply by taking an appropriate wedge of spheres (for
the free part) and other simple spaces (for the 2-step complexes) as described in [Hat02,
Example 2.40]. The space 𝑀 (𝐶) is often called a Moore space, and its construction can be
refined to take gradings in account as well.

The drawback of Moore spaces is that they are not (and they cannot be made) functorial.
More precisely, by a result of Carlsson [Car81] the functors

𝐻∗, 𝐻𝑛 : Top∗ → Ab

do not admit functorial sections 𝑀, 𝑀𝑛 : Ab → Top∗.
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𝑓

R

Figure 1. Schematic of a proper Morse function.

This is in sharp contrast with the case of homotopy groups, where the functor

𝜋𝑛 : Top∗ → Ab,

defined for 𝑛 > 1, does admit a functorial section, given by the Eilenberg-Maclane spaces.

2.1. A recap of Morse theory. Let 𝑓 : 𝑀 → R be a proper Morse-Smale function with
finitely many critical points on a Riemannian manifold 𝑀 . Each index-𝑘 critical point gives
rise to a downward disc D𝑘 , which together with all other downward discs presents 𝑀 as a
(based) CW complex.

Remark 2.2. There is a subtlety in the presentation of 𝑀 as a CW complex. If one tries
to define the attaching map between cells just by flowing, then the resulting map would be
discontinuous. See [Mil65] for the details on the attaching maps.

The construction of the Morse chain complex for 𝑓 mirrors the construction of C̃cell
∗ of

the associated CW complex. The generators of the Morse complex are the critical points
of the Morse function 𝑓 . We let |𝑥 | denote the index of the critical point 𝑥. For each
𝑥, 𝑦 ∈ Crit 𝑓 we let M(𝑥, 𝑦) denote the unparameterised moduli space of flowlines from 𝑥

to 𝑦, of dimension |𝑥 | − |𝑦 | − 1.

Proper Morse function
with | Crit 𝑓 | < ∞

Finite based
CW complex

Chain complex
with distinguished basis

C̃Morse
∗

gen.’s = Crit 𝑓
⟨𝜕𝑥, 𝑦⟩ = #M(𝑥, 𝑦)

(need to orient

M(𝑥, 𝑦) coherently)

C̃cell
∗

gen.’s = cells
⟨𝜕𝑥, 𝑦⟩ = degree of
the attaching map

(need to orient all cells)

In the next subsection we will construct framed flow categories, which are ‘equivalent’
to Morse functions with gradient flowlines and to based CW complexes.
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D𝑥𝑥

D𝑦 𝑦

Figure 2. An illustration of the equality 𝑇M(𝑥, 𝑦) ⊕ R ⊕ 𝑇D𝑦 = 𝑇D𝑥 .

2.2. From Morse functions to framed flow categories. This section is included mostly for
motivational purposes, we describe ideas and constructions which motivate the definitions
and results in Section 3; consequently, no proofs in this section will be given.

Definition 2.3. Let 𝑓 be a Morse-Smale function. We define the flow category C 𝑓 as the
category whose objects are Ob C 𝑓 = Crit 𝑓 , and whose non-identity morphisms are given
by the unparameterised moduli spaces M(𝑥, 𝑦) of (possibly broken) flowlines from 𝑥 to 𝑦.

In order to promote C 𝑓 to a framed flow category we need to endow each M(𝑥, 𝑦) with
a framing of the stable normal bundle. We do it as follows:

• for every downward disc D𝑘 we choose a trivialisation of 𝑇D𝑘 ;
• for each pair of critical points 𝑥, 𝑦 with |𝑥 | > |𝑦 | and connected by a flowline, there

is an identification

𝑇M(𝑥, 𝑦) ⊕ R ⊕ 𝑇D𝑦 = 𝑇D𝑥 ,

which gives a stable framing of 𝑇M(𝑥, 𝑦) (see Figure 2);
• a stable framing of 𝑇M(𝑥, 𝑦) induces a stable framing of the normal bundle too.

In the case when |𝑥 | = |𝑦 | + 1, the choice of a framing of the stable normal bundle is the
same as a (coherent) system of orientations.

2.3. The hypercube flow category. This subsection is devoted to a crucial example of flow
category, which will be the fundamental building block of the Khovanov stable homotopy
type.

The starting point is an innocent-looking function 𝑓 : R → R with only two critical
points, at 0 and 1, which are respectively a minimum and a maximum. For example, we
can choose 𝑓 (𝑥) = 𝑥2 ·

(
3
2 − 𝑥

)
.

𝑓

R

Define the function 𝑓𝑛 : R𝑛 → R by setting

(2.1) 𝑓𝑛 (𝑥1, . . . , 𝑥𝑛) =
𝑛∑︁
𝑖=1

𝑓 (𝑥𝑖).
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00

𝑎𝑏 𝑐𝑑

10 01

𝑐

𝑑

𝑎

𝑏

Figure 3. Illustration of the flowlines from 11 to 00 and of the resulting
moduli space.

Then Crit 𝑓𝑛 = {0, 1}𝑛. The index of a critical point 𝑣 ∈ {0, 1}𝑛 coincide with its 𝐿1 norm:

|𝑣 | = | |𝑣 | |𝐿1 =

𝑛∑︁
𝑖=1

𝑣𝑖 .

Moreover, the set Crit 𝑓𝑛 inherits a product partial order by setting 0 < 1. For two distinct
critical points 𝑢, 𝑣 ∈ {0, 1}𝑛, we have that

M(𝑢, 𝑣) = ∅ if 𝑢 ≯ 𝑣.
In the next examples we will try to identify M(𝑢, 𝑣) when 𝑢 > 𝑣.

Example 2.4. The function 𝑓 = 𝑓1 : R→ R has only two critical points, and the unparam-
eterised moduli space M(1, 0) consists of a single point.

Example 2.5. The function 𝑓2 : R2 → R has four critical points, namely 00, 01, 10, and 11.
We have two kinds of moduli spaces, depending on the index difference of 𝑢 and 𝑣.

Using Example 2.4, one can check that if the index difference of two critical points of
𝑓2 is exactly 1, then the moduli spaces M(𝑢, 𝑣) consists of a single point. We name them

M(11, 10) = {𝑎} , M(10, 00) = {𝑏} ,
M(11, 01) = {𝑐} , M(01, 00) = {𝑑} .

The moduli space M(11, 00) is 1-dimensional, and its boundary consists of the two broken
flowlines labelled 𝑎𝑏 and 𝑐𝑑. The moduli space is in fact an interval with boundary
{𝑎𝑏, 𝑐𝑑}. One way to visualise M(11, 00) is to draw the segment from 10 to 01 (in R2 this
segment lies on the line 𝑥 + 𝑦 = 1), and noticing that such a segment intersects each flowline
from 11 to 00 exactly once. The two endpoints 10 and 01 of the segment correspond to the
broken flowlines. See also Figure 3.

Exercise 2.6. Identify the flow category associated with 𝑓3. Note that M(111, 000) is a
hexagon: this can be visualised as the section of the unit cube given by the plane 𝑥+𝑦+𝑧 = 3

2 ,
which intersects each (possibly broken) flowline from 111 to 000 in exactly one point. See
Figure 4.

More generally, the moduli space M(1 · · · 1, 0 · · · 0) in the hypercube flow category is a
permutohedron.
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Figure 4. The moduli space M(111, 000).
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Figure 5. A choice of orientation of the 0-dimensional moduli spaces.

Definition 2.7. The 𝑛-permutohedron Π𝑛−1 is the convex hull of

{(𝜎(1), . . . , 𝜎(𝑛)) ∈ R𝑛 | 𝜎 ∈ 𝑆𝑛} .

Note that for every permutation 𝜎 ∈ 𝑆𝑛, we have
∑𝑛

𝑖=1 𝜎(𝑖) =
𝑛(𝑛+1)

2 . Thus, Π𝑛−1 is
contained in an R𝑛−1-slice of R𝑛, and it is in fact an (𝑛 − 1)-dimensional manifold with
corners.

The hypercube flow category can also be upgraded to a framed flow category. In order
to do so, we need to endow the moduli space M(𝑢, 𝑣), which is a permutohedron, with a
coherent framing of the stable normal bundle. We hint at its construction by one explicit
example.

Consider the square flow category, i.e. the one associated with 𝑓2. A stable framing of
the normal bundle of the 0-dimensional moduli space corresponds to a choice of orientation
of each of them (either + or −). We need to choose orientations such that exactly one or
three of the points 𝑎, 𝑏, 𝑐, 𝑑 are framed positively; for instance, we may choose orientations
as in Figure 5.

We envision the moduli spaces M(01, 00) and M(10, 00) as sitting in one copy of R,
which we denote by R(𝑖) , and the moduli spaces M(11, 10) and M(11, 01) as sitting in
another copy of R, which we denote by R(𝑖𝑖) . Thus, we get a product orientation for the
broken flowlines 𝑏𝑎 and 𝑑𝑐, embedded in R(𝑖) × R(𝑖𝑖) , as illustrated in the figure below.
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R(𝑖)

R(𝑖𝑖)

𝑎

𝑐

𝑑𝑏

𝑏𝑎

𝑑𝑐

Figure 6. The product orientation on the broken flowlines in the square
flow category.

R(𝑖)

R(𝑖𝑖)

R≥0

𝑏𝑎

𝑑𝑐

Figure 7. An embedding of the moduli space M(11, 00) into R(𝑖) ×
R(𝑖𝑖) × R≥0.

We now wish to orient the stable normal bundle of the moduli space M(11, 00), which
is an interval with (unoriented) boundary {𝑏𝑎, 𝑑𝑐}. Such a moduli space should come with
an embedding

M(11, 00) ↩→ R(𝑖) × R(𝑖𝑖) × R≥0

whose restriction to the boundary gives the embedding
{𝑏𝑎, 𝑑𝑐} ↩→ R(𝑖) × R(𝑖𝑖)

constructed above. The coherence condition implies that we can find a framed interval
embedded in R(𝑖) × R(𝑖𝑖) × R≥0 with boundary the two framed points (see Figure 7). The
possible stable framings of such an embedded interval are a torsor over

𝜋1 (𝑆𝑂) := lim−−→ 𝜋1 (𝑆𝑂 (𝑛)) � Z/2Z.

More generally, using obstruction theory we can frame the stable normal bundle coher-
ently for all moduli spaces in the hypercube flow category.

2.4. The Cohen-Jones-Segal construction. Cohen-Jones-Segal [CJS95] provide a con-
struction to produce a stable based CW complex out of a framed flow category, which
we will outline in one particular case in this section. Their construction shares many
similarities with the Pontryagin-Thom construction.
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Definition 2.8. Two topological spaces 𝑋 and 𝑌 are called stably homotopy equivalent
(denoted 𝑋 ∼𝑆 𝑌 ) if Σ𝑛𝑋 and Σ𝑛𝑌 are homotopy equivalent for 𝑛 ≫ 0.

Exercise 2.9. T2 ∼𝑆 𝑆
1 ∨ 𝑆1 ∨ 𝑆2.

Hint: The attaching map of the 2-cell of T2 is a commutator in 𝜋1 of the 1-skeleton.

Exercise 2.10. CP2 ≁𝑆 𝑆
2 ∨ 𝑆4.

Hint: Steenrod squares are preserved under stable homotopy equivalence.

We remark that Exercise 2.9 shows that the cup product is not preserved under stable
homotopy equivalence.

We will now turn to the construction of a specific example of a stable based CW complex,
namely the one associated with the square framed flow category.

Each vertex 𝑣 of the square will give rise a cell of dimension |𝑣 | +2. The resulting stable
homotopy type is that of a point.

11

00

10 01

𝑐
−

𝑑

−

𝑎
−

𝑏

+

4-cell 𝐶 (11)

3-cells 𝐶 (10) and 𝐶 (01)

2-cell 𝐶 (00)

Given 𝑅 ≫ 𝜀 > 0, we parameterise the cells as follows:

𝐶 (11) := [0, 𝑅] × [−𝑅, 𝑅]2 × [0, 𝑅];
𝐶 (10) = 𝐶 (01) := [0, 𝑅] × [−𝑅, 𝑅] × [−𝜀, 𝜀];

𝐶 (00) := [−𝜀, 𝜀]2.

We construct the based CW complex by attaching the cells in order of increasing
dimension. We start with the 2-cell 𝐶 (00), which is attached to the basepoint ∗ via the
unique possible attaching map 𝜑00 : 𝜕𝐶 (00) → ∗, see Figure 8. We denote the resulting
CW complex by 𝑋0, i.e.

𝑋0 := 𝐶 (00) ∪𝜑00 {∗} .
We now move to the 3-cells. See Figure 9 for reference. We view the [−𝑅, 𝑅] factor as

the R(𝑖) direction, and we recall that we have an embedding of 𝑏 and 𝑑 into R(𝑖) , as framed
points.

On the boundary of the 3-cell 𝐶 (10) (resp. 𝐶 (01)), we draw a copy of the [−𝜀,−𝜀]2 on
{0} × [−𝑅, 𝑅] × [−𝜀, 𝜀], centred at (0, 𝑏, 0) (resp. (0, 𝑑, 0)).

The maps
𝜑10 : 𝜕𝐶 (10) → 𝐶 (00) ∪𝜑00 {∗}
𝜑01 : 𝜕𝐶 (01) → 𝐶 (00) ∪𝜑00 {∗}

are defined as follows:
• on the embedded copies of [−𝜀, 𝜀]2 the maps restrict to degree ±1 maps to 𝐶 (00),

with the sign of the degree depending on the framing of 𝑏 or 𝑑;
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∗

𝜑00

𝐶 (00)

Figure 8. An illustration of the CW complex 𝑋0 built as part of the
process of constructing the stable homotopy type associated with the
square framed flow category.

• on the complement of the embedded copy of [−𝜀, 𝜀]2, the maps send everything
to the basepoint {∗}.

The maps so defined descend to continuous maps to 𝐶 (00) ∪𝜑00 {∗}. Using the attaching
maps, we construct the CW complex

𝑋1 := (𝐶 (10) ∪ 𝐶 (01) ∪ 𝑋0)/∼ .
We now turn to the last remaining cell, namely 𝐶 (11). Recall that

𝐶 (11) = [0, 𝑅] × [−𝑅, 𝑅]2 × [0, 𝑅] .
We need to define an attaching map

𝜑11 : 𝜕𝐶 (11) → 𝑋1.

We view 𝜕𝐶 (11) as the union of three pieces:
• {0} × [−𝑅, 𝑅]2 × [0, 𝑅];
• [0, 𝑅] × [−𝑅, 𝑅]2 × {0};
• the part of 𝜕𝐶 (11) with 1st and 4th coordinate both non-zero.

Note that the first and the second piece intersect at {0} × [−𝑅, 𝑅]2 × {0}.
We consider a copy of 𝐶 (01) and a copy of 𝐶 (10) sitting in

[0, 𝑅] × [−𝑅, 𝑅]2 × {0} ⊂ 𝜕𝐶 (11)
as the slices
[0, 𝑅] × [−𝑅, 𝑅] × [𝑎 − 𝜀, 𝑎 + 𝜀] × {0} and [0, 𝑅] × [−𝑅, 𝑅] × [𝑐 − 𝜀, 𝑐 + 𝜀] × {0}
respectively, as shown in Figure 10.

We define the map 𝜑11 separately on the three pieces of 𝜕𝐶 (11). We start from the
blue piece [0, 𝑅] × [−𝑅, 𝑅]2 × {0}: with the above picture in mind, it is natural to map
the embedded cells 𝐶 (01) and 𝐶 (10) inside 𝜕𝐶 (11) to the respective abstract ones via
degree ±1 maps, depending on the framings of 𝑎 and 𝑐, and to extend this to a map from
[0, 𝑅] × [−𝑅, 𝑅]2 × {0} to 𝑋1 by sending everything in the complement to ∗.

Then, a naı̈ve approach to extend 𝜑11 to all of 𝜕𝐶 (11) would be to map the purple and
the black pieces to the basepoint ∗. However, the map so defined would not be continuous,
because the whole purple piece of 𝜕𝐶 (11) would be mapped to ∗, except the two red squares
in {0}× [−𝑅, 𝑅]2×{0}, which lie in 𝜕 ({0} × [−𝑅, 𝑅]2 × [0, 𝑅]). Thus, we modify the map
in the purple portion of 𝜕𝐶 (11) by using the framed interval from 𝑎𝑏 to 𝑐𝑑. We envision
the framed interval constructed above as sitting inside {0} × [−𝑅, 𝑅]2 × [0, 𝑅], where the
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∗

𝜑00

𝐶 (00)

0

𝑅

−𝑅

R(𝑖)

𝑅 −𝜀
𝜀

𝑏
𝐶 (10)

𝜑10

0

𝑅

−𝑅

R(𝑖)

𝑅 −𝜀
𝜀

𝑑

𝐶 (01)

𝜑01

Figure 9. An illustration of the CW complex 𝑋0 built as part of the
process of constructing the stable homotopy type associated with the
square framed flow category.

last coordinate corresponds to R≥0. A regular neighbourhood of it can be parameterised
by [−𝜀, 𝜀]2 × 𝐼. We can then define the map 𝜑11 on {0} × [−𝑅, 𝑅]2 × [0, 𝑅] by setting it
on the neighbourhood of the framed interval as

[−𝜀, 𝜀]2 × 𝐼
𝑝𝑟1−−−→ [−𝜀, 𝜀]2 ∼−→ 𝐶 (00) → 𝑋0 ⊂ 𝑋1,

and by sending the complement to ∗. See Figure 11.
Thus, we have so far defined 𝜑11 on {0}× [−𝑅, 𝑅]2× [0, 𝑅] and [0, 𝑅] × [−𝑅, 𝑅]2×{0}.

We extend it to 𝜕𝐶 (11) by sending the rest of 𝜕𝐶 (11) to ∗.
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𝑏𝑎 𝑑𝑐

0

𝑅

−𝑅

R(𝑖)

𝑅

𝑅

R(𝑖𝑖)

−𝑅

Figure 10. The “blue” piece [0, 𝑅] × [−𝑅, 𝑅]2 × {0} of 𝜕𝐶 (11).

3. A Khovanov stable homotopy type

Our next goal is to construct a Khovanov homotopy type starting from the Khovanov
complex. We quickly recall the construction of the Khovanov complex. For a more detailed
exposition we refer the reader to [Kho00, BN02].

3.1. The Khovanov complex. Given a link diagram and a crossing, we define the 0-
smoothing and the 1-smoothing of the crossing as in Figure 12. Let 𝐷 be a link diagram
with 𝑛 crossings, labelled in some order from 1 to 𝑛. See Figure 13 for an example. Each
𝑣 ∈ {0, 1}𝑛 determines a complete resolution 𝐷𝑣 by smoothing crossing 𝑖 according to
the 𝑖-th entry of 𝑣. Topologically, each complete resolution consists of an unlink. We can
organise the complete resolutions on a hypercube of dimension 𝑛, so that each 𝑣 corresponds
to a vertex of the hypercube. See Figure 14.

Let the weight or index |𝑣 | of 𝑣 be the number of coordinates of 𝑣 with value 1. Two
vertices 𝑢 and 𝑣 are connected by an edge 𝑒 of the hypercube if and only if 𝑢 and 𝑣 differ
only at one entry, and in such a case the edge is oriented from the vertex with higher weight
to the vertex with lower weight. Note that this convention is opposite to the standard one
in the literature (e.g., [Kho00, BN02]); equivalently, in these notes we consider Khovanov
homology as opposed to the more popular Khovanov cohomology.



12 MARCO MARENGON, SUCHARIT SARKAR, AND ANDRÁS STIPSICZ

𝑅

0

−𝑅

R(𝑖)

𝑅

𝑅

R(𝑖𝑖)

−𝑅

Figure 11. The “purple” piece {0} × [−𝑅, 𝑅]2 × [0, 𝑅] of 𝜕𝐶 (11).

0 1

Figure 12. The 0-smoothing and the 1-smoothing of a crossing.

1

2

Figure 13. A non-minimal diagram of the 2-component unlink, together
with a labelling of the crossings.

From the cube of resolution Khovanov constructed a complex as follows. Let𝑉 = Z⟨1, 𝑥⟩
be the Z-module spanned by two elements 1 and 𝑥. To each 𝑣 ∈ {0, 1}𝑛 associate the vector
space

𝑉𝑣 =
⊗

components of 𝐷𝑣

𝑉,
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10

00

11

01

I II

I

II

Figure 14. The cube of resolutions of the diagram for the unlink in
Figure 13. We have also fixed a total ordering on the circles at each
resolution: the resolutions, indicated by the labels I and II for the circles
at the resolutions 10 and 01. (The other resolutions have only one circle,
so there is only one total order there.)

where each factor 𝑉 is considered as associated to a link component of 𝐷𝑣 . The module
underlying the Khovanov complex is defined as

CKh(𝐷) =
⊕

𝑣∈{0,1}
𝑉𝑣 .

Recall that in the construction of framed flow category spacifying a given chain complex
𝐶 one needs to specify a basis of 𝐶 as well, see Remark 2.1. Luckily for us, the Z-module
CKh(𝐷) comes with a preferred basis. For each 𝑣 ∈ {0, 1}, the Z-module 𝑉𝑣 has a basis
consisting of all possible tensor products of the generators 1 and 𝑥 for 𝑉 ; we call them
the standard generators of 𝑉𝑣 , and we denote them with a 𝑣 subscript, e.g. if 𝐷𝑣 has four
components, after totally ordering them, the element 1𝑥11𝑣 is the Khovanov generator that
labels the second component by 𝑥 and other components by 1. As 𝑣 varies in {0, 1}, all
standard generators give a basis for CKh(𝐷).

In order to define the differential on CKh(𝐷), Khovanov defined two maps 𝑚 and Δ,
associated to the merge and split cobordisms respectively:

𝑚 : 𝑉 ⊗ 𝑉 → 𝑉 Δ : 𝑉 → 𝑉 ⊗ 𝑉
1 ⊗ 1 ↦→ 1 1 ↦→ 1 ⊗ 𝑥 + 𝑥 ⊗ 1
1 ⊗ 𝑥 ↦→ 𝑥 𝑥 ↦→ 𝑥 ⊗ 𝑥
𝑥 ⊗ 1 ↦→ 𝑥

𝑥 ⊗ 𝑥 ↦→ 0

If there is an edge from 𝑢 to 𝑣, then there is an elementary cobordism between 𝐷𝑢 and
𝐷𝑣 , which is a split saddle or a merge saddle. We define a map

𝜕𝑢,𝑣 : 𝑉𝑢 → 𝑉𝑣

as the map 𝑚 or Δ on the𝑉 factors associated with the components of 𝐷𝑢 and 𝐷𝑣 on which
the saddle cobordism happens, and as the identity map on all other 𝑉 factors.

Fix a framing of all the 0-dimensional moduli spaces in the hypercube flow category
associated to the function 𝑓𝑛 defined in Equation (2.1) at page 4, such that on every square



14 MARCO MARENGON, SUCHARIT SARKAR, AND ANDRÁS STIPSICZ

1 𝑥

1 𝑥

11 1𝑥 𝑥1 𝑥𝑥11 1𝑥 𝑥1 𝑥𝑥

− − −
−

− −

−
−−

+++

𝑎
𝑏

𝑐

𝑑

𝑒

𝑓

𝑔

ℎ

Figure 15. The Khovanov complex associated with the diagram for the
2-component unlink in Figure 13. To simplify the notation, we suppressed
the tensor product symbol ⊗ and the subscripts specifying the vertex of
the hypercube. The relative location of the standard generators indicates
the vertex of the hypercube to which it belongs. Compare with Figure
14. For example, the four standard generators located at the left are in
𝑉(10) ; among them, the generator 1𝑥 is the one that labels the first circle
(marked I) by 1 and the second circle (marked II) by 𝑥.

face, exactly one or three of the points are framed positively. The differential is then defined
by summing over all edges:

𝜕 :=
∑︁

|𝑢−𝑣 |=1
|𝑢 |= |𝑣 |+1

(−1)𝑠 (𝑢,𝑣)𝜕𝑢,𝑣 ,

where 𝑠(𝑢, 𝑣) = 0 if M(𝑢, 𝑣) is framed positively and 𝑠(𝑢, 𝑣) = 1 if M(𝑢, 𝑣) is framed
negatively.

As an illustration, Figure 15 shows the Khovanov complex for the diagram of the
2-component unlink in Figure 13. The figure shows the 12 standard generators of the
Khovanov complex, organised to mirror the structure of the cube of resolutions (Figure
14). The arrows encode the differential: if there is an arrow from 𝑦 to 𝑧, then 𝑧 appears in
the expansion of 𝜕𝑦 with coefficient ±1 depending on the sign label on the arrow. (For the
moment disregard the fact that some arrows are coloured in red and some of the generators
are circled in green.) The homology of (CKh(𝐷), 𝜕) is the Khovanov homology of the
link. However, we do not take homology, but instead construct a framed flow category
from the complex.

3.2. The Lipshitz-Sarkar framed flow category. We will use the example from Figures
13 and 14 to describe the framed flow category X(𝐷) from [LS14].

We start from the set of objects, ObX(𝐷), which consists of all standard Khovanov
generators. Thus, for our recurring example of the diagram of the 2-component unlink in
Figure 13, the objects are the 12 generators that are shown in Figure 15.

The 0-dimensional moduli spaces are framed points, given by the Khovanov differential.
Following the convention in Figure 15, the elements of 0-dimensional moduli spaces are
the arrows shown in the figure, together with a framing specified by the sign label: for
example,

M(𝑥 (11) , 𝑥𝑥 (01) ) = {𝑝−} , M(𝑥 (11) , 𝑥1(01) ) = ∅,
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𝑒𝑎

𝑓 𝑏

𝑔𝑐

ℎ𝑑

Figure 16. The two possibilities forM(1(11) , 𝑥 (00) ) from the example in
Figure 15. The right choice is shown in red, and the left choice is shown
in blue. The two possible matchings are called ladybug matchings, and
a choice between the two of them must be done each time a ladybug
configuration as in Figure 17 appears.

where 𝑝− is a negatively framed point. More precisely, given two objects / standard
generators y and z with |y| = |z| + 1, we represent 𝜕y ∈ 𝐶𝐾ℎ(𝐷) as a linear combination
of standard generators, and we take the coefficient ⟨𝜕y, z⟩ of z in such an expansion. Note
that by the definition of the Khovanov differential 𝜕, the only values ⟨𝜕y, z⟩ can take are
+1, −1, and 0. Then, we set

M(y, z) =


{a positively framed point} if ⟨𝜕y, z⟩ = +1
{a negatively framed point} if ⟨𝜕y, z⟩ = −1
∅ if ⟨𝜕y, z⟩ = 0

We will construct the higher moduli spaces inductively as disjoint unions of permuto-
hedra, using the fact that 𝜕M is the union of products of lower-dimensional moduli spaces
already constructed.

Most of the higher moduli spaces are constructed without making choices, but there is
one interesting case, which appears during the construction of the 1-dimensional moduli
spaces, where a choice is needed. This is the case of M(1(11) , 𝑥 (00) ) illustrated in Figure
15: 1(11) and 𝑥 (00) are the two standard generators circled in green; the broken flowlines
between them, which constitute the boundary of the moduli space, are obtained by following
the red arrows. Thus, we can see that

𝜕M(1(11) , 𝑥 (00) ) = {𝑒𝑎, 𝑓 𝑏, 𝑔𝑐, ℎ𝑑} ,

where 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 , 𝑔, and ℎ are the red arrows in Figure 15. Of the four broken flowlines,
two (namely 𝑒𝑎 and 𝑓 𝑏) factor through the vertex 10, and the other two (namely 𝑔𝑐 and
ℎ𝑑) factor through the vertex 01. Note that the vertex through which the broken flowline
factors determines its framing.

Thus, if we want it to be a union of permutohedra, M(1(11) , 𝑥 (00) ) should consist of
two intervals, which can be chosen in two sensible ways: either an interval connecting 𝑒𝑎
to 𝑔𝑐 and one connecting 𝑓 𝑏 to ℎ𝑑 (the right choice), or an interval connecting 𝑒𝑎 to ℎ𝑑
and one connecting 𝑓 𝑏 to 𝑔𝑐 (the left choice). See Figure 16. In a bombastic moment of
self-confidence, we claim that we always make the right choice! The 1-dimensional moduli
spaces so defined can be upgraded to framed moduli spaces, using a framing on the cube
flow category.

Remark 3.1. In the language of [LS14], we just made a choice of a ladybug matching.
The name comes from the fact that the diagram 𝐷 can be alternatively specified by its
all-1 resolution, together with a collection of embedded arcs that record the band surgeries
needed to turn a 1-smoothing into a 0-smoothing. Figure 17 shows the all-1 resolution and
the surgery arcs for the diagram in Figure 13. The shape resembling a ladybug motivates
the name ladybug configuration.
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Figure 17. A ladybug matching. The figure represents an all-1 resolu-
tion of a link diagram (in fact, of the diagram in Figure 13). The red arcs,
one for each crossing of the link diagram, trace the band surgeries that
turn each 1-smoothing into a 0-smoothing.

Figure 18. The figure on the left shows a link diagram for the 2-
component unlink. The figure on the right represents its all-1 resolution
together with the arcs that turn each 1-smoothing into a 0-smoothing.

Each time a ladybug configuration appears we must choose a ladybug matching. The
fact that we always make the right choice will be important for the next step, namely the
construction of the 2-dimensional moduli spaces.

Surprisingly, we will see that the choice of the ladybug matchings on the 1-dimensional
moduli spaces is the only choice we need to make, under the assumption that each moduli
space M(y, z) is a disjoint union of permutohedra.

We now turn to the construction of the 2-dimensional moduli spaces. We start from
the example in Figure 18, whose associated cube of resolutions is shown in Figure 19. One
can check that the 3-dimensional cube of resolutions has 2 ladybug faces, which are shaded
in light red.

We consider the moduli space

M( ).
1

1
𝑥

,

Its boundary (already defined, since it is the union of products of lower-dimensional moduli
spaces) contains 12 fully broken flowlines:

• 4 fully broken flowlines for each ladybug face;
• 2 fully broken flowlines factoring through

and ,

namely the ones illustrated in Figure 20;
• 2 fully broken flowlines factoring through

and ,

which the reader is encouraged to find by themselves.
The boundary of such a moduli space is therefore a 1-dimensional manifold with 12

corners (one for each fully broken trajectory). It turns out that it must be either a dodecagon
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Figure 19. The cube of resolutions for the link diagram in Figure 18.
The faces shaded in red correspond to ladybug configurations.

(i.e., 12-gon) or the disjoint union of two hexagons (i.e., 6-gon). Lipshitz and Sarkar [LS14]
showed that if we choose all the ladybug matchings to be right (or all of them to be left),
then we get two hexagons. Thus, we can define the moduli space

M( ).
1

1
𝑥

,

as the disjoint union of two filled hexagons, which are permutohedra (see Exercise 2.6).
Once again, these inherit framings from a framing of the cube flow category.

Finally, we turn to the moduli spaces of dimension ≥ 3. Their definition is actually
easier than in the cases of lower dimension.

Assume that y and z are standard generators of the Khovanov chain complex, such that
|y| > |z| + 3. By induction, we assume that the boundary of the moduli space M(y, z) is
already defined. It turns out that 𝜕M(y, z) is a regular cover of the moduli space in the cube
flow category, i.e. a permutohedron. If 𝑛 := |y| − |z| > 3, then the permutohedron Π𝑛−1 has
simply connected boundary, and therefore every regular cover of it is trivial. Thus, there is
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𝑥

1
1

1
1

𝑥 1

𝑥

1

1
1

𝑥

1

1 𝑥

𝑥

Figure 20. The figure shows two fully broken flowlines in the boundary
of a 2-dimensional moduli space arising from the cube of resolutions
associated to the link diagram in Figure 18.

no obstruction to defining the moduli space M(y, z) as a disjoint union of permutohedra
of dimension 𝑛 − 1, which also inherit framings from a framing of the cube flow category.

4. A knot Floer stable homotopy type

Once we have the ‘spacification’ of Khovanov homology, and witness its success, it
is natural to ask a similar construction for invariants of knots defined in the Heegaard
Floer context. As the construction requires a good understanding of ‘moduli spaces’,
it is instructive to start the process with the version of knot Floer homology where the
most control on the moduli spaces is available: grid homology. For an introduction to
grid homology see [MOS09, MOST07, OSS15]. For general (pointed or doubly pointed)
Heegaard diagrams, the determination of the moduli spaces required for describing the flow
category is analytically extremely challenging, and indeed in general these spaces depend
on further choices (such as an almost complex structure, or perturbations), which are hard
to incorporate into the theory. These difficulties can be bypassed by the combinatorial
description provided by grid homology.

Despite the simplicity of the description of the chain complex involved in the definition
of grid homology, the presence of ‘bubbles’ provides serious difficulties for setting up the
stable homotopy type. These bubbles do arise already on the homological level, but they
cancel out, hence in grid homology they are ‘invisible’ to the boundary map, resulting in
a (relatively) simple theory. In the construction of the framed flow category, however, the
bubbles cannot be ignored anymore, bringing in an extra level of complexity in the theory.
In this section (following [MS21]) the construction of a spectrum with stable homology
giving grid homology is outlined. The appropriate topological invariance of the spectrum,
that is, the proof of the fact that the result is a knot-link invariant is, however, still open.
This invariance would provide the real power of the theory, since it would open the way to
construct further knot invariants, which might go beyond the mere homology theory given
by grid homology.
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Figure 21. The left hand side shows a grid diagram for the left-handed
trefoil knot illustrated on the right. The full and the hollow dots determine
two grid states x and y respectively. A small square (out of the 25 ones
for this grid) is shaded. The shaded small square is also a rectangle from
x to y.

4.1. Grid diagrams. Recall that every knot (and even link) in the standard three-sphere 𝑆3

can be presented by a grid diagram, a combinatorial object with the following properties:
Consider the grid of 𝑛2 small squares in an 𝑛 × 𝑛 square in the plane for some 𝑛 ∈ N.

Suppose that each column and each row has exactly one marking 𝑋 and exactly one marking
𝑂 in one of the small squares in the column or row at hand. By connecting the 𝑋 in a column
to the 𝑂 in the same column, and the 𝑂 in the row to the 𝑋 in the same row (oriented by
this order), and with the convention that a vertical segment always passes over a horizontal
one, the grid diagram provides the diagram of a (PL embedded) link in 𝑆3. It is not hard to
see that every knot and link can be presented in this way, and a method similar to the proof
of Reidemeister’s fundamental result in knot theory provides two types of moves with the
property that grids defining isotopic knots/links can be transformed into each other by a
sequence of these ‘grid moves’.

Indeed, by identifying the top and bottom edges of the big square, and doing the same
with the left-most and right-most edges, we get a grid diagram on the standard torus of
𝑆3. The two grid moves of commutation and stabilization then provide a similar theory for
knots in this context.

4.2. Grid homology. The chain complex of grid homology is generated by grid states: a
grid state x is simply a bijection between the horizontal and vertical circles in the toroidal
grid. A geometric presentation of such an object can be given by choosing an intersection
point of the vertical and horizontal circles in the grid in such a way that each vertical
and each horizontal circle contains exactly one chosen point. The differential in the chain
complex is given by counting “empty rectangles”, cf. Figure 22. In more detail, to a pair
of two distinct grid states x, y we associate 0 if x and y differ in more than 2 coordinates.
If the difference is in exactly two circles, then the circles of these coordinates (there are
two vertical and two horizontal of those) partition the torus into four rectangles, and by
choosing an appropriate orientation convention, two of them will point from x to y and two
from y to x. Now we count the rectangles from x to y which are empty (i.e., which do not
contain any further coordinate of x) and do not contain 𝑋-marking. The actual set-up of
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the homology theory is slightly more involved (requires a system of weights determined by
the 𝑂-markings, and consequently is defined over a more elaborate ring); we will not go
into the details of the theory here, and advise the interested reader to consult [OSS15] for
a more complete account. We just mention here that a crucial step in building the theory
is to show that the boundary map 𝜕 (counting empty rectangles with some weights) has
square zero, and therefore gives rise to a chain complex, and hence to homologies. The
geometric input in the proof of 𝜕2 = 0 is an incarnation of Gromov’s compactness result,
showing that the compositions of two rectangles (counted by 𝜕2) come in pairs. (Over the
field of two elements this fact is sufficient, over the integers a sign assignment should be
also fixed so these pairs contribute zero to the final count.) In turn, this pairing follows
from a simple planar geometric observation decomposing the union of two rectangles in
two different ways — this is depicted in Figures 23 and 24. The situation is somewhat more
complicated in further versions of the theory (where we allow the empty rectangle to contain
𝑋-markings), as the concatenation of two rectangles might add up to a strip around the
torus; this contribution will be cancelled by another such strip, as shown in Figure 33. The
significance of this last small problem becomes more crucial in the spacification process,
as it will be hinted later on.

The spacification of grid homology will once again be done by constructing a framed
flow category C associated with a grid diagram. The objects of the category are the grid
states, i.e. the 𝑛-tuples of intersection points of the vertical and horizontal circles such
that each vertical and each horizontal circle contains exactly one chosen point. Given two
grid states x and y, the moduli space M(x, y) will be a smooth manifold with corners.
By contrast with the Khovanov homotopy type, the construction is more involved and the
moduli spaces will not always be disjoint unions of permutohedra. In the most general
case, the moduli space M(x, y) will be obtained by gluing together the moduli spaces
M(𝐷) associated with all the domains from x to y with Maslov index |x| − |y|. Recall from
[OSS15] that a domain from x to y in a given grid diagram is a formal linear combination

𝐷 =
∑︁

𝑛𝑖, 𝑗𝑆𝑖, 𝑗

of (the closures) of the small squares {𝑆𝑖, 𝑗 }𝑖, 𝑗=1,...,𝑛 with the following properties:
• the horizontal part of the boundary (i.e. the part of the boundary 𝜕𝐷 as a 2-chain

on the horizontal circles) is a 1-chain 𝜕ℎ𝐷 with 𝜕 (𝜕ℎ𝐷) = y − x, while
• the vertical part of the boundary 𝜕𝑣𝐷 satisfies 𝜕 (𝜕𝑣𝐷) = x − y.

The domain 𝐷 =
∑
𝑛𝑖, 𝑗𝑆𝑖, 𝑗 is positive if all 𝑛𝑖, 𝑗 ≥ 0.

The Maslov index 𝜇(𝐷) of a domain 𝐷 is the formal dimension of the space of holomor-
phic representatives of the domain (when considered as a 2-chain); it admits a rather simple
formula, which will be sufficient in our subsequent discussion. For a domain 𝐷 =

∑
𝑛𝑖, 𝑗𝑆𝑖, 𝑗

from x to y we define the point measure 𝑝(𝐷) as follows: for each 𝑥𝑖 ∈ x (i.e. an intersection
point of the horizontal and vertical lines which belongs to x) we take the average of the four
numbers 𝑛𝑖, 𝑗 corresponding to the four small squares meeting at 𝑥𝑖 . Then 𝑝x (𝐷) is the sum
of these local contributions for all 𝑥𝑖 ∈ x, and 𝑝(𝐷) = 𝑝x (𝐷) + 𝑝y (𝐷). The Maslov index
of 𝐷 is then

𝜇(𝐷) = 𝑝(𝐷).

Remark 4.1. The general formula for the Maslov index in Heegaard Floer theory also
involves a term originating from the geometry of 𝐷 (called the Euler measure of 𝐷); as
this term is additive and vanishes for the small squares, in a grid diagram all domains have
vanishing Euler measure.
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In the next subsections we will give examples of the moduli spaces associated with some
domains, and in Subsection 4.6 we describe an inductive way (based on the Maslov index)
for constructing these spaces.

4.3. Maslov index 1 domains. These are the domains we need to encounter in the boundary
map of grid homology. When x and y can be connected by a rectangle (that is, they differ
in two circles), the moduli space M(x, y) contains two, one or zero points depending on
the number of empty rectangles connecting x and y. An example of an empty rectangle is
shown by Figure 22.

Figure 22. A rectangle connecting the generators x (full circle) and y
(hollow circle). Note that the two generators have all further coordinates
equal, symbolized by the crossing on the right.

This case corresponds to the connecting domains with Maslov index 𝜇(𝐷) = 1. The
space associated to such a domain is a single point, hence the moduli space M(x, y) (the
morphisms between the two objects x and y in the flow category) consists of two, one or
zero points.

4.4. Maslov index 2 domains. In the next step we consider domains with Maslov index
𝜇(𝐷) = 2 connecting the grid states x and y. These domains are relatively easy to
understand: they are concatenations of two rectangles. A simple analysis shows that this
can happen in two ways. In the first case the two rectangles ‘move’ different coordinate
pairs (so the two rectangles move four coordinates in total). Geometrically in this case the
domain 𝐷 is the union of two rectangles (which might not be disjoint, but they do not share
sides), see Figure 23.

In the second case one of the moving coordinates of the first rectangle is also a moving
coordinate of the second one. In this case, in geometric terms the domain 𝐷 is an L-shaped
region in the grid torus, see Figure 24.

The domain 𝐷 can be decomposed into the concatenation of two empty rectangles in two
different ways, once as a rectangle 𝐷1 from x to a grid state w composed with a rectangle
𝐷2 from w to y, and also as the composition of 𝐷′

1 from x to z with 𝐷′
2 from z to y. When

the two rectangles move four coordinates, the geometric presentation is quite obvious: 𝐷1
(as a subset of the grid torus) agrees with 𝐷′

2 and 𝐷2 with 𝐷′
1. When the rectangles

share moving coordinates, the decomposition is given by the two ways an L-shaped domain
decomposes as the union of two rectangles. This is indicated in Figure 24.

Indeed, these decompositions correspond to the broken flowline picture, hence we asso-
ciate to such a domain an interval as moduli space, with the two endpoints corresponding
to the two products of one-point moduli spaces, as it is shown in Figure 25. The moduli
space in this case associated to the domain 𝐷 is a manifold with boundary (an interval,
really), and M(x, y) will be (as always) the union of all the spaces associated to Maslov
index 2 domains from x to y.
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Figure 23. Each of the two figures show a Maslov index 2 domain
from the (black) full circle to the hollow circle. Geometrically, the
domain consists of two rectangles, which can be disjoint (as in the left)
or overlapping (as on the right). In either case, the Maslov index 2
domain can be expressed as the concatenation of two rectangles (i.e.,
doing one rectangle after the other) in two different ways, depending on
which rectangle comes first. One such concatenation factors through the
grid state given by red circles, and the other one factors through the grid
state given by blue circles. The resulting moduli space is a segment,
as in Figure 25, with the endpoints (broken flowlines) given by the two
concatenations just described.

Figure 24. The 𝐿-shaped region decomposes into two rectangles in two
different ways. Such a region is a domain from x (full circles) to y (hollow
circles); the two decompositions factor through w (red circles) or z (blue
circles).

4.5. Maslov index 3 domains. The same scheme applies if the domain𝐷 has Maslov index
𝜇(𝐷) = 3, and 𝐷 moves 6 coordinates, so it can be decomposed into three ‘independent’
rectangles, each moving different pairs of coordinates, as shown in Figure 26. The by
now customary argument suggests that we need to associate to 𝐷 a permutohedron, i.e. a
hexagon in this dimension.
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𝑎 𝑐

𝑏 𝑑

M(𝐷) =
𝑎𝑏 𝑐𝑑

Figure 25. The figure on the left shows the broken flowlines for a domain
𝐷 of Maslov index 2 (such as those in Figures 23 and 24). The figure on
the right show the moduli space M(𝐷).
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Figure 26. A domain with Maslov index 3 (on the left), and its moduli
space (on the right). The boundary of the moduli space consists of all
possible (partially or fully) broken flowlines: in particular, the vertices of
the hexagon correspond to doubly broken flowlines, whereas the edges
consist of once-broken flowlines.

There are many more possibilities for a domain 𝐷 to have Maslov index equal to 3, and
to still have a hexagon as its moduli space M(𝐷); see Figure 27 for some examples.

The situation, however, can be much more complicated, and further configurations
lead to other natural choices: the domain shown by Figure 28, for example, provide 4
possible starts from x when decomposed into rectangles, and altogether there are 8 broken
trajectories, hence the moduli space is an octagon (see Figure 29).

A further example is provided by a rectangle which is not empty (contains a further
coordinate of x and therefore of y). This example has Maslov index 3, and there are four
broken trajectories in the decomposition, so the natural choice for the moduli spaces is a
rectangle, depicted in Figure 30.
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Figure 27. Other domains with Maslov index 3.

Figure 28. Both sides show a more involved domain with Maslov index
3. The 4 rectangles shown within the given domain are the 4 possible
starts of the 8 decompositions of the domain into rectangles. Each such
decomposition corresponds to a fully broken flowlines.

x

• • • •

• • • •

y

M =

Figure 29. The structure of the eight fully broken flowlines and the
moduli space associated with the domain of Maslov index 3 from Figure
28. The reader is invited to identify the eight fully broken flowlines
(corresponding to the eight vertices of the octagon) and the partially
broken flowlines (corresponding to the sides of the octagon).

4.6. Maslov index 𝑘 domains. The above ad hoc arguments is extended to any Maslov
index in a more systematic way by induction, using obstruction theory. There are several
complications along the way, though.
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Figure 30. A domain with Maslov index 3 (on the left) from x (full
circles) to y (hollow circles), the fully broken flowlines (in the middle),
and the moduli space (on the right). The reader is invited to work out the
boundary of the moduli space.

First of all, remember that in the flow category we require the moduli spaces to be
framed manifolds (indeed, manifolds with corners). Because of the presence of ‘bubbles’
in Heegaard Floer homology, however, the natural choices for spaces associated to (positive)
domains are not always manifolds with corners — we need to consider more complicated
stratified spaces. On the positive side, the bubbles will guide us to glue the stratified spaces
associated to the domains connecting two grid states x and y to get a framed manifold with
corner, which will then be our choice for the morphism space M(x, y) in the flow category.
To explain the main ideas, first we will ignore the complications brought by the bubbles,
and describe the naı̈ve inductive idea to define the manifold with corner associated to a
domain 𝐷 of Maslov index 𝑘 + 1. We will return to the discussion about the role of bubbles
in Subsection 4.7.

Our inductive hypothesis is therefore that we have already constructed the framed moduli
spaces for all (positive) domains of Maslov index ≤ 𝑘; consider now a domain 𝐷 with
Maslov index 𝜇(𝐷) = 𝑘 + 1. By the inductive hypothesis, the framed boundary 𝜕M(𝐷) of
the moduli space M(𝐷) is an already defined (𝑘 − 1)-dimensional framed manifold with
corners, and hence provides an element 𝑜(𝐷) of the framed cobordism group Ωfr

𝑘−1. The
latter is the group of (𝑘 − 1)-dimensional framed cornered manifolds taken up to framed
cornered cobordism, with group operation given by the disjoint union.

Remark 4.2. In reality the boundary defines an element in a more complicated group, which
is denoted by Ω̃fr

𝑘−1 in [MS21]: while its definition differs from that of Ωfr
𝑘−1, it turns out to

be isomorphic to it. Once again, we will ignore this subtlety here.

Thus, for each (positive) domain 𝐷 with Maslov index 𝜇(𝐷) = 𝑘 + 1, we get an element
𝑜(𝐷) ∈ Ωfr

𝑘−1 (the notation indicates that it is an obstruction class). Putting these classes
together, we get a 𝑘-cochain on a chain complex generated by the domains, with values in
Ωfr

𝑘−1.
Before proceeding any further, let us discuss the chain complex generated by the positive

domains — this chain complex will be called the obstruction chain complex and denoted
by 𝐶𝐷∗.

Definition 4.3. The chain complex 𝐶𝐷∗ = 𝐶𝐷∗ (G) is freely generated over Z by the
positive domains and graded by their Maslov indices:

𝐶𝐷𝑘 (G) = Z⟨(x, y, 𝐷) | 𝐷 ∈ D+ (x, y), 𝜇(𝐷) = 𝑘⟩.
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Moreover, 𝐶𝐷∗ is equipped with the endomorphism 𝜕, given by

𝜕 (𝐷) =
∑︁

(𝑅,𝐸 ) ∈ R (x,w)×D+ (w,y)
𝑅∗𝐸=𝐷

𝑠(𝑅)𝐸 + (−1)𝑘
∑︁

(𝐸,𝑅) ∈ D+ (x,w)×R (w,y)
𝐸∗𝑅=𝐷

𝑠(𝑅)𝐸.

Here R(x, y) denotes the rectangles from x to y, and 𝑠 denoted a sign assignment.

It is not hard to see that

Lemma 4.4. The pair (𝐶𝐷∗, 𝜕) is a chain complex, that is, 𝜕2 = 0.

On the other hand, it requires a rather tedious calculation to show that the homology of
this complex is rather simple:

Lemma 4.5. The homology of (𝐶𝐷∗, 𝜕) is isomorphic to Z, supported in grading 0.

Because of the presence of possible bubbles (a.k.a. boundary degenerations), however,
later we are forced to consider a more complicated chain complex, an enhancement 𝐶𝐷𝑃∗
of 𝐶𝐷∗ where also vectors of partitions and further data describing the positions of the
bubbles (and their relative distances) are added to the generators. These extra data will be
essential in locating possible bubbles, hence play a crucial role in gluing arguments. (We
will omit the details of this extension here.)

The ‘earlier defined’ cochains (based on the definition of the obstruction 𝑜(𝐷)) naturally
live in a subcomplex of the dual 𝐶𝐷𝑃∗ of 𝐶𝐷𝑃∗, and an important technical step in the
construction is the calculation showing that this subcomplex is acyclic.

By associating the obstruction class 𝑜(𝐷) to a Maslov index 𝑘 + 1 positive domain, we
get a (𝑘 + 1)-cochain, which turns out to be a cocycle, that is

𝛿(𝑜) = 0,

where 𝛿 is the dual coboundary map. This is proved by showing that 𝑜(𝜕𝐷) = 0 for
all positive domains 𝐷 with 𝜇(𝐷) = 𝑘 + 2. As the cochain complex is acyclic, 𝑜 is a
coboundary, that is, there is a map 𝑓 on index 𝑘 domains associating

𝐸 ↦→ 𝑓 (𝐸) ∈ Ωfr
𝑘−1

to the domain 𝐸 , satisfying
𝑜 = 𝛿( 𝑓 ).

Now we ‘change’ the framed manifold M(𝐸) (that was already constructed) to M(𝐸) ⨿
− 𝑓 (𝐸). With respect to these new moduli spaces, the obstruction class vanishes. In other
words, for each positive domain 𝐷 with 𝜇(𝐷) = 𝑘 + 1, its boundary 𝜕M(𝐷) is framed
null-cobordant, and therefore, can be filled as a framed manifold, which we define to be the
moduli space M(𝐷). Then the induction proceeds.

In this naı̈ve approach we would define the moduli spaces M(x, y) in the flow category
by taking the disjoint union for all domains of the given Maslov index connecting the two
grid states x and y.

The potential (and actual) presence of bubbles, however, prevent us to proceed as outlined
above. We need to allow the spaces M(𝐷) to be more general than framed manifolds with
corners; and these stratified spaces will be glued together in an intricate way to form
M(x, y), which will ultimately be a framed manifold with corners. We will discuss some
of the complications caused by the bubbles in the next subsection through some examples;
for the full theory the interested reader is advised to turn to [MS21].
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𝐴

𝐵

Figure 31. Two rectangles forming a width-one strip around the torus.

4.7. Bubbles. Recall that for two grid states x and y which differ in exactly two coordinates,
we associated four rectangles, two from x to y and two from y to x. Let 𝐴 be a rectangle
from x to y and pick a rectangle 𝐵 from y to x. The union of 𝐴 and 𝐵 will comprise a
positive domain 𝐷, which geometrically is a strip running around the torus (the direction
depending on which rectangle from y to x is chosen). See Figure 31. If 𝜇(𝐷) = 2, then the
strips will have height or width equal to 1 (otherwise they will contain entire circles, which
carry coordinates, driving the Maslov index up).

The composition 𝐷 of these domains, seen as a domain from x to x, has a moduli space
which is an interval, with one end being the broken flowline given by 𝐴 (from x to y)
followed by 𝐵 (from y to x), and the other end comprising a bubble, see Figure 32.

x

y

x

x

y

x

𝐴

𝐵

x

x

𝐻

Figure 32. The other end of this moduli space can be viewed as a
boundary degeneration. We follow the convention that horizontal bubbles
will be drawn on the left, while vertical bubbles on the right.

Remark 4.6. In the holomorphic picture the other end of the moduli space, the ‘bubble’,
corresponds to a geometric picture: it is given by a disk which has its entire boundary only
on one of the sets of curves (in the grid language either only on the horizontal or on the
vertical ones). This explains the pictorial presentation of Figure 32 on the right.

The contribution from the bubbles does not create any confusion in grid homology, as
these bubbles come in pairs: a horizontal bubble will be cancelled by a vertical one. To
exhibit an explicit pairing, we use the 𝑂-markings: we take the strips passing through a
fixed 𝑂-marking to cancel each other, see Figure 33.

In constructing the flow category, we use these pairs to glue the moduli spaces M(𝐴+𝐵)
and M(𝐶 + 𝐷) together, along the portion of their ‘bubble-type’ boundary, as depicted in
Figure 34. In this simple example therefore both moduli spacesM(𝐴+𝐵) andM(𝐶+𝐷) are
intervals, and both admit two different types of boundaries: one corresponding to a broken
flowline, and the other to a bubble. The gluing is performed on the bubble-type boundary
(where some extra data should be recorded to get a framed manifold with boundary at the
end). A crucial feature of the end-result is that the glued-up space no longer has any strata
consisting only of bubbles.
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𝐵

𝐷

𝐴

𝐶

Figure 33. The two thin strips around the torus, passing through the fixed
𝑂-marking. Each can be decomposed into two rectangles, as shown. (The
x coordinates are shown as solid dots.)
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Figure 34. Gluing the two moduli spaces along the two (vertical and
horizontal) boundary degenerations.

The situation encountered above is the first instance when bubbles should be taken into
account in our constructions. In grid homology we only need Maslov index 1 domains
(to define the boundary map in the chain complex) and Maslov index 2 domains (to prove
that the square of the boundary map is zero, i.e. we do have a chain complex). In the
spacification process, however, domains with higher Maslov indices should be also taken
into account — indeed, we need to work with all positive domains connecting grid states.
Therefore higher dimensional bubbles should be examined and handled.

Next we describe a Maslov index 3 example. Continuing from the previous example,
consider the domains 2𝐴+𝐵 and 𝐴+𝐶 +𝐷 from x to y. Both the moduli spaces M(2𝐴+𝐵)
and M(𝐴 + 𝐶 + 𝐷) should have bubble type boundaries, but we will glue them carefully
so that the glued-up space has no strata consisting only of bubbles. For M(2𝐴 + 𝐵), the
only completely broken flowline is 𝐴𝐵𝐴, and after a little analysis, we see that M(2𝐴 + 𝐵)
should be a triangle. A similar analysis shows that M(𝐴 + 𝐶 + 𝐷) should be a pentagon.
Each of these spaces have one edge on the boundary corresponding to bubbling, and the
edge is parametrized by the height of the bubble. (We will not discuss the concept of the
height of a bubble, or the gluing parameters appearing later — these technical data play
crucial role in the gluing theory.) We then glue the two edges together — by matching their
heights — and the new moduli space is a smooth manifold with corners, with no stratum
consisting only of bubbles. This process is illustrated in Figure 35.
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Figure 35. The moduli space M(2𝐴 + 𝐵) (the triangle) is glued to the
moduli space M(𝐴 + 𝐶 + 𝐷) (the pentagon) along their bubble-type
boundaries. (Note that the glued-up moduli space is a rectangle, not a
hexagon.)

Pushing one dimension further, and continuing from the above examples, consider the
domains 2𝐴+2𝐵, 𝐴+𝐵+𝐶 +𝐷, and 2𝐶 +2𝐷, all connecting x to x. As it was noted earlier,
this time the three moduli spaces M(2𝐴 + 2𝐵), M(𝐴 + 𝐵 + 𝐶 + 𝐷), and M(2𝐶 + 2𝐷)
will not be manifolds with corners, but will be Whitney stratified spaces. Each will have
bubble-type boundaries, but they will be glued together carefully to produce a smooth
manifold with corners, with no stratum consisting only of bubbles. We will not describe the
full gluing, but rather the gluing near the most complicated portions of their boundaries,
namely the portion of the boundary with two bubbles. Each of these three moduli spaces
has an interval worth of such ‘double’ bubbling as shown in Figure 36.
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𝐼1 ⊂ M(2𝐴 + 2𝐵)
𝑑 ∈ [0,∞]
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𝑉

𝑑

𝐼2 ⊂ M(𝐴 + 𝐵 + 𝐶 + 𝐷)
𝑑 ∈ [−∞,∞]
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𝐼3 ⊂ M(2𝐶 + 2𝐷)
𝑑 ∈ [0,∞]

Figure 36. The three intervals, 𝐼1, 𝐼2, 𝐼3, of double-bubbles in M(2𝐴 +
2𝐵), M(𝐴 + 𝐵 + 𝐶 + 𝐷), M(2𝐶 + 2𝐷), respectively. The intervals are
parametrized by 𝑑, the height difference between the bubbles, and we
have 𝐼1 = 𝐼3 = [0,∞] and 𝐼2 = [−∞,∞].
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𝛼1 = 𝛼2
𝛽1 = 𝛽2 = 0

𝛼1 ≠ 𝛼2
𝛽1 = 𝛽2 = 0

𝛽1 < 0
𝛽2 = 0

𝛽1 > 0
𝛽2 = 0

𝛽1, 𝛽2 > 0

𝛽1, 𝛽2 < 0

𝛽1 > 0
𝛽2 < 0

Figure 37. The Whitney umbrella stratification of R3, seen as
Sym2 (C)/R. Let 𝛼1 + 𝑖𝛽1 and 𝛼2 + 𝑖𝛽2 denote the two complex numbers,
which are well-defined up to the R-action (𝛼1, 𝛼2) ↦→ (𝛼1 + 𝑡, 𝛼2 + 𝑡).
There is one 0-dimensional stratum, one 1-dimensional stratum, two 2-
dimensional strata, and three 3-dimensional strata, which are shown in
different colors and are labelled.

As we got used to gluing horizontal bubbles to vertical bubbles, we might expect that
the ‘double horizontal bubbling’ of 𝐼1 be glued to the ‘double vertical bubbling’ of 𝐼3, and
the double ‘mixed’ bubbling of 𝐼2 (one horizontal bubble and one vertical bubble) be glued
to itself, hence giving rise to a quotient of 𝐼2 in the gluing. What really happens is, in fact,
more complicated, because all the above portions of the moduli spaces corresponding to
double bubblings are glued together, as we shall see in Figure 37. Nonetheless, 𝐼2 will be
glued to itself, and this is why in what follows we consider the quotientM(𝐴+𝐵+𝐶+𝐷)/∼,
obtained by quotienting 𝐼2 ⊂ M(𝐴 + 𝐵 + 𝐶 + 𝐷) by 𝑑 ∼ −𝑑.

We now describe how M(2𝐴+2𝐵), M(𝐴+𝐵+𝐶+𝐷)/∼, and M(2𝐶+2𝐷) are glued in
a neighborhood of 𝐼1, 𝐼2/∼, and 𝐼3. Each of the intervals 𝐼1, 𝐼2/∼, and 𝐼3 is parametrized by
[0,∞], and they are glued together respecting this parametrization. To extend this gluing
to a neighborhood, we first need to understand the neighborhoods of these three intervals
in M(2𝐴 + 2𝐵), M(𝐴 + 𝐵 + 𝐶 + 𝐷)/∼, and M(2𝐶 + 2𝐷).

Towards that end, consider the stratification of R3 given by the Whitney umbrella: the
ambient space is Sym2 (C)/R � R3 — where the R-action is by translating the real parts
— stratified by the signs of the imaginary parts. (There is an extra 0-dimensional stratum
when the real parts are equal and both the imaginary parts are 0.) See Figure 37.

Given (𝛼1 + 𝑖𝛽1, 𝛼2 + 𝑖𝛽2) ∈ Sym2 (C), the two real parts encode the heights of the
two bubbles, while the imaginary parts encode the gluing parameters for gluing the two
bubbles, and their signs encode whether the bubbles are glued in as horizontal bubbles or
as vertical bubbles.

The closure of the red interval (described by the equations 𝛽1 = 𝛽2 = 0) corresponds
to double bubbling, and is parametrized by 𝑑 = |𝛼1 − 𝛼2 | ∈ [0,∞]. The interval 𝐼2 ⊂
M(𝐴 + 𝐵 + 𝐶 + 𝐷) locally looks like 𝐼2 ⊂ 𝐼2 × R2

≥0, where the R≥0 are gluing parameters
for gluing the two bubbles. Therefore, after quotienting, 𝐼2/∼ ⊂ M(𝐴 + 𝐵 + 𝐶 + 𝐷)/∼
locally looks like the red stratum inside the orange stratum. (The orange stratum has one
imaginary part positive and one imaginary part negative, which corresponds to gluing one
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bubble in as the horizontal bubble 𝐻 and one bubble in as the vertical bubble𝑉 .) Similarly,
𝐼1 ⊂ M(2𝐴 + 2𝐵) locally looks like the red stratum inside the light green stratum and
𝐼3 ⊂ M(2𝐶 + 2𝐷) locally looks like the red stratum inside the light blue stratum. The
Whitney umbrella witnesses how the light green, orange, and light blue strata glue together
to produce the smooth manifold R3, and that is the local model of how the neighborhoods
of 𝐼1, 𝐼2/∼, 𝐼3 are glued together.
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208 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI,
2015.

[Ras03] Jacob Andrew Rasmussen. Floer homology and knot complements. Harvard University, 2003.
[Rei27] Kurt Reidemeister. Elementare Begründung der Knotentheorie. In Abhandlungen aus dem Mathema-

tischen Seminar der Universität Hamburg, volume 5, pages 24–32. Springer, 1927.
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