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Extremely Persistent Dense Active Fluids

Grzegorz Szamela and Elijah Flennera

We study the dynamics of dense three-dimensional systems of active particles for large persistence
times τp at constant average self-propulsion force f . These systems are fluid counterparts of previ-
ously investigated extremely persistent systems, which in the large persistence time limit relax only
on the time scale of τp. We find that many dynamic properties of the systems we study, such as
the mean-squared velocity, the self-intermediate scattering function, and the shear-stress correlation
function, become τp-independent in the large persistence time limit. In addition, the large τp limits
of many dynamic properties, such as the mean-square velocity and the relaxation times of the scat-
tering function, and the shear-stress correlation function, depend on f as power laws with non-trivial
exponents. We conjecture that these systems constitute a new class of extremely persistent active
systems.

1 Introduction
Self-propelled or active particles, which use energy from their
environment to perform persistent motion, behave in surprising
and interesting ways1–3. Recently, novel intermittent dynamics
was identified in extremely persistent dense homogeneous two-
dimensional systems4–7. These systems were shown to relax on
the time-scale of the persistence time τp by going through se-
quences of mechanical equilibria in which self-propulsion forces
balance interparticle forces. In contrast, at low and moder-
ate densities and long persistence times active matter undergo
motility-induced phase separation (MIPS), and separate into re-
gions with dramatically different densities .

Here we examine the fluid counterparts of systems considered
in Refs.4–7; extremely persistent homogeneous three-dimensional
active fluids in which the interparticle interactions never manage
to balance the self-propulsion forces, which influence particles’
motion in a nontrivial way. Although our fluid systems are less
dense that those considered in Refs.4–7, they are dense enough
such that we do not observe MIPS.

The parameter space of active systems is much larger than that
of passive ones. At a minimum, one has to specify the average
strength of active forces and their persistence time in addition
to the set of parameters characterizing the corresponding passive
system. If one considers athermal active systems, this results in a
three-dimensional control parameter space. Thus, when compar-
ing results of diverse studies, one needs to specify the path in the
parameter space that one is following.

Early studies of dense homogeneous active systems focused on
the glassy dynamics and the active glass transition8–17. Many
of these studies considered a limited range of persistence times
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and often examined the behavior at constant active temperature
Ta that characterizes the long-time motion of an isolated active
particle. For many models of self-propulsion, with increasing τp

at constant Ta, the strength of active forces decreases and dense
active systems typically become glassy, see Fig. 2c of Ref.6 for
a recent example. Thus, to investigate the effects of extremely
persistent active forces it is common to fix the force strength while
increasing the persistence time4,5,7.

Recently, it has been shown that interesting behavior emerges
for large persistence times in dense active particle systems4–7,18.
First, it was found that some extremely persistent dense active
systems relax only on the time scale of τp

4–7. In these systems,
the mean squared displacement (MSD) and the two-point overlap
function exhibit well-defined large τp limits when plotted versus
time rescaled by the persistence time5. Distributions of veloc-
ity components were found to exhibit fat exponential tails6. An
intermediate-time plateau in the MSD was absent. Instead, a re-
gion of super-diffusive MSD scaling with time as tβ with β ≈ 1.6
for times less than τp was identified6.

Second, a recent study of two-dimensional active systems that
remain fluid in the large persistence time limit showed that
mesoscale advective flows, forming streams and vortices, emerge
for large persistence times18. These flow patterns resemble tur-
bulent flows, and thus this phenomenon was identified as a type
of “active turbulence”.

Here we study dense homogeneous three-dimensional active
systems that do not undergo dynamic arrest in the large persis-
tence time limit. In contrast to findings of Refs.4–7, for large
persistence times τp many dynamic properties of our systems be-
come τp-independent and their relaxation functions exhibit well-
defined limits when plotted versus time not scaled by the persis-
tence time. Also, the large persistence time limits of many prop-
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erties depend on the strength of active forces f as power laws. We
emphasize that both the active systems studied in Refs.4–7 and the
fluid-like active systems studied here exhibit universal behavior,
but on very different time scales.

It could be surmised that, in the infinite τp limit, our systems
lie in the un-jammed phase of the active yielding phase diagram
studied (in two dimensions) by Liao and Xu19. However, these
authors studied systems of particles interacting via a harmonic
repulsion, in which interparticle forces are bounded, and thus
strong enough self-propulsion forces are always able to induce
motion. In contrast, in our systems interparticle forces are un-
bounded, and thus their jamming phase diagram may be different
from that obtained by Liao and Xu.

2 Simulations
We study a three-dimensional 50:50 binary mixture of spherically
symmetric active particles interacting via the Weeks-Chandler-
Andersen20 potential,

Vαβ = 4ε

[︄(︃
σαβ

r

)︃12
−
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σαβ

r

)︃6
]︄

(1)

for r < ςαβ = 21/6σαβ and 0 otherwise. Here, α, β denote the
particles species A or B and ε is the unit of energy. The distance
unit is set by σBB = 1.0, σAA = 1.4, and σAB = 1.2. We study the
number density N/V = 0.451, which corresponds to the volume
fraction φ = πN[ς3

AA + ς3
BB]/(12V ) = 0.625.

We use the athermal active Ornstein-Uhlenbeck particle model
without thermal noise21–23. The equation of motion for the posi-
tion rn of particle n is

ξ0ṙn = Fn + fn, (2)

where Fn = −∑m̸=n ∇nV (rnm) and fn is the active force. ξ0 = 1 is
the friction coefficient of an isolated particle and ξ0σ2

BB/ε sets the
unit of time.

In turn, the self-propulsion forces evolve according to the
Ornstein-Ulenbeck process. The equation of motion for the self-
propulsion force acting on particle n reads

τp ḟn = −fn + ζ n, (3)

where τp is the persistence time of the self-propulsion and
ζ n is a Gaussian white noise with zero mean and variance
⟨ζ n(t)ζ m(t ′)⟩noise = 2ξ0TaIδnmδ (t − t ′), where ⟨. . .⟩noise denotes av-
eraging over the noise distribution, Ta is a single particle effective
temperature, I is the unit tensor and we set the Boltzmann con-
stant kB = 1. The root-mean square strength of active forces is
f =

√︁
3Ta/τp. The time step for the simulations ranged from 0.01

to 0.0001 with a smaller time step needed for larger f and longer
τp. We simulated at least 10 τp for each of 4 productions runs,
which required up to 109 time steps.

To check for finite size effects we studied systems of 1K, 8K, and
64K particles at large persistence times. We did not find any sys-
tem size dependence of the system’s dynamics or properties. The
results shown in this work are for 1K particles unless otherwise
noted in the figure caption.
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Fig. 1 The persistence time dependence of the mean squared velocity
v2 =

⟨︁
ṙ2⟩︁

for fixed active force strength f . The velocity decreases and
then saturates. The vertical dashed lines indicate approximate τp at
which the saturation occurs. The dotted lines are the free particle value
of v2 = f 2 for each corresponding color.
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Fig. 2 The mean squared displacement (MSD)
⟨︁
δ r2(t)

⟩︁
for f = 5.48 and

several τp. For shorter τp MSDs display a glassy plateau followed by
diffusive motion. With increasing τp an extended superdiffusive region
appears that is analyzed in Fig. 4a.

3 Single-particle dynamics
We start by examining the persistence time depen-
dence of the mean square velocity, v2 ≡ N−1 ⟨︁

∑n ṙ2
n
⟩︁

=
N−1 ⟨︁

∑n F2
n + ∑n 2Fn · fn

⟩︁
+ f 2, which is shown in Fig. 1. With

increasing persistence time v2 decreases and then saturates.
For the range of f that we studied, the cancellation of the
interparticle and active forces is never complete and the system
does not become arrested on the time scale of the persistence
time5,7.

Next, we examine the persistence time dependence of the MSD⟨︂
δ r2(t)

⟩︂
= N−1

⟨︃
∑
n

[rn(t)− rn(0)]2
⟩︃

, (4)

shown in Fig. 2. At short times the motion is ballistic and it is
determined by v2,

⟨︁
δ r2(t)

⟩︁
≈ v2t2 11. For large persistence times

the short-time dynamics become τp-independent, which confirms
saturation of v2. For small τp and fixed f we observe a well devel-
oped intermediate time plateau crossing over to diffusive behav-
ior at long times. This behavior, characteristic of a system close
to dynamic arrest, can be understood by noticing that the state
point f = 5.48, τp = 0.001 is the same as the state point Teff = 0.01,
τp = 0.001 of Ref.17. Figs. 2c and 3 of the latter paper show that
this state point is on the fluid side of the glass phase diagram, very
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Fig. 3 The long time diffusion coefficient D for fixed active force strength
f as a function of persistence time. D grows with increasing τp and is
proportional to τp in the large τp limit.
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Fig. 4 (a) The mean squared displacement divided by v2t2 for f = 5.48.
For large τp, at short times the motion is ballistic (not shown), and then
there is a super-diffusive regime. For very large τp the super-diffusive
motion speeds up and the resulting behavior is approximately ballistic.
For t > τp long-time diffusive motion is observed. In the τp → ∞ limit
the system stays in the second ballistic regime, with velocity v1. (b) The
velocity autocorrelation function. For very large τp an intermediate time
plateau is observed. The level of the plateau is the same in both panels.

close to the dynamic arrest line. With increasing τp the intermedi-
ate time plateau characteristic of glassy dynamics disappears and
the system becomes more fluid like. Similar fluidization with in-
creasing τp and fixed f was observed in two-dimensional systems
by Paoluzzi et al.24.

At long times, the MSD exhibits diffusive behavior. The self-
diffusion coefficient, D = limt→∞

⟨︁
δ r2(t)

⟩︁
/(6t), is shown in Fig. 3.

For a given f it monotonically increases with increasing τp. At
large τp we find that D ∼ τp, indicated by the dashed lines.

We find a surprising time-dependence of the MSD between the
initial ballistic and the long-time diffusive regimes. In Fig. 4a we
show the MSD divided by v2t2 to show this time-dependence more
clearly. The MSD exhibits a superdiffusive behavior that does not
follow a single power law. Instead, a second, intermediate time
ballistic regime appears, with velocity v1. In the τp → ∞ limit the
systems stays in the second ballistic regime.

The time-dependence of the MSD shown in Fig. 4a is reflected
in the time-dependence of the velocity auto-correlation function,
VACF(t) = N−1

∑n ⟨ṙn(t) · ṙn(0)⟩, shown in Fig. 4b. We observe a
two-step decay, which becomes increasingly more pronounced
with increasing τp. This agrees with the observation in Ref.18,
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Fig. 5 The distribution of velocities for f = 0.0548 for a range of persis-
tence times. The distributions are non-Gaussian; the tails become more
prominent with increasing τp until the persistence time at which v2 sat-
urates and then the distributions overlap. The dashed line represents a
Maxwell distribution.

τp = 1
τp = 3
τp = 5
τp = 10
τp = 100
τp = 1000
τp = 10000
τp = 100000

f = 0.0548

Γ

0.5

1.0

1.5

τp

1 103

Increasing τp

F s
(q

;t)

0

0.5

1.0

t
10−1 1 101 102 103 104 105 106 107

Fig. 6 The self-intermediate scattering function Fs(k; t) for f = 0.0548
and a range of persistence times. The relaxation time decreases with
increasing persistence time until around τp( f ) where Fs(k; t) becomes in-
dependent of persistence time. The inset shows the τp dependence of
parameter Γ of fit to Fs(k; t) = ae−(t/τs)Γ

.

except that, since we keep strength of active forces f constant,
we find the plateau level to be τp independent. We note that the
plateau levels are the same in both panels of Fig. 4. The plateau
level decreases with increasing self-propulsion force f .

Results shown in Fig. 4 suggest that, in the large τp limit, the
diffusion can be thought of as a random walk consisting of steps
of length v1τp taken every τp. This reasoning rationalizes the ob-
served scaling D ∼ τp. We note that while the physical picture of a
random walk of steps of length v1τp taken every τp is identical to
the behavior expected at low densities, our systems exhibit highly
non-trivial dependence of v1 on the average self-propulsion force
f , which we will discuss at the end of this section. This depen-
dence suggests that the observed effective behavior is strongly
influenced by interparticle interactions.

In Fig. 5 we show velocity distributions. As found by Keta et
al.6, the distributions are strongly non-Gaussian. Their broad
tails become more prominent with increasing τp and then satu-
rate.

The evolution of the MSD with the persistence time is reflected
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Fig. 7 The large τp limit of v2, D/τp and 1/τs as a function of the self-
propulsion strength f . The lines are power law fits where the exponent
for v2, D/τp and 1/τs are 2.6 ± 0.1, 2.7 ± 0.1 and 1.3 ± 0.1, respectively.
The inset shows D/(τpv2) versus f , which varies between 0.02 to 0.2 over
the range of f examined, with error bars of about 0.05.

in the τp dependence of the self-intermediate scattering function

Fs(k; t) = 1
N

⟨︃
∑
n

eik·(rn(t)−rn(0))
⟩︃

. (5)

We chose k = 5.3, which is approximately equal the first peak
of the total static structure factor. In Fig. 6 we show Fs(k; t)
for f = 0.0548. With increasing τp the intermediate time glassy
plateau disappears and the decay changes from stretched expo-
nential, to exponential, then to compressed exponential. Shown
in the inset to Fig. 6 is the parameter Γ obtained from fits to
Fs(k; t) = ae−(t/τs)Γ

where we restrict a ≤ 1. Γ increases with in-
creasing τp and reaches a plateau above τp ≈ 94.

We find that the large persistence time limits of several proper-
ties discussed above depend on the strength of the active forces as
power laws. In Fig. 7 we show the large τp limits of v2 (squares),
D/τp (circles) and τs (triangles). We find that the former two
quantities follow a power law with f with statistically the same
exponent, 2.6±0.1 for v2 and 2.5±0.1 for D/τp. We note that v2 is
bound from above by f 2, which corresponds to the limit in which
interactions become irrelevant compared to active forces. Thus,
we do not expect the power law for v2 to extend up to arbitrary
large f . The power law of the relaxation time, τs ∼ f −1.3 can be
related to that of v2; in the large τp limit Fs decays on the time
scale on which a particle moves over its diameter, which scales as
v.

We also analyzed the dependence of v1 on the strength of the
active forces. To this end, we extracted v2

1 for each f by finding
the plateau in

⟨︁
δ r2(t)

⟩︁
/t2 for large τp. We find that v2

1 grows
with f as a power law with an exponent of 2.5 ± 0.2, which is
statistically the same as the exponent for v2.

We emphasize that, although in the large τp limit the motion of
individual particles is close to ballistic, it is still influenced by the
interparticle interactions in a highly non-trivial way. If there were
no interparticle interactions, scaling exponents discussed above
would have values 2 and −1.

4 Collective dynamics
The quantities discussed in Sec. 3 describe the single particle mo-
tion in our many-particle systems. To examine collective proper-
ties we investigated the persistence time dependence of the stress
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Fig. 8 Normalized shear-stress correlation function for f = 0.0548 and
a range of persistence times. The shear stress relaxation time initially
increases with τp, and then saturates. Additionally, Σxy(0) grows with τp
and then it becomes approximately constant (inset).
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Fig. 9 Average shear stress
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σxy

⟩︁
divided by the shear rate γ̇ at constant

f = 0.548 for a range of persistence times. The zero-shear-rate viscosity
η can be obtained from the small shear rate plateau.

fluctuations and the rheological response. First, we examined the
shear-stress correlation function Σαβ (t) = V −1 ⟨︁

σαβ (t)σαβ (0)
⟩︁
,

where

σαβ (t) = −1
2 ∑

n
∑

m̸=n

rα
nmrβ

nm

rnm

dV (rnm)
drnm

, (6)

and rα
nm is the α component of the distance vector between parti-

cle n and particle m.
In Fig. 8 we report the normalized shear stress correlation func-

tion, Σxy(t)/Σxy(0), for f = 0.0548 and a large range of τp. For
small τp there is a rapid decay to an emerging plateau followed
by a slow decay to zero. With increasing persistence time, the
decay of Σxy(t) becomes less stretched; it is exponential for a long
enough τp. In the inset we show the dependence of the initial
value, Σxy(0), on τp. We see that the initial value first grows with
τp and then plateaus.

To probe the rheological response of our active systems we sim-
ulated shear flow by adding to the equations of motion (2) a bulk
non-conservative force Fγ̇

n = ξ0γ̇ynex with Lees-Edwards boundary
conditions25. In Fig. 9 we show the average shear stress,

⟨︁
σxy

⟩︁
/γ̇,

for f = 0.548 and a large range of τp. In Fig. 10 we show the
τp dependence of the zero-shear-rate viscosity obtained from the
small γ̇ plateaus of

⟨︁
σxy

⟩︁
/γ̇. We find that η initially decreases and

reaches a τp-independent plateau.
We find that large τp limits of collective properties also scale
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Fig. 10 The viscosity η at fixed average active forces strength versus
τp. The viscosity initially decreases with increasing τp and then becomes
constant. The vertical dashed lines indicate approximate τp at which the
saturation occurs.
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Fig. 11 The large τp limit of the relaxation time of Σxy(t)/Σxy(0) (defined
as when this function equals e−1) and of viscosity η as a function of
the self-propulsion strength f . The lines are power law fits where the
exponents for τη and η are −1.2 ± 0.1 and −0.60 ± 0.1, respectively.

with f as power laws. In Fig. 11 we show the dependence of the
large τp limits of the relaxation time of the normalized stress ten-
sor autocorrelation function and of the viscosity on the strength
of the self-propulsion.

5 Static structure
When analyzing the dynamics in passive systems, one usually tries
to make connections between the average distribution of the par-
ticles and their dynamics. To check how the average arrangement
of the particles in our active systems changes with increasing τp

we evaluated the total steady-state structure factor

S(k) = 1
N

⟨︄
∑
n,m

eik·(rn−rm)
⟩︄

, (7)

with summation over all particles in the system, and the pair cor-
relation function between the large particles,

g(r) = V

(N/2)2

⟨︄
∑
n

∑
m̸=n

δ (r − (rn − rm))

⟩︄
, (8)

where the summation extends over the large particles only.
In Fig. 12 we show that the peak height of S(k) initially de-

creases with increasing τp, which nicely correlates with relaxation
getting faster and viscosity decreasing. The peak height then sat-
urates at a large persistence time. The large τp limit of the struc-
ture factors still looks liquid-like, and thus it does not signal the
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Fig. 12 The persistence time dependence of the steady-state structure
factor S(k) for f = 0.548. The peak height decreases with increasing
persistence time and then saturates at a large persistence time.
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Fig. 13 The pair correlation function between the large particles for
f = 0.548 and f = 5.48 and two representative persistence times τp = 1
and τp = 10000. For small f the first peak in g(r) is sharply peaked; it is
shown in Fig. 14. There is little dependence of g(r) on the persistence
time.

interesting dynamics we uncovered. To describe the dynamics
of extremely persistent dense active fluids one cannot rely upon
static structure factors only.

We note that the absence of any small wavevector peak implies
that our systems are homogeneous. We confirmed this observa-
tion by evaluating local density histograms at several simulated
state points. Incidentally, the homogeneity allows us to rational-
ize the absence of shear thickening that was observed at large
self-propulsions in Ref.26, which was attributed to clustering and
was dubbed motility-induced shear thickening.

In Figs. (13-14) we show the pair correlation function between
the large particles. In contrast to the behavior exhibited by the
structure factor, g(r) is not very sensitive to the changes in the
persistence time. However, the height of the first peak of g(r) de-
creases rapidly with increasing self-propulsion force f while the
position of the first peak shifts to the smaller r, suggesting that the
system becomes effectively less crowded with increasing f . This
rationalizes decreasing large persistence time limits of the relax-
ation times and of the viscosity and increasing large persistence
time limit of the diffusion coefficient

6 Conclusions
We conjecture that the systems we presented here form a new
class of extremely persistent active matter systems. Earlier in-
vestigations5,7 revealed systems that relax on the time scale of
the self-propulsion and exhibit intermittent dynamics. The sys-
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Fig. 14 The first peak of the pair correlation function between the large
particles for f = 0.548 and f = 5.48 and two representative persistence
times τp = 1 and τp = 10000. The peak height decreases and the peak
width increases with increasing f . There is little dependence of the first
peak of g(r) on the persistence time.

tems with intermittent dynamics slow down with increasing τp at
fixed f , but they exhibit universal dynamics when investigated as
a function of time rescaled by τp. In contrast, the systems we pre-
sented exhibit universal dynamics for large τp but as a function of
un-scaled time. We expect that for higher volume fractions there
is a transition between the regime in which the relaxation be-
comes independent of the persistence time of the self-propulsion,
which is the regime we analyzed, and the regime in which the
system flows only on the time scale of the self-propulsion, which
is the regime investigated earlier5,7. At a fixed strength of the
active forces the transition is driven by the density. Since inter-
particle interactions in our systems are not bounded, it is not ob-
vious whether, at constant density, the transition can be induced
by changing the force strength, like in two-dimensional systems
with harmonic interactions, which were investigated by Liao and
Xu19.

For the systems studied here, the single-particle motion exhibits
two ballistic regions separated by a superdiffusive regime. Classic
signatures of two-step relaxation seen in glassy systems are ab-
sent both in the MSD and Fs(k; t). Therefore, our systems are not
close to a glass transition. Many properties that quantify the large
persistence time limit of the relaxation depend on the strength of
the active forces as a power law.

In contrast to Keta et al.18, we did not observe essential fea-
tures of “active turbulence”. In particular, mean-squared displace-
ment difference of initially close by particles monitored by Keta
et al. was only slightly smaller than the MSD. This may not be
surprising since our systems have somewhat lower density and
larger active forces.

Finally, we note that approximate theories developed to de-
scribe the relaxation in active fluids29–34 we tested against com-
puter simulations for rather limited range of self-propulsion force
f and persistence time τp. The discovery of a new paradigm of ex-
tremely persistent active fluids with non-trivial power laws calls
for additional theoretical work. The single-particle motion in the
systems that we investigated can perhaps be described as a persis-
tent random walk with renormalized density and self-propulsion-
dependent velocity. However, it is unlikely that such a simple
picture could also account for the collective dynamic properties.
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Fig. 15 (a) The structure factor S(k) for f = 54.8 for our 64K system.
There is a distinct upturn at small wavevectors which is not see for our
other f . (b) The density distribution for the same f , N, and τp as shown
in (a), and for two state points for which structure factors were shown in
Fig. 12. We do not observe the two peak structure expected for systems
undergoing motility induced phase separation.

7 Appendix

Motility induced phase separation (MIPS) is often reported and
extensively studied in active systems. In two-dimensional sys-
tems it has been shown that MIPS will occur with increasing τp

and fixed f over a range of densities24. We note that, in three-
dimensional systems states with MPIS, coexistence is metastable
with respect to active crystallization in a large region of the pa-
rameter space35. Here we claim that our system is not undergo-
ing MIPS at any of the state points studied.

To determine if the system undergoes MIPS one can examine
structural signatures and density distributions. One structural sig-
nature is an upturn of the structure factor S(k) at small wavevec-
tors k. However, an upturn can occur if there are large den-
sity fluctuations but no MIPS. The density distribution is another
method to examine MIPS, where two peaks indicate that the sys-
tem has separated into high density and low density regions. We
use these two methods.

To calculated the density distribution we divide the system into
boxes of length ℓ = 2.6082 and determine the density inside each
box. For each configuration used in the calculation we determine
the density distribution of the small boxes and then average these
distributions. To examine smaller wavevectors and to get a more
accurate density distribution we present results for our 64K sys-
tems.

As shown in Fig. 12 we don’t see any evidence of an upturn in
the low wavevector values of S(k) for f = 0.548. The only f we
do observe an upturn at small wavevectors is f = 54.8, Fig. 15(a).
We note that the small k upturn does not increase with increasing
τp, and thus we don’t expect any changes with increasing τp. The
density distribution for these state points do not show a two peak
structure and remains statistically unchanged when increasing τp,
Fig. 15(b). We conclude that there are large density fluctuations,
but the system is not yet undergoing MIPS. For larger f we expect
that this system will exhibit MIPS.
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