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Abstract

Critical single-particle fluctuations associated with particle displacements are inherent to

simple glass-forming liquids in the limit of large dimensions and leave a pseudo-critical trace

across all finite dimensions. This characteristic could serve as a crucial test for distinguishing

between theories of glass formation. We here examine these critical fluctuations, as captured by

the well-established non-Gaussian parameter, within both mode-coupling theory (MCT) and

dynamical mean-field theory (DMFT) across dimensions for hard sphere liquids and for the

minimally structured Mari–Kurchan model. We establish general scaling laws relevant to any

liquid dynamics theory in large dimensions and show that the dimensional scalings predicted

by MCT are inconsistent with those from DMFT. Simulation results for hard spheres in moder-

ately high dimensions align with the DMFT scenario, reinforcing the relevance of mean-field

theory for capturing glass physics in finite dimensions. We identify potential adjustments to
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MCT to account for certain mean-field physics. Our findings also highlight that local structure

and spatial dimensionality can affect single-particle critical fluctuations in non-trivial ways.

Introduction

A key challenge with the microscopic understanding of glasses is that a plethora of distinct yet

seemingly incompatible physical theories describe their formation from supercooled liquids.1 The

universal phenomenon of glass formation is characterized by the sudden growth of the viscosity (or

equivalently the structural relaxation time) of a liquid within a small temperature or density change

past the melting point, eventually leading to the emergence of glass rigidity and the existence of an

amorphous solid. All theories of the glass transition – necessarily – capture this phenomenology

reasonably well.2 While there is no clear consensus on the subject, there is nevertheless strong

evidence that glassy behavior is governed by a genuine, although potentially unreachable thermo-

dynamic phase transition,3,4 itself preceded by an avoided dynamical transition.5–8 As a result, the

dynamics in the supercooled regime is expected to be governed by a complex and potentially non-

perturbative pseudo-critical regime. From a statistical physics standpoint, a particularly stringent

test of theoretical proposals comes from their description of critical fluctuations. Just as a theory of

ferromagnetism must predict a diverging susceptibility at the Curie point, a robust theory of glass

formation should accurately account for critical fluctuations (or remnants of thereof), which in the

context of the glass formation are generally understood to correspond to dynamical heterogeneity.

Interestingly, significantly different predictions of this phenomenon have been made.1,9

The growth of dynamical heterogeneity with the structural relaxation time τα was first noted

nearly three decades ago.10–12 The simplest aspects of such heterogeneity are captured by a single-

particle observable, the non-Gaussian parameter (NGP), commonly denoted α2(t),1 while other

quantifiers of dynamical heterogeneity such as three- and four-point functions are typically used

to capture the spatial extent of such heterogeneity.16–19 The NGP, which by definition quantifies

1The NGP has found uses far beyond the realm of supercooled liquids, including in one-dimensional systems,13

active systems,14 and percolation.15
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deviations from Gaussian-distributed particle displacements, vanishes for non-interacting particles

with either Brownian or Newtonian dynamics as well as for interacting particles in the diffusive

regime. It is therefore zero at both short and long times in all (monodisperse) systems interacting

with pair-wise additive interactions, i.e., simple liquids. Its non-trivial behavior at intermediate

times can be variously interpreted. In particular, the existence of a non-zero NGP has been argued

to evince the existence of particles existing in two subpopulations: transiently mobile and tran-

siently immobile particles.1,20 Interpretations of the sort, while intuitively useful, however do not

necessarily lead to specific quantitative predictions that could be tested against α2(t) measured in

computer simulations or experiments.

In this context, it is particularly interesting to consider the mode-coupling theory (MCT) of

the glass transition,21–23 which is one of the few approaches to make near-quantitative predictions

of supercooled liquid dynamics. Although the MCT description has been extensively studied in

the past with applications to a wide variety of realistic structural glass formers (see Ref. 24 for a

historical review and Ref. 25 for a more recent one), no clear and systematic test of MCT with

regards to simple dynamical fluctuations such as the NGP has yet been considered. Because MCT

has also been considered in the limit of large spatial dimensions where mean-field (and hence

fluctuation-free) behavior is expected to become dominant,26,27 it also has the potential to provide

insight about the onset of the mean-field–like regime.

The dynamical mean-field theory (DMFT) of glasses28 also offers an interesting perspective

on such fluctuations. The DMFT description, which is exact in the limit of high spatial dimension

d → ∞, suggests that α2(t) is a perturbative correction in 1/d, given that purely Gaussian dynamics

is expected in that limit.29 Physically, this framing associates the NGP with growing correlations

among the directions along which a single particle moves as the liquid turns sluggish. Unfortu-

nately, an explicit expression for α2(t) in the fluid regime has not been derived yet. Recently,

however, a way around this issue has been advanced. By simulating a minimally-structured liquid

model in finite d and then rescaling the finite d results, one can indeed validate the DMFT scenario

and even infer some of its (putative) finite-d corrections.30

3



In this article, we consider α2(t) calculated within MCT and DMFT, the only two approaches

to offer (quasi-)quantitative predictions for the observable. Specifically, we investigate critical sim-

ple fluctuations in the hard sphere (HS) fluid, and the minimally structured Mari–Kurchan (MK)

model,31 which are known to belong to the same dynamical universality class in the large dimen-

sional limit. We first analytically examine the dimensional scaling of the equations of motion from

which the NGP can be derived. At low and intermediate densities, we then demonstrate that the

results from numerical simulations generally align with the DMFT scenario, while MCT incor-

rectly captures the dimensional trend but does accurately predict some associated scaling relations.

These findings generally validate the relevance of the dynamical mean-field theory of glasses for

finite-d systems. Surprisingly, NGP-captured critical fluctuations in low-d glass formers are much

suppressed relative to what one infers from the DMFT. This result allows us to claim that fluid

structure might play a crucial role in suppressing the fluctuations that accompany dynamical arrest

relative to the mean-field scenario.

The rest of this article is structured as follows. First, we present general results regarding

the NGP in the liquid state, focusing on the dimensional scaling of the memory kernels of the

equations of motion for dynamical correlation functions, from which the NGP can be derived.

Next, we explicitly compare the dimensional scalings of the critical behavior predicted by MCT

for high dimensional hard spheres and the MK model. Finally, numerical MCT predictions for the

NGP are obtained for both systems and then qualitatively and quantitatively compared with results

from computer simulations.

Simulation Methods

Particle-resolved results for both the MK model and for hard spheres are obtained from numerical

simulations to compared with MCT predictions. For the MK model, the data published in Ref. 30

is reused. Numerical simulation results for hard spheres in various spatial dimensions are obtained

using the event-driven molecular dynamics package described in Ref. 30 supplemented with an
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implementation of Dd (or checkerboard lattice) periodic boundary conditions.32 (Recall that D3

is equivalent to a face-centered cubic lattice and D4 is the densest sphere packing in d = 4.) As

described in Ref. 32, this scheme minimizes finite-size corrections by simulating box shapes that

correspond to the Wigner–Seitz cell of checkerboard packings in various d. As a result, numerical

simulations of hard spheres can be run up to d = 12 with system sizes up to N = 8000, with only

minimal finite-size corrections.33

In general, initial (equilibrated) configurations are obtained from the configurations obtained

for Ref. 30, and initial velocities are randomly assigned from the Maxwell–Boltzmann distribution.

The system sizes used here therefore match those used in that prior work. More specifically,

simulations at volume fraction ϕ are started from the nearest reference configuration with ϕ0 ≥ ϕ ,

and the sphere radius is instantaneously shrunk to achieve the target density. For configurations at

volume fractions higher than those explored by Ref. 30, simulations start from the densest available

configuration, and then employ the collision-driven compression scheme of Ref. 34 with a sphere

radius expansion rate of αexp. = 0.001, i.e. sphere radius r(t) = (1 + αexp.σt)r0 where σ sets the

unit of length in simulation, until the target density is reached. In both cases, system thermalization

is ensured by waiting for d ×⟨∆r2(t)⟩ to reach 101 or 1/4 of the total run time. The latter condition

applies only for the highest densities at the highest d considered (i.e. |ϕ −ϕc| ≤ 3×10−2 in d = 12).

Even in this last case, the sample is nearly equilibrated, and any deviations from equilibrium are

expected to be small. Observables are then extracted from the remaining trajectory and averaged

over at least 20 independent runs. Trajectories range in duration from 105 in d = 4 to 104 in d = 12.

Theoretical Analysis: Dimensional Scalings of the Non-Gaussian

Parameter

We derive general equations of motion for the moments of the displacements of a particle in a liquid

of arbitrary dimension. This allows us to obtain explicit conditions for the correct dimensional

scalings of the mean squared displacement, the non-Gaussian parameter, and related quantities.
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These conditions are later used as a benchmark for comparing simulation results and our mode-

coupling study.

General Equations of Motion

Let us first consider the general properties of the NGP for a d-dimensional monatomic liquid

composed of N particles, defined as

α2(t;d) = d
d + 2

⟨∆r4(t;d)⟩
⟨∆r2(t;d)⟩2 − 1 (1)

at time t, where ⟨∆r2(t;d)⟩, ⟨∆r4(t;d)⟩ are the mean squared displacement (MSD) and the mean

quartic displacement (MQD), respectively. Angular brackets ⟨·⟩ denote ensemble averaging. The

MSD and the MQD correspond respectively to the second (n = 2) and fourth (n = 4) moments of

the self part of the Van Hove function,

⟨∆rn(t;d)⟩ ≡
∫︂
Rd

drrnGs(r, t), (2)

where Gs(r, t) ≡ N−1⟨∑
N
i=1 δ (r − ∆ri(t))⟩ in which ∆ri(t) denotes the displacement vector of par-

ticle i at time t.35 By translational and rotational invariance of the equilibrium liquid, Gs(r, t) only

depends on the modulus of the displacement vector r ≡ |r|. The Fourier transform of the self Van

Hove function further defines the self-intermediate scattering function

φs(q, t;d) =
∫︂
Rd

dre−iq·rGs(r, t), (3)

where q is magnitude of the wavevector q at which fluctuations are probed. This dynamical quan-

tity can be measured from scattering experiments and is a common liquid-state observable.35 The

self-intermediate scattering function can also be related to the MSD and the NGP:36,37

φs(q, t;d) = e− q2⟨∆r2(t)⟩
2d

[︄
1 + α2(t;d)

2

(︃
q2⟨∆r2(t;d)⟩

2d

)︃2

+O(q6)

]︄
. (4)
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For purely Gaussian dynamical processes, α2(t;d) = 0, and all higher order terms in q in the square

brackets of Eq. (4) vanish. As a result, in the glass phase, where the MSD plateaus at some value

R (i.e. ⟨∆r2(t → ∞;d)⟩ = R), the non-ergodicity parameter (NEP) φs(q, t → ∞;d) ≡ φ ∞
s (q;d) > 0

becomes a Gaussian function of q,

φ
∞
s (q;d) = e−Rq2/2d. (5)

In other words, ergodicity breaking of a Gaussian process in real space necessarily corresponds to

a Gaussian non-ergodicity parameter, irrespective of the dimension of space.

We next consider how generally to obtain an equation of motion for α2(t). Note that for the

sake of simplicity, we only consider the behavior of a liquid in the overdamped dynamical regime,

but the final expressions trivially generalize to liquids in the underdamped dynamical regime as

well. For notational simplicity, we also drop the explicit d-dependence from the arguments of

the MSD, MQD, and NGP, as well as those of related quantities. The starting point is a formally

exact integro-differential equation for φs(q, t) derived using either projection operators38,39 or field-

theoretic considerations,40,41

γs(q)∂φs(q, t)
∂ t

+ φs(q, t)+
∫︂ t

0
dτms(q, t − τ)∂φs(q,τ)

∂τ
= 0, (6)

where γs(q) ≡ (q2D0)−1 sets the natural timescale for the decay of a single particle density fluctua-

tion in free space with D0 the bare diffusion constant, and the integral kernel ms(q, t) is commonly

referred to as a memory term (or self-energy) due to its non-time local contribution. Inserting the

series expansion of Eq. (3) in Eq. (6) and matching terms of equivalent order in q then gives the

equation of motion for the MSD

d⟨∆r2(t)⟩
dt

+ D0

∫︂ t

0
dτ m0(t − τ)d⟨∆r2(τ)⟩

dτ
= 2dD0, (7)
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and the MQD
d⟨∆r4(t)⟩

dt
+ D0

∫︂ t

0
dτ m0(t − τ)d⟨∆r4(τ)⟩

dτ
= µ(t;d), (8)

where m0(t) ≡ limq→0 q2ms(q, t). The inhomogeneous term in Eq. (8) reads

µ(t;d) = 4(d + 2)D0⟨∆r2(t)⟩+ 2(d + 2)
∫︂ t

0
dτ m2(t − τ)d⟨∆r2(τ)⟩

dτ
, (9)

where m2(t) ≡ limq→0 q2∂ 2
q ms(q, t). The factors q2 make m0(t) and m2(t) well-behaved. They

are needed since the single-particle dynamics does not conserve the particle’s momentum (due to

molecular collisions with surrounding particles).23 If m0(t) and m2(t) are known, Eqs. (7)–(8) can

then be solved by direct integration, and the NGP extracted via Eq. (1). We must note that in the

case of DMFT (which has only been developed for the MSD), the memory kernel m0(t) instead

consists of a self-consistently determined stochastic process,7 for which no explicit expression

exists. This is in contrast with MCT which offers an explicit expression for the memory kernels in

terms of structural observables,23 as further discussed below.

Determination of Dimensional Scalings

In order to assess the impact of dimension on the liquid dynamics, we next consider the d-

dependent scaling of the formally exact equations Eqs. (6)–(8). We here specifically posit the

following scaling forms: ⟨∆r2(t)⟩ ∼ dα , ⟨∆r4(t)⟩ ∼ dβ , and α2(t) ∼ dς for the standard observ-

ables. One may also write m0(t) ∼ dυ , m2(t) ∼ dλ and D0 ∼ dη . To facilitate the ensuing analysis,

we consider the non-ergodic side of the state diagram to extract the long-time limits of the MSD

and the MQD given by Eqs. (7)–(8), respectively. Throughout this work, we assume that ergodicity

breaking does not modify dimensional scalings. This assumption, which has also been numerically

shown to hold in mean-field glass models,17 will be numerically verified further below. We find

that the long-time limit of the MSD reads

⟨∆r2(t → ∞)⟩ = 2d
m0(t → ∞)

, (10)
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and similarly for the MQD

⟨∆r4(t → ∞)⟩ =
2(d + 2)

[︁
2 + m2(t → ∞)

]︁
⟨∆r2(t → ∞)⟩

m0(t → ∞)
. (11)

Note that both expressions are expected to be independent of microscopic dynamics (here seen

via their independence from the bare diffusion constant D0). Simple power-counting arguments

allow us to derive algebraic relations between the various exponents governing the asymptotic

dimensional scaling. From Eq. (10), one determines that α = 1 − υ . Similarly, for the MQD we

have

β =

⎧⎪⎪⎨⎪⎪⎩
1 + α − υ if λ < 0

1 + α − υ + λ , if λ > 0,

(12)

and the NGP ς = β −2α . Note that these power-counting arguments provide upper bounds for the

dimensional scalings because they do not account for the possibility that numerical prefactors for

the leading-order terms might vanish.

We next recapitulate known results for the dynamics of liquids in the limit of large dimensions,

in which the DMFT becomes exact. In this limit, it has been established that to study the kinetic

arrest at the dynamical transition, an investigation of the dynamics for length scales of order ∼

O(d−1/2) suffices.7,28 This result naturally motivates us to express the MSD as ⟨∆r2(t)⟩ ≡ dα ×

∆̂2(t) and similarly the MQD as ⟨∆r4(t)⟩ ≡ dβ × ∆̂4(t) with α = −1, β = −2 and where ∆̂2,4(t)

should be finite as d → ∞.28,42 This constraint suffices to enforce (near) Gaussian statistics at large

d since we naively find that ς = 0 from power counting arguments, and therefore that α2(t;d →

∞) ∼ d0. However, a more refined analysis reveals that the pre-factor vanishes in this case, and

that the leading order contribution in fact gives ς = −1.29 This scaling motivates interpreting the

non-Gaussian dynamics as a perturbative 1/d correction, and hence that α2(t;d) = d−1 × α̂2(t),

with α̂2(t) a well-behaved function in the limit d → ∞.

We can then use these scalings to infer those of the memory kernels introduced in the previous

section. In particular, we find that m0(t) ≡ d2 ×M̂0(t) and m2(t) ≡ d0 ×M̂2(t) where M̂0(t), M̂2(t)
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are finite as d → ∞. The above scalings and the analysis of Eq. (7) imply that non-trivial, glassy

physics will only be observed if the bare diffusion constant is of order D0 ≡ d−2 × D̂0. This allows

us to consider an additional important quantity, namely the long-time diffusion constant,

D = D0

(︃
1 + D0

∫︂
∞

0
dt m0(t)

)︃−1

, (13)

from which we conclude that D = dη × D̂ with η = −2 and D̂ finite at large d, in agreement with

known results.28,43 The above discussion imposes general constraints on the form of the memory

kernels for liquids in the limit d → ∞.

Theoretical Analysis: Dimensional Scaling of MCT for the Hard-

Sphere Universality Class

With the natural dimensional scalings in hand, this section examines the d-dependent scaling of the

microscopic MCT equations. Although originally designed to investigate the collective relaxation

of density modes in supercooled liquids through predictions of the intermediate scattering function

φ(q, t), MCT was rapidly extended to single-particle observables such as φs(q, t) and the MSD.21

The theory notably obtains a self-consistent approximate expression for the memory kernel ms(q, t)

introduced in Eq. (6). By analyzing its dimensional behavior, we can infer the MCT-predicted

scaling of the MSD and MQD based on the general considerations presented above.

Large d Scaling for the Hard Sphere Liquid

In the case of simple hard spheres of diameter σ in d dimensions, MCT approximates the memory

kernel of Eq. (6) as

mHS
s (q, t) = ρ0

q4

∫︂ ddk
(2π)d (q ·k)2S(k)c(k)2

φ(k, t)φs(|q −k|, t) (14)

10



where ρ0 denotes the number density, c(k) the two-particle direct correlation function, and S(k)

the corresponding structure factor, which are related as c(k) = ρ
−1
0 [1−1/S(k)]. In mode-coupling

theories, the products of structural inputs in the integrand of Eq. (14) are commonly referred to

as (static) vertices. We denote ϕ ≡ ρ0Vd as the packing fraction, where Vd is the volume of a

d-dimensional sphere of unit diameter. (Without loss of generality, we henceforth set σ = 1.) A

low-q expansion of Eq. (14) gives

mHS
0 (t) = ρ0

(2π)d
Ωd

d

∫︂
∞

0
dkkd+1S(k)c(k)2

φ(k, t)φs(k, t) (15)

and

mHS
2 (t) = 3ρ0Ωd

(2π)dd(d + 2)

∫︂
∞

0
dkkd+1S(k)c(k)2

φ(k, t)Dd(k, t), (16)

where Ωd is the surface of a d-dimensional sphere and

Dd(k, t) ≡ d − 1
3k

∂φs(k, t)
∂k

+ ∂ 2φs(k, t)
∂k2 . (17)

Note that static triplet correlations, which formally also contribute to mHS
s (q, t), are here neglected

because many-body correlations are exponentially suppressed with d.26,42 Hence, MCT only re-

quires the static structure factor as input to make quantitative predictions about the liquid dynamics.

In order to investigate the large-d behavior of the equations above, it is convenient to introduce

the dimensionally scaled momentum k = k̃d. Because in the limit d → ∞, the collective and self

intermediate functions become equivalent, we may then replace φ(k̃d, t) → φs(k̃d, t), and S(k̃d) →

1. In the glass phase, i.e. the non-ergodic regime predicted by MCT, we further have that at long

times φs(k̃d, t → ∞) = φ ∞
s (k̃d). In Ref. 26, Schmid and Schilling have worked out that in these

limits, MCT gives φ ∞
s (k̃d) ∝ Θ(k̃∗ − k̃), where Θ(x) denotes the Heaviside function. As a result,

the quantity k̃∗ = x
√

d provides a natural, dimensionally dependent ultra-violet (UV) cutoff for

the theory. Numerical studies in large d indicate that x ≈ 0.15 is a reasonable choice.26,44 All

these results can be derived from the fact that the large d limit of the direct correlation function,
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c(r) = −Θ(σ − r), can be shown to give

c(k) = −
(︃

2π

kσ

)︃d/2

σ
dJd/2(kσ) (18)

in Fourier space, where Jn(kσ) denotes the Bessel function of order n.45 Using asymptotic expan-

sions for the large order behavior of Bessel functions,26,46 it is then possible to show that Eq. (15)

simplifies to

mHS
0 (t → ∞) = d7/2 × ϕ̃

2π

√︃
4x2 − 1

d
(19)

and analogously

mHS
2 (t → ∞) = −2dϕ̃

π
+O(d0), (20)

where ϕ̃ = 2dϕ/d2 is the dimensionally rescaled packing fraction. Assuming that these scalings

hold for finite times on either side of the transition, MCT then predicts that mHS
0 (t) = d7/2 × m̃0(t)

and mHS
2 (t) = d × m̃2(t). The power-counting arguments presented in the previous section further

lead to ⟨∆r2(t)⟩ = d−5/2 × ∆̃2(t) and ⟨∆r4(t)⟩ = d−4 × ∆̃4(t) with ∆̃2,4(t) well behaved functions as

d → ∞. Furthermore, we find that MCT predicts that the NGP should scale as α2(t) = d × α̃2(t).

Finally, within MCT we find that non-trivial physics emerges when the bare diffusion constant is

of order D0 = d−7/2 × D̃0, and that in this regime the long-time diffusion constant should go as

D = d−7/2 × D̃, where D̃0 and D̃ are finite in the large dimensional limit.

Overall, from the above MCT analysis, we find that as d → ∞, MCT predicts dimensional

scalings that disagree with the exact DMFT results. In particular, the dynamics predicted by MCT

is strongly non-Gaussian, α2(t) = d × α̃2(t), whereas it is expected to become Gaussian in this

limit.

Large d Scaling for the Mari–Kurchan Liquid

As mentioned in the introduction, MCT can also be used to study other structured finite-d fluid

glass formers. A particularly interesting model was proposed by Mari and Kurchan to interpolate
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continuously between a minimally structured and a realistic HS fluid in finite d by considering

particles with pairwise, randomly shifted interactions.31 More specifically, the MK interaction

potential between two particles located at ri and r j takes the form U(|ri − r j − Λi j|) with Λi j a

uniformly distributed random vector with variance σΛ.31 Note that the limit of vanishing variance,

σΛ → 0, recovers standard hard spheres, whereas the limit of infinite variance results in a minimally

structured fluid, akin in that sense to hard spheres in the limit d → ∞.31 While no exact solution for

the structure nor the dynamics of this model is known for arbitrary σΛ, increasing the variance is

expected to reduce the fluid structure monotonically. The MK model therefore offers the possibility

to isolate the role played by local structure on the dynamics of finite-d systems. Furthermore, in

the limit d → ∞, this model is known – for all σΛ – to have precisely the same description as hard

spheres.

In order to analyze MCT for the MK model, the theory needs to be modified slightly to account

for the absence of many-body structural and dynamical correlations when σΛ is of the order of the

system size. In this limit, the resulting mode-coupling scheme approximates the memory kernel

as:

mMK
s (q, t) = ρ0

q4

∫︂ ddk
(2π)d (q ·k)2c(k)2

φs(k, t)φs(|q −k|, t). (21)

Note the similarity between this last expression and Eq. (14) with the intermediate scattering func-

tion φ → φs replaced and the structure factor S(k) set to unity in the vertices. Details of the deriva-

tion of Eq. (21) will be given in a separate, forthcoming publication. The direct correlation function

c(k) is here given by Eq. (18). In the limit d → ∞, the microscopic MCT equation of motion for

hard spheres given in Eq. (19) is hence recovered. Within a mode-coupling scheme, the MK model

therefore also belongs to the same universality class as hard spheres.26 This equivalence, which

is also expected from static considerations,31 implies that the various MCT dimensional scaling

analyses previously considered carry over to the MK model.
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Numerical Confirmation of the Hard-Sphere Universality Class Captured by

MCT

Next, we numerically validate the existence of the HS universality class by studying the d-dependent

behavior of the MCT-predicted critical packing fraction of the ergodic–nonergodic transition,

ϕc(d). Let us first recall that in the case of high-dimensional hard spheres, two previous MCT

studies had focused on the numerical solutions of the MCT equations with the large-d asymp-

totic structure of a liquid combined with either the large-d asymptotic MCT equations,26 or the

microscopic MCT equations,27 both yielding

ϕc(d) ∝ 2−dd2. (22)

We have reproduced these results in Fig. 1, showing that convergence to the analytical scaling for

ϕc(d) is reached for d ≳ 100. Here, we complement these prior studies and also solve for the

microscopic MCT with the explicitly d-dependent Percus-Yevick (PY) structure for hard spheres,

up to d = 60 (see Supporting Information (SI) for numerical details). Interestingly, as shown in

Fig. 1, we find that this fully microscopic calculation approximately follows the analytical and

asymptotically valid (for d → ∞) scaling of ϕc(d) at all dimensions considered. We have verified

that using the hypernetted-chain approximation of the liquid structure in MCT gives similar results.

We attribute the difference with the results of Refs. 26,27 to the use of different structural inputs

to the mode-coupling equations, which in these cases followed from the asymptotic expression

Eq. (18). It must be noted, however, that even in d = 60 the PY structure differs markedly from the

asymptotic one, and the agreement between our MCT PY HS results and the asymptotic scaling

across all dimensions might (at least partly) bear a fortuitous origin.

Additionally, we demonstrate that the MK model treated within the mode-coupling approxi-

mation converges to the required analytic asymptotic behavior for large d. The numerical results

obtained by using Eq. (18) as input for the MK MCT are shown in Fig. 1. We note that convergence

to the analytical scaling is reached at around d ≈ 100, in accordance with HS MCT using the same
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asymptotic structure.26,27 Our results also show that the critical packing fraction of the MK model

is systematically larger than that of HS systems across all dimensions, until convergence to the

analytical scaling is attained. We can understand this difference with respect to structured fluids

by recognizing that the mode-coupling vertices are density independent for the MK model, unlike

for HS. In the latter, there is an intricate relation between structural features and bulk density in

the mode-coupling vertices which ultimately drives the solidification into an amorphous state. For

minimally structured fluids like the MK model, however, the density independent vertices imply

that dynamical arrest is instead purely driven by the bulk density prefactor, as seen in Eq. (21).

d
101 102

2d 𝜑
c

101

102

103

104

∼ 0.22d2

∼ 4.8d

PY HS
Asymp. HS
MF MK
HS Sim.

Figure 1: Critical MCT packing fraction ϕc(d) for various model glass formers in the hard-sphere
universality class: hard spheres with Percus-Yevick structure (black points); hard spheres with the
asymptotic (large-d) structure from Eq. (18) (brown points); the Mari–Kurchan model (orange
points); asymptotic high d scaling (dashed black line). Hard sphere simulation results (red points,
taken from Ref. [ 32]) and the exact asymptotic result from DMFT (dashed red line) are provided
as reference.

Although the asymptotic large-d behavior of MCT disagrees with the exact results from the

DMFT analysis,29,42 which instead predicts that ϕc(d) ∝ 2−dd, the MCT description is neverthe-

less internally self-consistent. In particular, both MCT26,27,44 and DMFT29,31,47 find that simple

hard spheres and the MK model as well as the random Lorentz gas all belong to the same (dy-

namical) universality class in the limit d → ∞. Identifying the origin of the discrepancy between

the scaling behaviors of ϕc(d) within MCT and DMFT would be a first step towards bringing

15



consistency to the description of all three systems at once.

Recovering the Appropriate Dimensional Scalings within MCT

The source of the erroneous MCT prediction for the dimensional scaling of ϕc(d) can be traced

back to the natural d-dependent UV cutoff seemingly embedded within the theory, as exemplified

in Eq. (19), for which the momentum integrals run up to a finite value in finite d. Previous work

by Ikeda & Miyazaki27 has demonstrated that the erroneous dimensional scaling of ϕc(d) can be

remedied by enforcing a Gaussian ansatz for the NEP. Inspired by their approach, we next show

that such a Gaussian ansatz can also recover the appropriate d-dependent scaling for both the MSD

and the MQD (and their associated memory kernels) within MCT. Explicitly, let us denote as ··

quantities computed with a Gaussian ansatz. From Eq. (14), it is possible to show that

mHS
0 = ϕ̄d2

2π
×

√︃
π

R̄
e−R̄/4, (23)

where we have used that R scales such that R = d−1R̄ is finite in the limit d → ∞ and ϕ̄ ≡ 2dϕ/d.

The latter scaling can be self-consistently verified.27 We therefore obtain that mHS
0 (t) = dυ ×m0(t)

with υ = 2. An analogous calculation gives mHS
2 (t) = dλ × m2(t) with λ = 0 and where m2(t)

is positive, unlike its microscopic MCT analogue above [see Eq. (20)]. The d-dependent scalings

then agree with the DMFT predictions, as summarized in Table 1. We note, however, that the

Gaussian ansatz is known to give the wrong numerical prefactor for the d-dependent scaling of

ϕc(d).27 Because we anticipate the same to be true for the other quantities considered in this work,

exact equivalence with the DMFT is not to be expected. In particular, this means that we are

unable to explicitly verify if the appropriate dimensional scaling of the NGP is recovered, which

as mentioned above depends on the vanishing of the pre-factor of the leading order term.
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Table 1: Summary of asymptotic large-d scalings of various quantities for DMFT and microscopic
MCT as well as MCT with a Gaussian ansatz for the hard-sphere universality class. Note that the
MCT predictions stem from power-counting arguments and are therefore strict upper bounds.

Quantity DMFT (exact) MCT MCT Gaussian
⟨∆r2(t)⟩ d−1 × ∆̂2(t) d−5/2 × ∆̃2(t) d−1 × ∆2(t)
⟨∆r4(t)⟩ d−2 × ∆̂4(t) d−4 × ∆̃4(t) d−2 × ∆4(t)

D d−2 × D̂ d−7/2 × D̃ d−2 × D
α2(t) d−1 × α̂2(t) d × α̃2(t) d0 × α2(t)
m0(t) d2 × m̂0(t) d7/2 × m̃0(t) d2 × m0(t)
m2(t) d0 × m̂2(t) d × m̃0(t) d0 × m2(t)

Results and Discussion

In this section, results from numerical simulations of hard spheres are compared with MCT predic-

tions at finite times, first qualitatively and then more quantitatively by considering the (dynamical)

critical exponents and other expected scaling laws.

Qualitative Comparison

Figure 2 (a)-(b) shows dimensionally rescaled MSDs obtained both from HS simulations [∆̂2(t) ≡

d−1⟨∆r2(t)⟩] and from HS MCT calculations [∆̃2(t) ≡ d−5/2⟨∆r2(t)⟩] respectively. Similarly, pan-

els (e) and (f) show the results from simulations of the MK model (taken from Ref. 30) and the

corresponding MCT calculations. We can see that the MCT predictions are in qualitative agree-

ment with the MSDs from both simulations of HS and the MK model. In particular, sufficiently

close to the critical point, in all d, the short-time (ballistic) regime gives way to a plateau (caging)

regime, before diffusion finally takes over at long times. As the spatial dimension increases, we

expect convergence to the respective master curve ∆̂2(t) for the simulations and ∆̃2(t) for MCT.

Although finite-d corrections are visible – for MCT, the asymptotic behavior is expected to set

in for d ≳ 100 – the trend cleanly tends towards convergence. A similar dimensional collapse

is noted for computer simulation results in Fig. 2-(a), with results for d = 10 and 12 nearly col-

lapsing already for HS. We also note that the dimensional collapse observed for both MCT and
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Figure 2: Dimensionally scaled MSD and NGP for simulations of hard-spheres [panels (a)-(c)],
MCT of hard-spheres [panels (b)-(d)], simulations of the mean-field MK model [panels (e)-(g)]
and MCT of the mean-field MK model [panels (f)-(h)]. MCT results are for d = 3 to 20 at fixed
relative distance ε = 10.0−5 to the critical point; simulation results of HS are for ε ∼ O(10−2) in
d = 4,6, . . . ,12, while those for the MK model are for ε ∼ O(10−3) in d = 3,4,6 and 8. Although
finite d corrections to MSD scaling can be noted, the asymptotic limit is nearly attained in both
cases. Note that the time axes have been rescaled by the respective values of the long-time diffusion
constant D.
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simulation results regarding the rescaled MSD (and the rescaled NGP, which is discussed next)

numerically confirms our initial assumption that an ideal ergodicity-breaking transition does not

affect the various dimensional scalings, which remain the same on both sides of the transition.

For the NGP, however, plotted in Fig. 2 (c)-(d) for HS and (g)-(h) for the MK model, the agree-

ment between theory and simulations is more equivocal. As expected, numerical simulation results

[panel (c) and (g)] peak at times that roughly correspond to the end of the caging regime and vanish

at both short and long times. For a fixed ε , the peak of the rescaled NGP steadily increases and

then saturates as d increases – consistent with previous reports,20 and the α̂2(t) curves collapse

for d ≥ 8 in HS. Note that saturation of dimensionally rescaled quantities corresponds to unscaled

quantities decreasing. Thus, one finds that the dynamics of the fluid become increasingly more

Gaussian as d increases, consistent with DMFT expectations predicting a vanishing NGP in the

limit d → ∞ for both HS and the MK model. In moderately high dimensions, d ≤ 8, MCT [panel

(d)] predicts that the NGP also peaks at times comparable to the relaxation time and vanishes at

both short and long times, and at fixed ε , the peak height also steadily decreases as d increases.

That apparent consistency, however, disregards the negative dip of the NGP from MCT at short

times. When first noted, this negative dip was attributed to the inability of MCT to appropriately

account for short-time correlations between particle collisions, which should in principle be en-

coded in an additional, wave-vector dependent prefactor to the friction term in Eq. (6).37 This

interpretation can be tested by considering MCT results for the minimally structured MK model,

for which such correlations should be strongly suppressed. As shown in Fig. 2-(h), the NGP for

the MK model predicted by MCT does indeed remain (nearly) positive at all times in d = 3. This

behavior is analogous to that previously reported for the NGP of a small tagged particle immersed

in a fluid of larger particles, and thus further supports the friction-based explanation.37 The di-

mensional trend, however, does not support that hypothesis. Already in d = 4, the NGP for the

MK model presents a short-time negative dip, and the effect grows with d for both HS and the

MK model, even though structural correlations in the former then steadily decrease and remain

immaterial in the latter. At present, the precise origin of this initial negative dip within the MCT
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predictions remains unclear.

In the vicinity of the critical regime, MCT also predicts that the NGP further grows in a two-step

fashion,37 thus echoing the two power-law regimes that describe the approach and the departure

from the MSD plateau, respectively. Because DMFT shares the same critical description as MCT

– albeit with different exponents28 – one should then expect a qualitatively similar behavior to

emerge, but quantitative DMFT results have yet to be obtained. The pre-peak growth of the d = 4

and d = 6 simulation results in Fig. 2-(c) is nevertheless consistent with this expectation. The

limited extent of the caging regime accessible in simulations – especially as d grows – prevents a

more definitive identification of the two scaling regimes. Over this dimensional range, the general

trend from MCT is therefore consistent with the simulation results.

For higher dimensions, d ≥ 8, MCT predictions are clearly qualitatively incorrect. The NGP

is then negative for nearly all times, except at short and long times, when it vanishes. While it has

been argued that d = 8 should be the upper-critical dimension of MCT,48–50 we believe this to be a

mere coincidence with the present observations. This discrepancy likely follows from two separate

features of MCT. First, MCT predicts a small transient and unphysical negative behavior for the

MQD. This pathological prediction robustly appears for both HS and the MK model at least up to

d = 20 (see SI for an additional discussion). Although MCT is also known to predict a similarly

unphysical negative dip in the self part of the Van Hove distribution function,27 the precise nature

of this breakdown remains unknown. Second, one can show that the NGP, close to the dynamical

transition, takes the following asymptotic form in the ergodic phase:37

α2(t) = α
c
2 + hNGPG(t)+ hNGP

(︁
H(t)+ KNGPG(t)2 −|ε|K̂NGP

)︁
(24)

where G(t), H(t) are leading and next-to-leading order scaling functions (in ε). We recognize that

such an expansion is valid in arbitrary d since the MCT scenario is unaffected by dimension.26 The

scaling functions describe the power-law approach and departure from the plateau of the MSD,

respectively. The quantities hNGP, KNGP and K̂NGP are known as critical amplitudes and αc
2 is
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the long-time limit of the NGP evaluated at the critical point. Note that these quantities can all

be computed from structural inputs and are also explicitly dependent on d. Here, we find that

as d increases, the time window in which the second term contributes seems to vanish, leading

us to conclude that hNGP must vanish (since G(t) does not, see SI for additional details). As a

consequence, the growth of the NGP is completely hampered in the caging regime within MCT.

A numerical verification of this hypothesis would require an explicit computation of the critical

amplitudes, which is beyond the scope of the current work. In addition, we have found that the

long-time value of the NGP from MCT in the non-ergodic phase is systematically negative for all

d, generalizing the results of Ref. 37 for d = 3, whereas a positive value is observed in simulations.

Considering the full displacement distribution can also illuminate the nature of the dynamical

heterogeneity. Interestingly, for all our HS simulations in d > 3, that distribution is unimodal at in-

termediate times (not shown), in contrast with previous studies in d = 3,51,52 which reported clear

bimodal distributions. These findings suggest that three-dimensional hard spheres may present a

significantly more non-perturbative behavior than their higher-dimensional counterparts. Similar

conclusions can be drawn for the MK model results. A direct comparison with MCT is unfortu-

nately not possible at this time, given that the displacement distributions predicted by the theory

are known to be unphysical, notably displaying negative dips.27,53,54

These observations lead us to conclude that for both HS systems and the MK model, the NGP

predicted by MCT exhibits unphysical features in all d. These shortcomings grow increasingly sig-

nificant as d increases. While not studied here specifically, it is expected that similar shortcomings

would be observed in the MCT of other systems that fall into the same hard sphere universality

class (such as the random Lorentz gas).

Diverging Timescale of Critical Fluctuations

Empirically, a growing timescale tpeak can be associated with the peak of the NGP as the density

is increased. This timescale has also been shown to be a good estimate of the structural relaxation

time,55,56 measured here via the magnitude of the long-time diffusion constant D. In theories

21



such as MCT and DMFT, the vanishing of the diffusivity near the dynamical arrest is known to

be controlled by a critical exponent γ , such that D ∝ |ϕ − ϕc|γ . For this reason, one also naively

expects that tpeak ∝ |ϕ − ϕc|−γ . Within MCT, γ is material (and d) dependent because its value is

controlled by the fluid structure; a similar material (and d) dependence is expected from DMFT,

but has yet to be specifically considered. More importantly, although MCT predicts a critical

dynamical arrest in all d, recall that the critical point is avoided in finite d and thence becomes a

dynamical crossover that leaves a pseudo-critical regime in a portion of parameter space.1 In this

regime, the exponent γ should govern both the timescale associated with the critical dynamical

fluctuations and the vanishing of the diffusivity. Consequently, one can estimate γ in two different

but supposedly equivalent ways in both mode-coupling studies and computer simulations.

We first qualitatively compare the dimensional dependence of γ calculated from MCT with

simulation results for HS and the MK model. Figure 3 demonstrates that both D and tpeak indeed

show a transient power-law like regime in simulations of HS [left column, panels (a)-(c)] and that

a similar behavior is observed for our mode-coupling calculations [right column, panels (b)-(d)].

We also find that results from HS simulations appear to converge towards the expected d → ∞

behavior. In all cases, we can extract the value of the exponent γ by fitting D and tpeak close

to ϕc. For HS simulations, ϕc is also undetermined and hence a two-parameter fit is normally

employed, but we here instead use the values of ϕc reported in Ref. 32. For the MK model,

ϕc is known to vary little from its value in the limit d → ∞,57 and can therefore be estimated

as in Ref. 32. While this fitting procedure is nearly exact for MCT calculations2 (limited only

by the numerical precision used to solve its equations), its results are more ambiguous for low

d simulations given that both perturbative and non-perturbative (activated) events are significant

near the avoided critical point.32,57 We also note that tpeak (and the corresponding γ) can only be

measured from MCT in d ≤ 8, as the numerical solutions no longer peak beyond this point (as per

the discussion above).
2While there exists a formal relation between structural inputs and the exponent γ within MCT,23 for the sake of

simplicity we here resort to fitting. Within a couple percent, our results are consistent with the more formal method.
For instance, γ = 2.46 for HS in d = 3,58 whereas we find that γ = 2.52.
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Figure 3: Vanishing of the diffusivity D as measured from (a) HS simulations and (b) MCT. Grow-
ing timescale associated with single particle critical fluctuations tpeak as measured from (c) HS
simulations and (d) MCT. All panels present observables as a function of the relative distance to
the critical point ε ≡ |ϕ −ϕc|/ϕc. Dashed lines indicate the exact predictions of DMFT in the limit
d → ∞.
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Despite these technical caveats, robust conclusions can be drawn from comparing theory with

numerics, as shown in Fig. 4. First, we find that MCT predicts essentially equivalent exponents for

both methods used to measure it, as shown by the red and black triangles in Fig. 4. Second, both

MCT and HS simulation results show that γ (irrespective of how it is measured) monotonically

increases with d and asymptotes to its respective d → ∞ value. (The numerical results above

are also consistent with earlier estimates for γ .32) We also note that measurements from tpeak in

simulations exhibit a noisier convergence towards the asymptotic value [see red points in Fig. 4-

(a)]. The asymptotic d → ∞ values of the exponent, however, are significantly different: γMCT(d →

∞) ≈ 3.45 – as estimated from the critical parameter26 0.8 < λMCT(d → ∞) < 0.9 – while the

exact value from DMFT is γMF ≈ 2.34.28 Given the markedly distinct dimensional scaling given

by the two theories (see Table 1), this numerical discrepancy is not particularly surprising and

even somewhat encouraging in that the two predictions are of the same order of magnitude. It is

important to note that the reported values of γ in low-d are much lower than previously reported for

HS-like systems.52,59 This can be explained by the fact that the exponent is computed in a regime

without strong deviations from the Stokes-Einstein relation, which is a clear non-mean field effect.

A similar procedure was used in Ref. 32. We report quantitative agreement with this prior study in

the present work, as shown in Fig. 4-(a). Because this choice becomes increasingly less important

as spatial dimension increases, however, it does not affect the dimensional trend at larger d. In

this sense, the protocol chosen – although not unique – for extracting low-d values for γ offers an

estimator that is dimensionally consistent.

The results for the MK model – shown in Fig. 4-(b) – are more problematic. Although mono-

tonic convergence to the d → ∞ values is preserved, the qualitative trend between MCT and sim-

ulation results no longer matches. While MCT predictions increase with d, simulation estimates

from the diffusivity decrease, in agreement with earlier works.57 Interestingly, when measured in

simulations from tpeak, we find that γ appears to approach its asymptotic value from below, albeit

very slowly if at all.

While the various estimates of γ would be (naı̈vely) expected to coincide for both systems, the
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effect could here be masked by a combination of pre-asymptotic corrections to the pseudo-critical

scaling, numerical errors in ϕc, as well as activated processes which may impact the diffusivity and

non-Gaussian behavior in different ways. Given that both HS and the MK model present a similar

underestimation of γ when measured from critical fluctuations, the first and third explanations are

more likely than the second, but (even) higher d simulations would be needed to resolve these

effects more clearly. We also cannot exclude that other physical effects might also play a role.

Figure 4: (a)-(b) Critical dynamical exponent γ governing the decay of the diffusivity, D ∝ |ϕ −
ϕc|−γ , (black) and the divergence of the NGP peak time, tpeak ∝ |ϕ − ϕc|−γ , (red) for HS and the
MK model from MCT (triangles) and computer simulations (circles). In all panels, the shaded
region provides an estimate of the MCT prediction in the limit d → ∞ and the horizontal dashed
line indicates the exact DMFT result in that same limit. Earlier results from Ref. 32 for HS and
Ref. 57 for the MK model (gray) are included. (For the MK model, error bars were not reported,
but they are presumed to be large.) Note that the error bars capture only the standard error of the
fit. The true error is larger if one factors in the determination of ϕc in finite d.
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Magnitude of Critical Fluctuations

The growth of the NGP peak height in the (pseudo-)critical regime also provides some physical

insight. First, recall that the NGP is fundamentally a single-particle observable, and that prior

works by some of us29,30 have demonstrated that the NGP can be interpreted as the correlation of

particle displacements across different spatial directions (or components). In systems dominated

by single-particle dynamics (such as HS and the MK model as d increases), once displacements

along different components become fully correlated, the NGP peak α∗
2 (ϕ;d) should saturate to a

constant αsat.
2 (d) which in turn diverges linearly with d, i.e., with the number of such components.

In the limit d → ∞, we then expect α∗
2 (ϕ;d → ∞) ∝ |ϕ − ϕc|−1.29
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Figure 5: Scaling behavior of the peak of the NGP for HS in 4 ≤ d ≤ 12 as a function of the relative
distance to the dynamical critical point ε ≡ |ϕ − ϕc|/ϕc as (a) measured in numerical simulations
and (b) predicted by MCT. The expected d → ∞ scaling with critical exponent α∗

2 (ϕ;d) ∝ ε−1 is
provided as reference (dashed line).

In the presence of collective effects such as facilitation or multi-particle dynamical heterogene-

ity, however, the NGP can exceed predictions based off of the single-particle description. For

instance, the NGP of the MK model, which permits facilitation,57,60 does not plateau as cleanly

as that of the (purely single-particle in all d) random Lorentz gas.30 Given the more pronounced

contributions of collective effects in HS than in the MK model, an even greater excess NGP would
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be expected, although quantifying this excess is challenging given the (still) unclear quantitative

mapping of this quantity between the random Lorentz gas and multi-particle systems.30

Figure 5-(a) shows that α∗
2 (ϕ;d) from HS simulations seem to saturate to αsat.

2 (d) as ε de-

creases, i.e. as the (avoided) critical point ϕc is approached. The trend becomes more robust as

d increases. In addition, we find that the total magnitude of α∗
2 (ϕ;d) decreases with increasing

d. These two observations suggest that collective effects diminish and the physics becomes more

single particle-like with increasing d, consistent with expectations from DMFT. Figure 5-(a) also

shows the growth of the NGP peak with the appropriate exponent [α∗
2 (ϕ;d) ∝ ε−1] in a finite ε

range. This again confirms the finite-d relevance of the d → ∞ description. We find that MCT

also predicts a clear saturation of α∗
2 (ϕ;d) to some finite value in the ergodic phase (see Fig. 5-

(b)). However, the MCT-predicted saturation height shrinks with increasing d. We also note that

the linear divergence of the saturation value αsat.
2 (d) with d, while evident for the simulated MK

model, is less clear for the simulated HS system (see Fig. 6). This can partly be attributed to (i)

the uncertainty in determining the location of the (pseudo) critical point ϕc(d) which stems from

the computationally demanding equilibration procedures required for the latter system, as well as

(ii) collective contributions to the NGP in the HS system. Simulations at even lower ε (and also

higher d) would be necessary to obtain a more reliable estimate of the plateau height.

A key observation of the present study is that both numerical simulations and MCT calculations

suggest that structural features reduce single-particle fluctuations. Specifically, we find that the

dimensionally rescaled NGP peak α̂
∗
2(ϕ;d) for the MK model is consistently larger than for the

HS system, as shown in Fig. 7-(a). More precisely, the NGP peak height for the MK model –

across all dimensions studied – is larger by a factor of 5–8 than that for HS. The MCT calculations

in Fig. 2 (e)-(f) also show a difference of a factor 2–3 between the two models. We hypothesize

that the more prominent local structure of the HS system might be responsible for this difference.

Given that MCT captures the quantitative difference between the two systems based solely on

pair-structure information, we conjecture that pair-structure likely plays a significant role. It is

nonetheless uncertain whether the reduction of the strength of the critical fluctuations is entirely
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due to pair structure or if higher-order structural correlations61–63 also contribute significantly to

this effect. In any event, these findings suggest that while structural features enhance collective

fluctuations (as measured from four-point functions, see Refs. 31,60), they simultaneously reduce

single-particle pseudo-critical fluctuations in the supercooled state.
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Figure 6: The dimensionally scaled saturation height of the NGP α̂
sat.
2 (d) for the simulated HS

systems and MK models. Data for the MK model are reproduced from Ref. 30. The saturation
height is estimated from averaging over its value for the three smallest ε values available. Although
the linear relation α̂

sat.
∝ d is clearly visible for the MK model (see dashed line), it is not so for

HS.

Conclusion

Motivated by testing theories of the glass transition on recently identified pseudo-critical single-

particle fluctuations, we provide a theoretical and numerical analysis of both MCT and the more

recent DMFT for simple glass formers. We first derive general scaling results which any theory of

liquid dynamics should satisfy in the limit d → ∞, and find that the standard MCT is incompatible
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Figure 7: Peak of the (dimensionally scaled) NGP from simulations of HS (closed circles) and MK
model (open circles) simulations. Data for the MK model are reproduced from Ref. 30.

with these scalings, unlike the DMFT (see Table 1). The inability of MCT to predict appropriate

dimensional scalings stems from the inherent dimensionally dependent UV cutoff of the theory.

MCT is nevertheless found to correctly capture the scope of the mean-field dynamical universality

class of hard spheres. By enforcing a Gaussian ansatz for the non-ergodicity parameter on MCT,

we also show that the correct dimensional scalings are recovered (up to multiplicative pre-factors).

Additionally, analysis of the dimensional dependence of the critical exponent γ controlling the

diverging timescale associated with single particle critical fluctuations (as well as the vanishing of

the diffusivity) in hard sphere systems shows a monotonic convergence to the appropriate large d

asymptotic value. Our results further reveal that MCT manages to capture the expected dimen-

sional trends, such as the saturation of the peak of the non-Gaussian parameter as |ϕ − ϕc| → 0

in moderate d. Numerical solutions of the MCT equations confirm the dimensional scalings we

have derived as solutions for both the (dimensionally rescaled) mean squared displacement and

non-Gaussian parameter appear to converge to a master curve as d increases.
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Comparisons of MCT results at finite times with state-of-the-art simulations of hard spheres

for 4 ≤ d ≤ 12 provide additional insight. While the predictions for the mean squared displace-

ment are qualitatively similar, the predictions for the non-Gaussian parameter differ significantly.

Simulation results for the non-Gaussian parameter are always positive, whereas MCT predicts it

to turn negative as d increases. We believe that this discrepancy is rooted in the unphysical predic-

tions of the mean quartic displacement and the magnitude of the theory’s ‘critical amplitudes’.23

Future studies should focus on verifying this hypothesis. In moderately low d MCT nevertheless

still predicts correctly that the non-Gaussian parameter first grows and peaks before vanishing in

the diffusive regime.

Lastly, we have considered the effect of local structure on single particle critical dynamical

fluctuations by comparing results from hard spheres and the Mari–Kurchan model. The notion

that fluid structure is central to explaining the origins of the dramatic dynamical slowing down

in finite d liquid glass formers is not new.64,65 Our findings reveal that a more pronounced fluid

structure (like in hard spheres) diminishes the magnitude of single-particle fluctuations, whereas

other studies20,31 have reported that it should increase collective ones. While we cannot exclude

that higher-order structural features also matter at low d, our mode-coupling analysis leads us to

hypothesize that pair structure plays a more dominant role in explaining this confounding obser-

vation. Overall, however, identifying the effect of local structure on simple fluctuations remains a

largely open problem.

This work has focused on the behavior of the NGP, a spatially averaged quantity that does not

allow for the study of the growing lengthscale associated with many-body correlated motion. In

this respect, it is important to note the study by Nishikawa et al.,60 which reports that the dynamical

heterogeneity of the mean-field MK model in d = 3 is strikingly similar to that of realistic models

of glass-forming systems. We expect this similarity to extend to higher dimensions, especially

because both the HS and MK models converge to the same behavior in large d. This important

consideration is left for future studies.

The conclusions drawn from this work highlight certain limitations of MCT concerning simple
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fluctuations, especially in the limit of growing spatial dimensions, but also in finite d systems. By

contrast, DMFT – and its physically expected finite-d corrections – is compatible with observa-

tions from numerical simulations. These findings, however, should not detract from the numer-

ous successes and significant insights into glass formation that MCT provides. In particular, we

stress that MCT, unlike the existing (single-particle) DMFT, predicts the slowing down of equi-

librium relaxation of collective density fluctuations.23 MCT further predicts diverging fluctuations

of a collective origin – distinct from single-particle ones – as dynamical arrest is approached.66

These fluctuations which correspond to non-linear responses to infinitesimal, static density modu-

lations, have been used to measure growing correlation lengths in finite-dimensional supercooled

liquids.18,67,68 Given this context, a dedicated effort to resolving the unphysical features of MCT

identified in this work is therefore amply worth the effort. The result could well be an integral part

of the definitive theory of glasses.
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(15) Höfling, F.; Munk, T.; Frey, E.; Franosch, T. Critical dynamics of ballistic and Brownian

particles in a heterogeneous environment. J. Chem. Phys. 2008, 128, 164517.

(16) Glotzer, S. C.; Novikov, V. N.; Schrøder, T. B. Time-dependent, four-point density correlation

function description of dynamical heterogeneity and decoupling in supercooled liquids. J.

Chem. Phys. 2000, 112, 509–512.

33



(17) Donati, C.; Franz, S.; Glotzer, S. C.; Parisi, G. Theory of non-linear susceptibility and corre-

lation length in glasses and liquids. J. Non-Cryst. Solids 2002, 307, 215–224.

(18) Berthier, L.; Biroli, G.; Bouchaud, J.-P.; Kob, W.; Miyazaki, K.; Reichman, D. R. Sponta-

neous and induced dynamic correlations in glass formers. II. Model calculations and compar-

ison to numerical simulations. J. Chem. Phys. 2007, 126, 184504.

(19) Flenner, E.; Zhang, M.; Szamel, G. Analysis of a growing dynamic length scale in a glass-

forming binary hard-sphere mixture. Phys. Rev. E 2011, 83, 051501.

(20) Adhikari, M.; Karmakar, S.; Sastry, S. Spatial dimensionality dependence of heterogeneity,

breakdown of the Stokes–Einstein relation, and fragility of a model glass-forming liquid. J.

Phys. Chem. B 2021, 125, 10232–10239, PMID: 34494429.
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