
Interruptive Language Control of Bipedal Locomotion

Ashish Malik, Stefan Lee, Alan Fern

Abstract— We study the problem of natural language-based
control of dynamic bipedal locomotion from the perspective of
operational robustness and hardware safety. Existing work on
natural language-based robot control has focused on episodic
command execution for stable robot platforms, such as fixed-
based manipulators in table-top scenarios. These scenarios
feature non-overlapping phases of instruction and execution,
with execution mishaps usually posing no threat to the robot
safety. This allows for non-trivial failure rates to be acceptable.
In contrast, our work involves indistinguishable instruction
and execution stages for a dynamically unstable robot where
execution failures can harm the robot. For example, interrupting
a bipedal robot with a new instruction in certain states may
cause it to fall. Our first contribution is to design and train a
natural language-based controller for the bipedal robot Cassie
that can take in new language commands at any time. Our
second contribution is to introduce a protocol for evaluating the
robustness to interruptions of such controllers and evaluating
the learned controller in simulation under different interruption
distributions. Our third contribution is to learn a detector for
interruptions that are likely to lead to failure and to integrate
that detector into a failure mitigation strategy. Overall, our
results show that interruptions can lead to non-trivial failure
rates for the original controller and that the proposed mitigation
strategy can help to significantly reduce that rate.

I. INTRODUCTION

Advances in robotic control and artificial intelligence have
enabled legged robots to execute maneuvers necessary for
operating in human environments such as climbing stairs,
opening doors, and traversing challenging terrain. Language
offers a natural means for humans to interact with robots. It
lowers the barrier of entry for robot control and is infinitely
configurable, which can allow precise control of robot
behaviors. Recent advances in large language models (LLMs)
have allowed the development of language-based controllers
that extend beyond fixed or pre-defined expressions. Many
such controllers have been proposed for robot navigation,
table-top manipulation and human-robot interactions. These
works show impressive performance on various simulation
benchmarks and real-world tasks.

Prior works have been based on various major presupposi-
tions, such as static stability of robot operations, environments
with regulated noise, absence of background chatter, and
episodic contexts featuring distinct phases for instruction and
execution. In reality, guaranteeing statically stable operations
is not always possible, particularly for highly dynamic legged
locomotion. In addition, human habitats cannot be noise
regulated and are also often riddled with language utterances,

*This work is supported by the NSF Grants 2321851 and IIS-1724360.
All authors are with Collaborative Robotics and Intelligent Systems

Institute, Oregon State University, Corvallis, Oregon, 97331, USA. Email:
{malikas, leestef, alan.fern}@oregonstate.edu

not all of which will pertain to the robot. Furthermore, bare
episodic efficiency does not serve as the ultimate criterion of
functional efficacy when it comes to continuous operations
alongside humans where there are not distinct instruction and
execution phases. These concerns become more important as
robot control becomes more intuitive with natural language
and accessible to the lay-person without any training in robot
control. This work aims to highlight, evaluate, and mitigate
the challenges stemming from these strong assumptions in
the field of natural language controlled robotics.

Non-episodic real-world settings blur the line between
task specification and execution. Consequently, the system
might receive new commands while executing ongoing ones.
In instances where these command interruptions are not
optimally timed—particularly when the robot is prone to
disruption by the new command—they can destabilize the
robot and jeopardize its safety. This can happen for a variety
of reasons during routine procedures: operators may request
new behavior, amend previous commands, or make corrections
to the current behavior. On the other hand, environmental
noises coupled with errors by the speech recognition module
may inadvertently input unintended commands to the system.
Additionally, the robot may encounter hostile agents which
can issue harmful commands based on the robot’s current
state to compromise its safety.

We underscore the importance of the aforementioned
failure modes using Cassie as our test platform. Cassie is a
human-sized bipedal robot that is capable of executing highly
dynamic locomotion behaviors, such as running, hopping,
skipping etc. We begin by developing a language-based
hierarchical locomotion controller for Cassie. The controller
incorporates a pre-trained language model and a pre-trained
control policy capable of diverse sets of agile behaviors.
Subsequently, we highlight the significance of command
interruptions by quantifying their impact on the system.
Next, we formulate and implement a learning based method
to detect harmful command interruptions and show it’s
efficacy in improving the robustness of the system. The main
contributions of this work can be summarised as:

• Designing and developing a natural language-based con-
troller for highly dynamic locomotion for the bipedal robot
Cassie.

• Introducing command interruptions as an important consid-
eration for language controlled dynamic locomotion and
quantify the extent of failures they induce.

• Developing a learning-based method to detect harmful
command interruptions and using it bolsters the system’s
resilience against such disruptions.

2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 14-18, 2024. Abu Dhabi, UAE

979-8-3503-7770-5/24/$31.00 ©2024 IEEE 12394

20
24

 IE
EE

/R
SJ

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 In

te
lli

ge
nt

 R
ob

ot
s a

nd
 S

ys
te

m
s (

IR
O

S)
 |

97
9-

8-
35

03
-7

77
0-

5/
24

/$
31

.0
0

©
20

24
 IE

EE
 |

D
O

I:
10

.1
10

9/
IR

O
S5

85
92

.2
02

4.
10

80
16

02

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on April 08,2025 at 23:45:19 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Command interruptions are an important concern for natural language controlled dynamic locomotion. Interruptions
with a new command at an unfavorable moment can destabilize the robot (red). The robot can take preventative measures if
it can anticipate such an outcome, such as waiting until enacting the new command is safe (green).

II. RELATED WORKS

Language for robot control: Many recent works have
leveraged LLMs for controlling robots using natural language.
Most prior works [1–5] have exclusively focused on fixed-
based manipulators. A few distinctions include [6–8], which
work on language-guided navigation in human-environments.
A few prior works have studied language-based control for
legged robots such as [9], [10] and [11]. However, these
works are limited to stable robot operations.

Non-episodic settings: Natural language-guided control
is a well studied problem in robotics from a task-success
point of view. However, most studies are assessed within an
episodic context, usually free from operational disruptions and
generally founded on the implicit presumption of an absence
of poor vocabulary choices. These assumptions do not always
hold during real-world deployment. A closely aligned work
is [12], where online language corrections are given to the
manipulator robot by modulating the state context for any
given input. However, the testing scope of the system was
limited to a single setting. Another notable work is [13] that
trains a manipulator policy on a large set of human-annotated
trajectories on a table-top environment to interactively and
iteratively provide language guidance.

This work differs from prior works along two major
dimensions. First, we develop a language-guided agent for
a highly dynamic biped robot Cassie. No prior works have
studied language-guided dynamic biped locomotion to the best
of our knowledge. Second, we highlight the potential pitfalls
and maladaptive behaviors that can arise when utilizing
natural language to control dynamic robots, and we introduce
strategies to counteract these problems.

III. LANGUAGE CONTROLLED DYNAMIC LOCOMOTION

In this section, we describe our locomotion control system
for the biped Cassie that takes natural language locomotion
commands at any time and ideally produces the desired
behavior. This system can be adapted for any mobile robot by
replacing the hardware specific components. It is built around
a base locomotion controller from prior work [14], which we
refer to as the control policy. The control policy is typically
commanded via a hand-held remote control, which requires
significant experience to operate safely and effectively. The

key idea of our approach is to translate natural language into
the appropriate sequence of remote control commands, which
significantly lowers the skill and expertise required. Below, we
first describe the scope of locomotion behaviors considered in
this work, followed by an overview of the system architecture,
training data generation and system training.

A. Scope of Locomotion Behaviors

To focus on the interruptive aspects of language control, we
restrict this work to blind locomotion, where the only input
to the control policy is the user command and proprioceptive
information. Even in this setting, there are a large variety of
possible locomotion behaviors that could be considered and
we focus on a limited, but useful, subset in this study. In
particular, we consider language control of walking, running,
and turning with a fixed set of available velocities. Below
we describe three classes of language commands over these
behaviors that our system will support.
• Primitive Commands: These commands initiate one of 8

simple locomotion primitives that include walking, turning,
running and stepping in place (stop). Walking can be
commanded in the forward/backward directions with a
fixed velocity of ± 0.8 m/s, or the left/right side-stepping
directions with a fixed velocity of ± 0.25 m/s. Turning is
constrained to ± 0.2 rad/s while running is constrained
to a forward direction with velocity 2.0 m/s. Examples of
the language commands for these locomotion primitives
include “walk forward”, “start running”, “turn left”.

• Constrained Primitive Commands: These commands allow
for specifying constraints on the execution time or number
of footsteps for primitive commands. The time and the
footstep constraints are integers in the range 1 to 6
(inclusive). Examples are “turn right for 4 seconds” and
“walk backward for 5 steps”.

• Composition Commands: These commands allow different
combinations of commands from either primitives or
constrained primitives. The combinations can be either
sequential or parallel (if compatible). Examples include
“walk forward for 3 steps while turning left” (parallel) and
“walk forward for 2 steps then walk backward for 3 steps”
(sequential). Our architecture limits the maximum time
duration that combinations can span as described later.

12395

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on April 08,2025 at 23:45:19 UTC from IEEE Xplore. Restrictions apply.

(a) (b)

Fig. 2: (a) Overall System Architecture. The models in red are pre-trained and always kept frozen. The models in blue are
learned during training. (b) Training and test accuracy of the behavior transformer.

B. Architecture
Figure 2a shows the overall architecture of our system

for language-based locomotion control. At a high-level, the
natural language command is given to a pre-trained language
model, which produces a language embedding vector. At
each time step, this embedding is combined with the recent
history of robot states to produce a tokenized sequence that
is input to the behavior transformer. The transformer outputs
the command to be passed to the pre-trained control policy at
that timestep. The control policy directly controls the robot
in a closed loop. The main components are described below.
Pre-trained Control Policy. Following [14], the input to
the control policy is the current robot proprioceptive states
(position/velocity of joints and pelvis velocities/orientation),
a periodic clock signal, and locomotion commands specifying
target x-velocity, y-velocity and turn-rate. The output is the
joint level PD setpoints for each of the robot’s 10 joints (5 per
leg). The control policy updates the PD setpoints at 50Hz and
the underlying PD controller runs at 2 kHz. The controller
architecture is a GRU recurrent neural network and is trained
in simulation with dynamics randomization using the PPO
reinforcement learning [15]. This same controller architecture
and training methodology was used in a variety of prior work
that demonstrated sim-to-real transfer [16–19].
Pre-trained Language Model. The language model L,
takes the natural language command I as input and outputs
the language embedding L(I). In all of our experiments
we use the freely available e5-mistral-7b-instruct language
model [20], which has 7.11B parameters and produces 4096
dimensional embeddings.
Language and State Encoders. The robot state and language
embedding are processed by state encoder Estate and embed-
ding encoder Eemb respectively. Let s, eemb, and es be the
robot state, encoded language embedding and encoded robot
state such that es = Estate(s) and eemb = Eemb(Iemb). Both
encoders are parameterized using fully connected networks
with ReLU activations, one hidden layer of size 256 and have
output size of 128.
Behavior Transformer. The input to the behavior transformer
at each timestep t starting with the new command is a
tokenized sequence of vectors Vt = (v1, v2, . . . , vt) that
encodes the current language command and history of the

robot states since the latest command. Each token vi is pro-
duced by concatenating the following information: 1) a 128-
dimensional sinusoidal positional embedding pi, 2) a learned
128-dimensional encoding ei of the language embedding
L(I) produced by an MLP encoder, and 3) a learned 128-
dimensional encoding ui of the robot proprioceptive state
at time i. Both the language and state encoders are 2-layer
[256,128] MLPs with ReLU activations. The history sequence
is reset each time a new command is received.

The behavior transformer is a 3-layered transformer model
that uses 8 attention heads and 1024 feed-forward dimensions.
The four output heads of the transformer output the velocity
commands for the control policy (x-velocity, y-velocity, turn-
rate) and a binary “stop” token b̂t for every timestep t to
indicate when the current command execution has finished.
Upon such prediction, the command velocities to the control
policy are changed to zero which we treat as the control
system’s default behavior. Due to computational capacity
we limit the transformer context length w to 300, which
corresponds to 6 seconds of real-world operations.

C. Training Data Generation and Training

Our system is trained on a dataset D of natural language-
annotated demonstrations of locomotion behavior. Specifically,
each data point in D is of the form (I, d), where I is the nat-
ural language command, and d = (s1, a1, s2, a2, . . . , sT , aT)
where st and at are the robot-state and control policy
commands respectively at time t. This dataset is collected
in simulation with dynamics randomization. Note that, un-
like recent work on language-based robot control [21] we
do not have a previously collected set of such annotated
demonstrations for our target robot platform. Rather than
spending resources on large-scale annotation, we instead
explore a strategy that involves automated annotation over a
hand-crafted space of language instructions, relying on the
language model for test-time generalization.

To generate language instruction I , we first handcraft
an equal number of language commands (four) for each
locomotion primitive. We then define templates for generating
instructions for constrained primitives that can enumerate
over different primitive commands, the type of constraint, and
numeric values. Finally, for composition commands, we define
templates that combine two language commands (primitive

12396

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on April 08,2025 at 23:45:19 UTC from IEEE Xplore. Restrictions apply.

or constrained) either sequentially (via “then”) or in parallel
(via “while”) as appropriate for the selected commands.

Given a generated language instruction I , we created a
parser that automatically generates the correct sequence of
commands for the control policy, including the appropriate
stopping conditions. To produce a demonstration d for I ,
we initialize the robot in the simulator using a randomized
start state distribution and operate the robot using the control
policy with randomized velocity commands for 2 seconds
(100 simulation steps) to randomize the initial conditions
for d. We then run the control policy with the command
sequence from the parser and record the state and command
sequence to produce d. Our full dataset is comprised of an
equal number of such annotated demonstrations from each
of the three command categories.

For training, we optimize the parameters of the behavior
transformer B and the language and state encoders used to
construct the tokenized sequence. The parameters of the pre-
trained language model and control policy are held fixed. The
collected data is divided into an 80:20 training/testing split.
From our definition of the language command categories in
this work, we can enumerate the possible target outputs of
the transformer (i.e. control policy commands). Thus, we
use cross-entropy loss to train the transformer. Note that,
we have also experimented with the MSE loss and found
little difference between the two. We use the Adam optimizer
(learning rate 1e-4) and gradient clipping for training stability.

D. Prediction Evaluation

Figure 2b shows the evolution of training and test accuracy
during training. These results show that the selected architec-
ture and hyperparameters yield strong base performance on
our automatically generated demonstration data.

We now consider the generalization capabilities of our
system to language outside of the generated data. In particular,
we used a publicly available language model API to generate
a set of 100 new natural language commands corresponding to
the primitive commands. These new language commands are
not present in any of our automatically generated data. We test
each new command in simulation by randomly initializing
the robot before the new language command is given to
the system. We then measured the average accuracy over 8
trails each of the 100 commands further averaged by using
models trained with 5 random seeds. The overall accuracy was
86.68± 0.04% compared to the nearly perfect accuracy for
language commands in the original training and testing data.
A clear direction to improvement is to train on an extended
dataset including these and other automatically generated
language commands. However, we leave that to future work
given the focus of this work—interruptive performance of
language-controlled dynamic systems.

IV. EVALUATING STABILITY UNDER INTERRUPTIONS

A language controlled robot can experience command
interruptions for a multitude of reasons. The operator may
intentionally interject to correct or modify the current behav-
ior, or the robot may unintentionally interpret environment

sounds as commands. Below, we introduce our methodology
for evaluating the system’s stability under different types of
interruption patterns. We then evaluate our learned system to
show that interruptions do cause non-trivial failure rates.

Evaluation Methodology. We evaluate the stability under
interruptions in simulation by interrupting our system with
new commands at varying frequencies and number of inter-
ruptions. Specifically, each evaluation episode involves an
interruption frequency between 0.4 to 2.0 interruptions per
second and a total number of interruptions from 1 to 4 to
capture different interruption patterns. Each episode begins by
initializing the robot in simulation using a randomized start
state distribution. We provide a random language command
to the robot and let it run uninterrupted for 2 seconds of real
world time. Afterwards, we interrupt the system at the selected
interruption frequency for the selected number of interruptions
using new commands. These new commands can be sampled
from the following two distributions of commands:
• Random interruptions: The interruption commands are

sampled uniformly from the set of all commands, from all
three command categories, in the training data.

• Adversarial interruptions: For every interruption, with
a probability of 0.5, we generate a random interruption
as described above. Otherwise, we sample a language
command from a hand-designed adversarial distribution
that aims to maximally conflict with the currently executing
command. For example, if the current command is “Walk
backward while turning right”, the adversarial command
might be “Run forward while turning left”. This distribution
is defined via a deterministic function over the adversarial
behavior, which is used to sample a randomized language
command for that behavior.

An episode ends as a failed episode when the robot falls
down, otherwise the episode ends as a success 3 seconds
after the last interruption.

Evaluation Results. We conducted evaluation trials for
our learned language controller for all combinations of
interruption frequencies (interruptions per second) f ∈
{0.4, 0.8, 1.2, 1.6, 2.0} and number of interruptions n ∈
{1, 2, 3, 4}. For each combination we evaluated the failure
percentage over 2048 simulated episodes.

Figure 3a quantifies the results for both random and
adversarial interruptions. Overall, the system usually achieves
a small failure percentage of less than 1%. Adversarial
interruptions generally lead to more failures than random
interruptions. We see that the failure percentages tend to be
significantly smaller for n = 1. This indicates that successive
interruptions tend to compound stability issues. Indeed, we
see that in general the failure percentage increases as n
continues to increase. We also note a weaker trend of the
failure percentage decreasing as f increases. While this may
appear counter-intuitive, a likely explanation is that for higher
frequencies an interruption can occur before the controller
can produce a significant response to the previous command.

While these observed failure rates appear small in magni-
tude, it is important to note that even these small rates can be

12397

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on April 08,2025 at 23:45:19 UTC from IEEE Xplore. Restrictions apply.

(a) Failure percentage without mitigation (b) Failure percentage with mitigation

Fig. 3: Failure percentage (0%-100%) for each combination of interruptions per second and number of interruptions for both
random and adversarial interruptions. (a) Unmitigated command interruptions and (b) Mitigated command interruptions.

unacceptable for real-world settings involving long periods of
robot operation. This motivates investigating approaches for
mitigating these failures. It’s essential to highlight that due to
the small magnitude of failure rates, reliably and consistently
replicating these failures on the real robot is challenging.
As a result, we restrict our interruption experiments to the
simulated environment.

V. PREDICTING AND MITIGATING INTERRUPTIONS

In this section, we describe a learning-based approach to
predict whether an interruption will lead to a failure. We then
develop and evaluate a corresponding mitigation approach.

Predicting Unstable Interruptions. We developed two
different datasets to train our classifier that identifies in-
terruptions potentially leading to failures, referred to as
unstable interruptions. Each example in the dataset is a tuple
(s, I, l), where s is a robot state, I is the language instruction
(i.e. interruption) given at that state, and l is binary label
indicating whether the interruption is unstable or stable. We
generate two different datasets that differ in whether they are
based on random or adversarial interruptions. An example is
generated by first simulating either a random or an adversarial
interruption episode as described in Section IV for randomly
selected interruption frequencies and counts. If the episode is
a failure with I being the instruction issued at time t before
the failure, then we create an example (st′ , I, unstable) for all
t′ ≥ t to the end of the episode. If the episode is not a failure,
then, for each time t with active interruption instruction I we
generate an example (st, I, stable). Each dataset (Random
and Adversarial) contain 145k examples. The rarity of failures
leads to a severe class imbalance, therefore, we downsample
the stable examples to yield a balanced class distribution.

The classifier architecture consists of three separate MLPs.
We first generate the language embedding L(I) from the
language command I using the pretrained language model
L. This embedding is then processed by a single hidden
layer MLP of size [512,512]. The robot states are separately
processed by another single hidden layer MLP of the same
size. The output of both MLPs is then concatenated and fed
into another MLP with 2 hidden layers of size [512,32,1]
to output the probability of an unstable interruption. The

classifier is trained end-to-end using cross entropy loss with
an 80:20 train/test split.

We measured the area under the ROC (AUROC) curve
for each of the classifiers on each of the test datasets. The
Adversarial classifier achieves an AUROC of 0.995 on the
Adversarial data and 0.996 on the Random data. The Random
classifier achieved an AUROC of 0.966 on the Adversarial
data and 0.971 on the Random data. The near perfect
AUROC values, particularly for the Adversarial classifier
indicate that unstable interruptions have strong distinguishing
characteristics that the classifiers can capture. Intuitively, we
might expect Adversarial examples to be easier to classify
and not capture the general types of failures that might occur.
Thus, it is interesting that the Adversarial classifier, which
was trained on only the Adversarial data, outperforms the
Random classifier on the Random data. Understanding this
observation is a potential line of future work.
Mitigating Command Interruptions. We incorporate the
unstable-interruption classifier learned on the Adversarial
dataset into our system to enhance the resilience to unstable-
interruptions. We evaluate the stability of our system with
the integrated classifier by modifying our stability evaluation
methodology as follows: For any new command interruption,
we use the current state of the robot (s) and the language
embedding (L(I)) of the incoming interruption command I to
classify the interruption as stable or unstable. If the classifier
predicts stable interruption, the new command is promptly
executed by the system system. Conversely, if the classifier
identifies the interruption as unstable, the system continues
executing the preceding command. For unstable prediction,
we reassess the classifier prediction at every time-step with the
current robot state until safe interruption is predicted. If safe
interruption is never predicted before we receive another
interruption command, then we say the interruption was
ignored. This approach can lead to some delay in executing
commands, which we refer to as command delay.

By analyzing the classifier’s ROC curve, we selected a
probability threshold for detecting an unstable interruption
so that the true-positive rate was greater than 99%, which
yields a false-positive rate of less than 3%. This prioritizes
robot safety over delaying or ignoring instructions due to

12398

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on April 08,2025 at 23:45:19 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: Percentage of ignored commands (0%-100%).

false positives. Figure 3b shows the stability to interruptions
with the integrated interruptions classifier, which reduced the
number of failures for Random interruptions and Adversarial
interruptions by 73.5% and 80.1% on average respectively.
Similar to the previous evaluation of unmitigated interruptions,
we observe that adversarial interruptions tend to lead to more
failures than random interruptions. We also note that the
failure percentage generally increase with the number of
successive interruptions. Overall, the new system usually
achieves a failure percentage of less than 0.2%.

The percentages of ignored interruption commands for
various numbers of interruptions and their frequencies are
shown in Figure 4. There is a higher percentage of ig-
nored commands for adversarial interruptions. Overall, the
percentages of ignored commands remains less than 1%
for random interruptions and less than 3% for adversarial
interruptions. The average command delay for random and
adversarial interruptions across all frequencies and numbers
of interruptions was 0.066 and 0.41 time-steps respectively.
We conclude that the integrated classifier significantly reduces
the failure rates across all frequencies and numbers of
interruptions, and therefore boosts our system’s robustness
to command interruptions. The classifier inadvertently also
trades off system’s responsiveness by adding some delay to the
interruption response and occasionally failing to enact some
command interruptions. However, our experiments indicate
that the percentage of failed interruptions and interruption-
delay are quite negligible.

VI. SUMMARY

We developed a natural language controller for the
highly dynamic robot Cassie and focused on the challenge
posed by command interruptions. Our results highlight the
importance of considering command interruptions in the
design, implementation, and evaluation of language-controlled
locomotion systems. Additionally, we introduced a learning-
based command interruptions mitigation method, which
significantly lowered the incidence failures with minimal
impact on the system’s responsiveness. Potential future work
includes extending the language command space, improving
the generalization capabilities of the system, and exploring
more sophisticated methods for detecting and mitigating
command interruptions as well as hardware experiments.

REFERENCES

[1] P.-L. Guhur, S. Chen, R. G. Pinel, M. Tapaswi, I. Laptev, and C. Schmid,
“Instruction-driven history-aware policies for robotic manipulations,” in
Conference on Robot Learning. PMLR, 2023, pp. 175–187.

[2] K. Mo, Y. Deng, C. Xia, and X. Wang, “Learning language-conditioned
deformable object manipulation with graph dynamics,” arXiv preprint
arXiv:2303.01310, 2023.

[3] J. Yang, W. Tan, C. Jin, B. Liu, J. Fu, R. Song, and L. Wang, “Pave the
way to grasp anything: Transferring foundation models for universal
pick-place robots,” arXiv preprint arXiv:2306.05716, 2023.

[4] M. Shridhar, L. Manuelli, and D. Fox, “Perceiver-actor: A multi-task
transformer for robotic manipulation,” in Conference on Robot Learning.
PMLR, 2023, pp. 785–799.

[5] S. Nair, E. Mitchell, K. Chen, S. Savarese, C. Finn et al., “Learning
language-conditioned robot behavior from offline data and crowd-
sourced annotation,” in Conference on Robot Learning. PMLR, 2022,
pp. 1303–1315.

[6] J. Krantz and S. Lee, “Sim-2-sim transfer for vision-and-language
navigation in continuous environments,” in European Conference on
Computer Vision. Springer, 2022, pp. 588–603.

[7] C. Huang, O. Mees, A. Zeng, and W. Burgard, “Visual language
maps for robot navigation,” in 2023 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2023, pp. 10 608–10 615.

[8] J. Krantz, T. Gervet, K. Yadav, A. Wang, C. Paxton, R. Mottaghi,
D. Batra, J. Malik, S. Lee, and D. S. Chaplot, “Navigating to objects
specified by images,” arXiv preprint arXiv:2304.01192, 2023.

[9] A. Bucker, L. Figueredo, S. Haddadin, A. Kapoor, S. Ma, S. Vemprala,
and R. Bonatti, “Latte: Language trajectory transformer,” in 2023 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2023, pp. 7287–7294.

[10] W. Yu, N. Gileadi, C. Fu, S. Kirmani, K.-H. Lee, M. G. Arenas, H.-
T. L. Chiang, T. Erez, L. Hasenclever, J. Humplik et al., “Language to
rewards for robotic skill synthesis,” arXiv preprint arXiv:2306.08647,
2023.

[11] Y. Guo, Y.-J. Wang, L. Zha, Z. Jiang, and J. Chen, “Doremi: Grounding
language model by detecting and recovering from plan-execution
misalignment,” arXiv preprint arXiv:2307.00329, 2023.

[12] Y. Cui, S. Karamcheti, R. Palleti, N. Shivakumar, P. Liang, and
D. Sadigh, “No, to the right: Online language corrections for robotic
manipulation via shared autonomy,” in Proceedings of the 2023
ACM/IEEE International Conference on Human-Robot Interaction,
2023, pp. 93–101.

[13] C. Lynch, A. Wahid, J. Tompson, T. Ding, J. Betker, R. Baruch,
T. Armstrong, and P. Florence, “Interactive language: Talking to robots
in real time,” IEEE Robotics and Automation Letters, 2023.

[14] J. Siekmann, Y. Godse, A. Fern, and J. Hurst, “Sim-to-real learning of
all common bipedal gaits via periodic reward composition,” in 2021
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2021, pp. 7309–7315.

[15] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[16] H. Duan, A. Malik, M. S. Gadde, J. Dao, A. Fern, and J. Hurst,
“Learning dynamic bipedal walking across stepping stones,” in 2022
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2022, pp. 6746–6752.

[17] D. Crowley, J. Dao, H. Duan, K. Green, J. Hurst, and A. Fern,
“Optimizing bipedal locomotion for the 100m dash with comparison to
human running,” in 2023 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2023, pp. 12 205–12 211.

[18] H. Duan, A. Malik, J. Dao, A. Saxena, K. Green, J. Siekmann, A. Fern,
and J. Hurst, “Sim-to-real learning of footstep-constrained bipedal
dynamic walking,” in 2022 International Conference on Robotics and
Automation (ICRA). IEEE, 2022, pp. 10 428–10 434.

[19] J. Dao, K. Green, H. Duan, A. Fern, and J. Hurst, “Sim-to-real
learning for bipedal locomotion under unsensed dynamic loads,” in
2022 International Conference on Robotics and Automation (ICRA).
IEEE, 2022, pp. 10 449–10 455.

[20] L. Wang, N. Yang, X. Huang, L. Yang, R. Majumder, and F. Wei,
“Improving text embeddings with large language models,” arXiv preprint
arXiv:2401.00368, 2023.

[21] A. Padalkar, A. Pooley, A. Jain, A. Bewley, A. Herzog, A. Ir-
pan, A. Khazatsky, A. Rai, A. Singh, A. Brohan et al., “Open x-
embodiment: Robotic learning datasets and rt-x models,” arXiv preprint
arXiv:2310.08864, 2023.

12399

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on April 08,2025 at 23:45:19 UTC from IEEE Xplore. Restrictions apply.

